JP2015149811A - Transformation ratio controller and substation supervisory control system - Google Patents

Transformation ratio controller and substation supervisory control system Download PDF

Info

Publication number
JP2015149811A
JP2015149811A JP2014020546A JP2014020546A JP2015149811A JP 2015149811 A JP2015149811 A JP 2015149811A JP 2014020546 A JP2014020546 A JP 2014020546A JP 2014020546 A JP2014020546 A JP 2014020546A JP 2015149811 A JP2015149811 A JP 2015149811A
Authority
JP
Japan
Prior art keywords
transformer
transformation ratio
transformers
control device
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014020546A
Other languages
Japanese (ja)
Inventor
欣吾 輿石
Kingo Koshiishi
欣吾 輿石
博幸 齋藤
Hiroyuki Saito
博幸 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba System Technology Corp
Original Assignee
Toshiba Corp
Toshiba System Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba System Technology Corp filed Critical Toshiba Corp
Priority to JP2014020546A priority Critical patent/JP2015149811A/en
Publication of JP2015149811A publication Critical patent/JP2015149811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the burden on the operator by preventing malfunction when changing the operating state of a transformer to other mode, in an electric power station where a plurality of transformers exist.SOLUTION: In a substation supervisory control system having transformers 11a, 11b, 11c, a plurality of apparatus provided on the primary and secondary of the transformer, apparatus controllers 21c, 23c for acquiring the transformation ratio information of the transformers, and the transformation ratio controller 22c for controlling the transformation ratio based on the transformation ratio information acquired from an apparatus controller, when the transformer 11c is stopping and the transformers 11a, 11b are operating in parallel, the transformation ratio controller 22c performs transformation ratio matching until the transformation ratio of the transformer 11c matches the transformation ratio of the transformers 11a, 11b, based on the transformation ratio information.

Description

本発明の実施形態は、複数の変圧器が存在する電気所において、変圧器の運転状態を他のモードに変更する際に、誤動作を防止し操作員の負担を軽減し得る変圧比制御装置および該変圧比制御装置を用いた変電所監視制御システムに関する。   An embodiment of the present invention relates to a transformer ratio control device capable of preventing malfunction and reducing the burden on an operator when changing the operation state of a transformer to another mode in an electric station where a plurality of transformers exist. The present invention relates to a substation monitoring and control system using the transformer ratio control device.

複数の変圧器が存在する従来の電気所において、変圧器の運転状態を単独モードから並列モードへ移行させるには、人間系(現場操作員)によって各変圧器の主従関係を判定し、手動にて変圧比を何度も調整して最終的に所望の値に合わせ込む手法が主流となっている。   In a conventional electric power station with multiple transformers, to change the operating state of the transformer from single mode to parallel mode, the human system (site operator) determines the master-slave relationship of each transformer and manually The mainstream method is to adjust the transformation ratio many times and finally adjust it to the desired value.

上述の主従判定および手動操作の際には、電気所の系統状態や潮流、電気量など電気系統を把握する必要があり、必然的に一定以上のスキルと経験を有する操作員に依存する状態となっている。   In the above-mentioned master-slave determination and manual operation, it is necessary to grasp the electrical system status such as the system status, tidal current, and quantity of electricity at the power station, and it is inevitably dependent on an operator with a certain level of skill and experience. It has become.

特開2012−60837号公報JP2012-60837A

上述のように操作員に依存した作業においては、操作が煩雑であり、しかも手動操作による誤操作により変圧比が異なる状態で運用することがあり、この場合は、系統に循環電流が発生し、電力の損失が発生することがあった。   As described above, in operations that depend on the operator, the operation is complicated, and the operation may be performed in a state where the transformation ratio is different due to an erroneous operation due to manual operation. Loss may occur.

また、各変圧器に潮流量の差が生じ、変圧器の使用頻度が不均等になることから、各変圧器の寿命に差が発生することがあった。   In addition, there is a difference in tidal flow between the transformers, and the frequency of use of the transformers becomes uneven, which may cause a difference in the life of each transformer.

本発明の実施形態は、複数の変圧器が存在する電気所において、変圧器の運転状態を他のモードに変更する際に、誤動作を防止し操作員の負担を軽減し得る変圧比制御装置および該変圧比制御装置を用いた変電所監視制御システムを提供することを目的とする。   An embodiment of the present invention relates to a transformer ratio control device capable of preventing malfunction and reducing the burden on an operator when changing the operation state of a transformer to another mode in an electric station where a plurality of transformers exist. An object of the present invention is to provide a substation monitoring and control system using the transformer ratio control device.

また、変圧器の使用頻度をより均一化できる変圧比制御装置を提供することも目的とする。   Another object of the present invention is to provide a transformer ratio control device that can make the frequency of use of the transformer more uniform.

上述の目的を達成するため、本発明の実施形態に係る変圧比制御装置は、3機以上の変圧器を有する系統において、任意の変圧器が他の複数の並列運転中の変圧器の系統と孤立した状態にある場合、前記任意の変圧器を他の複数の並列運転中の変圧器の系統へ加入させる際に、前記3機以上の変圧器から取得した変圧比情報に基づいて、前記任意の変圧器の変圧比を前記他の複数の変圧器の変圧比と一致するまで変圧比合わせ処理を実施することを特徴とする。   In order to achieve the above-mentioned object, a transformer ratio control device according to an embodiment of the present invention is a system having three or more transformers, and an arbitrary transformer is connected to a plurality of other transformer systems in parallel operation. When in an isolated state, when the arbitrary transformer is joined to a plurality of other transformers in parallel operation, based on the transformation ratio information obtained from the three or more transformers, the arbitrary The transformation ratio matching process is performed until the transformation ratio of the other transformer matches the transformation ratio of the other plurality of transformers.

また、前記変圧比制御装置を用いた変電所監視制御システムも本発明の実施形態の一つである。   Moreover, the substation monitoring control system using the said transformation ratio control apparatus is also one Embodiment of this invention.

本発明の第1〜第5各実施形態に係る変電所監視制御システムの構成を示す概略図である。It is the schematic which shows the structure of the substation monitoring control system which concerns on each 1st-5th embodiment of this invention. 第1の実施形態に係る変電所監視制御システムの状態を示す概略図である。It is the schematic which shows the state of the substation monitoring control system which concerns on 1st Embodiment. 第1の実施形態に係る変電所監視制御システムの変圧比合わせ処理手順を示すフローチャートである。It is a flowchart which shows the transformation ratio matching process sequence of the substation monitoring control system which concerns on 1st Embodiment. 第2の実施形態に係る変電所監視制御システムの状態を示す概略図である。It is the schematic which shows the state of the substation monitoring control system which concerns on 2nd Embodiment. 第2の実施形態に係る変電所監視制御システムの変圧比合わせ処理手順を示すフローチャートである。It is a flowchart which shows the transformation ratio matching process procedure of the substation monitoring control system which concerns on 2nd Embodiment. 第3の実施形態に係る変電所監視制御システムの状態を示す概略図である。It is the schematic which shows the state of the substation monitoring control system which concerns on 3rd Embodiment. 第3の実施形態に係る変電所監視制御システムの変圧比合わせ処理手順を示すフローチャートである。It is a flowchart which shows the transformation ratio matching process procedure of the substation monitoring control system which concerns on 3rd Embodiment. 第4の実施形態に係る変電所監視制御システムの状態を示す概略図である。It is the schematic which shows the state of the substation monitoring control system which concerns on 4th Embodiment. 第4の実施形態に係る変電所監視制御システムの変圧比合わせ処理手順を示すフローチャートである。It is a flowchart which shows the transformation ratio matching process sequence of the substation monitoring control system which concerns on 4th Embodiment. 第5の実施形態に係る変電所監視制御システムの状態を示す概略図である。It is the schematic which shows the state of the substation monitoring control system which concerns on 5th Embodiment. 第5の実施形態に係る変電所監視制御システムの変圧比合わせ処理手順を示すフローチャートである。It is a flowchart which shows the transformation ratio matching process sequence of the substation monitoring control system which concerns on 5th Embodiment. 第6の実施形態に係る変電所監視制御システムの状態を示す概略図である。It is the schematic which shows the state of the substation monitoring control system which concerns on 6th Embodiment. 第6の実施形態に係る変電所監視制御システムの寿命判断処理手順を示すフローチャートである。It is a flowchart which shows the lifetime judgment processing procedure of the substation monitoring control system which concerns on 6th Embodiment.

以下、本発明の実施形態について、図面を参照して具体的に説明する。   Embodiments of the present invention will be specifically described below with reference to the drawings.

(全体構成)
図1は、本発明の第1〜第5の各実施形態に係る変電所監視制御システムの構成を示す概略図である。本変電所監視制御システムは、3機の変圧器11a(1号),11b(2号),11c(3号)を有している。変圧器(1号)11aの一次側は断路器12aおよび遮断器13aを介して系統に接続され、変圧器(1号)11aの二次側は遮断器14a、断路器15aおよび断路器16aを介して負荷と接続されている。また、変圧器(2号)11bも変圧器(1号)11aと同様に、一次側が断路器12bおよび遮断器13bを介して系統に接続され、二次側が遮断器14b、断路器15bおよび断路器16bを介して負荷と接続されている。さらに、変圧器(3号)11cも変圧器(1号)11aと同様に、一次側が断路器12cおよび遮断器13cを介して系統に接続され、二次側が遮断器14c、断路器15cおよび断路器16cを介して負荷と接続されている。
(overall structure)
FIG. 1 is a schematic diagram showing the configuration of a substation monitoring and control system according to first to fifth embodiments of the present invention. This substation monitoring and control system has three transformers 11a (No. 1), 11b (No. 2), and 11c (No. 3). The primary side of the transformer (No. 1) 11a is connected to the system via the disconnector 12a and the circuit breaker 13a, and the secondary side of the transformer (No. 1) 11a is connected to the circuit breaker 14a, the disconnector 15a and the disconnector 16a. Connected with the load through. Similarly to the transformer (No. 1) 11a, the transformer (No. 2) 11b is connected to the system on the primary side via the disconnector 12b and the circuit breaker 13b, and the secondary side is connected to the circuit breaker 14b, the disconnector 15b and the disconnection. It is connected to a load via a device 16b. Further, the transformer (No. 3) 11c is also connected to the system through the disconnector 12c and the circuit breaker 13c on the primary side, and the secondary side is the circuit breaker 14c, the disconnector 15c and the disconnection, similarly to the transformer (No. 1) 11a. It is connected to a load via a device 16c.

また、変圧器(1号)11aの二次側と変圧器(2号)11bの二次側との間にはブスタイ17が設けられ、ブスタイ17の「入」によって変圧器(1号)11aと変圧器(2号)11bとの並列運転が可能になっている。同様に、変圧器(2号)11bの二次側と変圧器(3号)11cの二次側との間にはブスタイ18が設けられ、ブスタイ18の「入」によって変圧器(2号)11bと変圧器(3号)11cとの並列運転が可能になっている。   In addition, a bus tie 17 is provided between the secondary side of the transformer (No. 1) 11a and the secondary side of the transformer (No. 2) 11b. And the transformer (No. 2) 11b can be operated in parallel. Similarly, a bus tie 18 is provided between the secondary side of the transformer (No. 2) 11b and the secondary side of the transformer (No. 3) 11c. 11b and the transformer (No. 3) 11c can be operated in parallel.

さらに、変圧器(1号)11aの一次側には断路器12aおよび遮断器13aの状態を計測し把握するための機器制御装置21aが設置され、変圧器(1号)11aの二次側には断路器14aおよび遮断器15aの状態を計測し把握するための機器制御装置23aが設置される。さらに、変圧器(1号)11aには、機器制御装置21aおよび機器制御装置23aと接続され、変圧器(1号)11aの状態を制御する変圧器制御装置22aが設けられている。また、変圧器(2号)11bおよび変圧器(3号)11cも同様に、一次側にはそれぞれ、機器制御装置21b、21cが設置され、二次側にはそれぞれ機器制御装置23b、23cが設置される。さらに、変圧器(2号)11bには、機器制御装置21bおよび機器制御装置23bと接続され、変圧器(2号)11bの状態を制御する変圧器制御装置22bが設けられ、変圧器(3号)11cには、機器制御装置21cおよび機器制御装置23cと接続され、変圧器(3号)11cの状態を制御する変圧器制御装置22cが設けられている。   Furthermore, a device control device 21a for measuring and grasping the state of the disconnecting switch 12a and the circuit breaker 13a is installed on the primary side of the transformer (No. 1) 11a, and on the secondary side of the transformer (No. 1) 11a. Is provided with a device control device 23a for measuring and grasping the state of the disconnecting switch 14a and the circuit breaker 15a. Furthermore, the transformer (No. 1) 11a is provided with a transformer control device 22a that is connected to the equipment control device 21a and the equipment control device 23a and controls the state of the transformer (No. 1) 11a. Similarly, the transformer (No. 2) 11b and the transformer (No. 3) 11c are respectively provided with the equipment control devices 21b and 21c on the primary side and the equipment control devices 23b and 23c on the secondary side, respectively. Installed. Further, the transformer (No. 2) 11b is provided with a transformer control device 22b that is connected to the equipment control device 21b and the equipment control device 23b and controls the state of the transformer (No. 2) 11b. No.) 11c is provided with a transformer control device 22c that is connected to the device control device 21c and the device control device 23c and controls the state of the transformer (No. 3) 11c.

[第1の実施形態]
(1号、2号の変圧器が並列運転中であり、3号の変圧器が停止中の場合)
図2は、第1の実施形態に係る変電所監視制御システムの状態を示す概略図である。なお、図2において、機器制御装置および変圧比制御装置は、変圧器(3号)11cに対応した機器制御装置21c、変圧比制御装置22c、機器制御装置23cのみ示し、図1で示した変圧器(1号)11a、変圧器(2号)11bに対応した機器制御装置21a、21b、変圧比制御装置22a、22b、機器制御装置23a、23bについては記載を省略する。
[First Embodiment]
(When No. 1 and No. 2 transformers are operating in parallel and No. 3 transformer is stopped)
FIG. 2 is a schematic diagram illustrating a state of the substation monitoring and control system according to the first embodiment. In FIG. 2, the device control device and the transformation ratio control device are only the device control device 21c, the transformation ratio control device 22c, and the device control device 23c corresponding to the transformer (No. 3) 11c. Description is abbreviate | omitted about the apparatus control apparatuses 21a and 21b, the transformation ratio control apparatuses 22a and 22b, and the apparatus control apparatuses 23a and 23b corresponding to the transformer (No. 1) 11a and the transformer (No. 2) 11b.

本実施形態の変電所監視制御システムでは、変圧器(1号)11aの一次側にある断路器12a、遮断器13a、および変圧器(1号)11aの二次側にある遮断器14a、断路器15a、断路器16aの全てが「入」状態とされ、変圧器(2号)11bの一次側にある断路器12b、遮断器13b、および変圧器(2号)11bの二次側にある遮断器14b、断路器15b、断路器16bも全て「入」状態とされている。さらに、ブスタイ17も「入」状態とされているため、変圧器(1号)11aと変圧器(2号)11bは系統として繋がった状態であり、共に変圧比8で並列運転の状態にある。これに対して、変圧器(3号)11cの一次側にある断路器12c、遮断器13c、および変圧器(3号)11cの二次側にある遮断器14c、断路器15c、断路器16cが全て「切」状態とされ、さらにブスタイ18も「切」状態とされているため、変圧器(3号)11cは停止状態にある。   In the substation monitoring and control system of this embodiment, the disconnector 12a, the circuit breaker 13a on the primary side of the transformer (No. 1) 11a, and the breaker 14a on the secondary side of the transformer (No. 1) 11a, the disconnection All of the switch 15a and disconnector 16a are in the “on” state, and are on the secondary side of disconnector 12b, breaker 13b, and transformer (No. 2) 11b on the primary side of transformer (No. 2) 11b. The circuit breaker 14b, the disconnecting switch 15b, and the disconnecting switch 16b are all in the “ON” state. Further, since the bus tie 17 is also in the “ON” state, the transformer (No. 1) 11a and the transformer (No. 2) 11b are connected as a system, and both are in a parallel operation state with a transformation ratio of 8. . In contrast, the disconnector 12c and the circuit breaker 13c on the primary side of the transformer (No. 3) 11c, and the circuit breaker 14c, the disconnector 15c, and the disconnector 16c on the secondary side of the transformer (No. 3) 11c. Are in the “OFF” state and the bus tie 18 is also in the “OFF” state, the transformer (No. 3) 11c is in a stopped state.

本実施形態の変電所監視制御システムにおいて、停止中の変圧器(3号)11cを並列運転中の変圧器(1号)11aおよび変圧器(2号)11bと共に並列運転へ移行させるには、変圧器(3号)11cの変圧比6を変圧器(1号)11aおよび変圧器(2号)11bと同じ変圧比8へ昇圧する必要がある。以下、変圧器(3号)11cの変圧比を変圧器(1号)11aおよび変圧器(2号)11bの変圧比に合わせる処理手順について説明する。   In the substation monitoring and control system of this embodiment, in order to shift the stopped transformer (No. 3) 11c to the parallel operation together with the transformer (No. 1) 11a and the transformer (No. 2) 11b in parallel operation, It is necessary to boost the transformation ratio 6 of the transformer (No. 3) 11c to the same transformation ratio 8 as the transformer (No. 1) 11a and the transformer (No. 2) 11b. Hereinafter, a processing procedure for adjusting the transformation ratio of the transformer (No. 3) 11c to the transformation ratio of the transformer (No. 1) 11a and the transformer (No. 2) 11b will be described.

(作用)
図3は、第1の実施形態に係る変電所監視制御システムの変圧比合わせ処理手順を示すフローチャートである。
(Function)
FIG. 3 is a flowchart showing a transformation ratio matching process procedure of the substation monitoring and control system according to the first embodiment.

まず、機器制御装置21cおよび機器制御装置23cは、停止中の変圧器(3号)11cの変圧比情報を取得し(ステップS11)、変圧比制御装置22cは、並列運転中の変圧器(1号)11aおよび変圧器(2号)11bの変圧比情報を機器制御装置21a、21b(図1参照)および機器制御装置23a、23b(図1参照)から取得する(ステップS12)。   First, the device control device 21c and the device control device 23c acquire the transformation ratio information of the transformer (No. 3) 11c that is stopped (step S11), and the transformation ratio control device 22c obtains the transformer (1 No.) 11a and transformer (No. 2) 11b transformation ratio information is acquired from the device control devices 21a, 21b (see FIG. 1) and the device control devices 23a, 23b (see FIG. 1) (step S12).

次に、停止中の変圧器(3号)11cの自動変圧比合わせ信号が入力されると(ステップS13)、変圧比制御装置22cは、以下の自動変圧比合わせ処理(ステップS14〜19)を実行する。すなわち、変圧器(3号)11cの変圧比が並列変圧器(変圧器(1号)11aおよび変圧器(2号)11b)と異なるか否かを判定し(ステップS14)、異なる変圧比で変圧比合わせが必要な場合(ステップS14でYES)は、処理フロー(ステップS15以下)を実行する。一方、すでに変圧比が同じである場合(ステップS14でNO)は、処理を終了させる。   Next, when the automatic transformation ratio matching signal of the stopped transformer (No. 3) 11c is input (step S13), the transformation ratio control device 22c performs the following automatic transformation ratio matching processing (steps S14 to 19). Run. That is, it is determined whether or not the transformation ratio of the transformer (No. 3) 11c is different from that of the parallel transformer (transformer (No. 1) 11a and transformer (No. 2) 11b) (Step S14). If the transformation ratio needs to be matched (YES in step S14), the processing flow (step S15 and subsequent steps) is executed. On the other hand, if the transformation ratio is already the same (NO in step S14), the process is terminated.

ステップS15において、変圧比制御装置22cは、対象変圧器である変圧器(3号)11cの変圧比が並列運転中である変圧器(1号)11aおよび変圧器(2号)の変圧比より小さいか否かを判定する(ステップS15)。小さい場合(ステップS15でYES)は、変圧比の上げ指令を出力し(ステップS16)、大きい場合(ステップS15でNO)は、変圧比の下げ指令を出力する(ステップS17)。   In step S15, the transformation ratio control device 22c determines the transformation ratio of the transformer (No. 3) 11c that is the target transformer from the transformation ratio of the transformer (No. 1) 11a and the transformer (No. 2) that are operating in parallel. It is determined whether it is small (step S15). If it is small (YES in step S15), a command to increase the transformation ratio is output (step S16). If it is large (NO in step S15), a command to decrease the transformation ratio is output (step S17).

変圧比切換に掛かる一定時間経過した後(ステップS18)、並列運転中である変圧器(1号)11aおよび変圧器(2号)11bの変圧比と対象変圧器である変圧器(3号)11cの変圧比が同じ値になったか否かを判定する(ステップS19)。同じ値になった場合(ステップS19でYES)は、処理を終了する。一方、異なる場合(ステップS19でNO)は、ステップS15に戻り、繰り返し自動変圧比合わせ処理を実行する。   After a lapse of a certain time required for switching the transformation ratio (step S18), the transformation ratio of the transformer (No. 1) 11a and the transformer (No. 2) 11b in parallel operation and the transformer (No. 3) as the target transformer It is determined whether or not the transformation ratio of 11c has the same value (step S19). If the values are the same (YES in step S19), the process ends. On the other hand, if they are different (NO in step S19), the process returns to step S15, and the automatic transformation ratio matching process is repeatedly executed.

(効果)
通常、変圧比合わせは人間系による手動操作で行っていたが、本実施形態によれば、変圧比制御装置22cにより変圧比合わせ処理を実施して変圧器(3号)11cの変圧比6を変圧器(1号)11aおよび変圧器(2号)11bと同じ変圧比8へ自動で合わせ込むことができる。このため、変圧器の運転状態を単独モードから並列モードに移行させる際に、操作員による誤動作を防止し操作員の負担を軽減することができる。
(effect)
Usually, the transformation ratio matching is performed manually by a human system. However, according to the present embodiment, the transformation ratio matching process is performed by the transformation ratio control device 22c to obtain the transformation ratio 6 of the transformer (No. 3) 11c. It can be automatically adjusted to the same transformation ratio 8 as the transformer (No. 1) 11a and the transformer (No. 2) 11b. For this reason, when the operation state of the transformer is shifted from the single mode to the parallel mode, it is possible to prevent a malfunction by the operator and reduce the burden on the operator.

また、本実施形態によれば、ステップS13における1度の自動変圧比合わせ信号の入力操作により、変圧比が合うまで制御を繰り返すことから、操作性が向上するとともに、誤操作を防止でき、循環電流が発生した状況での運用防止を図ることができる。   Further, according to the present embodiment, the control is repeated until the transformation ratio is matched by the input operation of the automatic transformation ratio matching signal once in step S13, so that the operability is improved and the erroneous operation can be prevented. It is possible to prevent the operation in the situation where the occurrence of

さらに、従来は、「電圧」を測定して電圧が変わらないように制御を行っていたが、本実施形態によれば、電圧とは関係なく「変圧比」を用い、変圧比のみを判断して単独から並列への切換えができる。この変圧比は機器そのものから分かるので、高価なデジタルデバイスを使うことがなく、コスト削減かつ故障率の低減に寄与することができる。   Furthermore, in the past, control was performed so that the voltage was not changed by measuring the “voltage”. However, according to this embodiment, the “transformation ratio” is used regardless of the voltage, and only the transformation ratio is determined. Switch from single to parallel. Since this transformation ratio can be known from the equipment itself, it is possible to contribute to cost reduction and failure rate reduction without using expensive digital devices.

[第2の実施形態]
(2機の変圧器が並列運転中であり、他の1機の変圧器が単独運転中の場合)
図4は、本発明の第2の実施形態に係る変電所監視制御システムの状態を示す概略図である。なお、第1の実施形態と同一の構成部分については同一の符号を付して説明を省略する。
[Second Embodiment]
(When two transformers are operating in parallel and the other transformer is operating independently)
FIG. 4 is a schematic diagram showing a state of a substation monitoring and control system according to the second embodiment of the present invention. Note that the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施形態の変電所監視制御システムでは、変圧器(1号)11aおよび変圧器(2号)11bについては第1の実施形態と同じ並列運転中の状態であるが、変圧器(3号)11cの状態が異なっている。   In the substation monitoring and control system of the present embodiment, the transformer (No. 1) 11a and the transformer (No. 2) 11b are in the same parallel operation state as the first embodiment, but the transformer (No. 3). The state of 11c is different.

即ち、変圧器(3号)11cの一次側にある断路器12c、遮断器13c、および変圧器(3号)11cの二次側にある遮断器14c、断路器16cが「入」状態とされている。また、断路器15cおよびブスタイ18は「切」状態とされており、変圧器(3号)11cは変圧比6で単独運転中の状態にある。   That is, the disconnector 12c and the circuit breaker 13c on the primary side of the transformer (No. 3) 11c, and the circuit breaker 14c and the disconnector 16c on the secondary side of the transformer (No. 3) 11c are set to the “ON” state. ing. Further, the disconnector 15c and the bus tie 18 are in a “cut” state, and the transformer (No. 3) 11c is in a state of being independently operated at a transformation ratio of 6.

本実施形態の変電所監視制御システムにおいて、単独運転中の変圧器(3号)11cを並列運転中の変圧器(1号)11aおよび変圧器(2号)11bと共に並列運転へ移行させるには、変圧器(3号)11cの変圧比6を変圧器(1号)11aおよび変圧器(2号)11bと同じ変圧比8へ昇圧する必要がある。以下、変圧器(3号)11cの変圧比を変圧器(1号)11aおよび変圧器(2号)11bの変圧比に合わせる処理手順について説明する。   In the substation monitoring and control system of the present embodiment, the transformer (No. 3) 11c that is operating alone is shifted to the parallel operation together with the transformer (No. 1) 11a and the transformer (No. 2) 11b that are operating in parallel. It is necessary to step up the transformation ratio 6 of the transformer (No. 3) 11c to the same transformation ratio 8 as the transformer (No. 1) 11a and the transformer (No. 2) 11b. Hereinafter, a processing procedure for adjusting the transformation ratio of the transformer (No. 3) 11c to the transformation ratio of the transformer (No. 1) 11a and the transformer (No. 2) 11b will be described.

(作用)
図5は、第2の実施形態に係る変電所監視制御システムの変圧比合わせ処理手順を示すフローチャートである。
(Action)
FIG. 5 is a flowchart showing a transformation ratio matching process procedure of the substation monitoring and control system according to the second embodiment.

まず、停止中の変圧器(3号)11cの自動変圧比合わせ信号が入力されると(ステップS21)、変圧比制御装置22cにより自動変圧比合わせ処理が開始される。次に、変圧器(3号)11cの機器制御装置21cおよび機器制御装置23cは、変圧器(3号)11cの系統情報を取得し、変圧比制御装置22cは、並列運転中の変圧器(1号)11aおよび変圧器(2号)11bの系統情報を機器制御装置21a、21b(図1参照)および機器制御装置23a、23b(図1参照)から取得する(ステップS22)。   First, when the automatic transformation ratio matching signal of the stopped transformer (No. 3) 11c is input (step S21), the transformation ratio control device 22c starts the automatic transformation ratio matching process. Next, the device control device 21c and the device control device 23c of the transformer (No. 3) 11c acquire the system information of the transformer (No. 3) 11c, and the transformation ratio control device 22c receives the transformer ( The system information of No. 1) 11a and transformer (No. 2) 11b is acquired from the device control devices 21a, 21b (see FIG. 1) and the device control devices 23a, 23b (see FIG. 1) (step S22).

次に、変圧比制御装置22cは、対象となる変圧器(3号)11cが単独運転状態か否かを判定する(ステップS23)。単独運転状態であった場合(ステップS23でYES)は、取得データにより潮流がないか否かを判定し(ステップS24)、潮流がある場合(ステップS24でNO)は運用中の負荷が存在するため、変圧比の自動合わせ処理が実行されないように処理を終了させる。   Next, the transformation ratio control device 22c determines whether or not the target transformer (No. 3) 11c is in a single operation state (step S23). If it is in an isolated operation state (YES in step S23), it is determined whether or not there is a tidal current based on the acquired data (step S24). If there is a tidal current (NO in step S24), there is a working load. Therefore, the process is terminated so that the automatic adjustment process of the transformation ratio is not executed.

これに対して、潮流がない場合(ステップS24でYES)は、対象となる変圧器を系統から切り離すために、該当遮断器に対して「切」制御指令を出力する(ステップS25)。次に、前記遮断器「切」指令信号により変圧比が切換可能な系統状態になった後、自動変圧比合わせ処理を実行する(ステップS26)。この自動変圧比合わせ処理は、第1の実施形態のステップS14〜19と同様である。ステップS26の自動変圧比合わせ処理が終了した後、自動変圧比合わせの対象となる変圧器の二次側の断路器15cとブスタイ18に対して「入」指令を出力し(ステップS27)、変圧器(3号)11cを並列運転に加入させる。   On the other hand, if there is no power flow (YES in step S24), in order to disconnect the target transformer from the system, a “OFF” control command is output to the corresponding circuit breaker (step S25). Next, after a system state in which the transformation ratio can be switched by the circuit breaker “off” command signal, automatic transformation ratio matching processing is executed (step S26). This automatic transformation ratio matching process is the same as steps S14 to S19 in the first embodiment. After the automatic transformation ratio matching process in step S26 is completed, an “ON” command is output to the secondary side disconnector 15c and the bus tie 18 of the transformer that is the target of the automatic transformation ratio matching (step S27). (3) 11c is added to the parallel operation.

(効果)
本実施形態によれば、第1の実施形態と同様に、変圧器の運転状態を単独モードから並列モードに移行させる際に、操作員による誤動作を防止し操作員の負担を軽減することができる。
(effect)
According to the present embodiment, similarly to the first embodiment, when the operation state of the transformer is shifted from the single mode to the parallel mode, it is possible to prevent malfunction by the operator and reduce the burden on the operator. .

また、本実施形態によれば、ステップS24により潮流がある場合には遮断器の制御処理と自動変圧比合わせ処理をスキップして処理を終了させるので、誤って自動変圧比合わせ信号を入力しても不要な制御処理を防止することができる。   In addition, according to the present embodiment, when there is a power flow in step S24, the circuit breaker control process and the automatic transformation ratio matching process are skipped and the process is terminated. In addition, unnecessary control processing can be prevented.

[第3の実施形態]
(2機の変圧器が並列運転中であり、他の1機の変圧器が停止中の場合)
図6は、本発明の第3の実施形態に係る変電所監視制御システムの状態を示す概略図である。なお、第1の実施形態と同一の構成部分については同一の符号を付して説明を省略する。
[Third Embodiment]
(When two transformers are operating in parallel and the other transformer is stopped)
FIG. 6 is a schematic diagram showing a state of a substation monitoring and control system according to the third embodiment of the present invention. Note that the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施形態の変電所監視制御システムでは、変圧器(1号)11aおよび変圧器(2号)11bが並列運転中の状態であり、変圧器(3号)11cが停止中の状態である点は第1の実施形態と同様であるが、変圧器(3号)11cの周囲の機器の状態が異なっている。   In the substation monitoring and control system of the present embodiment, the transformer (No. 1) 11a and the transformer (No. 2) 11b are in a parallel operation state, and the transformer (No. 3) 11c is in a stopped state. Is the same as in the first embodiment, but the state of the equipment around the transformer (No. 3) 11c is different.

即ち、変圧器(3号)11cの一次側にある断路器12c、遮断器13c、および変圧器(3号)11cの二次側にある断路器15c、断路器16cが「入」状態とされている。また、遮断器14cは「切」状態とされているが、ブスタイ18は「入」状態とされている。このため、変圧器(3号)11cは、停止中の状態にある。以上より、この第3の実施形態に示す状態は、変圧器(3号)11cの2次側遮断器14cを「入」にすると同時に変圧器(3号)11cが系統につながり、変圧器(1号)11aおよび変圧器(2号)11bも含めて並列運転に移行してしまう統状態である。   That is, the disconnector 12c and the circuit breaker 13c on the primary side of the transformer (No. 3) 11c, and the disconnector 15c and the disconnector 16c on the secondary side of the transformer (No. 3) 11c are set to the “ON” state. ing. The circuit breaker 14c is in the “OFF” state, but the bus tie 18 is in the “ON” state. For this reason, the transformer (No. 3) 11c is in a stopped state. As described above, the state shown in the third embodiment is that the secondary circuit breaker 14c of the transformer (No. 3) 11c is set to “On” and at the same time the transformer (No. 3) 11c is connected to the system, and the transformer ( No. 1) 11a and the transformer (No. 2) 11b are in a general state that shifts to parallel operation.

(作用)
図7は、第3の実施形態に係る変電所監視制御システムの変圧比合わせ処理手順を示すフローチャートである。
(Function)
FIG. 7 is a flowchart showing a transformation ratio matching process procedure of the substation monitoring and control system according to the third embodiment.

本実施形態の処理手順は、図3に示す第1の実施形態の処理手順と比較して、ステップS13の代わりにステップS31を用いる点のみが異なっている。
ステップS31では、変圧器(3号)11cの2次側の遮断器14cの「入」指令出力によって、図3のステップS13の自動変圧比合わせ信号を起動させて変圧比制御装置22cの自動変圧比合わせ処理を実施させる。
The processing procedure of this embodiment is different from the processing procedure of the first embodiment shown in FIG. 3 only in that step S31 is used instead of step S13.
In step S31, the "ON" command output of the secondary circuit breaker 14c of the transformer (No. 3) 11c activates the automatic transformation ratio matching signal in step S13 of FIG. The ratio matching process is performed.

(効果)
第1の実施形態では、自動変圧比合わせを実施する起動信号として専用の信号入力が必要であったが、本実施形態によれば、この自動変圧比合わせ信号の入力が不要となり、より一層自動化を促進できる。このため、並列運転への移行操作の簡易化、操作性向上および誤操作防止を図ることができる。
(effect)
In the first embodiment, a dedicated signal input is necessary as an activation signal for performing automatic transformation ratio matching. However, according to the present embodiment, the input of this automatic transformation ratio matching signal is not required, and further automation is achieved. Can be promoted. For this reason, it is possible to simplify the transition operation to parallel operation, improve operability, and prevent erroneous operations.

[第4の実施形態]
(2機の変圧器が並列運転中であり、他の1機の変圧器が単独運転中の場合)
図8は、本発明の第4の実施形態に係る変電所監視制御システムの状態を示す概略図である。なお、第1の実施形態と同一の構成部分については同一の符号を付して説明を省略する。
[Fourth Embodiment]
(When two transformers are operating in parallel and the other transformer is operating independently)
FIG. 8 is a schematic diagram showing a state of a substation monitoring and control system according to the fourth embodiment of the present invention. Note that the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施形態の変電所監視制御システムでは、変圧器(1号)11aおよび変圧器(2号)11bについては第1の実施形態と同じ並列運転の状態であるが、変圧器(3号)11cの周囲の機器の状態が異なっている。   In the substation monitoring and control system of the present embodiment, the transformer (No. 1) 11a and the transformer (No. 2) 11b are in the same parallel operation state as in the first embodiment, but the transformer (No. 3) 11c. The condition of the surrounding equipment is different.

即ち、変圧器(3号)11cの一次側にある断路器12c、遮断器13c、および変圧器(3号)11cの二次側にある遮断器14c、断路器15c、断路器16cが「入」状態とされている。また、ブスタイ18は「切」状態とされており、変圧器(3号)11cは変圧比6で単独運転中の状態にある。以上より、この第4の実施形態に示す状態は、ブスタイ18を「入」にすると同時に変圧器(3号)11cが系統につながり、変圧器(1号)11aおよび変圧器(2号)11bも含めて並列運転に移行してしまう状態である。   That is, the disconnector 12c and the circuit breaker 13c on the primary side of the transformer (No. 3) 11c and the circuit breaker 14c, the disconnector 15c, and the disconnector 16c on the secondary side of the transformer (No. 3) 11c ”State. Further, the bus tie 18 is in the “off” state, and the transformer (No. 3) 11c is in a state of being operated independently at a transformation ratio of 6. As described above, in the state shown in the fourth embodiment, the bus tie 18 is set to “ON” and at the same time the transformer (No. 3) 11c is connected to the system, and the transformer (No. 1) 11a and the transformer (No. 2) 11b are connected. It is a state where it shifts to parallel operation.

(作用)
図9は、第4の実施形態に係る変電所監視制御システムの変圧比合わせ処理手順を示すフローチャートである。
(Function)
FIG. 9 is a flowchart showing a transformation ratio matching process procedure of the substation monitoring and control system according to the fourth embodiment.

本実施形態の処理手順は、図3に示す第1の実施形態の処理手順と比較して、ステップS13の代わりにステップS41を用いる点のみが異なっている。
ステップS41では、単独運転中の変圧器(3号)11cと並列運転中である変圧器(1号)11aおよび変圧器(2号)11bとを結ぶブスタイ18の「入」指令出力によって、図3のステップS13の自動変圧比合わせ信号を起動させて変圧比制御装置22cの自動変圧比合わせ処理を実施させる。
The processing procedure of this embodiment differs from the processing procedure of the first embodiment shown in FIG. 3 only in that step S41 is used instead of step S13.
In step S41, the “input” command output of the bus tie 18 that connects the transformer (No. 3) 11c that is operating in isolation and the transformer (No. 1) 11a and the transformer (No. 2) 11b that are operating in parallel, 3, the automatic transformation ratio matching signal in step S13 is activated to perform the automatic transformation ratio matching process of the transformation ratio control device 22c.

(効果)
第1の実施形態では、自動変圧比合わせを実施する起動信号として専用の信号入力が必要であったが、本実施形態によれば、この自動変圧比合わせ信号の入力が不要となり、より一層自動化を促進できる。このため、並列運転への移行操作の簡易化、操作性向上および誤操作防止を図ることができる。
(effect)
In the first embodiment, a dedicated signal input is necessary as an activation signal for performing automatic transformation ratio matching. However, according to the present embodiment, the input of this automatic transformation ratio matching signal is not required, and further automation is achieved. Can be promoted. For this reason, it is possible to simplify the transition operation to parallel operation, improve operability, and prevent erroneous operations.

[第5の実施形態]
(2機の変圧器が並列運転中であり、他の1機の変圧器が停止中の場合)
図10は、本発明の第5の実施形態に係る変電所監視制御システムの状態を示す概略図である。なお、第1の実施形態と同一の構成部分については同一の符号を付して説明を省略する。
[Fifth Embodiment]
(When two transformers are operating in parallel and the other transformer is stopped)
FIG. 10 is a schematic diagram showing a state of a substation monitoring and control system according to the fifth embodiment of the present invention. Note that the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施形態の変電所監視制御システムでは、変圧器(1号)11a、変圧器(2号)11bおよび変圧器(3号)11cの全てについて第1の実施形態と同様の状態にある。すなわち、変圧器(1号)11aおよび変圧器(2号)11bが並列運転中の状態であり、変圧器(3号)11cが停止中の状態となっている。   In the substation monitoring and control system of the present embodiment, all of the transformer (No. 1) 11a, the transformer (No. 2) 11b, and the transformer (No. 3) 11c are in the same state as in the first embodiment. That is, the transformer (No. 1) 11a and the transformer (No. 2) 11b are in a parallel operation state, and the transformer (No. 3) 11c is in a stopped state.

(作用)
図11は、第5の実施形態に係る変電所監視制御システムの変圧比合わせ処理手順を示すフローチャートである。
(Function)
FIG. 11 is a flowchart showing a transformation ratio matching process procedure of the substation monitoring and control system according to the fifth embodiment.

本実施形態の処理手順は、図3に示す第1の実施形態の処理手順と比較して、ステップS13とステップS14の間にステップS51を追加し、ステップS19の後にステップS52を追加した点が異なっている。
ステップS51では「変圧比合わせ中」の表示を点灯させ、ステップS52では「変圧比合わせ中」の表示を消灯させる。
The processing procedure of this embodiment is different from the processing procedure of the first embodiment shown in FIG. 3 in that step S51 is added between step S13 and step S14, and step S52 is added after step S19. Is different.
In step S51, the indication “transforming ratio is being adjusted” is turned on, and in step S52, the indication “transforming ratio is being adjusted” is turned off.

(効果)
第1の実施形態から第4の実施形態では、自動変圧比合わせ処理中に制御出力および変圧比切り替え中であることが判別できない状態になるが、本実施形態では自動変圧比合わせ処理中であることが視覚的に判別でき、自動変圧比合わせ処理中であることが判断できる。
(effect)
In the first to fourth embodiments, it is not possible to determine that the control output and the transformation ratio are being switched during the automatic transformation ratio matching process, but in this embodiment, the automatic transformation ratio matching process is in progress. Can be visually determined, and it can be determined that the automatic transformation ratio matching process is in progress.

従って、本実施形態によれば、機能動作の有無の判断を容易にできるとともに、変圧比合わせ制御中に並列運転中の他の変圧比を操作してしまう等の誤操作を防止することができる。   Therefore, according to the present embodiment, it is possible to easily determine whether or not there is a functional operation, and it is possible to prevent erroneous operations such as operating other transformer ratios during parallel operation during the transformer ratio matching control.

[第6の実施形態]
(寿命診断を行う場合)
本発明の第6の実施形態について、図12と図13を使って説明する。
図12は、第6の実施形態に係る変電所監視制御システムの状態を示す概略図である。
本実施形態では、図2に示す第1の実施形態に係る変電所監視制御システムの構成と比較して、機器制御装置21cおよび機器制御装置23cに代えて、計測装置25が設けられている。計測装置25は、各変圧器の潮流値および電圧値を計測する手段である。また、変圧器(1号)11a、変圧器(2号)11bおよび変圧器(3号)11cの周囲の機器は全て「切」状態とされている。
[Sixth Embodiment]
(When performing life diagnosis)
A sixth embodiment of the present invention will be described with reference to FIGS.
FIG. 12 is a schematic diagram illustrating a state of a substation monitoring and control system according to the sixth embodiment.
In the present embodiment, a measuring device 25 is provided instead of the device control device 21c and the device control device 23c, as compared with the configuration of the substation monitoring and control system according to the first embodiment shown in FIG. The measuring device 25 is a means for measuring the power flow value and voltage value of each transformer. Further, the devices around the transformer (No. 1) 11a, the transformer (No. 2) 11b, and the transformer (No. 3) 11c are all in the “off” state.

(作用)
図13は、第6の実施形態に係る変電所監視制御システムの寿命判断処理手順を示すフローチャートである。
(Function)
FIG. 13: is a flowchart which shows the lifetime judgment processing procedure of the substation monitoring control system which concerns on 6th Embodiment.

まず、計測装置25は、各変圧器の潮流値および電圧値を計測し(ステップS61)、電力量を積算する(ステップS62)。次に、変圧比制御装置22cは、各変圧器において運用した1号電力量、2号電力量、3号電力量を取得し(ステップS63a、S63b、S63c)、各変圧器において運用した電力量を比較する(ステップS64)。電力量が大きい程、使われている時間が長い変圧器となるため、寿命がそれだけ短くなる。このため、電力量の少ない変圧器から順番に運用すれば、全体の変圧器の寿命の均一化を促すことになる。   First, the measuring device 25 measures the power flow value and voltage value of each transformer (step S61), and integrates the electric energy (step S62). Next, the transformation ratio control device 22c acquires No. 1 electric energy, No. 2 electric energy, No. 3 electric energy operated in each transformer (steps S63a, S63b, S63c), and the electric energy operated in each transformer. Are compared (step S64). The greater the amount of power, the longer the transformer is used, and the shorter the lifetime. For this reason, if it operates in an order from a transformer with little electric energy, it will promote the equalization of the lifetime of the whole transformer.

次に、変圧比制御装置22cは、各変圧器の運用が少ない順にリストを作成し(ステップS65)、変圧器を流れる全体の電流から並列運転する必要台数を算出し、運用電力量の少ない変圧器を優先的に選択する(ステップS66)。さらに、変圧比制御装置22cは、寿命の均一化を促す適用変圧器の推奨変圧器をモニターに表示させる(ステップS67)。   Next, the transformation ratio control device 22c creates a list in the order of decreasing operation of each transformer (step S65), calculates the necessary number of units to be operated in parallel from the total current flowing through the transformer, A device is preferentially selected (step S66). Furthermore, the transformation ratio control device 22c displays on the monitor a recommended transformer of the applicable transformer that promotes uniform life (step S67).

(効果)
本実施形態によれば、電力量の少ない変圧器へ運用を切替えることにより変圧器の使用頻度をより均一化し、各変圧器の寿命を均一化することができる。
(effect)
According to the present embodiment, the frequency of use of the transformer can be made more uniform by switching the operation to a transformer with less electric power, and the life of each transformer can be made uniform.

[他の実施形態]
(1)上記の各実施形態では、3機の変圧比制御装置22a、22b、22cを用いたが(図1参照)、1機に統括した変圧比制御装置を用いることもできる。
[Other embodiments]
(1) In each of the above embodiments, three transformer ratio control devices 22a, 22b, and 22c are used (see FIG. 1), but a transformer ratio control device that is integrated into one machine can also be used.

(2)上記の各実施形態では、変圧器(3号)11cを対象とし、この変圧器の運転状態を他モードの並列運転に移行させる例を示したが、変圧器(1号)11aまたは変圧器(2号)を対象としても良い。即ち、変圧器(1号)11aまたは変圧器(2号)のいずれかが停止中や単独運転中である場合に、他モードの並列運転に移行させても良い。 (2) In each of the above embodiments, the transformer (No. 3) 11c is targeted, and the operation state of the transformer is shifted to parallel operation in another mode. However, the transformer (No. 1) 11a or The transformer (No. 2) may be targeted. That is, when either the transformer (No. 1) 11a or the transformer (No. 2) is stopped or operating independently, it may be shifted to the parallel operation of another mode.

(3)上記の各実施形態では、3機の変圧器の例を示したが、変圧器の個数は3機以上であれば、任意の数とすることができる。 (3) In each of the above embodiments, an example of three transformers has been shown. However, any number of transformers can be used as long as the number of transformers is three or more.

(4)上記の各実施形態における変圧比制御装置22cのデータを上位の制御室のパソコン等に取り込んで、モニターで表示させて監視することもできる。 (4) The data of the transformation ratio control device 22c in each of the above embodiments can be taken into a personal computer or the like in the upper control room and displayed on a monitor for monitoring.

(5)上記の各実施形態では、変圧器の変圧比を合わせる例を示したが、タップ値を用いて、これを合わせるようにしても良い。 (5) In each of the above-described embodiments, the example in which the transformer ratio of the transformer is matched has been shown, but this may be matched using a tap value.

(6)第6の実施形態では、各変圧器の潮流値および電圧値を計測するために計測装置25を用いたが、第1〜第5の実施形態における機器制御装置21c、23cを用いても良い。 (6) In the sixth embodiment, the measuring device 25 is used to measure the power flow value and the voltage value of each transformer. However, using the device control devices 21c and 23c in the first to fifth embodiments. Also good.

(7)以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 (7) Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

11a…変圧器(1号)
11b…変圧器(2号)
11c…変圧器(3号)
12a、12b、12c…断路器(一次側)
13a、13b、13c…遮断器(一次側)
14a、14b、14c…遮断器(二次側)
15a、15b、15c…断路器(二次側)
16a、16b、16c…断路器(ブスタイ)
17…ブスタイ
18…ブスタイ
21a、21b、21c…機器制御装置
22a、22b、22c…変圧比制御装置
23a、23b、23c…機器制御装置
25…計測装置
11a ... Transformer (No. 1)
11b ... Transformer (No. 2)
11c ... Transformer (No. 3)
12a, 12b, 12c ... disconnector (primary side)
13a, 13b, 13c ... circuit breaker (primary side)
14a, 14b, 14c ... circuit breaker (secondary side)
15a, 15b, 15c ... disconnector (secondary side)
16a, 16b, 16c ... disconnector (bustie)
17 ... Bus tie 18 ... Bus tie 21a, 21b, 21c ... Device control device 22a, 22b, 22c ... Transformer ratio control device 23a, 23b, 23c ... Device control device 25 ... Measuring device

Claims (7)

3機以上の変圧器を有する系統において、任意の変圧器が他の複数の並列運転中の変圧器の系統と孤立した状態にある場合、前記任意の変圧器を他の複数の並列運転中の変圧器の系統へ加入させる際に、前記3機以上の変圧器から取得した変圧比情報に基づいて、前記任意の変圧器の変圧比を前記他の複数の変圧器の変圧比と一致するまで変圧比合わせ処理を実施することを特徴とする変圧比制御装置。   In a system having three or more transformers, when any transformer is in isolation from other parallel operating transformer systems, the optional transformer is connected to other parallel operating systems. When joining a transformer system, based on the transformation ratio information acquired from the three or more transformers, until the transformation ratio of the arbitrary transformer matches the transformation ratio of the other transformers A transformer ratio control device that performs a transformer ratio matching process. 前記任意の変圧器が単独運転中の状態であり、前記変圧比合わせ処理を実施する前に、前記任意の変圧器を前記系統から一旦切り離し、前記変圧比合わせ処理を実施した後に、前記任意の変圧器を前記系統と再度接続することを特徴とする請求項1に記載の変圧比制御装置。   The arbitrary transformer is in a single operation state, and before performing the transformation ratio matching process, the arbitrary transformer is once disconnected from the system, and after performing the transformation ratio matching process, The transformer ratio control device according to claim 1, wherein a transformer is reconnected to the system. 前記任意の変圧器が停止中の状態であり、かつ前記任意の変圧器の二次側にある周囲の機器のうち1機のみが「切」状態にある場合に、該「切」状態の機器を「入」状態とした時に、前記変圧比合わせ処理を実施することを特徴とする請求項1に記載の変圧比制御装置。   When the arbitrary transformer is in a stopped state and only one of the peripheral devices on the secondary side of the arbitrary transformer is in the “OFF” state, the “OFF” state device The transformer ratio control apparatus according to claim 1, wherein the transformer ratio adjustment process is performed when the switch is in an “ON” state. 前記任意の変圧器を前記系統から一旦切り離す前に潮流が無いかを確認し、潮流がある場合には前記変圧比合わせ処理を実施しないようにすることを特徴とする請求項2に記載の変圧比制御装置。   3. The transformer according to claim 2, wherein before the arbitrary transformer is disconnected from the system, it is checked whether or not there is a tidal current, and if there is a tidal current, the transformation ratio matching process is not performed. Ratio control device. 前記任意の変圧器の変圧比合わせ処理を実施している間、該当する変圧器を判別できるようにしたことを特徴とする請求項1乃至3のいずれか1項に記載の変圧比制御装置。   The transformer ratio control apparatus according to any one of claims 1 to 3, wherein a corresponding transformer can be discriminated while the transformation ratio matching process of the arbitrary transformer is performed. 3機以上の変圧器を有する系統において、各変圧器からそれぞれ電力量の積算値を取得してこれらの値を比較し、前記積算値の少ない変圧器から順番に運用を切り替えるように指令を発することを特徴とする変圧比制御装置。   In a system having three or more transformers, obtain integrated values of electric power from each transformer, compare these values, and issue a command to switch operations in order from the transformer with the smallest integrated value. A transformer ratio control device characterized by that. 3機以上の変圧器と、前記変圧器の一次側および2次側にそれぞれ設けられた複数の機器と、前記変圧器の変圧比情報を取得する機器制御装置と、前記機器制御装置から取得した変圧比情報に基づいて変圧比を制御する変圧比制御装置と、を有する変電所監視制御システムにおいて、
前記3機以上の変圧器のうち、任意の変圧器が他の複数の並列運転中の変圧器の系統と孤立した状態にある場合、前記変圧比制御装置は、前記任意の変圧器を他の複数の並列運転中の変圧器の系統へ加入させる際に、前記機器制御装置から取得した変圧比情報に基づいて、前記任意の変圧器の変圧比を前記他の複数の変圧器の変圧比と一致するまで変圧比合わせ処理を実施することを特徴とする変電所監視制御システム。
Obtained from three or more transformers, a plurality of devices respectively provided on the primary side and the secondary side of the transformer, a device control device that acquires transformation ratio information of the transformer, and the device control device In a substation monitoring and control system having a transformation ratio control device that controls a transformation ratio based on transformation ratio information,
Of the three or more transformers, when an arbitrary transformer is in an isolated state from a plurality of other parallel-operating transformer systems, the transformation ratio control device connects the arbitrary transformer to another When joining a plurality of transformers in parallel operation, based on the transformation ratio information acquired from the device control device, the transformation ratio of the arbitrary transformer and the transformation ratio of the other plurality of transformers A substation monitoring and control system that performs the transformation ratio matching process until they match.
JP2014020546A 2014-02-05 2014-02-05 Transformation ratio controller and substation supervisory control system Pending JP2015149811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014020546A JP2015149811A (en) 2014-02-05 2014-02-05 Transformation ratio controller and substation supervisory control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014020546A JP2015149811A (en) 2014-02-05 2014-02-05 Transformation ratio controller and substation supervisory control system

Publications (1)

Publication Number Publication Date
JP2015149811A true JP2015149811A (en) 2015-08-20

Family

ID=53892779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020546A Pending JP2015149811A (en) 2014-02-05 2014-02-05 Transformation ratio controller and substation supervisory control system

Country Status (1)

Country Link
JP (1) JP2015149811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021785A (en) * 2016-05-31 2016-10-12 华中科技大学 Extracting method of interaction of fault ride-through between new energy power stations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021785A (en) * 2016-05-31 2016-10-12 华中科技大学 Extracting method of interaction of fault ride-through between new energy power stations
CN106021785B (en) * 2016-05-31 2019-06-18 华中科技大学 The interactional extracting method of fault traversing between a kind of new energy power station

Similar Documents

Publication Publication Date Title
US9618950B2 (en) Voltage control system
WO2013083296A3 (en) Dc-dc converter with multiple outputs
JP5813904B1 (en) Power supply control device
US10476258B2 (en) Method of operating a protection device, associated computer program product, protection device and electrical installation
JP6573200B2 (en) Power management system, power management method and program
CN102460887A (en) Power distribution apparatus
EP3180830A1 (en) Control of a microgrid
US20160285268A1 (en) Redundant point of common coupling (pcc) to reduce risk of microgrid's islanding
RU2654514C2 (en) Powered method and powered device automatically adjusting power demand level
CN103094983A (en) Power supply system and control method with automatic power source switch function
JP2018500870A (en) Selective parallel operation method for measuring / controlling devices
TWM506411U (en) Switching selector of power source
JP2006320102A (en) Monitor/control system of power system
EP2812988A2 (en) Power supply
JP2015149811A (en) Transformation ratio controller and substation supervisory control system
KR102594678B1 (en) Operation apparatus for substation and the control method thereof
RU111364U1 (en) AUTOMATIC TURNING BLOCK FOR POWER SUPPLY OF RAILWAY AUTOMATION AND TELEMECHANICAL DEVICES
JP2016127691A (en) Transformer number determination device, transformer number determination method and computer program
US20170123481A1 (en) Switch Mode Power Supply Unit Having a Web Interface
US10401814B2 (en) Method for configuring a switched-mode power supply
CN104485730B (en) Take over seamlessly the circuit of power supply
US10424912B2 (en) Phase control device
JP6860746B2 (en) Double lead-in circuit breaker system for power system of power plant
Gajić et al. Using IEC 61850 analogue goose messages for OLTC control of parallel transformers
CN108152725B (en) Electrical switch tripping performance test device