JP2015149220A - Front plate for el element and lighting system - Google Patents

Front plate for el element and lighting system Download PDF

Info

Publication number
JP2015149220A
JP2015149220A JP2014022154A JP2014022154A JP2015149220A JP 2015149220 A JP2015149220 A JP 2015149220A JP 2014022154 A JP2014022154 A JP 2014022154A JP 2014022154 A JP2014022154 A JP 2014022154A JP 2015149220 A JP2015149220 A JP 2015149220A
Authority
JP
Japan
Prior art keywords
light
refractive index
layer
high refractive
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014022154A
Other languages
Japanese (ja)
Other versions
JP6511718B2 (en
Inventor
彰人 籠谷
Akihito Kagotani
彰人 籠谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2014022154A priority Critical patent/JP6511718B2/en
Priority to PCT/JP2015/053264 priority patent/WO2015119203A1/en
Priority to EP15746111.2A priority patent/EP3104668B1/en
Priority to CN201580005328.5A priority patent/CN105940766B/en
Priority to KR1020167024286A priority patent/KR102368851B1/en
Publication of JP2015149220A publication Critical patent/JP2015149220A/en
Priority to US15/230,554 priority patent/US10763456B2/en
Application granted granted Critical
Publication of JP6511718B2 publication Critical patent/JP6511718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a front plate for an EL element through which light can be extracted efficiently and in which resistance is reduced.SOLUTION: A front plate 1A for an EL element includes: a translucent substrate 11; a high refractive index layer 12 laminated on one surface 11a of the translucent substrate 11; a transparent anode part 13 laminated on a side of the high refractive index layer 12, the side being opposite to the translucent substrate 11; and an electrically conductive light reflecting layer 14 having conductivity and light reflectivity and laminated on a part of an opposite surface 13a of the transparent anode part 13, the opposite surface being an opposite side to the high refractive index layer 12.

Description

本発明は、光取出し効率を向上させたEL素子用前面板、及びこのEL素子用前面板を備える照明装置に関する。   The present invention relates to an EL element front plate with improved light extraction efficiency, and an illumination device including the EL element front plate.

近年、例えば、一般的な有機EL(Electro−Luminescence)素子(以下、「EL素子」、「素子」とも略称する)のような照明装置の場合、ガラス基板から空気中へ放射される光取出し効率はわずか20%に過ぎない。そこで、パネル量産性等を勘案し、外付けフィルムを素子に貼付するケースが多い。パネルの素子構造に依存するが、外付けフィルムを素子に貼付した場合でも光取出し効率は25%程度であり、光のロスが大きい。この理由としては、主にガラスやプラスチック製である基板と、有機層との屈折率が異なり、その界面にて全反射することが挙げられる。
さらに光取出し効率を向上させるには、素子内部にも光取出し構造を設ける必要ある。
照明装置の光取出し効率を検討したものとして、例えば特許文献1及び2が知られている。
In recent years, for example, in the case of a lighting device such as a general organic EL (Electro-Luminescence) element (hereinafter also abbreviated as “EL element” or “element”), the light extraction efficiency emitted from the glass substrate to the air Is only 20%. Therefore, in many cases, an external film is attached to the element in consideration of the mass productivity of the panel. Although it depends on the element structure of the panel, even when an external film is attached to the element, the light extraction efficiency is about 25%, and the loss of light is large. This is because the refractive index of the substrate mainly made of glass or plastic is different from that of the organic layer, and the light is totally reflected at the interface.
In order to further improve the light extraction efficiency, it is necessary to provide a light extraction structure inside the device.
For example, Patent Documents 1 and 2 are known as studies on the light extraction efficiency of an illumination device.

特開平8−083688号公報JP-A-8-083688 特開2009−009861号公報JP 2009-009861 A

特許文献1は基板上に外付けフィルムを貼付した一例であり、基板と空気層の界面での光の全反射を抑制し、光取出し効率を向上させることが可能となる。しかしながら、光を取出す際に光散乱性のフィルム表面と、アルミや銀等の陰極部での再帰反射を利用し、光を外部に取出すために、光散乱性のフィルムによる外部取出し効率が上昇する半面、再帰反射の際の透明陽極部及び発光素子部、陰極での光の吸収があり、光がロスするという問題がある。また、先にも述べた通り、外部取出し効率は有機層と基板の屈折率差を考慮しておらず、その点において外部取出し効率は十分とは言えない。   Patent Document 1 is an example in which an external film is pasted on a substrate, and it is possible to suppress total reflection of light at the interface between the substrate and the air layer and to improve light extraction efficiency. However, when light is extracted, the light-scattering film surface and retroreflection on the cathode part such as aluminum or silver are used to extract light to the outside, so that the external extraction efficiency by the light-scattering film increases. On the other hand, there is a problem that light is lost due to absorption of light at the transparent anode part, the light emitting element part, and the cathode during retroreflection. Further, as described above, the external extraction efficiency does not take into account the difference in refractive index between the organic layer and the substrate, and the external extraction efficiency is not sufficient in this respect.

特許文献2は有機層と基板の屈折率差を緩和するために、母型を使用し凹凸を設ける方法である。しかしながら、特許文献1と同様に、再帰反射の際の透明陽極部及び発光素子部、陰極での光の吸収があり、光がロスするという問題がある。また、このように有機層にまで凹凸形状が及ぶと、陽極陰極間のリークあるいはショートが発生することが多くなり、生産性の無いものとなってしまう欠点がある。   Patent Document 2 is a method of providing irregularities using a mother die in order to alleviate the refractive index difference between the organic layer and the substrate. However, similarly to Patent Document 1, there is a problem that light is lost due to absorption of light at the transparent anode part, the light emitting element part, and the cathode during retroreflection. In addition, when the concavo-convex shape reaches the organic layer in this manner, there is a drawback that leakage or short-circuit between the anode and the cathode often occurs, resulting in no productivity.

ディスプレイや照明用途での有機EL素子は、発光した光を外部に放出する必要があるため電極を透明にする必要がある。この透明電極は一般的にITO等を用いることが多く、抵抗値が通常のAlやAgと比較して高いことが一般的である。抵抗値が高いため、発光面積が大きくなると外部から供給した電力が電圧降下してしまう。それにより、発光面内で電力供給部の近辺は明るく、電力供給部から遠くなるにつれて暗くなるといった輝度ムラが発生するという課題がある。この場合、課題の回避策として、Al等の抵抗値の低い補助電極を用いることが一般的であるが、補助電極を用いた場合、その部分が発光しないか、発光しても隠蔽されてしまうため、発光面積が減るという問題がある。   An organic EL element for display and lighting applications needs to emit transparent light, so that the electrode needs to be transparent. In general, ITO or the like is often used for the transparent electrode, and the resistance value is generally higher than that of normal Al or Ag. Since the resistance value is high, the power supplied from the outside drops when the light emitting area increases. As a result, there is a problem in that unevenness of brightness occurs such that the vicinity of the power supply unit is bright in the light emitting surface and becomes darker as the distance from the power supply unit increases. In this case, as a workaround for the problem, it is common to use an auxiliary electrode having a low resistance value such as Al. However, when the auxiliary electrode is used, the portion does not emit light or is hidden even if it emits light. Therefore, there is a problem that the light emitting area is reduced.

一般的に、有機EL素子は、透光性基板、高屈折率層、及び透明陽極部を有するEL素子用前面板と、陰極を有する発光部とを積層して構成される。前述の有機EL素子に関する問題は、EL素子用前面板についても同様に生じている。   In general, an organic EL element is formed by laminating a light-transmitting substrate, a high refractive index layer, an EL element front plate having a transparent anode part, and a light emitting part having a cathode. The above-mentioned problems related to the organic EL element are similarly generated in the front panel for EL elements.

本発明は、以上のような課題を解決するためになされたものであって、効率良く光を取出すとともに低抵抗化した(抵抗値を低くした)EL素子用前面板、及びこのEL素子用前面板を備える照明装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. The front plate for an EL element, which efficiently extracts light and has a low resistance (a low resistance value), and the front of the EL element are provided. It aims at providing an illuminating device provided with a face plate.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明のEL素子用前面板は、透光性基板と、前記透光性基板の一方の面に積層された高屈折率層と、前記高屈折率層の前記透光性基板とは反対側に積層された透明陽極部と、導電性及び光反射性を有し、前記透明陽極部の前記高屈折率層とは反対側の反対面の一部に積層された電気伝導光反射層と、を備えることを特徴としている。
In order to solve the above problems, the present invention proposes the following means.
The front plate for an EL element of the present invention includes a translucent substrate, a high refractive index layer laminated on one surface of the translucent substrate, and the opposite side of the high refractive index layer to the translucent substrate. A transparent anode part laminated on, and an electrically conductive light reflecting layer laminated on a part of the opposite surface of the transparent anode part opposite to the high refractive index layer, having conductivity and light reflectivity, It is characterized by having.

また、上記のEL素子用前面板において、前記高屈折率層に、光散乱性を有する微粒子が含まれることがより好ましい。
また、上記のEL素子用前面板において、前記透光性基板の前記高屈折率層とは反対側の面に微細凹凸形状を設けたことがより好ましい。
また、上記のEL素子用前面板において、前記高屈折率層の屈折率は1.7以上であることがより好ましい。
In the EL element front plate, the high refractive index layer preferably contains fine particles having light scattering properties.
In the EL element front plate, it is more preferable that a fine uneven shape is provided on the surface of the translucent substrate opposite to the high refractive index layer.
In the EL element front plate, the refractive index of the high refractive index layer is more preferably 1.7 or more.

また、上記のEL素子用前面板において、前記透光性基板に、光散乱性を有する微粒子が含まれることがより好ましい。
また、本発明の照明装置は、上記に記載のEL素子用前面板と、前記透明陽極部の前記反対面であって前記電気伝導光反射層が積層されていない部分、及び前記電気伝導光反射層の前記透明陽極部とは反対側に積層された発光素子部と、前記発光素子部の前記電気伝導光反射層とは反対側に積層された陰極部と、を備えることを特徴としている。
また、上記の照明装置において、前記透明陽極部に積層された前記電気伝導光反射層を覆うように電気絶縁層を備えることがより好ましい。
In the EL element front plate described above, it is more preferable that the light-transmitting substrate contains fine particles having light scattering properties.
In addition, the lighting device of the present invention includes the above-described EL element front plate, the portion on the opposite surface of the transparent anode portion where the electroconductive light reflection layer is not laminated, and the electroconductive light reflection. The light emitting element part laminated | stacked on the opposite side to the said transparent anode part of a layer, The cathode part laminated | stacked on the opposite side to the said electroconductive light reflection layer of the said light emitting element part is provided, It is characterized by the above-mentioned.
Moreover, in the above-described lighting device, it is more preferable to provide an electrical insulating layer so as to cover the electrically conductive light reflecting layer laminated on the transparent anode portion.

本発明のEL素子用前面板及び照明装置によれば効率良く光を取出すとともに低抵抗化することができる。   According to the EL element front plate and the lighting device of the present invention, it is possible to efficiently extract light and reduce the resistance.

本発明の一実施形態の照明装置の側面の断面図である。It is sectional drawing of the side surface of the illuminating device of one Embodiment of this invention. 同照明装置の導電反射部及び開口部の配置を説明する平面図である。It is a top view explaining arrangement | positioning of the conductive reflection part and opening part of the same illuminating device. 同照明装置の作用を説明する要部の断面図である。It is sectional drawing of the principal part explaining the effect | action of the illuminating device. 同照明装置の作用を説明する要部の断面図である。It is sectional drawing of the principal part explaining the effect | action of the illuminating device. 本発明の一実施形態の変形例の照明装置の側面の断面図である。It is sectional drawing of the side surface of the illuminating device of the modification of one Embodiment of this invention. 本発明の一実施形態の変形例の照明装置の導電反射部及び開口部の配置を説明する平面図である。It is a top view explaining arrangement | positioning of the electroconductive reflection part and opening part of the illuminating device of the modification of one Embodiment of this invention. 本発明の一実施形態の変形例の照明装置の導電反射部及び開口部の配置を説明する平面図である。It is a top view explaining arrangement | positioning of the electroconductive reflection part and opening part of the illuminating device of the modification of one Embodiment of this invention. 本発明の一実施形態の変形例の照明装置の側面の断面図である。It is sectional drawing of the side surface of the illuminating device of the modification of one Embodiment of this invention. 本発明の変形例の実施形態における照明装置の側面の断面図である。It is sectional drawing of the side surface of the illuminating device in embodiment of the modification of this invention. 本発明の実施例の照明装置の側面の断面図である。It is sectional drawing of the side surface of the illuminating device of the Example of this invention. 同照明装置の透光性基板の屈折率による光束の変化を示す図である。It is a figure which shows the change of the light beam by the refractive index of the translucent board | substrate of the illuminating device.

以下、本発明に係る照明装置が有機EL素子である場合の一実施形態を、図1から図8を参照しながら説明する。
図1に示すように、本実施形態の照明装置1は、透光性基板11と、透光性基板11の一方の面11aに積層された高屈折率層12と、高屈折率層12の透光性基板11とは反対側に積層された透明陽極部13と、透明陽極部13の高屈折率層12とは反対側の反対面13aの一部に積層された電気伝導光反射層14と、透明陽極部13の反対面13aであって電気伝導光反射層14が積層されていない部分に積層された発光素子部15と、発光素子部15の電気伝導光反射層14とは反対側に積層された陰極部16とを備えている。
なお、透光性基板11、高屈折率層12、透明陽極部13及び電気伝導光反射層14で、本発明のEL素子用前面板1Aを構成する。
Hereinafter, an embodiment in which the illumination device according to the present invention is an organic EL element will be described with reference to FIGS. 1 to 8.
As shown in FIG. 1, the illuminating device 1 of the present embodiment includes a translucent substrate 11, a high refractive index layer 12 stacked on one surface 11 a of the translucent substrate 11, and a high refractive index layer 12. The transparent anode part 13 laminated on the opposite side to the translucent substrate 11, and the electrically conductive light reflecting layer 14 laminated on a part of the opposite surface 13a opposite to the high refractive index layer 12 of the transparent anode part 13. And the light emitting element portion 15 laminated on the opposite surface 13a of the transparent anode portion 13 where the electroconductive light reflecting layer 14 is not laminated, and the side opposite to the electroconductive light reflecting layer 14 of the light emitting element portion 15. And a cathode portion 16 laminated on the substrate.
The translucent substrate 11, the high refractive index layer 12, the transparent anode portion 13, and the electrically conductive light reflecting layer 14 constitute the EL element front plate 1 </ b> A of the present invention.

透光性基板11は、ガラスあるいはPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)等のプラスチック材質でシート状に形成されている。透光性基板11の厚さは、例えば0.3〜3mm程度である。一般的に、透光性基板11が薄ければ曲げることが可能となり、フレキシブル用途に用いられる。また、透光性基板11が厚い場合には、剛性が必要とされる用途に用いることが可能となる。   The translucent substrate 11 is formed in a sheet shape from glass or a plastic material such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate). The thickness of the translucent substrate 11 is, for example, about 0.3 to 3 mm. Generally, if the translucent substrate 11 is thin, it can be bent and used for flexible applications. Moreover, when the translucent board | substrate 11 is thick, it becomes possible to use for the use for which rigidity is required.

高屈折率層12は、例えばアクリル樹脂やウレタン樹脂、それ以外にはシルセスキオキサン等の有機物質と無機物質とのハイブリッド材料を用いることができる。
高屈折率層12の厚さは、0.5μm(マイクロメートル)〜100μmの範囲であることが好ましい。高屈折率層12の中に後述する光散乱性を有する微粒子を入れた場合に、この微粒子の粒径を高屈折率層12の厚さよりも小さくする必要がある。高屈折率層12の厚さが0.5μmよりも薄いと、微粒子の粒径が小さすぎて光の散乱性が弱まり、散乱材として機能しないため、好ましくない。
また、高屈折率層12の厚さが100μmを超える場合には、高屈折率層12の材料に含まれる水分量が大きすぎて発光素子部15にダメージを与えたり、後述する光散乱性を有する微粒子を入れた場合の表面粗さが大きくなりリークの原因となる。さらに、高屈折率層12が散乱層として厚すぎるため、光の透過性が弱くなり好ましくない。
高屈折率層12は、発光素子部15と同等の屈折率かあるいはそれ以上の屈折率とすることが好ましい。高屈折率層12の屈折率は、1.7以上であることが望ましい。
高屈折率層12は、透光性基板11の一方の面11aに全面にわたり積層されている。
For the high refractive index layer 12, for example, an acrylic resin or a urethane resin, and in addition, a hybrid material of an organic substance such as silsesquioxane and an inorganic substance can be used.
The thickness of the high refractive index layer 12 is preferably in the range of 0.5 μm (micrometer) to 100 μm. When fine particles having a light scattering property, which will be described later, are put in the high refractive index layer 12, it is necessary to make the particle diameter of the fine particles smaller than the thickness of the high refractive index layer 12. If the thickness of the high refractive index layer 12 is less than 0.5 μm, the particle size of the fine particles is too small, the light scattering property is weakened, and it does not function as a scattering material.
In addition, when the thickness of the high refractive index layer 12 exceeds 100 μm, the amount of water contained in the material of the high refractive index layer 12 is excessively large and damages the light emitting element portion 15, or has a light scattering property described later. When the fine particles are added, the surface roughness increases and causes leakage. Furthermore, since the high refractive index layer 12 is too thick as a scattering layer, the light transmittance is weak, which is not preferable.
The high refractive index layer 12 preferably has a refractive index equivalent to or higher than that of the light emitting element portion 15. The refractive index of the high refractive index layer 12 is desirably 1.7 or more.
The high refractive index layer 12 is laminated on the entire surface 11 a of the translucent substrate 11.

透明陽極部13は、例えば、ITO(酸化インジウムスズ)等の透明な材料で形成することができる。透明陽極部13は、高屈折率層12の透光性基板11とは反対側に全面にわたり積層されている。
電気伝導光反射層14は、Al(アルミニウム)やAg(銀)等で形成され、電気を効率良く伝導させる導電性、及び光を反射させる光反射性を有する層である。電気伝導光反射層14は、透明陽極部13に蒸着でつけることもでき、その場合、厚さが数10nm(ナノメートル)以上あれば光を反射させることが可能となる。電気伝導光反射層14は、側面視で(透光性基板11の厚さ方向Dに直交する方向に見たときに)矩形状に形成されている。
The transparent anode portion 13 can be formed of a transparent material such as ITO (indium tin oxide). The transparent anode portion 13 is laminated over the entire surface of the high refractive index layer 12 on the side opposite to the light transmissive substrate 11.
The electroconductive light reflection layer 14 is formed of Al (aluminum), Ag (silver), or the like, and is a layer having conductivity that efficiently conducts electricity and light reflectivity that reflects light. The electroconductive light reflection layer 14 can be attached to the transparent anode portion 13 by vapor deposition. In this case, if the thickness is several tens of nanometers (nanometers) or more, light can be reflected. The electroconductive light reflection layer 14 is formed in a rectangular shape when viewed from the side (when viewed in a direction perpendicular to the thickness direction D of the translucent substrate 11).

なお、厚さ方向Dに平行に見たときに、電気伝導光反射層14が積層された範囲が後述する光L2を反射する導電反射部R1となり、電気伝導光反射層14が積層されていない範囲が開口部R2となる。
図2に示すように、各開口部R2は矩形状に形成され、複数の開口部R2は格子状に配列されている。電気伝導光反射層14の各開口部R2をこのように構成することで、開口部R2の1つ1つを目立たなくし、複数の開口部R2全体で面発光しているのと同等に見せることができる。
When viewed in parallel to the thickness direction D, the range in which the electroconductive light reflection layer 14 is laminated becomes a conductive reflection portion R1 that reflects light L2 described later, and the electroconductive light reflection layer 14 is not laminated. The range is the opening R2.
As shown in FIG. 2, each opening R2 is formed in a rectangular shape, and the plurality of openings R2 are arranged in a lattice shape. By configuring each opening R2 of the electroconductive light reflection layer 14 in this way, each of the openings R2 is made inconspicuous, and it appears to be equivalent to surface light emission in the plurality of openings R2 as a whole. Can do.

本実施形態では、図1に示すように、照明装置1は、透明陽極部13に積層された電気伝導光反射層14を覆うように、電気伝導光反射層14と発光素子部15との間に電気絶縁層17を備えている。電気絶縁層17は光を伝導させない遮光性の層であり、アクリル樹脂やウレタン樹脂等の多くのプラスチック材料、無機材料で形成することができる。電気を伝導させない(絶縁性を有する)ために、電気絶縁層17の厚さは、1nm〜数100μm程度が好ましい。
この例では、電気絶縁層17は、電気伝導光反射層14の透明陽極部13とは反対側の面、及び、透明陽極部13の反対面13aに沿って隣り合う電気伝導光反射層14の対向する側面14aにそれぞれ積層され、電気伝導光反射層14を覆っている。
電気絶縁層17が積層されている場合には、電気絶縁層17を障壁としてインクジェット印刷法により発光素子部15を形成することで、発光素子部15を形成する材料の無駄を抑えて照明装置1を製造することができる。
In the present embodiment, as illustrated in FIG. 1, the lighting device 1 is disposed between the electrically conductive light reflecting layer 14 and the light emitting element portion 15 so as to cover the electrically conductive light reflecting layer 14 laminated on the transparent anode portion 13. Is provided with an electrical insulating layer 17. The electrical insulating layer 17 is a light-shielding layer that does not conduct light, and can be formed of many plastic materials and inorganic materials such as acrylic resin and urethane resin. In order not to conduct electricity (has insulation), the thickness of the electrical insulating layer 17 is preferably about 1 nm to several hundreds of μm.
In this example, the electrically insulating layer 17 is formed on the surface of the electroconductive light reflecting layer 14 opposite to the transparent anode portion 13 and the surface of the electroconductive light reflecting layer 14 adjacent along the opposite surface 13 a of the transparent anode portion 13. They are laminated on the opposite side surfaces 14 a and cover the electrically conductive light reflecting layer 14.
In the case where the electrical insulating layer 17 is laminated, the light emitting element portion 15 is formed by the ink jet printing method using the electrical insulating layer 17 as a barrier, thereby suppressing the waste of the material forming the light emitting element portion 15 and the lighting device 1. Can be manufactured.

発光素子部15は、電気伝導光反射層14の透明陽極部13とは反対側に電気絶縁層17を介して積層されるとともに、前述の透明陽極部13の反対面13aであって電気伝導光反射層14が積層されていない部分に積層されている。
発光素子部15には、電極から注入された電荷を移動させ、正孔と電子が再結合する材料を用いることが好ましい。具体的には、トリス(8−キノリノラト)アルミニウム錯体(Alq3)や、ビス(ベンゾキノリノラト)ベリリウム錯体(BeBq)、トリ(ジベンゾイルメチル)フェナントロリンユーロピウム錯体(Eu(DBM)3(Phen))、ジトルイルビニルビフェニル(DTVBi)等を用いることができる。発光素子部15の厚さは構成によって異なるが、数100nm以下であることが好ましい。
発光素子部15は、透明陽極部13及び電気絶縁層17に対して高屈折率層12とは反対側に全面にわたり積層されている。発光素子部15の一部は、透明陽極部13に直接接触している。
The light emitting element portion 15 is laminated on the opposite side of the electrically conductive light reflecting layer 14 from the transparent anode portion 13 via the electrical insulating layer 17, and on the opposite surface 13 a of the transparent anode portion 13, the electrically conductive light. The reflective layer 14 is laminated on a portion where the reflective layer 14 is not laminated.
The light emitting element portion 15 is preferably made of a material that moves charges injected from the electrodes and recombines holes and electrons. Specifically, tris (8-quinolinolato) aluminum complex (Alq3), bis (benzoquinolinolato) beryllium complex (BeBq), tri (dibenzoylmethyl) phenanthroline europium complex (Eu (DBM) 3 (Phen)) Ditoluyl vinyl biphenyl (DTVBi) or the like can be used. Although the thickness of the light emitting element part 15 changes with structures, it is preferable that it is several 100 nm or less.
The light emitting element portion 15 is laminated over the entire surface on the opposite side of the high refractive index layer 12 with respect to the transparent anode portion 13 and the electrical insulating layer 17. A part of the light emitting element portion 15 is in direct contact with the transparent anode portion 13.

陰極部16は、電気伝導光反射層14と同様にAlやAg等で形成され、導電性及び光反射性を有する層である。陰極部16の厚さは、数nm〜500nmであることが好ましい。
陰極部16は、発光素子部15の電気絶縁層17とは反対側に全面にわたり積層されている。
The cathode portion 16 is formed of Al, Ag, or the like, like the electrically conductive light reflecting layer 14, and is a layer having conductivity and light reflectivity. The thickness of the cathode portion 16 is preferably several nm to 500 nm.
The cathode portion 16 is laminated over the entire surface on the opposite side of the light emitting element portion 15 from the electrical insulating layer 17.

このように構成された本照明装置1の電気伝導光反射層14は、蒸着やエッチングなどの公知の手法により所定のパターン形状に形成することができる。
透光性基板11、高屈折率層12、透明陽極部13、電気伝導光反射層14等は、従来の有機EL素子と同様に公知のロールtoロール方式にて製造することができる。
The electrically conductive light reflecting layer 14 of the lighting device 1 configured as described above can be formed in a predetermined pattern shape by a known method such as vapor deposition or etching.
The translucent substrate 11, the high refractive index layer 12, the transparent anode portion 13, the electrically conductive light reflection layer 14, and the like can be manufactured by a known roll-to-roll method in the same manner as a conventional organic EL element.

このように構成され製造される本照明装置1では、図3に示すように、通常、発光素子部15で発した光L1は、透光性基板11から外部へ放射される際に、透光性基板11と空気Aとの屈折率の差により、界面で全反射を起こして光L2のように反射される。このままでは、外部に光L2が出られず、光のロスが発生する。
しかし、本照明装置1では、反射された光L2は電気伝導光反射層14の透明陽極部13側の表面14bに当たって反射されて光L3となる。反射されることにより、光L3の向きが光L1の向きに対して変化して、元々全反射しロスするはずであった光L2を透光性基板11より外部へ取出すことが可能となる。
光L1の向きに対して光L3の向きを変えるために、電気伝導光反射層14の表面14bは、平坦ではなくある程度粗いことが好ましい。表面14bの算術平均粗さ(Ra)は、例えば100μm以上500μm以下であることが好ましい。
In the lighting device 1 configured and manufactured in this way, as shown in FIG. 3, the light L <b> 1 emitted from the light emitting element unit 15 is normally transmitted through the translucent substrate 11 when radiated to the outside. Due to the difference in refractive index between the conductive substrate 11 and air A, total reflection occurs at the interface and the light is reflected as light L2. In this state, the light L2 is not emitted to the outside, and light loss occurs.
However, in the present lighting device 1, the reflected light L2 hits the surface 14b on the transparent anode portion 13 side of the electroconductive light reflecting layer 14 and is reflected to become the light L3. By being reflected, the direction of the light L3 changes with respect to the direction of the light L1, and the light L2 that should have been totally reflected and lost can be extracted from the translucent substrate 11 to the outside.
In order to change the direction of the light L3 with respect to the direction of the light L1, the surface 14b of the electrically conductive light reflecting layer 14 is preferably not flat but rough to some extent. The arithmetic average roughness (Ra) of the surface 14b is preferably 100 μm or more and 500 μm or less, for example.

電気伝導光反射層14の表面14bがさらに粗い(算術平均粗さが大きい)場合には、図4に示すように、光L2が電気伝導光反射層14の表面14bで散乱して散乱光L4となる。この場合、高屈折率層12に微粒子を添加し散乱効果を持たせることと同等の性能を与えることができる。   When the surface 14b of the electroconductive light reflecting layer 14 is further rough (arithmetic average roughness is large), as shown in FIG. It becomes. In this case, performance equivalent to adding fine particles to the high refractive index layer 12 to have a scattering effect can be provided.

以上説明したように、本実施形態のEL素子用前面板1A及び照明装置1によれば、電気伝導光反射層14を備えているため、発光素子部15で発した光が透光性基板11と空気Aとの界面で反射されても、その光を電気伝導光反射層14で再び反射することができる。これにより、照明装置1の光取出し効率を向上させ、効率良く光を取出すことができる。
電気伝導光反射層14は透明陽極部13の反対面13aに沿って配置されているため、電気伝導光反射層14自体は光っていないにもかかわらず、照明装置1を透光性基板11側から見た際に、あたかも電気伝導光反射層14が光っているように見せることができる。
照明装置1は、もともと電気伝導光反射層14によって、透光性基板11と空気Aとの界面での全反射が少ない構造となっている。しかし、全反射して素子側(発光素子部15側)へ戻る光についても、照明装置1の陰極部16側で反射させるのではなく、電気伝導光反射層14にてなるべく反射させる構造となっているため、全反射によって戻った光が発光素子部15を通過して吸収される確率が低い。
As described above, according to the EL element front plate 1 </ b> A and the illumination device 1 of the present embodiment, since the electroconductive light reflection layer 14 is provided, the light emitted from the light emitting element portion 15 is transmitted through the translucent substrate 11. Even if the light is reflected at the interface between the air A and the air A, the light can be reflected again by the electroconductive light reflection layer 14. Thereby, the light extraction efficiency of the illuminating device 1 can be improved and light can be extracted efficiently.
Since the electrically conductive light reflecting layer 14 is disposed along the opposite surface 13a of the transparent anode portion 13, the illuminating device 1 is placed on the transparent substrate 11 side even though the electrically conductive light reflecting layer 14 itself is not illuminated. When viewed from above, it can appear as if the electrically conductive light reflecting layer 14 is shining.
The illuminating device 1 originally has a structure in which total reflection at the interface between the translucent substrate 11 and the air A is small due to the electrically conductive light reflection layer 14. However, the light that is totally reflected and returns to the element side (the light emitting element part 15 side) is not reflected on the cathode part 16 side of the lighting device 1 but is reflected on the electroconductive light reflection layer 14 as much as possible. Therefore, the probability that the light returned by total reflection is absorbed through the light emitting element portion 15 is low.

透明陽極部13を薄膜化すると、透明陽極部13の抵抗値が上昇するために、発光面の面内における発光分布が悪化する原因となる。透明陽極部13の抵抗値を下げるためは透明陽極部13を厚くするのが一番簡単な方法であるが、光の透過率が下がる(透明陽極部13を光が透過しにくくなる)ため、トレードオフの関係となる。
また、透明陽極部13の低抵抗化のために、200℃程度もしくはそれ以上でのアニールによって、透明陽極部13を結晶化して抵抗を下げる方法が一般的に用いられる。その場合、加熱対象の基板がその温度に耐えられる必要があり、基板の材料に有機材料が用いられている場合には、高温のため材料が劣化する可能性がある。
これに対して、本照明装置1の構成では、光の反射材料として使用している電気伝導光反射層14が透明陽極部13の低抵抗化にも寄与しているため、透明陽極部13を高温でアニールする必要はなくなる。よって、透明陽極部13には、ITO等の一般的な材料や、PEdot等の導電性高分子のような比較的高抵抗の材料も使用可能となる。
When the transparent anode portion 13 is thinned, the resistance value of the transparent anode portion 13 increases, which causes a deterioration in the light emission distribution in the light emitting surface. In order to reduce the resistance value of the transparent anode part 13, it is the simplest method to increase the thickness of the transparent anode part 13, but the light transmittance decreases (light becomes difficult to transmit through the transparent anode part 13). There is a trade-off relationship.
In order to reduce the resistance of the transparent anode portion 13, a method is generally used in which the transparent anode portion 13 is crystallized and annealed by annealing at about 200 ° C. or higher. In that case, the substrate to be heated needs to be able to withstand the temperature. When an organic material is used as the material of the substrate, the material may be deteriorated due to the high temperature.
On the other hand, in the configuration of the lighting device 1, the electrically conductive light reflecting layer 14 used as a light reflecting material also contributes to lowering the resistance of the transparent anode portion 13. There is no need to anneal at high temperatures. Therefore, a general material such as ITO or a relatively high resistance material such as a conductive polymer such as PEdot can be used for the transparent anode portion 13.

このように、電気伝導光反射層14は光の反射だけでなく、透明陽極部13の抵抗値を下げる役割もしており、電気伝導光反射層14があることによって透明陽極部13の厚さを極力薄くし、光の吸収を減らすことが可能となる。
透明陽極部13の低抵抗化のために、例えば特開2003−316291号公報に記載されているように補助配線を設ける方法もある。しかしながら、一般的な構成だと、補助配線を設けた箇所は発光しないため、照明装置の発光面内に発光部と非発光部ができることとなり、製品のデザインを損ねる原因となる。
As described above, the electrically conductive light reflecting layer 14 not only reflects light but also serves to lower the resistance value of the transparent anode part 13, and the presence of the electrically conductive light reflecting layer 14 reduces the thickness of the transparent anode part 13. It is possible to reduce the absorption of light as much as possible.
In order to reduce the resistance of the transparent anode portion 13, there is a method of providing auxiliary wiring as described in JP-A-2003-316291, for example. However, in a general configuration, the portion where the auxiliary wiring is provided does not emit light, so that a light emitting portion and a non-light emitting portion are formed in the light emitting surface of the lighting device, which is a cause of impairing the product design.

透明陽極部13に積層された電気伝導光反射層14を覆うように電気絶縁層17が配置されている。これにより、電気伝導光反射層14でのロスとなる発光が無くなり、発光素子部15のパターニングの必要が無く、製造工程を簡単化することができる。
高屈折率層12の屈折率が1.7以上であることで、光取出し効率を高めることができる。
高屈折率層12を発光素子部15側へ向けている、すなわち、高屈折率層12を透光性基板11よりも発光素子部15側に設けている。これにより、透光性基板11の表面(高屈折率層12とは反対側の面)を平坦にすることができ、この表面の清掃を簡単に行うことができるとともに、照明装置1のデザイン性を向上させることができる。
An electrically insulating layer 17 is disposed so as to cover the electrically conductive light reflecting layer 14 laminated on the transparent anode portion 13. Thereby, the light emission which becomes a loss in the electroconductive light reflection layer 14 is eliminated, the patterning of the light emitting element portion 15 is not necessary, and the manufacturing process can be simplified.
When the refractive index of the high refractive index layer 12 is 1.7 or more, the light extraction efficiency can be increased.
The high refractive index layer 12 is directed toward the light emitting element portion 15, that is, the high refractive index layer 12 is provided closer to the light emitting element portion 15 than the translucent substrate 11. Thereby, the surface of the translucent substrate 11 (surface opposite to the high refractive index layer 12) can be flattened, the surface can be easily cleaned, and the design of the lighting device 1 is possible. Can be improved.

また、透光性基板11、高屈折率層12、透明陽極部13、電気伝導光反射層14等は、前述のようにロールtoロール方式にて製造することが可能であるため、有機材料の製膜についても同様にロールtoロール方式で作製することが可能となる。したがって、従来のガラス基板へ素子構造部を作製し、光散乱性のフィルムをプラスチック基材上に成型し、その後粘着材等を介してガラス基板上へ光散乱性のフィルムをプ密着させるといった製造工程と比較して、工程を簡単化し、製造のリードタイムを上げ、コストダウンに有利となる可能性がある。   Moreover, since the translucent substrate 11, the high refractive index layer 12, the transparent anode part 13, the electroconductive light reflection layer 14 and the like can be manufactured by the roll-to-roll method as described above, Similarly, the film can be produced by a roll-to-roll method. Therefore, manufacturing a device structure part on a conventional glass substrate, forming a light scattering film on a plastic substrate, and then sticking the light scattering film onto the glass substrate via an adhesive or the like. Compared with the process, there is a possibility that the process is simplified, the manufacturing lead time is increased, and the cost is reduced.

厚さ方向Dに見たときの発光素子部15の全体の面積に対する発光面積の割合を開口率とする。この場合、開口率が大きいと面内輝度は大きくなるものの、発光効率は低下し、逆に開口率が小さいと発光効率は高まるものの、面内輝度は低下する。よって、面内輝度と発光効率のどちらを重視するかで、開口率を決める必要がある。
開口率を小さくした場合、電気伝導光反射層14の割合が必然的に増えることになるが、これにより、発光素子部15で発生した熱を伝達し、照明装置1全体としての温度上昇を緩和する効果がある。これにより、発光素子部15の寿命を高める(長くする)ことが可能となる。
また、この構造では透明陽極部13をパターニングすること無く製膜でき、かつ、透明陽極部13に凹凸部が無くフラットであるため、有機EL素子にとって必要な透明陽極部13の表面研磨が可能となるメリットがある。
The ratio of the light emitting area to the entire area of the light emitting element portion 15 when viewed in the thickness direction D is defined as an aperture ratio. In this case, if the aperture ratio is large, the in-plane luminance increases, but the luminous efficiency decreases. Conversely, if the aperture ratio is small, the luminous efficiency increases, but the in-plane luminance decreases. Therefore, it is necessary to determine the aperture ratio depending on which of in-plane luminance and light emission efficiency is important.
When the aperture ratio is reduced, the proportion of the electrically conductive light reflecting layer 14 is inevitably increased. However, this causes the heat generated in the light emitting element portion 15 to be transferred, thereby mitigating the temperature rise of the lighting device 1 as a whole. There is an effect to. Thereby, the lifetime of the light emitting element part 15 can be increased (lengthened).
Further, in this structure, the transparent anode portion 13 can be formed without patterning, and the transparent anode portion 13 is flat without uneven portions, so that the surface polishing of the transparent anode portion 13 necessary for the organic EL element is possible. There are benefits.

なお、本実施形態では、高屈折率層12が、光散乱性を有する微粒子(不図示)を含んで(内包して)いてもよい。このように構成することによって、外部から(透光性基板11側から)見た際に、電気伝導光反射層14をより遮蔽する効果があり、さらに透光性基板11から光を取出す効果も向上する。前述の微粒子には、TiO、SiO、Al、ZrO、CaCO、BaSO、MgSi10(OH)等を用いることができ、微粒子の粒径も数十nmから数百μm等、さまざまな粒径のものとすることができる。なお、微粒子の材質、粒径はこれに限るものではない。
この場合の、高屈折率層12への微粒子の添加量は40w%以下であることが好ましい。添加量が40w%を超えると、微粒子が凝集し、好ましくない。
高屈折率層12に微粒子を入れない場合には、前述のように電気伝導光反射層14と透明陽極部13との界面、すなわち前述の電気伝導光反射層14の表面14bに凹凸を形成することにより散乱効果を持たせる方法がある。
高屈折率層12が微粒子を含むことで、高屈折率層12内で光が散乱して光が均一化する。これにより、面光源としての光ムラを低減させ、かつ光の角度分布を均一化することができる。
In the present embodiment, the high refractive index layer 12 may include (enclose) light-scattering fine particles (not shown). With this configuration, when viewed from the outside (from the translucent substrate 11 side), there is an effect of further shielding the electrically conductive light reflecting layer 14, and further, an effect of extracting light from the translucent substrate 11. improves. As the above-mentioned fine particles, TiO 2 , SiO 2 , Al 2 O 3 , ZrO, CaCO 3 , BaSO 4 , Mg 3 Si 4 O 10 (OH) 2 or the like can be used, and the particle diameter of the fine particles is several tens nm. To several hundred μm, etc. The material and particle size of the fine particles are not limited to this.
In this case, the amount of fine particles added to the high refractive index layer 12 is preferably 40 w% or less. When the added amount exceeds 40 w%, the fine particles are aggregated, which is not preferable.
When fine particles are not put into the high refractive index layer 12, irregularities are formed on the interface between the electroconductive light reflecting layer 14 and the transparent anode portion 13, that is, on the surface 14 b of the electroconductive light reflecting layer 14 as described above. There is a method of giving a scattering effect.
When the high refractive index layer 12 contains fine particles, the light is scattered in the high refractive index layer 12 to make the light uniform. Thereby, the light nonuniformity as a surface light source can be reduced, and the angle distribution of light can be made uniform.

透光性基板11の高屈折率層12とは反対側の面に、図示しない微細凹凸形状を設けてもよい。微細凹凸形状としては、外径が0.1μm〜500μm程度のマイクロレンズ形状(例えば、半球状や楕円球状)のものや、四角錐形状、微細な粒子を散りばめた形状のもの等がある。いずれの形状の微細凹凸形状も、光の散乱する向きを変え、照明装置1中で発光した光を透光性基板11より外側に取出すことを目的とする。
透光性基板11に微細凹凸形状を設けることで、光の射出角度及び光取出し効率のコントロールをすることができる。
You may provide the fine uneven | corrugated shape which is not illustrated in the surface on the opposite side to the high refractive index layer 12 of the translucent board | substrate 11. FIG. Examples of the fine concavo-convex shape include a microlens shape (eg, hemispherical or elliptical sphere) having an outer diameter of about 0.1 μm to 500 μm, a quadrangular pyramid shape, and a shape in which fine particles are scattered. Any shape of the fine uneven shape is intended to change the direction in which light is scattered and to extract the light emitted in the illumination device 1 to the outside of the translucent substrate 11.
By providing the light-transmitting substrate 11 with a fine uneven shape, the light emission angle and the light extraction efficiency can be controlled.

透光性基板11に、光散乱性を有する微粒子が含まれるように構成してもよい。この微粒子としては、高屈折率層12に用いられる微粒子と同様に構成されたものを用いることができる。
透光性基板11が微粒子を含むことで、光の配光特性を制御することができる。
The translucent substrate 11 may include fine particles having light scattering properties. As the fine particles, those configured in the same manner as the fine particles used for the high refractive index layer 12 can be used.
When the translucent substrate 11 contains fine particles, the light distribution characteristic of light can be controlled.

本実施形態では、電気伝導光反射層14は、側面視で矩形状に形成されているとした。しかし、図5に示すように、電気伝導光反射層14は、透光性基板11に向かうにしたがって幅が狭くなるテーパー状に形成されてもよい。
各開口部R2の形状、及び複数の開口部R2の配置は、以下のように変形させてもよい。例えば、図6に示す例では、各開口部R2は矩形状に形成され、複数の開口部R2はハニカム状(千鳥状)に配置されている。電気伝導光反射層14の各開口部R2をこのように構成することで、隣合う開口部R2同士の間隔を等間隔にできるため、光取出し効率を向上させることができる。
また、図7に示す例では、各開口部R2は円形状に形成され、複数の開口部R2はハニカム状に配置されている。電気伝導光反射層14の各開口部R2をこのように構成することで、隣合う開口部R2同士の間隔をより等間隔にできるため、光取出し効率をさらに向上させることができる。
In the present embodiment, the electrically conductive light reflecting layer 14 is formed in a rectangular shape in a side view. However, as shown in FIG. 5, the electrically conductive light reflecting layer 14 may be formed in a tapered shape whose width becomes narrower toward the translucent substrate 11.
The shape of each opening R2 and the arrangement of the plurality of openings R2 may be modified as follows. For example, in the example shown in FIG. 6, each opening R2 is formed in a rectangular shape, and the plurality of openings R2 are arranged in a honeycomb shape (staggered shape). By configuring each opening R2 of the electroconductive light reflection layer 14 in this way, the intervals between the adjacent openings R2 can be made equal, so that the light extraction efficiency can be improved.
In the example shown in FIG. 7, each opening R2 is formed in a circular shape, and the plurality of openings R2 are arranged in a honeycomb shape. By configuring each opening R2 of the electroconductive light reflection layer 14 in this way, the intervals between the adjacent openings R2 can be made more evenly spaced, so that the light extraction efficiency can be further improved.

図8に示す照明装置2のように、照明装置1の各構成に加えて、透光性基板11の表面に、半円柱状のレンズ21をアライメントして配置してもよい。このように構成することで、光の利用効率を高めることができる。   Like the illuminating device 2 shown in FIG. 8, in addition to each structure of the illuminating device 1, the semicylindrical lens 21 may be aligned and arrange | positioned on the surface of the translucent board | substrate 11. FIG. With this configuration, the light use efficiency can be increased.

以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除なども含まれる。
例えば、照明装置1が電気絶縁層17を備えるとしたが、照明装置1に電気絶縁層17は備えられなくてもよい。このように構成されていても、透明陽極部13と陰極部16との間に電圧を印可することで発光素子部15で発光することができるからである。
As mentioned above, although one embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and modifications, combinations, and deletions within a scope that does not depart from the gist of the present invention. Etc. are also included.
For example, although the lighting device 1 includes the electrical insulating layer 17, the lighting device 1 may not include the electrical insulating layer 17. This is because even if configured in this way, the light emitting element unit 15 can emit light by applying a voltage between the transparent anode unit 13 and the cathode unit 16.

また、前記実施形態では、図9に示す照明装置3のように、照明装置1の各構成に対して、発光素子部15を厚さ方向Dに挟む陽極と陰極とが反対となるように構成してもよい。具体的には、照明装置3は、照明装置1の透明陽極部13、陰極部16に代えて透明陰極部26、陽極部27を備えている。
透明陰極部26は、前記実施形態の透明陽極部13と同様に、高屈折率層12の透光性基板11とは反対側に積層されている。透明陰極部26は透明陽極部13と同じ透明な材料で形成することができる。
この例では、発光素子部15は、電気伝導光反射層14の透明陰極部26とは反対側に積層されている。
陽極部27は、発光素子部15の電気伝導光反射層14とは反対側に積層されている。陽極部27は陰極部16と同じ材料で形成することができる。
このように構成された照明装置3によっても、前記実施形態の照明装置1と同様の効果を奏することができる。
Moreover, in the said embodiment, it is comprised so that the anode and cathode which sandwich the light emitting element part 15 in the thickness direction D may be opposite with respect to each structure of the illuminating device 1 like the illuminating device 3 shown in FIG. May be. Specifically, the lighting device 3 includes a transparent cathode portion 26 and an anode portion 27 instead of the transparent anode portion 13 and the cathode portion 16 of the lighting device 1.
The transparent cathode portion 26 is laminated on the opposite side of the high refractive index layer 12 from the translucent substrate 11, similarly to the transparent anode portion 13 of the above embodiment. The transparent cathode part 26 can be formed of the same transparent material as the transparent anode part 13.
In this example, the light emitting element portion 15 is laminated on the opposite side of the electroconductive light reflecting layer 14 from the transparent cathode portion 26.
The anode part 27 is laminated on the side of the light emitting element part 15 opposite to the electrically conductive light reflecting layer 14. The anode part 27 can be formed of the same material as the cathode part 16.
Also with the illuminating device 3 configured in this way, the same effects as those of the illuminating device 1 of the embodiment can be obtained.

(実施例)
以下では、本発明の実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
(Example)
Hereinafter, the present invention will be described in more detail based on examples of the present invention, but the present invention is not limited to the following examples.

(実施例1)
照明装置の発光層のピッチ(図1における、発光素子部15の隣り合う発光部15a間のピッチ。図1では発光部15aは1つのみ示している)を200μm、高屈折率層の厚さを10μmとした。透明陽極部にはITOを使用し、公知のスパッタリングを用いて150nmの厚さに製膜した。高屈折率層は、厚さ188μmのPETフィルム上に作製し、透湿性対策のためにPETフィルムの高屈折率層とは反対側をガラス面へ透明粘着フィルムにて貼り合せた。
Example 1
The pitch of the light emitting layer of the lighting device (the pitch between adjacent light emitting portions 15a of the light emitting element portion 15 in FIG. 1; only one light emitting portion 15a is shown in FIG. 1) is 200 μm, and the thickness of the high refractive index layer Was 10 μm. ITO was used for a transparent anode part, and it formed into a film with a thickness of 150 nm using well-known sputtering. The high refractive index layer was produced on a 188 μm thick PET film, and the opposite side of the PET film from the high refractive index layer was bonded to the glass surface with a transparent adhesive film as a measure against moisture permeability.

図10に示すように、本実施例ではガラス基板32及びPETフィルム33で透光性基板31を構成した。高屈折率層の屈折率を1.7とし、電気伝導光反射層の厚さを3μmとした。高屈折率層へは光散乱性を有する微粒子として、SiOで形成され粒径が2.0μmのものを20w%添加した。
電気伝導光反射層としてアルミニウムを使用し、高屈折率層に蒸着した。
素子構造は、透明陽極部であるITO上に、α−npdを70nm、Alq3を60nm、陰極部であるAlを100nm形成した。単純にガラス上に作製したリファレンス(比較例)と比較し、約1.5倍の効率向上を確認した。
As shown in FIG. 10, in this example, a light-transmitting substrate 31 was configured with a glass substrate 32 and a PET film 33. The refractive index of the high refractive index layer was 1.7, and the thickness of the electrically conductive light reflecting layer was 3 μm. To the high refractive index layer, 20 w% of light-scattering fine particles made of SiO 2 and having a particle size of 2.0 μm were added.
Aluminum was used as the electrically conductive light reflecting layer and deposited on the high refractive index layer.
In the element structure, α-npd of 70 nm, Alq3 of 60 nm, and Al of a cathode part of 100 nm were formed on ITO as a transparent anode part. Compared with a reference (comparative example) simply produced on glass, an efficiency improvement of about 1.5 times was confirmed.

(実施例2)
透明陽極部であるITO上にα−npdを70nm、Alq3を60nm、陰極部であるAlを100nm形成した。透光性基板の屈折率を1.5〜2.0まで振った際の透光性基板内に入ってくる光の光束をシミュレーションし、グラフにしたものを図11示す。
グラフは、透光性基板の屈折率が1.5の時を基準とし、透光性基板の屈折率を変えた際の光束の増加率を示している。屈折率が1.7になった際、屈折率が1.6の場合と比較して光束が極端に上昇していることがわかる。このことから、透光性基板内から取出される光束の量は、透光性基板の屈折率が1.7以上が良いことがわかる。
(Example 2)
Α-npd of 70 nm, Alq3 of 60 nm, and Al of the cathode part of 100 nm were formed on ITO as the transparent anode part. FIG. 11 shows a graph obtained by simulating the light flux of light entering the translucent substrate when the refractive index of the translucent substrate is swung from 1.5 to 2.0.
The graph shows the rate of increase of the luminous flux when the refractive index of the translucent substrate is changed with the refractive index of the translucent substrate being 1.5 as a reference. It can be seen that when the refractive index is 1.7, the luminous flux is extremely increased compared to the case where the refractive index is 1.6. From this, it is understood that the amount of the light beam taken out from the translucent substrate is preferably such that the refractive index of the translucent substrate is 1.7 or more.

1、2、3 照明装置
1A EL素子用前面板
11 透光性基板
11a 一方の面
12 高屈折率層
13 透明陽極部
13a 反対面
14 電気伝導光反射層
15 発光素子部
16 陰極部
17 電気絶縁層
26 透明陰極部
27 陽極部
1, 2 and 3 Illumination device 1A EL element front plate 11 Translucent substrate 11a One surface 12 High refractive index layer 13 Transparent anode portion 13a Opposite surface 14 Electroconductive light reflection layer 15 Light emitting element portion 16 Cathode portion 17 Electrical insulation Layer 26 Transparent cathode portion 27 Anode portion

Claims (7)

透光性基板と、
前記透光性基板の一方の面に積層された高屈折率層と、
前記高屈折率層の前記透光性基板とは反対側に積層された透明陽極部と、
導電性及び光反射性を有し、前記透明陽極部の前記高屈折率層とは反対側の反対面の一部に積層された電気伝導光反射層と、
を備えることを特徴とするEL素子用前面板。
A translucent substrate;
A high refractive index layer laminated on one surface of the translucent substrate;
A transparent anode portion laminated on the opposite side of the high refractive index layer from the translucent substrate;
An electrically conductive light reflecting layer that has electrical conductivity and light reflectivity, and is laminated on a part of the opposite surface of the transparent anode portion opposite to the high refractive index layer;
A front plate for an EL element, comprising:
前記高屈折率層に、光散乱性を有する微粒子が含まれることを特徴とする請求項1に記載のEL素子用前面板。   The front plate for an EL element according to claim 1, wherein the high refractive index layer contains fine particles having light scattering properties. 前記透光性基板の前記高屈折率層とは反対側の面に微細凹凸形状を設けたことを特徴とする請求項1に記載のEL素子用前面板。   2. The front plate for an EL element according to claim 1, wherein a fine uneven shape is provided on a surface of the translucent substrate opposite to the high refractive index layer. 前記高屈折率層の屈折率は1.7以上であることを特徴とする請求項1に記載のEL素子用前面板。   The front plate for an EL element according to claim 1, wherein the refractive index of the high refractive index layer is 1.7 or more. 前記透光性基板に、光散乱性を有する微粒子が含まれることを特徴とする請求項1に記載のEL素子用前面板。   The EL element front plate according to claim 1, wherein the light-transmitting substrate contains light-scattering fine particles. 請求項1に記載のEL素子用前面板と、
前記透明陽極部の前記反対面であって前記電気伝導光反射層が積層されていない部分、及び前記電気伝導光反射層の前記透明陽極部とは反対側に積層された発光素子部と、
前記発光素子部の前記電気伝導光反射層とは反対側に積層された陰極部と、
を備えることを特徴とする照明装置。
A front plate for an EL device according to claim 1,
A portion of the opposite surface of the transparent anode portion where the electrically conductive light reflecting layer is not laminated, and a light emitting element portion laminated on the opposite side of the electrically conductive light reflecting layer from the transparent anode portion,
A cathode portion laminated on a side opposite to the electrically conductive light reflecting layer of the light emitting element portion;
A lighting device comprising:
前記透明陽極部に積層された前記電気伝導光反射層を覆うように電気絶縁層を備えることを特徴とする請求項6に記載の照明装置。   The lighting device according to claim 6, further comprising an electrically insulating layer so as to cover the electrically conductive light reflecting layer laminated on the transparent anode portion.
JP2014022154A 2014-02-07 2014-02-07 EL element front plate and lighting device Active JP6511718B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014022154A JP6511718B2 (en) 2014-02-07 2014-02-07 EL element front plate and lighting device
PCT/JP2015/053264 WO2015119203A1 (en) 2014-02-07 2015-02-05 Front plate for el element and illumination device
EP15746111.2A EP3104668B1 (en) 2014-02-07 2015-02-05 Front plate for el element and illumination device
CN201580005328.5A CN105940766B (en) 2014-02-07 2015-02-05 EL element front panel and lighting device
KR1020167024286A KR102368851B1 (en) 2014-02-07 2015-02-05 Front plate for el element and illumination device
US15/230,554 US10763456B2 (en) 2014-02-07 2016-08-08 EL device use front plate and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014022154A JP6511718B2 (en) 2014-02-07 2014-02-07 EL element front plate and lighting device

Publications (2)

Publication Number Publication Date
JP2015149220A true JP2015149220A (en) 2015-08-20
JP6511718B2 JP6511718B2 (en) 2019-05-15

Family

ID=53892434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022154A Active JP6511718B2 (en) 2014-02-07 2014-02-07 EL element front plate and lighting device

Country Status (1)

Country Link
JP (1) JP6511718B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016086A1 (en) * 2009-08-05 2011-02-10 株式会社 東芝 Organic electroluminescence element and method for manufacturing same
JP2011048937A (en) * 2009-08-25 2011-03-10 Panasonic Electric Works Co Ltd Organic el light-emitting element
JP2012084391A (en) * 2010-10-12 2012-04-26 Dainippon Printing Co Ltd Organic el element, and organic el lighting apparatus
JP2013054837A (en) * 2011-09-01 2013-03-21 Toshiba Corp Light-emitting device and manufacturing method therefor
JP2013114802A (en) * 2011-11-25 2013-06-10 Samsung Yokohama Research Institute Co Ltd Light-emitting element substrate and manufacturing method thereof, surface light-emitting element, luminaire, and backlight
WO2013153700A1 (en) * 2012-04-12 2013-10-17 Necライティング株式会社 Organic el illumination panel substrate, organic el illumination panel and organic el illumination device
JP2013246932A (en) * 2012-05-24 2013-12-09 Konica Minolta Inc Surface light emitting element and lighting device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016086A1 (en) * 2009-08-05 2011-02-10 株式会社 東芝 Organic electroluminescence element and method for manufacturing same
JP2011048937A (en) * 2009-08-25 2011-03-10 Panasonic Electric Works Co Ltd Organic el light-emitting element
JP2012084391A (en) * 2010-10-12 2012-04-26 Dainippon Printing Co Ltd Organic el element, and organic el lighting apparatus
JP2013054837A (en) * 2011-09-01 2013-03-21 Toshiba Corp Light-emitting device and manufacturing method therefor
JP2013114802A (en) * 2011-11-25 2013-06-10 Samsung Yokohama Research Institute Co Ltd Light-emitting element substrate and manufacturing method thereof, surface light-emitting element, luminaire, and backlight
WO2013153700A1 (en) * 2012-04-12 2013-10-17 Necライティング株式会社 Organic el illumination panel substrate, organic el illumination panel and organic el illumination device
JP2013246932A (en) * 2012-05-24 2013-12-09 Konica Minolta Inc Surface light emitting element and lighting device using the same

Also Published As

Publication number Publication date
JP6511718B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
WO2014167758A1 (en) Light-emitting device
US8987767B2 (en) Light emitting device having improved light extraction efficiency
JP6226279B2 (en) Organic electroluminescence device
JP5523870B2 (en) Surface light emitting device
US20130026517A1 (en) Organic luminance device, method for manufacturing same and lighting apparatus including same
KR20160042324A (en) Organic light emitting display device and method of manufacturing the same
KR102033162B1 (en) OLED light emitting device and display device
US10763456B2 (en) EL device use front plate and lighting device
JP6477493B2 (en) Surface emitting unit
JP5854173B2 (en) Surface emitting unit
JP5846345B1 (en) Planar light emitting unit
US8492967B2 (en) Light emitting device and display panel
JP6488593B2 (en) Lighting device
CN102804442A (en) Electroluminescent device
JP6511718B2 (en) EL element front plate and lighting device
JP6511717B2 (en) EL element front plate and lighting device
JP2011187239A (en) Lighting system equipped with surface light source element and it
US8531101B2 (en) Organic electroluminescent lighting element array and organic electroluminescent lighting element
JP2010198974A (en) Organic el light emitting element
JP6528513B2 (en) Surface emitting module
JP2017022073A (en) Encapsulation material for el element, el element, and lighting device
JP2016066491A (en) Lighting device
JP2015065042A (en) Light-emitting module, and lighting fixture
JP2013187140A (en) Organic el module
JP2015056537A (en) Organic el lighting panel, lighting fixture, and building material unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181025

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6511718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250