JP2015149217A - fluorescent light source device - Google Patents

fluorescent light source device Download PDF

Info

Publication number
JP2015149217A
JP2015149217A JP2014022127A JP2014022127A JP2015149217A JP 2015149217 A JP2015149217 A JP 2015149217A JP 2014022127 A JP2014022127 A JP 2014022127A JP 2014022127 A JP2014022127 A JP 2014022127A JP 2015149217 A JP2015149217 A JP 2015149217A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
light source
excitation light
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014022127A
Other languages
Japanese (ja)
Inventor
蕪木 清幸
Kiyoyuki Kaburagi
清幸 蕪木
理 大澤
Osamu Osawa
理 大澤
寛之 高田
Hiroyuki Takada
寛之 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2014022127A priority Critical patent/JP2015149217A/en
Publication of JP2015149217A publication Critical patent/JP2015149217A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluorescent light source device having high heat exhaust efficiency of a wavelength conversion member and accordingly, having high light emission efficiency.SOLUTION: A fluorescent light source device of this invention comprises: a heat radiation base; a plate-like wavelength conversion member made of a fluorescent material, which is arranged along the surface of the base; and an excitation light source which makes excitation light be incident on the wavelength conversion member. In the fluorescent light source device, the fluorescent material constituting the wavelength conversion member is made by containing light emitting substance in a base material made of ceramics, absorption coefficient of the excitation light of the wavelength conversion member is 1[mm] or less, the excitation light made incident on the wavelength conversion member is absorbed by the fluorescent material while advancing in the wavelength conversion member. It is preferable that in the fluorescent light source device of this invention, a light passage length until 90% of the excitation light is absorbed in a light passage where the excitation light made incident on the wavelength conversion member advances, is 7.7 mm or greater.

Description

本発明は、蛍光光源装置に関する。更に詳しくは、励起光源からの励起光を照射することによって蛍光を放射する波長変換部材を備えた蛍光光源装置に関する。   The present invention relates to a fluorescent light source device. More specifically, the present invention relates to a fluorescence light source device including a wavelength conversion member that emits fluorescence by irradiating excitation light from an excitation light source.

従来、蛍光光源装置として、レーザ光源と、当該レーザ光源からのレーザ光によって励起される蛍光体によって形成された波長変換部材とを備えてなり、所期の色の光を放射する蛍光光源装置が知られている(例えば、特許文献1参照。)。
具体的には、特許文献1には、図8に示すプロジェクター装置が開示されている。このプロジェクター装置においては、緑色光源として青色領域で発振するレーザ光を放射するレーザ光源60と、蛍光ホイール64と、当該蛍光ホイール64を回転させるためのホイールモーター69とを備えてなる緑色領域の蛍光を発する蛍光光源装置が用いられている。この蛍光光源装置の蛍光ホイール64は、レーザ光源60からのレーザ光を透過する基材に、当該レーザ光で励起される蛍光体よりなる波長変換部材の層が形成されてなるものである。
図8において、61は、コリメートレンズであり、62は、赤色発光ダイオードよりなる赤色光源である。また、63A,63B,63C,64A,64B,64Cは、集光レンズである。また、65は、緑色光源からの光を透過し、赤色光源からの光を反射するダイクロイックミラーであり、66は、導光装置入射レンズである。また、67は、反射ミラーであり、68は、導光装置である。
このような蛍光光源装置においては、青色領域で発振するレーザ光が蛍光ホイール64の波長変換部材層に照射されると、緑色光が放射される。
2. Description of the Related Art Conventionally, as a fluorescent light source device, a fluorescent light source device that includes a laser light source and a wavelength conversion member formed by a phosphor excited by laser light from the laser light source, and emits light of a desired color. It is known (for example, refer to Patent Document 1).
Specifically, Patent Document 1 discloses a projector apparatus shown in FIG. In this projector device, green region fluorescence comprising a laser light source 60 that emits laser light oscillating in the blue region as a green light source, a fluorescence wheel 64, and a wheel motor 69 for rotating the fluorescence wheel 64. A fluorescent light source device that emits light is used. The fluorescent wheel 64 of the fluorescent light source device is formed by forming a wavelength conversion member layer made of a phosphor excited by the laser light on a base material that transmits the laser light from the laser light source 60.
In FIG. 8, 61 is a collimating lens, and 62 is a red light source composed of a red light emitting diode. Reference numerals 63A, 63B, 63C, 64A, 64B, and 64C denote condensing lenses. Reference numeral 65 denotes a dichroic mirror that transmits light from the green light source and reflects light from the red light source. Reference numeral 66 denotes a light guide device incident lens. Reference numeral 67 denotes a reflection mirror, and reference numeral 68 denotes a light guide device.
In such a fluorescent light source device, when the wavelength conversion member layer of the fluorescent wheel 64 is irradiated with laser light that oscillates in the blue region, green light is emitted.

また、特許文献2には、回転機構を有さない固定型の蛍光光源装置が提案されている。
具体的には、図9に示すように、放熱用ヒートシンク75が形成された、金属よりなる放熱プレート74上に載置された窒化アルミ基板72上に、レーザ光源からのレーザ光で励起される蛍光体(YAG焼結体)よりなる波長変換部材71が、硫酸バリウムよりなり、窒化アルミと蛍光体との熱膨張係数の差を緩和する熱膨張吸収層73を介して接合され、この接合体がレーザ光源に対して固定的に設けられた蛍光光源装置が開示されている。
Patent Document 2 proposes a fixed fluorescent light source device that does not have a rotation mechanism.
Specifically, as shown in FIG. 9, excitation is performed by laser light from a laser light source on an aluminum nitride substrate 72 placed on a heat dissipation plate 74 made of metal, on which a heat sink for heat dissipation 75 is formed. A wavelength conversion member 71 made of a phosphor (YAG sintered body) is made of barium sulfate and joined via a thermal expansion absorption layer 73 that relaxes the difference in thermal expansion coefficient between aluminum nitride and the phosphor. Discloses a fluorescent light source device fixed to a laser light source.

しかしながら、明るいプロジェクター装置には小さい面積から大きな光量を出射する高輝度光源が必要であるため、光源となる蛍光体に入射するレーザ光の強度[W/mm2 ]を大きくしなければならない。通常、蛍光体の励起光の吸収係数は10[mm-1]程度、若しくはそれ以上であり、レーザ光が蛍光体の入射面近傍で比較的局所的に吸収されるため、固定型の蛍光光源装置においては、レーザ光の吸収に伴って発生する熱を効率的に排熱することが難しい、という問題がある。この熱の排熱効率が低いと、蛍光体自身が熱を帯びることを抑制することができず、その結果、当該蛍光体自身の温度消光によって発光効率が低下してしまう。
特に、赤色領域の蛍光を発する蛍光体は、波長変換時に生ずるストークスシフトに起因するエネルギー損失が大きいことに加え、温度消光による発光効率の低下率も大きく、大きな課題であった。
However, since a bright projector device requires a high-intensity light source that emits a large amount of light from a small area, it is necessary to increase the intensity [W / mm 2 ] of the laser light incident on the phosphor serving as the light source. Usually, the absorption coefficient of the excitation light of the phosphor is about 10 [mm −1 ] or more, and the laser light is absorbed relatively locally in the vicinity of the incident surface of the phosphor. In the apparatus, there is a problem that it is difficult to efficiently exhaust the heat generated with the absorption of the laser light. If this heat exhaust efficiency is low, the phosphor itself cannot be suppressed from being heated, and as a result, the light emission efficiency is lowered due to temperature quenching of the phosphor itself.
In particular, a phosphor emitting fluorescence in the red region is a big problem because it has a large energy loss due to Stokes shift that occurs at the time of wavelength conversion and also has a large rate of decrease in luminous efficiency due to temperature quenching.

特開2011−13316号公報JP 2011-13316 A 特開2011−198560号公報JP 2011-198560 A

本発明は、以上のような事情に基づいてなされたものであって、その目的は、波長変換部材の排熱効率が高く、従って、発光効率の高い蛍光光源装置を提供することにある。   The present invention has been made based on the above circumstances, and an object of the present invention is to provide a fluorescent light source device in which the wavelength conversion member has high heat exhaust efficiency, and thus has high light emission efficiency.

本発明の蛍光光源装置は、放熱用の基台と、当該基台の表面に沿って配置された、蛍光体による板状の波長変換部材と、当該波長変換部材に励起光を入射させる励起光源とからなる蛍光光源装置において、
前記波長変換部材を構成する蛍光体は、セラミックスよりなる母材中に発光物質が含有されてなるものであり、当該波長変換部材の励起光の吸収係数が1[mm-1]以下であり、
前記波長変換部材に入射された励起光は、当該波長変換部材中を進行しながら前記蛍光体によって吸収されることを特徴とする。
The fluorescent light source device of the present invention includes a base for heat dissipation, a plate-like wavelength conversion member made of a phosphor arranged along the surface of the base, and an excitation light source that makes excitation light incident on the wavelength conversion member In the fluorescent light source device consisting of
The phosphor constituting the wavelength conversion member is a material in which a luminescent substance is contained in a base material made of ceramics, and the absorption coefficient of excitation light of the wavelength conversion member is 1 [mm −1 ] or less,
The excitation light incident on the wavelength conversion member is absorbed by the phosphor while traveling through the wavelength conversion member.

本発明の蛍光光源装置においては、前記波長変換部材に入射される励起光が進行する光路において、当該励起光の90%が吸収されるまでの光路長が、7.7mm以上であることが好ましい。   In the fluorescent light source device of the present invention, it is preferable that an optical path length until 90% of the excitation light is absorbed is 7.7 mm or more in an optical path in which the excitation light incident on the wavelength conversion member travels. .

本発明の蛍光光源装置においては、前記波長変換部材における励起光の光路が、当該波長変換部材の複数の面において反射される複数の反射点を有することが好ましい。   In the fluorescent light source device of the present invention, it is preferable that the optical path of the excitation light in the wavelength conversion member has a plurality of reflection points reflected on a plurality of surfaces of the wavelength conversion member.

本発明の蛍光光源装置においては、前記波長変換部材に含有される蛍光体が、PrまたはSmを含有するものであることが好ましい。   In the fluorescence light source device of the present invention, it is preferable that the phosphor contained in the wavelength conversion member contains Pr or Sm.

本発明の蛍光光源装置においては、前記励起光源が青色LDであり、前記波長変換部材の側周面に励起光の入射面が設けられ、当該励起光源からの励起光がコリメートレンズを介して前記入射面に入射されることが好ましい。   In the fluorescent light source device of the present invention, the excitation light source is a blue LD, an incident surface of excitation light is provided on a side peripheral surface of the wavelength conversion member, and the excitation light from the excitation light source passes through the collimator lens. It is preferably incident on the incident surface.

本発明の蛍光光源装置は、波長変換部材として励起光の吸収係数が低いものが用いられているので、励起光の吸収が長い光路にわたって徐々に行われる。すなわち、励起光の吸収が当該波長変換部材の局所的ではなく分散的に行われるので、熱の発生箇所も波長変換部材の全体に分散させることができる。従って、当該波長変換部材の広い領域を排熱に寄与させることができるために排熱効率が高いものとなり、この波長変換部材を構成する蛍光体の一部のみが過熱されることが抑制されて蛍光体の温度消光が生じることが抑制され、その結果、高い発光効率が得られる。   In the fluorescent light source device of the present invention, the one having a low excitation light absorption coefficient is used as the wavelength conversion member, so that the absorption of the excitation light is gradually performed over a long optical path. That is, since the absorption of the excitation light is performed dispersively rather than locally, the heat generation location can also be dispersed throughout the wavelength conversion member. Accordingly, since a wide area of the wavelength conversion member can contribute to exhaust heat, the exhaust heat efficiency is high, and only a part of the phosphor constituting the wavelength conversion member is suppressed from being overheated and fluorescent. The occurrence of temperature quenching of the body is suppressed, and as a result, high luminous efficiency is obtained.

本発明の第1の実施の形態の蛍光光源装置の一例における構成の概略を励起光源を省略した状態で示す平面図である。It is a top view which shows the outline of the structure in an example of the fluorescence light source device of the 1st Embodiment of this invention in the state which abbreviate | omitted the excitation light source. 図1のX−X線断面図である。It is the XX sectional view taken on the line of FIG. 波長変換部材の励起光の吸収係数と、励起光の90%が吸収されるまでの光路長との関係を示すグラフである。It is a graph which shows the relationship between the absorption coefficient of the excitation light of a wavelength conversion member, and the optical path length until 90% of excitation light is absorbed. 本発明の第2の実施の形態の蛍光光源装置の一例における構成の概略を示す平面図である。It is a top view which shows the outline of a structure in an example of the fluorescence light source device of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の蛍光光源装置の一例における構成の概略を基台を省略した状態で示す平面図である。It is a top view which shows the outline of the structure in an example of the fluorescence light source device of the 3rd Embodiment of this invention in the state which abbreviate | omitted the base. 本発明の第4の実施の形態の蛍光光源装置の一例における構成の概略を示す平面図である。It is a top view which shows the outline of a structure in an example of the fluorescence light source device of the 4th Embodiment of this invention. 図6の蛍光光源装置の右側面図である。It is a right view of the fluorescence light source device of FIG. 従来の蛍光光源装置の構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the conventional fluorescence light source device. 従来の蛍光光源装置の構成の他の例を示す説明図である。It is explanatory drawing which shows the other example of a structure of the conventional fluorescence light source device.

<第1の実施の形態>
図1は、本発明の第1の実施の形態の蛍光光源装置の一例における構成の概略を励起光源を省略した状態で示す平面図であり、図2は、図1のX−X線断面図である。
この蛍光光源装置は、図1に示すように、放熱用の矩形の基台21と、当該基台21の表面に沿って配置された蛍光体による例えば矩形の板状の波長変換部材20と、当該波長変換部材20に励起光L1を入射させる励起光源(図示せず)とを備えてなる。
この蛍光光源装置においては、波長変換部材20の表面(図2において上面)および側周面の1つの面に連続する斜面20Aが形成されており、当該斜面20Aが励起光の入射面とされている。波長変換部材20の表面には、矩形の開口部24Hを有する、蛍光を波長変換部材20に向かって反射する蛍光反射体24が設けられており、波長変換部材20の表面における開口部24Hを通して露出する領域が光出射面として機能する。
また、波長変換部材20の裏面(図2において下面)には、蛍光および励起光を波長変換部材20に向かって反射する光反射体25が形成されている。なお、波長変換部材20の側周面にも、蛍光および励起光を波長変換部材20に向かって反射する光反射体が設けられていてもよい。
さらに、基台21の裏面には、例えば放熱用フィン(図示省略)が配置されている。
<First Embodiment>
FIG. 1 is a plan view showing an outline of the configuration of an example of the fluorescent light source device according to the first embodiment of the present invention in a state where an excitation light source is omitted, and FIG. 2 is a cross-sectional view taken along the line XX of FIG. It is.
As shown in FIG. 1, the fluorescent light source device includes a rectangular base 21 for heat dissipation, and, for example, a rectangular plate-shaped wavelength conversion member 20 made of a phosphor arranged along the surface of the base 21. An excitation light source (not shown) that causes the excitation light L1 to enter the wavelength conversion member 20 is provided.
In this fluorescent light source device, an inclined surface 20A is formed continuously on one surface of the surface (the upper surface in FIG. 2) and the side peripheral surface of the wavelength conversion member 20, and the inclined surface 20A is used as an incident surface for excitation light. Yes. The surface of the wavelength conversion member 20 is provided with a fluorescent reflector 24 having a rectangular opening 24H that reflects fluorescence toward the wavelength conversion member 20, and is exposed through the opening 24H on the surface of the wavelength conversion member 20. The area to function functions as a light exit surface.
A light reflector 25 that reflects fluorescence and excitation light toward the wavelength conversion member 20 is formed on the back surface (the lower surface in FIG. 2) of the wavelength conversion member 20. A light reflector that reflects fluorescence and excitation light toward the wavelength conversion member 20 may also be provided on the side peripheral surface of the wavelength conversion member 20.
Furthermore, for example, heat radiating fins (not shown) are arranged on the back surface of the base 21.

励起光源は、波長変換部材20における蛍光体を励起することができるものであればよく、励起光源としては、例えば青色LD(青色領域の光を放射するレーザダイオード)や青色LED(青色領域の光を放射する発光ダイオード)などを用いることができる。   The excitation light source only needs to be able to excite the phosphor in the wavelength conversion member 20, and examples of the excitation light source include blue LD (laser diode that emits light in the blue region) and blue LED (light in the blue region). For example, a light emitting diode).

基台21を構成する材料としては、当該基台21の裏面からの排熱が容易であるように、かつ、波長変換部材20に対する熱応力が小さいものとなるように、CuW(CuとWの擬似合金)やALC(AlとCの複合材)などの、熱伝導性に優れ、波長変換部材20と熱膨張率の差が小さい材料が使用される。   The material constituting the base 21 is CuW (Cu and W of Cu and W so that the heat from the back surface of the base 21 can be easily exhausted and the thermal stress on the wavelength conversion member 20 is small. A material that is excellent in thermal conductivity and has a small difference in thermal expansion coefficient from the wavelength conversion member 20 such as a pseudo alloy) or ALC (a composite material of Al and C) is used.

波長変換部材20を構成する蛍光体は、YAG、LuAG,Y2 3 などのセラミックス焼結体に発光物質としてCe、Pr、Smなどの希土類が任意量添加されたものとされる。
特に、赤色領域の蛍光を発するPrまたはSmを発光物質として用いることが好ましい。
The phosphor constituting the wavelength conversion member 20 is obtained by adding an arbitrary amount of rare earth such as Ce, Pr, Sm as a luminescent substance to a ceramic sintered body such as YAG, LuAG, Y 2 O 3 .
In particular, Pr or Sm that emits fluorescence in the red region is preferably used as the light-emitting substance.

そして、本発明においては、波長変換部材20の励起光L1の吸収係数が1[mm-1]以下とされている。
波長変換部材20の励起光L1の吸収係数を、より小さくすることにより、波長変換部材20に入射される励起光L1が進行する光路(以下、「励起光光路」ともいう。)において、当該励起光L1の90%が吸収されるまでの光路長(以下、「90%吸収光路長」ともいう。)を、7.7mm以上とすることができる。
In the present invention, the absorption coefficient of the excitation light L1 of the wavelength conversion member 20 is 1 [mm −1 ] or less.
By making the absorption coefficient of the excitation light L1 of the wavelength conversion member 20 smaller, the excitation in the optical path along which the excitation light L1 incident on the wavelength conversion member 20 travels (hereinafter also referred to as “excitation light optical path”). The optical path length until 90% of the light L1 is absorbed (hereinafter also referred to as “90% absorption optical path length”) can be 7.7 mm or more.

波長変換部材の励起光L1の吸収係数が小さいほど、90%吸収光路長を長くすることができる。
波長変換部材の励起光L1の吸収係数と、90%吸収光路長との関係を、下記表1および図3のグラフに示す。
The smaller the absorption coefficient of the excitation light L1 of the wavelength conversion member, the longer the 90% absorption optical path length.
The relationship between the absorption coefficient of the excitation light L1 of the wavelength conversion member and the 90% absorption optical path length is shown in the following Table 1 and the graph of FIG.

Figure 2015149217
Figure 2015149217

波長変換部材20における励起光光路は、当該波長変換部材20の複数の面において反射される複数の反射点を有する構成とすることができる。このような構成を有することによって、小さな波長変換部材20においても長い励起光光路を確保することができる。   The excitation light optical path in the wavelength conversion member 20 may have a plurality of reflection points that are reflected on a plurality of surfaces of the wavelength conversion member 20. By having such a configuration, a long excitation light optical path can be secured even in the small wavelength conversion member 20.

波長変換部材20の厚みは、例えば、0.1〜2.0mmである。   The thickness of the wavelength conversion member 20 is, for example, 0.1 to 2.0 mm.

蛍光反射体24および光反射体25は、それぞれ、波長変換部材20の面上に形成されたAgなどの高い反射率を有する金属膜や誘電体多層膜であってもよく、また、波長変換部材20とは別個の部材として形成されたものが配置されていてもよい。   Each of the fluorescent reflector 24 and the light reflector 25 may be a metal film or a dielectric multilayer film having a high reflectivity such as Ag formed on the surface of the wavelength conversion member 20, and the wavelength conversion member. What was formed as a member separate from 20 may be arranged.

この蛍光光源装置には、波長変換部材20と基台21との間の熱抵抗を低く抑制する観点から、光反射体25と基台21とが半田または熱伝導シート或いは伝導グリスなどからなる接合層28を介して接合されていることが好ましい。   In this fluorescent light source device, from the viewpoint of suppressing the thermal resistance between the wavelength conversion member 20 and the base 21 low, the light reflector 25 and the base 21 are joined by solder, a heat conductive sheet, conductive grease, or the like. It is preferable to be bonded through the layer 28.

この第1の実施の形態に係る蛍光光源装置の寸法例の一例を具体的に示すと、基台21の横幅(図1の左右方向)が10mm、縦幅(図1の上下方向)が8mm、厚みが0.8mm、波長変換部材20の横幅(図1の左右方向)が6mm、縦幅(図1の上下方向)が6mm、開口部24Hの横幅(図1の左右方向)が3mm、縦幅(図1の上下方向)が2mm、励起光の入射面である斜面20Aの角度が波長変換部材20の表面に対して60°、基台21の表面から波長変換部材20の表面までの合計の厚みが1.2mmである。   Specifically, one example of the dimension example of the fluorescent light source device according to the first embodiment is 10 mm in the horizontal width (left-right direction in FIG. 1) and 8 mm in the vertical width (vertical direction in FIG. 1). The thickness is 0.8 mm, the horizontal width of the wavelength conversion member 20 (the horizontal direction in FIG. 1) is 6 mm, the vertical width (the vertical direction in FIG. 1) is 6 mm, and the horizontal width of the opening 24H (the horizontal direction in FIG. 1) is 3 mm. The vertical width (vertical direction in FIG. 1) is 2 mm, the angle of the inclined surface 20A that is the incident surface of the excitation light is 60 ° with respect to the surface of the wavelength conversion member 20, and from the surface of the base 21 to the surface of the wavelength conversion member 20 The total thickness is 1.2 mm.

上記の蛍光光源装置においては、励起光源から出射された励起光L1は、波長変換部材20の励起光の入射面である斜面20Aに対して略垂直に照射される。そして、波長変換部材20に入射された励起光L1は、当該波長変換部材20中をその表面と裏面によって反射されながら進行し、その励起光光路において蛍光体によって徐々に吸収され、当該蛍光体が励起されることによって蛍光L2が放射される。この蛍光L2は、開口部24Hから蛍光光源装置の外部に出射される。   In the fluorescent light source device described above, the excitation light L1 emitted from the excitation light source is irradiated substantially perpendicularly to the inclined surface 20A that is the incident surface of the wavelength conversion member 20 on which the excitation light is incident. Then, the excitation light L1 incident on the wavelength conversion member 20 travels while being reflected by the front and back surfaces of the wavelength conversion member 20, and is gradually absorbed by the phosphor in the excitation light optical path. The fluorescence L2 is emitted by being excited. The fluorescence L2 is emitted from the opening 24H to the outside of the fluorescence light source device.

このような蛍光光源装置は、波長変換部材20として励起光L1の吸収係数が低いものが用いられているので、励起光L1の吸収が長い励起光光路にわたって徐々に行われる。すなわち、励起光L1の吸収が当該波長変換部材20の局所的ではなく分散的に行われるので、熱の発生箇所も波長変換部材20の全体に分散させることができる。従って、当該波長変換部材20の広い領域を排熱に寄与させることができるために排熱効率が高いものとなり、この波長変換部材20を構成する蛍光体の一部のみが過熱されることが抑制されて蛍光体の温度消光が生じることが抑制され、その結果、高い発光効率が得られる。   In such a fluorescent light source device, the wavelength conversion member 20 having a low absorption coefficient of the excitation light L1 is used, so that the absorption of the excitation light L1 is gradually performed over a long excitation light optical path. That is, since the excitation light L1 is absorbed not locally but on the wavelength conversion member 20, the location where heat is generated can be dispersed throughout the wavelength conversion member 20. Therefore, since the wide area | region of the said wavelength conversion member 20 can be contributed to exhaust heat, it becomes a thing with high heat exhaust efficiency, and it is suppressed that only a part of fluorescent substance which comprises this wavelength conversion member 20 is overheated. Thus, the occurrence of temperature quenching of the phosphor is suppressed, and as a result, high luminous efficiency can be obtained.

<第2の実施の形態>
本発明の第2の実施の形態に係る蛍光光源装置は、波長変換部材の形状が平面視において略長方形であって、その1つの角部が切り欠けた状態の五角形の板状のものである。すなわち、図4に示されるように、波長変換部材30が、長手方向に伸びる互いに平行な2つの長面30A,30Bと、これらに垂直であって互いに平行な2つの短面30C,30Dと、これらの面のうち互いに垂直な長面30Aと短面30Cとに連続する斜面30Eとからなる側周面を有する板状のものである。そして、斜面30Eが励起光の入射面として機能すると共に、当該斜面30Eと隣接しない短面30Dが光出射面として機能する。
波長変換部材30の側周面を構成する短面30Cおよび斜面30Eには、蛍光を波長変換部材30に向かって反射する蛍光反射体34が設けられている。
励起光源10としては青色LDが用いられ、励起光源10と波長変換部材30との間には、当該励起光源10からの励起光L3を斜面30Eに略垂直に平行光として入射させるコリメートレンズ15が設けられている。
上記の構成以外は第1の実施の形態に係る蛍光光源装置と同様の構成を有する。
<Second Embodiment>
The fluorescent light source device according to the second embodiment of the present invention has a pentagonal plate shape in which the wavelength conversion member has a substantially rectangular shape in plan view, and one corner of the wavelength conversion member is notched. . That is, as shown in FIG. 4, the wavelength conversion member 30 includes two long surfaces 30A and 30B that are parallel to each other extending in the longitudinal direction, and two short surfaces 30C and 30D that are perpendicular to these and parallel to each other. Of these surfaces, a plate-like one having a side peripheral surface composed of an inclined surface 30E continuous with a long surface 30A and a short surface 30C perpendicular to each other. The inclined surface 30E functions as an excitation light incident surface, and the short surface 30D not adjacent to the inclined surface 30E functions as a light emitting surface.
A fluorescent reflector 34 that reflects fluorescence toward the wavelength conversion member 30 is provided on the short surface 30 </ b> C and the inclined surface 30 </ b> E constituting the side peripheral surface of the wavelength conversion member 30.
A blue LD is used as the excitation light source 10, and between the excitation light source 10 and the wavelength conversion member 30, a collimating lens 15 that makes the excitation light L3 from the excitation light source 10 enter the inclined surface 30E as parallel light substantially perpendicularly. Is provided.
Except for the above configuration, the fluorescent light source device according to the first embodiment has the same configuration.

この第2の実施の形態に係る蛍光光源装置の寸法例の一例を具体的に示すと、波長変換部材30の長手方向の長さ(図4の左右方向の長さ)が6mm、幅方向の長さ(図4の上下方向の長さ)が3mm、厚みが2mm、励起光の入射面である斜面30Eの角度が長面30Aに対して45°である。   Specifically, one example of the dimension example of the fluorescent light source device according to the second embodiment will be described. The length of the wavelength conversion member 30 in the longitudinal direction (the length in the left-right direction in FIG. 4) is 6 mm, The length (length in the vertical direction in FIG. 4) is 3 mm, the thickness is 2 mm, and the angle of the inclined surface 30E that is the incident surface of the excitation light is 45 ° with respect to the long surface 30A.

このような第2の実施の形態に係る蛍光光源装置においては、波長変換部材30の長手方向における一端側に配置されている励起光の入射面である斜面30Eに対して略垂直に、かつ、斜面30Eと隣接しない長面30Bに対して臨界角より大きな角度θで入射されるよう、励起光L3が照射される。そして、波長変換部材30に入射された励起光L3は、当該波長変換部材30中をその側周面の長面30A,30B並びに必要に応じて短面30Dによって全反射されながら進行し、その励起光光路において蛍光体によって徐々に吸収され、当該蛍光体が励起されることによって蛍光L4が放射される。この蛍光L4は、波長変換部材30の長手方向における他端側に配置されている短面30Dから蛍光光源装置の外部に出射される。   In such a fluorescent light source device according to the second embodiment, substantially perpendicular to the inclined surface 30E that is the incident surface of the excitation light disposed on one end side in the longitudinal direction of the wavelength conversion member 30, and The excitation light L3 is irradiated so that the long surface 30B not adjacent to the inclined surface 30E is incident at an angle θ larger than the critical angle. Then, the excitation light L3 incident on the wavelength conversion member 30 travels through the wavelength conversion member 30 while being totally reflected by the long surfaces 30A and 30B on the side peripheral surface and, if necessary, the short surface 30D. The light is gradually absorbed by the phosphor in the optical path, and the phosphor L4 is emitted when the phosphor is excited. The fluorescence L4 is emitted to the outside of the fluorescence light source device from the short surface 30D disposed on the other end side in the longitudinal direction of the wavelength conversion member 30.

このような第2の実施の形態に係る蛍光光源装置によれば、上記の第1の実施の形態に係る蛍光光源装置と同様の効果を得ることができる。   According to such a fluorescent light source device according to the second embodiment, the same effect as that of the fluorescent light source device according to the first embodiment can be obtained.

<第3の実施の形態>
本発明の第3の実施の形態に係る蛍光光源装置は、波長変換部材の形状が平面視において長方形である板状のものである。すなわち、図5に示されるように、波長変換部材40が、長手方向に伸びる互いに平行な2つの長面40A,40Bと、これらに垂直であって互いに平行な2つの短面40C,40Dとからなる側周面を有する板状のものである。
この蛍光光源装置においては、波長変換部材40の側周面において、励起光の入射面として機能させる長面40Aの長手方向の一端部を構成する特定領域40αを除く全面および長面40Bの全面に、蛍光および励起光を波長変換部材40に向かって反射する光反射体45が設けられている。また、励起光の入射面として機能させる特定領域40αに隣接する短面40Cの全面に、蛍光を波長変換部材40に向かって反射する蛍光反射体44が設けられている。
そして、長面40Aの特定領域40αが励起光の入射面として機能すると共に、当該特定領域40αと隣接しない短面40Dが光出射面として機能する。
上記の構成以外は第2の実施の形態に係る蛍光光源装置と同様の構成を有する。
<Third Embodiment>
The fluorescent light source device according to the third embodiment of the present invention is a plate-like one in which the shape of the wavelength conversion member is rectangular in plan view. That is, as shown in FIG. 5, the wavelength conversion member 40 is composed of two long surfaces 40A and 40B extending in the longitudinal direction and parallel to each other, and two short surfaces 40C and 40D perpendicular to these and parallel to each other. It is a plate-shaped thing which has a surrounding side surface.
In this fluorescent light source device, on the side peripheral surface of the wavelength conversion member 40, the entire surface excluding the specific region 40α constituting one end portion in the longitudinal direction of the long surface 40A that functions as the incident surface of the excitation light and the entire long surface 40B. A light reflector 45 that reflects fluorescence and excitation light toward the wavelength conversion member 40 is provided. In addition, a fluorescent reflector 44 that reflects fluorescence toward the wavelength conversion member 40 is provided on the entire short surface 40C adjacent to the specific region 40α that functions as the incident surface of the excitation light.
The specific area 40α of the long surface 40A functions as an excitation light incident surface, and the short surface 40D not adjacent to the specific region 40α functions as a light emission surface.
Except for the above configuration, the fluorescent light source device according to the second embodiment has the same configuration.

この第3の実施の形態に係る蛍光光源装置の寸法例の一例を具体的に示すと、波長変換部材40の長手方向の長さ(図5の左右方向の長さ)が9mm、幅方向の長さ(図5の上下方向の長さ)が3mm、厚みが2mmである。   Specifically, an example of a dimension example of the fluorescent light source device according to the third embodiment is described. The length of the wavelength conversion member 40 in the longitudinal direction (the length in the left-right direction in FIG. 5) is 9 mm, The length (vertical length in FIG. 5) is 3 mm, and the thickness is 2 mm.

このような第3の実施の形態に係る蛍光光源装置においては、波長変換部材40の長手方向における一端側に配置されている励起光の入射面である特定領域40αに対して略垂直に任意の角度で励起光L5が照射される。そして、波長変換部材40に入射された励起光L5は、当該波長変換部材40中をその側周面の長面40A,40Bに設けられた光反射体45によって反射されながら短面40Dに向かって進行し、その励起光光路において蛍光体によって徐々に吸収され、当該蛍光体が励起されることによって蛍光L6が放射される。この蛍光L6は、波長変換部材40の長手方向における他端側に配置されている短面40Dから蛍光光源装置の外部に出射される。蛍光L6のうち光出射面である短面40Dと反対方向に向かって放射された蛍光は、当該短面40Dと対向する短面40Cに設けられた蛍光反射体44によって反射されることによって、短面40Dから出射される。   In such a fluorescent light source device according to the third embodiment, the wavelength conversion member 40 is arbitrarily set to be approximately perpendicular to the specific region 40α that is the incident surface of the excitation light disposed on one end side in the longitudinal direction. The excitation light L5 is irradiated at an angle. Then, the excitation light L5 incident on the wavelength conversion member 40 is directed toward the short surface 40D while being reflected by the light reflector 45 provided on the long surfaces 40A and 40B on the side peripheral surfaces in the wavelength conversion member 40. It proceeds and is gradually absorbed by the phosphor in the excitation light path, and the phosphor is excited to emit fluorescence L6. The fluorescence L6 is emitted to the outside of the fluorescence light source device from the short surface 40D disposed on the other end side in the longitudinal direction of the wavelength conversion member 40. The fluorescence emitted in the direction opposite to the short surface 40D, which is the light emitting surface, of the fluorescent light L6 is reflected by the fluorescent reflector 44 provided on the short surface 40C facing the short surface 40D, so that the short surface 40D is short. The light is emitted from the surface 40D.

このような第3の実施の形態に係る蛍光光源装置によれば、上記の第1の実施の形態に係る蛍光光源装置と同様の効果を得ることができる。
さらに、励起光L5の入射角度、光反射体45の反射率、波長変換部材40の寸法などを調整することによって、波長変換部材40の励起光L5の吸収係数が極めて小さい場合にも90%吸収光路長を確実に長くすることができるので、高い設計の自由度が得られる。
According to the fluorescent light source device according to the third embodiment as described above, the same effects as those of the fluorescent light source device according to the first embodiment can be obtained.
Further, by adjusting the incident angle of the excitation light L5, the reflectance of the light reflector 45, the dimensions of the wavelength conversion member 40, etc., 90% absorption is achieved even when the absorption coefficient of the excitation light L5 of the wavelength conversion member 40 is extremely small. Since the optical path length can be reliably increased, a high degree of freedom in design can be obtained.

<第4の実施の形態>
本発明の第4の実施の形態に係る蛍光光源装置は、波長変換部材が四角錐台状かつ略板状のものである。すなわち、図6および図7に示されるように、波長変換部材50が、光出射面として機能する四角形の底面50Dと、これに対向し、当該底面50Dよりも小さい四角形の頂面50Cと、これらの間に形成される4つの斜面50A,50B,50E,50Fとよりなる。4つの斜面50A,50B,50E,50Fは、少なくともその1つが、底面50Dの法線に対して底面50Dに近接するほど離間するよう傾斜している。
そして、4つの斜面50A,50B,50E,50Fのうち、互いに対向する2つの斜面50E,50Fの面積が、互いに対向する2つの斜面50A,50Bよりも大きいものとされており、全体として波長変換部材50が厚みの不均一な略板状とされている。さらに、面積の大きい2つの斜面50E,50Fのうちの一方の斜面50Fが基台21への設置面とされている。
この蛍光光源装置においては、波長変換部材50における、光出射面として機能する底面50Dを除く全面に、蛍光を波長変換部材50に向かって反射する蛍光反射体54が設けられている。また、波長変換部材50の側周面である斜面50A,50Bおよび頂面50C並びに底面50Dにおいて、斜面50Aの頂面50Cに隣接した一端部を構成する特定領域50αを除く全面に、励起光を波長変換部材50に向かって反射する光反射体55が設けられている。
そして、斜面50Aの特定領域50αが励起光の入射面として機能すると共に、当該特定領域50αと隣接しない底面50Dが光出射面として機能する。
上記の構成以外は第3の実施の形態に係る蛍光光源装置と同様の構成を有する。
<Fourth embodiment>
In the fluorescent light source device according to the fourth embodiment of the present invention, the wavelength conversion member has a quadrangular frustum shape and a substantially plate shape. That is, as shown in FIGS. 6 and 7, the wavelength conversion member 50 includes a rectangular bottom surface 50D that functions as a light emitting surface, a rectangular top surface 50C that is opposed to the bottom surface 50C and that is smaller than the bottom surface 50D, and these It consists of four slopes 50A, 50B, 50E, 50F formed between the two. The four inclined surfaces 50A, 50B, 50E, and 50F are inclined so that at least one of them is separated from the normal line of the bottom surface 50D so as to be closer to the bottom surface 50D.
Of the four slopes 50A, 50B, 50E, and 50F, the areas of the two slopes 50E and 50F that face each other are larger than the two slopes 50A and 50B that face each other. The member 50 has a substantially plate shape with non-uniform thickness. Further, one of the two slopes 50E and 50F having a large area is the installation surface on the base 21.
In this fluorescent light source device, a fluorescent reflector 54 that reflects fluorescence toward the wavelength conversion member 50 is provided on the entire surface of the wavelength conversion member 50 except the bottom surface 50D that functions as a light emission surface. In addition, excitation light is applied to the entire surface of the slopes 50A and 50B, the top face 50C, and the bottom face 50D, which are side circumferential surfaces of the wavelength conversion member 50, except for the specific region 50α that constitutes one end adjacent to the top face 50C of the slope 50A. A light reflector 55 that reflects toward the wavelength conversion member 50 is provided.
The specific area 50α of the inclined surface 50A functions as an incident surface for excitation light, and the bottom surface 50D not adjacent to the specific area 50α functions as a light emission surface.
Except for the above configuration, the fluorescent light source device according to the third embodiment has the same configuration.

この第4の実施の形態に係る蛍光光源装置の寸法例の一例を具体的に示すと、基台21の横幅(図6の左右方向)が12mm、縦幅(図6の上下方向)が7mm、厚みが0.8mm、波長変換部材50の頂面50Cと底面50Dとの距離(図6の左右方向の長さ)が8mm、頂面50Cの幅方向の長さ(図6の上下方向の長さ)が2mm、底面50Dの幅方向の長さ(図6の上下方向の長さ)が3mm、頂面50Cにおける基台21に垂直方向の厚み(図6の紙面に垂直な長さ)が1.5mm、底面50Dにおける基台21に垂直方向の厚み(図6の紙面に垂直な長さ)が2mm、斜面50Aの特定領域50αの幅(図6の左右方向の長さ)が2mmである。   Specifically, an example of dimensions of the fluorescent light source device according to the fourth embodiment is shown. The width of the base 21 (the horizontal direction in FIG. 6) is 12 mm, and the vertical width (the vertical direction in FIG. 6) is 7 mm. The thickness is 0.8 mm, the distance between the top surface 50C and the bottom surface 50D of the wavelength conversion member 50 (the length in the left-right direction in FIG. 6) is 8 mm, and the length in the width direction of the top surface 50C (the vertical direction in FIG. 6). The length in the width direction of the bottom surface 50D (length in the vertical direction in FIG. 6) is 3 mm, and the thickness in the direction perpendicular to the base 21 on the top surface 50C (the length perpendicular to the paper surface in FIG. 6). 1.5 mm, the thickness of the bottom surface 50D in the direction perpendicular to the base 21 (length perpendicular to the paper surface of FIG. 6) is 2 mm, and the width of the specific region 50α of the slope 50A (length in the left-right direction in FIG. 6) is 2 mm. It is.

このような第4の実施の形態に係る蛍光光源装置においては、波長変換部材50の一端部の特定領域50αに対して略垂直に任意の角度で励起光L7が照射される。そして、波長変換部材50に入射された励起光L7は、当該波長変換部材50中を互いに対向する斜面50A,50Bに設けられた光反射体55によって反射されながら底面50Dに向かって進行し、その励起光光路において蛍光体によって徐々に吸収され、当該蛍光体が励起されることによって蛍光が放射される。この蛍光は、波長変換部材50の底面50Dから蛍光光源装置の外部に出射される。また、蛍光のうち光出射面である底面50Dと異なる方向に向かって放射された蛍光は、当該底面50Dを除く全面に設けられた蛍光反射体54によって反射されることによって、底面50Dから出射される。   In such a fluorescent light source device according to the fourth embodiment, the excitation light L7 is irradiated at an arbitrary angle substantially perpendicular to the specific region 50α at one end of the wavelength conversion member 50. Then, the excitation light L7 incident on the wavelength conversion member 50 travels toward the bottom surface 50D while being reflected by the light reflector 55 provided on the inclined surfaces 50A and 50B facing each other in the wavelength conversion member 50, The light is gradually absorbed by the phosphor in the excitation light path, and the phosphor is excited to emit fluorescence. This fluorescence is emitted from the bottom surface 50D of the wavelength conversion member 50 to the outside of the fluorescence light source device. In addition, the fluorescence emitted in the direction different from the bottom surface 50D that is the light emitting surface of the fluorescence is emitted from the bottom surface 50D by being reflected by the fluorescent reflector 54 provided on the entire surface except the bottom surface 50D. The

このような第4の実施の形態に係る蛍光光源装置によれば、上記の第3の実施の形態に係る蛍光光源装置と同様の効果を得ることができる。
さらに、互いに対向する斜面50A,50Bおよび/または斜面50E,50Fが互いに平行ではないために得られた蛍光が反射を繰り返して波長変換部材50内に閉じ込められることが抑制され、その結果、蛍光の取り出し効率を高いものとすることができる。
According to such a fluorescent light source device according to the fourth embodiment, the same effects as those of the fluorescent light source device according to the third embodiment can be obtained.
Further, since the inclined surfaces 50A and 50B and / or the inclined surfaces 50E and 50F facing each other are not parallel to each other, it is possible to prevent the obtained fluorescence from being repeatedly reflected and confined in the wavelength conversion member 50. The extraction efficiency can be increased.

以上、本発明の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、例えば、コリメートレンズ15の後にシリンドリカル状のレンズを追加し、薄い蛍光体に励起光を集光して入射してもよいし、励起光の入射面を光出射面と対向する面に設けるなど、種々の変更を加えることが可能である。   The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment. For example, a cylindrical lens is added after the collimating lens 15 and excitation light is applied to a thin phosphor. It is possible to make various changes such as providing the incident surface of the excitation light on the surface facing the light emitting surface.

<実施例1>
図1に示される形状の蛍光光源装置を作製した。この蛍光光源装置を装置〔1〕とする。具体的には以下の通りである。
・励起光源;青色LD(ピーク波長450nm)
・基台;横幅:10mm、縦幅:8mm、厚み:0.8mm
・蛍光体;YAG(Ce:0.005mol%)
・波長変換部材;横幅:6mm、縦幅:6mm、開口部の横幅:3mm、縦幅:2mm、励起光の入射面である斜面の波長変換部材の表面に対する角度:60°、基台の表面から波長変換部材の表面までの合計の厚み:1.2mm
・波長変換部材の励起光の吸収係数;0.3mm[mm-1
・90%吸収光路長:7.7mm
<Example 1>
A fluorescent light source device having the shape shown in FIG. 1 was produced. This fluorescent light source device is referred to as device [1]. Specifically, it is as follows.
Excitation light source: Blue LD (peak wavelength 450 nm)
・ Base: Width: 10mm, Length: 8mm, Thickness: 0.8mm
-Phosphor: YAG (Ce: 0.005 mol%)
・ Wavelength conversion member: Width: 6 mm, Length: 6 mm, Width of opening: 3 mm, Length: 2 mm, Angle of slope of excitation light incident surface to wavelength conversion member surface: 60 °, surface of base Total thickness from the surface of the wavelength conversion member to 1.2 mm:
-Absorption coefficient of excitation light of wavelength conversion member; 0.3 mm [mm -1 ]
・ 90% absorption optical path length: 7.7mm

<実施例2>
図4に示される形状の蛍光光源装置を作製した。この蛍光光源装置を装置〔2〕とする。具体的には以下の通りである。
・励起光源;青色LD(ピーク波長450nm)
・基台;横幅:8mm、縦幅:7mm、厚み:0.8mm
・蛍光体;YAG(Ce:0.005mol%)
・波長変換部材;長手方向の長さ:6mm、幅方向の長さ:3mm、厚み:2mm、励起光の入射面である斜面の長面に対する角度:45°
・波長変換部材の励起光の吸収係数;0.3mm[mm-1
・90%吸収光路長:7.7mm
<Example 2>
A fluorescent light source device having the shape shown in FIG. 4 was produced. This fluorescent light source device is referred to as device [2]. Specifically, it is as follows.
Excitation light source: Blue LD (peak wavelength 450 nm)
・ Base: Width: 8mm, Length: 7mm, Thickness: 0.8mm
-Phosphor: YAG (Ce: 0.005 mol%)
Wavelength conversion member: length in the longitudinal direction: 6 mm, length in the width direction: 3 mm, thickness: 2 mm, angle with respect to the long surface of the inclined surface that is the incident surface of the excitation light: 45 °
-Absorption coefficient of excitation light of wavelength conversion member; 0.3 mm [mm -1 ]
・ 90% absorption optical path length: 7.7mm

<実施例3>
図5に示される形状の蛍光光源装置を作製した。この蛍光光源装置を装置〔3〕とする。具体的には以下の通りである。
・励起光源;青色LD(ピーク波長440nm)
・基台;横幅:12mm、縦幅:7mm、厚み:0.8mm
・蛍光体;YAG(Pr:0.6mol%)
・波長変換部材;長手方向の長さ:9mm、幅方向の長さ:3mm、厚み:2mm
・波長変換部材の励起光の吸収係数;0.1mm[mm-1
・90%吸収光路長:23mm
<Example 3>
A fluorescent light source device having the shape shown in FIG. 5 was produced. This fluorescent light source device is referred to as device [3]. Specifically, it is as follows.
Excitation light source: Blue LD (peak wavelength: 440 nm)
・ Base: Width: 12mm, Length: 7mm, Thickness: 0.8mm
-Phosphor: YAG (Pr: 0.6 mol%)
-Wavelength conversion member: length in the longitudinal direction: 9 mm, length in the width direction: 3 mm, thickness: 2 mm
-Absorption coefficient of excitation light of wavelength conversion member; 0.1 mm [mm -1 ]
・ 90% absorption optical path length: 23mm

<実施例4>
図6に示される形状の蛍光光源装置を作製した。この蛍光光源装置を装置〔4〕とする。具体的には以下の通りである。
・励起光源;青色LD(ピーク波長440nm)
・基台;横幅:12mm、縦幅:6mm、厚み:0.8mm
・蛍光体;YAG(Pr:0.6mol%)
・波長変換部材;頂面と底面との距離:9mm、頂面の幅方向の長さ:2mm、底面の幅方向の長さ:3mm、頂面における基台に垂直方向の厚み:1.5mm、底面における基台に垂直方向の厚み:2mm、特定領域の幅:2mm
・波長変換部材の励起光の吸収係数;0.1mm[mm-1
・90%吸収光路長:23mm
<Example 4>
A fluorescent light source device having the shape shown in FIG. 6 was produced. This fluorescent light source device is referred to as device [4]. Specifically, it is as follows.
Excitation light source: Blue LD (peak wavelength: 440 nm)
・ Base: Width: 12mm, Length: 6mm, Thickness: 0.8mm
-Phosphor: YAG (Pr: 0.6 mol%)
Wavelength conversion member: distance between top surface and bottom surface: 9 mm, length in the width direction of the top surface: 2 mm, length in the width direction of the bottom surface: 3 mm, thickness in the direction perpendicular to the base on the top surface: 1.5 mm , Thickness in the direction perpendicular to the base at the bottom: 2 mm, width of the specific area: 2 mm
-Absorption coefficient of excitation light of wavelength conversion member; 0.1 mm [mm -1 ]
・ 90% absorption optical path length: 23mm

上記の蛍光光源装置〔1〕〜〔4〕の相対蛍光強度を測定した。結果を表2に示す。なお、実施例2に係る蛍光光源装置〔2〕の蛍光強度を基準(1.0)として計算した。   The relative fluorescence intensity of the fluorescent light source devices [1] to [4] was measured. The results are shown in Table 2. The calculation was performed using the fluorescence intensity of the fluorescent light source device [2] according to Example 2 as the reference (1.0).

Figure 2015149217
Figure 2015149217

10 励起光源
15 コリメートレンズ
20 波長変換部材
20A 斜面
21 基台
24 蛍光反射体
24H 開口部
25 光反射体
28 接合層
30 波長変換部材
30A,30B 長面
30C,30D 短面
30E 斜面
34 蛍光反射体
40 波長変換部材
40A,40B 長面
40C,40D 短面
40α 特定領域
44 蛍光反射体
45 光反射体
50 波長変換部材
50A,50B,50E,50F 斜面
50C 頂面
50D 底面
50α 特定領域
54 蛍光反射体
55 光反射体
60 レーザ光源
61 コリメートレンズ
62 赤色光源
63A,63B,63C,64A,64B,64C 集光レンズ
64 蛍光ホイール
65 ダイクロイックミラー
66 導光装置入射レンズ
67 反射ミラー
68 導光装置
69 ホイールモーター
71 波長変換部材
72 窒化アルミ基板
73 熱膨張吸収層
74 放熱プレート
75 放熱用ヒートシンク


DESCRIPTION OF SYMBOLS 10 Excitation light source 15 Collimating lens 20 Wavelength conversion member 20A Slope 21 Base 24 Fluorescence reflector 24H Opening part 25 Light reflector 28 Bonding layer 30 Wavelength conversion members 30A, 30B Long surface 30C, 30D Short surface 30E Slope 34 Fluorescent reflector 40 Wavelength conversion member 40A, 40B Long surface 40C, 40D Short surface 40α Specific region 44 Fluorescent reflector 45 Light reflector 50 Wavelength conversion member 50A, 50B, 50E, 50F Slope 50C Top surface 50D Bottom surface 50α Specific region 54 Fluorescent reflector 55 Light Reflector 60 Laser light source 61 Collimate lens 62 Red light source 63A, 63B, 63C, 64A, 64B, 64C Condensing lens 64 Fluorescent wheel 65 Dichroic mirror 66 Light guide device incident lens 67 Reflective mirror 68 Light guide device 69 Wheel motor 71 Wavelength conversion Member 72 Aluminum nitride substrate 73 Expansion absorbing layer 74 heat dissipation plate 75 heat sink for radiating heat


Claims (5)

放熱用の基台と、当該基台の表面に沿って配置された、蛍光体による板状の波長変換部材と、当該波長変換部材に励起光を入射させる励起光源とからなる蛍光光源装置において、
前記波長変換部材を構成する蛍光体は、セラミックスよりなる母材中に発光物質が含有されてなるものであり、当該波長変換部材の励起光の吸収係数が1[mm-1]以下であり、
前記波長変換部材に入射された励起光は、当該波長変換部材中を進行しながら前記蛍光体によって吸収されることを特徴とする蛍光光源装置。
In a fluorescent light source device comprising a base for heat dissipation, a plate-like wavelength conversion member made of a phosphor, arranged along the surface of the base, and an excitation light source that makes excitation light incident on the wavelength conversion member,
The phosphor constituting the wavelength conversion member is a material in which a luminescent substance is contained in a base material made of ceramics, and the absorption coefficient of excitation light of the wavelength conversion member is 1 [mm −1 ] or less,
Excitation light incident on the wavelength conversion member is absorbed by the phosphor while traveling through the wavelength conversion member.
前記波長変換部材に入射される励起光が進行する光路において、当該励起光の90%が吸収されるまでの光路長が、7.7mm以上であることを特徴とする請求項1に記載の蛍光光源装置。   2. The fluorescence according to claim 1, wherein an optical path length until 90% of the excitation light is absorbed is 7.7 mm or more in an optical path in which the excitation light incident on the wavelength conversion member travels. Light source device. 前記波長変換部材における励起光の光路が、当該波長変換部材の複数の面において反射される複数の反射点を有することを特徴とする請求項2に記載の蛍光光源装置。   The fluorescent light source device according to claim 2, wherein the optical path of the excitation light in the wavelength conversion member has a plurality of reflection points reflected on a plurality of surfaces of the wavelength conversion member. 前記波長変換部材に含有される蛍光体が、PrまたはSmを含有するものであることを特徴とする請求項2に記載の蛍光光源装置。   The fluorescent light source device according to claim 2, wherein the phosphor contained in the wavelength conversion member contains Pr or Sm. 前記励起光源が青色LDであり、前記波長変換部材の側周面に励起光の入射面が設けられ、当該励起光源からの励起光がコリメートレンズを介して前記入射面に入射されることを特徴とする請求項2に記載の蛍光光源装置。

The excitation light source is a blue LD, an excitation light incident surface is provided on a side peripheral surface of the wavelength conversion member, and excitation light from the excitation light source is incident on the incident surface via a collimator lens. The fluorescent light source device according to claim 2.

JP2014022127A 2014-02-07 2014-02-07 fluorescent light source device Pending JP2015149217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014022127A JP2015149217A (en) 2014-02-07 2014-02-07 fluorescent light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014022127A JP2015149217A (en) 2014-02-07 2014-02-07 fluorescent light source device

Publications (1)

Publication Number Publication Date
JP2015149217A true JP2015149217A (en) 2015-08-20

Family

ID=53892432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022127A Pending JP2015149217A (en) 2014-02-07 2014-02-07 fluorescent light source device

Country Status (1)

Country Link
JP (1) JP2015149217A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779897A (en) * 2016-03-08 2018-11-09 松下知识产权经营株式会社 Light supply apparatus
WO2019111726A1 (en) * 2017-12-05 2019-06-13 シャープ株式会社 Phosphor layer composition, fluorescent member, light source, and projection device
WO2020008943A1 (en) * 2018-07-02 2020-01-09 ウシオ電機株式会社 Fluorescent light source device
JP2020013058A (en) * 2018-07-20 2020-01-23 セイコーエプソン株式会社 Light source device and projector
CN111413805A (en) * 2020-05-27 2020-07-14 史晓庆 Reflective laser lighting structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108779897A (en) * 2016-03-08 2018-11-09 松下知识产权经营株式会社 Light supply apparatus
WO2019111726A1 (en) * 2017-12-05 2019-06-13 シャープ株式会社 Phosphor layer composition, fluorescent member, light source, and projection device
WO2020008943A1 (en) * 2018-07-02 2020-01-09 ウシオ電機株式会社 Fluorescent light source device
JP2020013058A (en) * 2018-07-20 2020-01-23 セイコーエプソン株式会社 Light source device and projector
CN111413805A (en) * 2020-05-27 2020-07-14 史晓庆 Reflective laser lighting structure

Similar Documents

Publication Publication Date Title
JP6225812B2 (en) Light emitting device
JP6061130B2 (en) Light emitting device
US10544931B2 (en) Wavelength conversion member and light source device having wavelength conversion member
JP6785458B2 (en) Light source device
WO2014203484A1 (en) Wavelength conversion member, light source and vehicle headlamp
US20200271282A1 (en) Light-emitting element and illumination device
JP2015149217A (en) fluorescent light source device
JP2016058624A (en) Light-emitting device
JP2012185939A (en) Light-emitting device, illumination device, and vehicle headlight
JP7057486B2 (en) Light source device
JP2014137973A (en) Light source device
JP6597809B2 (en) Light source device
JP2016082014A (en) Light-emitting device
JP6862110B2 (en) Sintered body and light emitting device
JP2013187043A (en) Light source device and lighting device
JP6162537B2 (en) LIGHT SOURCE DEVICE, LIGHTING DEVICE, AND VEHICLE LIGHT
JP2016058619A (en) Light-emitting device
JP2017216362A (en) Light-emitting device
JP2015122447A (en) Light-emitting device and illumination device
JP2014186980A (en) Solid lighting device
JP7148291B2 (en) Optical wavelength converter
JP6380096B2 (en) Light emitting device
US20140254128A1 (en) Solid State Lighting Device
JP5781367B2 (en) Light source device and lighting device
JP5842041B2 (en) Light emitting device