JP2015147958A - High proportional limit high-strength cold-rolled thin steel sheet and production method thereof - Google Patents

High proportional limit high-strength cold-rolled thin steel sheet and production method thereof Download PDF

Info

Publication number
JP2015147958A
JP2015147958A JP2014020532A JP2014020532A JP2015147958A JP 2015147958 A JP2015147958 A JP 2015147958A JP 2014020532 A JP2014020532 A JP 2014020532A JP 2014020532 A JP2014020532 A JP 2014020532A JP 2015147958 A JP2015147958 A JP 2015147958A
Authority
JP
Japan
Prior art keywords
less
cold
rolled
steel sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014020532A
Other languages
Japanese (ja)
Other versions
JP6119627B2 (en
Inventor
太郎 木津
Taro Kizu
太郎 木津
力 上
Tsutomu Kami
力 上
悠祐 安福
Yusuke Yasufuku
悠祐 安福
山崎 伸次
Shinji Yamazaki
伸次 山崎
勝司 笠井
Katsuji Kasai
勝司 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014020532A priority Critical patent/JP6119627B2/en
Publication of JP2015147958A publication Critical patent/JP2015147958A/en
Application granted granted Critical
Publication of JP6119627B2 publication Critical patent/JP6119627B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high proportional limit high-strength cold-rolled thin steel sheet and a production method thereof.SOLUTION: The high proportional limit high-strength cold-rolled thin steel sheet has: a composition in which, in mass%, C: 0.04 to 0.25%, Si: 0.30% or less, Mn: 0.1 to 2.0%, Al: 0.10% or less, and N: 0.010% or less, are contained, and furthermore one or two selected from Ti: 0.01 to 1.00%, and V: 0.01 to 1.00%, are contained such that (12/48)×Ti+(12/51)×V≥0.04 and C≥0.9×((12/48)×Ti+(12/51)×V) are satisfied; and a structure in which the ferrite phase occupying 95% or more in an area ratio, is the main phase, the deposition of less than 10 nm is 5.0×10μmor more, and the dislocation density is 5.0×10mor more. Thereby, a high proportional limit cold-rolled thin steel sheet having tensile strength: 980 MPa or more and a proportional limit of 0.6TS or more is obtained.

Description

本発明は、高強度冷延薄鋼板に係り、とくに、自動車のピラーやサイドシル、メンバーなどの骨格部材とそれらの補強部材、自動車のドアインパクトビーム、さらには、自販機、デスク、家電・OA機器、建材等に使用される構造部材用として好適な、比例限の高い高強度冷延薄鋼板およびその製造方法に関する。   The present invention relates to a high-strength cold-rolled thin steel sheet, in particular, frame members such as automobile pillars and side sills, members and their reinforcing members, automobile door impact beams, and vending machines, desks, home appliances / OA devices, The present invention relates to a high-proportional high-strength cold-rolled thin steel sheet suitable for structural members used for building materials and the like, and a method for producing the same.

近年、地球環境の保全に対する関心の高まりを受けて、製造時に炭酸ガス(CO2)排出量が多い鋼板は、その使用量を削減したいという要望が強くなっている。さらに、自動車分野などでは、車体重量を軽減し、燃費を向上させるとともに排出ガス量の低減という要望が益々大きくなっている。
このような要望に対し、高強度鋼板を適用することにより鋼板の薄肉化を図り、自動車の車体重量を軽減する試みが進められている。とくに、構造用部材(部品)に高強度鋼板を適用すると、部材強度が高くなることにより、衝突吸収エネルギーを高めたり、塑性変形を抑制したりすることができるという利点がある反面、部材(部品)肉厚の薄肉化にともない剛性が低下するという問題がある。とくに比例限を超えて荷重が加わった場合に、部材(部品)のたわみが大きくなる。そこで、剛性の低下防止という観点から、鋼板の比例限を高めることは有効であるともいえる。
In recent years, in response to growing interest in the preservation of the global environment, there is a strong desire to reduce the amount of steel sheets that emit a large amount of carbon dioxide (CO 2 ) during production. Further, in the automobile field and the like, there is an increasing demand for reducing the weight of the vehicle body, improving fuel efficiency, and reducing the amount of exhaust gas.
In response to such demands, attempts are being made to reduce the weight of automobile bodies by reducing the thickness of the steel sheet by applying a high-strength steel sheet. In particular, when a high-strength steel plate is applied to a structural member (component), the strength of the member increases, so that there is an advantage that collision absorption energy can be increased or plastic deformation can be suppressed. ) There is a problem that rigidity decreases as the wall thickness decreases. In particular, when a load is applied exceeding the proportional limit, the deflection of the member (part) increases. Therefore, it can be said that it is effective to increase the proportional limit of the steel sheet from the viewpoint of preventing the decrease in rigidity.

比例限の高い鋼板としては、例えば、特許文献1には、質量%で、C:0.001〜0.20%、Si:1.5%以下、Mn:2.5%以下、P:0.010%以下、S:0.01%以下、酸可溶Al:0.001〜0.10%、N:0.015%以下を含む組成の鋼板を熱間圧延した後に酸洗し、冷延率:10〜80%で冷間圧延したのち、200〜600℃の範囲の温度に加熱する曲げ加工性に優れた高比例限鋼板の製造方法が記載されている。特許文献1に記載された技術では、特定組成範囲の鋼板に冷間圧延を施し、さらに再結晶温度以下の比較的低温域で焼鈍を施すと、転位の再配列と同時に固溶C、固溶Nの析出に伴う可動転位の固着を生じ、比例限の向上とともに曲げ加工性も同時に向上するとしている。   As a steel plate with a high proportional limit, for example, in Patent Document 1, in mass%, C: 0.001 to 0.20%, Si: 1.5% or less, Mn: 2.5% or less, P: 0.010% or less, S: 0.01% or less , Acid-soluble Al: 0.001 to 0.10%, N: Hot-rolled steel sheet with a composition containing 0.015% or less, pickled, cold-rolled at 10 to 80%, and then cold-rolled at 200 to 600 ° C The manufacturing method of the high proportionality limit steel plate excellent in the bending workability heated to the temperature of this range is described. In the technique described in Patent Document 1, when cold rolling is performed on a steel sheet having a specific composition range, and annealing is performed in a relatively low temperature region below the recrystallization temperature, solute C and solute are dissolved simultaneously with rearrangement of dislocations. Movable dislocations are fixed due to the precipitation of N, and the bending limit is improved at the same time as the proportional limit is improved.

また、特許文献2には、質量%で、C:0.01%超え0.05%以下を含有する熱延鋼板に、冷間圧延を施したのち、700℃〜Ac変態点の温度で20〜120s間保持する再結晶焼鈍と、さらに250〜500℃の温度域で1〜5min保持する過時効処理とを施す、成形性と張り剛性に優れた低炭素鋼板の製造方法が記載されている。特許文献2に記載された技術によれば、降伏強さ:120〜250N/mm2を有し、相当歪で2%の予歪を施し、150〜170℃で5〜20minの熱処理を施したのちに、再度引張試験を行った際の歪量:0.06%での応力歪曲線の傾きXとヤング率Yの比、X/Y(=A)が0.8超えを満たし、熱処理による降伏応力の上昇代が40N/mm2以上である成形性と張り剛性に優れた低炭素鋼板の製造方法が記載されている。特許文献2に記載された技術では、成形後の熱処理で侵入型固溶元素を可動転位の周囲に偏析させることを促進させることで、瞬間ヤング率の低下を抑制でき、張り剛性が改善できるとしている。 Patent Document 2 discloses that hot rolled steel sheets containing C: 0.01% and 0.05% or less by mass are cold-rolled, and then at a temperature of 700 ° C. to Ac 3 transformation point for 20 to 120 seconds. A method for producing a low-carbon steel sheet excellent in formability and tensile rigidity is described in which recrystallization annealing is performed and overaging treatment is further performed in a temperature range of 250 to 500 ° C. for 1 to 5 minutes. According to the technique described in Patent Document 2, the yield strength is 120 to 250 N / mm 2 , 2% pre-strain is applied at an equivalent strain, and heat treatment is performed at 150 to 170 ° C. for 5 to 20 minutes. Later, the amount of strain when the tensile test is performed again: The ratio of the slope X of the stress strain curve at 0.06% to the Young's modulus Y, X / Y (= A) exceeds 0.8, and the yield stress increases due to heat treatment A method for producing a low-carbon steel sheet excellent in formability and tensile rigidity having a cost of 40 N / mm 2 or more is described. According to the technique described in Patent Document 2, it is possible to suppress the decrease in instantaneous Young's modulus and improve the tension rigidity by promoting segregation of interstitial solid solution elements around movable dislocations by heat treatment after molding. Yes.

特開2010−138444号公報JP 2010-138444 A 特開2001−348644号公報JP 2001-348644

しかしながら、特許文献1、特許文献2に記載された技術では、固溶Cや固溶Nを活用して、比例限を高めているが、鋼中でのCやNの固溶量は限られているため、更なる高強度化には限界がある。
本発明は、上記した従来技術の問題を解決し、比例限の高い高強度冷延薄鋼板およびその製造方法を提供することを目的とする。
However, the techniques described in Patent Document 1 and Patent Document 2 use solid solution C or solid solution N to increase the proportional limit, but the amount of solid solution of C or N in steel is limited. Therefore, there is a limit to further strengthening.
An object of the present invention is to solve the above-described problems of the prior art and to provide a high-strength cold-rolled thin steel sheet having a high proportional limit and a method for manufacturing the same.

なお、ここでいう「高強度」とは、引張強さTS:980MPa以上である場合を、また、「薄鋼板」とは、2.0mm以下である場合を、「比例限の高い」とは、(比例限/引張強さ)が0.6以上である場合を、それぞれいうものとする。   Here, “high strength” refers to the case where the tensile strength TS is 980 MPa or more, and “thin steel plate” refers to the case where the thickness is 2.0 mm or less. The cases where (proportional limit / tensile strength) is 0.6 or more shall be referred to.

本発明者らは、上記した課題を解決するため、冷延鋼板における比例限に影響する各種要因について、鋭意研究した。その結果、10nm未満の微細な析出物により可動転位を固着でき、これにより、応力負荷時の塑性変形が抑制され、比例限が飛躍的に高くなることを見出した。具体的には、Tiおよび/またはVを含有し、10nm未満の微細な析出物を多量に析出させたうえ、転位密度を高めることにより、比例限の飛躍的上昇が可能である。   In order to solve the above-described problems, the present inventors diligently studied various factors that affect the proportional limit in the cold-rolled steel sheet. As a result, it has been found that movable dislocations can be fixed by fine precipitates of less than 10 nm, thereby suppressing plastic deformation during stress loading and dramatically increasing the proportional limit. Specifically, it is possible to dramatically increase the proportional limit by depositing a large amount of fine precipitates containing Ti and / or V and less than 10 nm and increasing the dislocation density.

比例限/TSと10nm未満の微細な析出物の析出密度との関係で図1に示す。図1は、転位密度が5.0×1014/m2以上の場合である。図1から、10nm未満の微細な析出物を5.0×104個/μm3以上、分散析出させることにより、比例限/TSが0.6以上となることがわかる。また、比例限/TSと転位密度との関係を図2に示す。図2は、微細な析出物が5.0×104個/μm3以上の場合である。図2から、転位密度を5.0×1014/m2以上とすることにより、比例限/TSが0.6以上となることがわかる。 FIG. 1 shows the relationship between the proportional limit / TS and the precipitation density of fine precipitates of less than 10 nm. FIG. 1 shows the case where the dislocation density is 5.0 × 10 14 / m 2 or more. FIG. 1 shows that the proportional limit / TS becomes 0.6 or more by dispersing and precipitating fine precipitates of less than 10 nm in an amount of 5.0 × 10 4 pieces / μm 3 or more. FIG. 2 shows the relationship between the proportional limit / TS and the dislocation density. FIG. 2 shows the case where the fine precipitates are 5.0 × 10 4 pieces / μm 3 or more. FIG. 2 shows that the proportional limit / TS is 0.6 or more when the dislocation density is 5.0 × 10 14 / m 2 or more.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)冷延薄鋼板であって、質量%で、C:0.04〜0.25%、Si:0.30%以下、Mn:0.1〜2.0%、P:0.05%以下、S:0.030%以下、Al:0.10%以下、N:0.010%以下を含み、さらに、Ti:0.01〜1.00%、V:0.01〜1.00%のうちから選ばれた1種または2種を含有し、かつ、C、Ti、Vを次(1)式および次(2)式
(12/48)×Ti+(12/51)×V≧0.04 ‥‥(1)
C ≧ 0.9×((12/48)×Ti+(12/51)×V) ‥‥(2)
(ここで、C、Ti、V:各元素の含有量(質量%))
を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成と、面積率で95%以上のフェライト相を主相とし、該主相と面積率で0〜5%の第二相とからなり、さらに、10nm未満の析出物の析出密度が5.0×104μm−3以上、転位密度が5.0×1014m−2以上である組織とを有し、引張強さ:980MPa以上で、比例限が高いことを特徴とする高強度冷延薄鋼板。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) Cold-rolled thin steel sheet in mass%, C: 0.04 to 0.25%, Si: 0.30% or less, Mn: 0.1 to 2.0%, P: 0.05% or less, S: 0.030% or less, Al: 0.10 %, N: 0.010% or less, Ti: 0.01 to 1.00%, V: 0.01 to 1.00% selected from one or two, and C, Ti, V Formula (1) and the following formula (2)
(12/48) × Ti + (12/51) × V ≧ 0.04 (1)
C ≧ 0.9 × ((12/48) × Ti + (12/51) × V) (2)
(Here, C, Ti, V: Content of each element (mass%))
And a composition comprising the balance Fe and unavoidable impurities, and a ferrite phase with an area ratio of 95% or more as a main phase, and the main phase and the second phase with an area ratio of 0 to 5% And a structure having a precipitate density of less than 10 nm of 5.0 × 10 4 μm −3 or more and a dislocation density of 5.0 × 10 14 m −2 or more, and a tensile strength of 980 MPa or more. A high-strength cold-rolled steel sheet characterized by a high proportional limit.

(2)(1)において、前記組成に加えてさらに質量%で、Nb:0.005〜0.600%、Mo:0.005〜0.600%、Ta:0.005〜0.600%、W:0.005〜0.600%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度冷延薄鋼板。
(3)(1)または(2)において、前記組成に加えてさらに質量%で、B:0.0002〜0.0050%を含有することを特徴とする高強度冷延薄鋼板。
(2) In (1), in addition to the above composition, it is further selected by mass% from Nb: 0.005-0.600%, Mo: 0.005-0.600%, Ta: 0.005-0.600%, W: 0.005-0.600% A high-strength cold-rolled thin steel sheet characterized by containing one or more kinds.
(3) The high-strength cold-rolled thin steel sheet according to (1) or (2), further containing B: 0.0002 to 0.0050% by mass% in addition to the above composition.

(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに質量%で、Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度冷延薄鋼板。
(5)(1)ないし(4)のいずれかにおいて、前記組成に加えてさらに質量%で、Sb:0.005〜0.050%含有することを特徴とする高強度冷延薄鋼板。
(4) In any one of (1) to (3), in addition to the above composition, it is further selected by mass: Cr: 0.01-1.0%, Ni: 0.01-1.0%, Cu: 0.01-1.0% A high-strength cold-rolled thin steel sheet characterized by containing one or more kinds.
(5) The high strength cold-rolled thin steel sheet according to any one of (1) to (4), further containing Sb: 0.005 to 0.050% by mass in addition to the above composition.

(6)(1)ないし(5)のいずれかにおいて、前記組成に加えてさらに質量%で、Ca:0.0005〜0.01%、REM:0.0005〜0.01%のうちから選ばれた1種または2種を含有することを特徴とする高強度冷延薄鋼板。
(7)(1)ないし(6)のいずれかに記載の高強度冷延薄鋼板が、連続焼鈍処理を施されてなる冷延焼鈍板であることを特徴とする高強度冷延薄鋼板。
(6) In any one of (1) to (5), one or two selected from Ca: 0.0005 to 0.01% and REM: 0.0005 to 0.01%, in addition to the above composition, in mass% A high-strength cold-rolled thin steel sheet characterized by containing.
(7) A high-strength cold-rolled thin steel sheet, wherein the high-strength cold-rolled thin steel sheet according to any one of (1) to (6) is a cold-rolled annealed sheet that has been subjected to a continuous annealing treatment.

(8)(1)ないし(7)のいずれかにおいて、鋼板表面にめっき層を形成してなることを特徴とする高強度冷延薄鋼板。
(9)鋼素材に、熱間圧延と、冷間圧延を施し、冷延薄鋼板とするにあたり、前記鋼素材を、質量%で、C:0.04〜0.25%、Si:0.30%以下、Mn:0.1〜2.0%、P:0.05%以下、S:0.030%以下、Al:0.10%以下、N:0.010%以下を含み、さらに、Ti:0.01〜1.00%、V:0.01〜1.00%のうちから選ばれた1種または2種を含有し、かつ、C、Ti、Vを次(1)式および次(2)式
(12/48)×Ti+(12/51)×V≧0.04 ‥‥(1)
C ≧ 0.9×((12/48)×Ti+(12/51)×V) ‥‥(2)
(ここで、C、Ti、V:各元素の含有量(質量%))
を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成のスラブとし、前記熱間圧延を、粗圧延と仕上圧延からなる圧延とし、該仕上圧延が仕上圧延終了温度:850℃以上とする圧延とし、該仕上圧延終了から700℃までの平均冷却速度で30℃/s以上の冷却速度で冷却し、巻取温度:500℃以上で巻き取り熱延板とし、前記冷間圧延を、前記熱延板に酸洗処理を施したのち、冷圧率:10〜80%で冷間圧延を施し冷延板とする圧延とすることを特徴とする引張強さ:980MPa以上で、比例限が高い高強度冷延薄鋼板の製造方法。
(8) The high-strength cold-rolled thin steel sheet according to any one of (1) to (7), wherein a plating layer is formed on the steel sheet surface.
(9) When hot rolling and cold rolling are performed on the steel material to form a cold-rolled thin steel sheet, the steel material is mass%, C: 0.04 to 0.25%, Si: 0.30% or less, Mn: 0.1 to 2.0%, P: 0.05% or less, S: 0.030% or less, Al: 0.10% or less, N: 0.010% or less, further selected from Ti: 0.01-1.00%, V: 0.01-1.00% 1 or 2 types, and C, Ti and V are represented by the following formulas (1) and (2)
(12/48) × Ti + (12/51) × V ≧ 0.04 (1)
C ≧ 0.9 × ((12/48) × Ti + (12/51) × V) (2)
(Here, C, Ti, V: Content of each element (mass%))
And a slab having a composition comprising the balance Fe and inevitable impurities, and the hot rolling is a rolling consisting of rough rolling and finish rolling, and the finish rolling finish finish rolling temperature is 850 ° C. The rolling is as described above, and is cooled at a cooling rate of 30 ° C./s or higher at an average cooling rate from the finish rolling to 700 ° C., and is taken up at a winding temperature of 500 ° C. or more. , After subjecting the hot-rolled sheet to pickling treatment, cold rolling at a cold pressure ratio of 10 to 80% to obtain a cold-rolled sheet, tensile strength: 980 MPa or more, A method for producing high-strength cold-rolled steel sheets with a high proportional limit.

(10)(9)において、前記冷延板に、さらに均熱温度:600〜800℃、均熱時間:300s以下である連続焼鈍処理を施し、冷延焼鈍板とすることを特徴とする高強度冷延薄鋼板の製造方法。
(11)(10)において、前記連続焼鈍処理の冷却途中で、浴温:420〜500℃の亜鉛めっき浴に浸漬し、鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理を施し、めっき鋼板とすることを特徴とする高強度冷延薄鋼板の製造方法。
(10) In (9), the cold-rolled sheet is further subjected to a continuous annealing treatment with a soaking temperature of 600 to 800 ° C. and a soaking time of 300 s or less to obtain a cold-rolled annealed sheet. A manufacturing method of high strength cold-rolled thin steel sheet.
(11) In (10), during the cooling of the continuous annealing treatment, the steel plate is immersed in a galvanizing bath having a bath temperature of 420 to 500 ° C. and subjected to a hot dip galvanizing treatment to form a hot dip galvanized layer on the surface of the steel plate. A method for producing a high-strength cold-rolled thin steel sheet, characterized by using a steel sheet.

(12)(11)において、前記溶融亜鉛めっき処理後に、さらにめっき層の合金化処理を施すことを特徴と高強度冷延薄鋼板の製造方法。   (12) The method for producing a high-strength cold-rolled thin steel sheet according to (11), wherein after the hot-dip galvanizing treatment, an alloying treatment of the plating layer is further performed.

本発明によれば、引張強さTS:980MPa以上の高強度を有し、比例限が0.6TS以上と高い、高強度冷延薄鋼板を安定して、しかも安価に製造でき、産業上格段の効果を奏する。本発明によれば、薄肉化に伴う剛性の低下を抑制できるという効果が期待できる。   According to the present invention, a high strength cold-rolled steel sheet having a tensile strength TS: 980 MPa or higher and a proportional limit as high as 0.6 TS or higher can be manufactured stably and at low cost, which is remarkably industrially superior. There is an effect. According to the present invention, it is possible to expect an effect that a decrease in rigidity due to thinning can be suppressed.

比例限/TSに及ぼす析出密度の影響を示すグラフである。It is a graph which shows the influence of the precipitation density which has on proportionality limit / TS. 比例限/TSに及ぼす転位密度の影響を示すグラフである。It is a graph which shows the influence of the dislocation density which acts on proportional limit / TS.

本発明高強度冷延薄鋼板は、質量%で、C:0.04〜0.25%、Si:0.30%以下、Mn:0.1〜2.0%、P:0.05%以下、S:0.030%以下、Al:0.10%以下、N:0.010%以下を含み、さらに、Ti:0.01〜1.00%、V:0.01〜1.00%のうちから選ばれた1種または2種を含有し、かつ、C、Ti、Vを次(1)式および次(2)式
(12/48)×Ti+(12/51)×V≧0.04 ‥‥(1)
C ≧ 0.9×((12/48)×Ti+(12/51)×V) ‥‥(2)
(ここで、C、Ti、V:各元素の含有量(質量%))
を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有する。
The high-strength cold-rolled thin steel sheet of the present invention is, in mass%, C: 0.04 to 0.25%, Si: 0.30% or less, Mn: 0.1 to 2.0%, P: 0.05% or less, S: 0.030% or less, Al: 0.10% Hereinafter, it contains N: 0.010% or less, and further contains one or two selected from Ti: 0.01-1.00%, V: 0.01-1.00%, and C, Ti, and V are the following ( 1) and next (2)
(12/48) × Ti + (12/51) × V ≧ 0.04 (1)
C ≧ 0.9 × ((12/48) × Ti + (12/51) × V) (2)
(Here, C, Ti, V: Content of each element (mass%))
And having a composition composed of the remaining Fe and unavoidable impurities.

まず、本発明高強度冷延薄鋼板の組成限定理由について説明する。以下、とくに断わらない限り、質量%は単に%で記す。
C:0.04〜0.25%
Cは、Ti、V等の炭化物形性元素と結合して微細な炭化物を形成し、高強度化に寄与する元素である。また、Cは、熱間圧延後の冷却において、フェライト変態開始温度を低下させる作用を有し、これにより、炭化物の析出温度を低下させ、炭化物の微細化に寄与する。形成された微細な炭化物は、可動転位を固着し、比例限の向上にも寄与する。このような効果を得るためには、0.04%以上の含有を必要とする。なお、好ましくは0.08%以上、より好ましくは0.15%以上である。一方、0.25%を超える多量の含有は、フェライト変態を抑制し、ベイナイトやマルテンサイトへの変態を促進する。このため、Ti、V等との微細な炭化物形成が抑制される。また、多量のC含有は、溶接性をも低下させる。このため、Cは0.25%以下に限定した。なお、好ましくは0.20%以下である。このようなことから、Cは0.04〜0.25%の範囲に限定した。
First, the reason for limiting the composition of the high-strength cold-rolled thin steel sheet of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.04-0.25%
C is an element that combines with carbide-type elements such as Ti and V to form fine carbides and contributes to high strength. C also has the effect of lowering the ferrite transformation start temperature in cooling after hot rolling, thereby lowering the precipitation temperature of carbides and contributing to the refinement of carbides. The formed fine carbides fix the movable dislocations and contribute to the improvement of the proportional limit. In order to obtain such an effect, a content of 0.04% or more is required. In addition, Preferably it is 0.08% or more, More preferably, it is 0.15% or more. On the other hand, a large content exceeding 0.25% suppresses ferrite transformation and promotes transformation to bainite and martensite. For this reason, fine carbide formation with Ti, V, etc. is controlled. Moreover, a large amount of C content also deteriorates weldability. For this reason, C was limited to 0.25% or less. In addition, Preferably it is 0.20% or less. For these reasons, C is limited to the range of 0.04 to 0.25%.

Si:0.30%以下
Siは、固溶して鋼板の強度を上昇する作用を有する。このような効果を得るためには不純物レベル以上である0.005%以上含有することが望ましい。また、Siは、フェライト生成元素であり、多量に含有すると、熱間圧延後の冷却においてフェライト変態を促進し、炭化物の析出温度を上昇させ、炭化物を粗大に析出させるという悪影響を及ぼす。さらに、Siを多量に含有すると、熱延後の焼鈍において、鋼板表面にSi酸化物が生成して、めっき処理時に不めっき部分が生じるなどめっき性が著しく阻害されるという悪影響を及ぼす。このような悪影響は、0.30%以下であれば許容できる。なお、好ましくは0.1%以下、より好ましくは0.05%以下、さらに好ましくは0.03%以下である。
Si: 0.30% or less
Si has a function of increasing the strength of the steel sheet by solid solution. In order to obtain such an effect, it is desirable to contain 0.005% or more which is higher than the impurity level. Further, Si is a ferrite-forming element, and when contained in a large amount, Si has an adverse effect of promoting ferrite transformation in cooling after hot rolling, increasing the precipitation temperature of carbides, and precipitating carbides coarsely. Furthermore, when Si is contained in a large amount, in the annealing after hot rolling, Si oxide is generated on the surface of the steel sheet, and an unplated portion is generated at the time of plating treatment. Such an adverse effect is acceptable if it is 0.30% or less. In addition, Preferably it is 0.1% or less, More preferably, it is 0.05% or less, More preferably, it is 0.03% or less.

Mn:0.1〜2.0%
Mnは、鋼中に固溶して鋼板の強度を増加させ、さらにSと結合して有害なSをMnSとして無害化する作用を有する元素である。また、Mnは、圧延後の冷却において、フェライト変態開始温度を低下させ、炭化物の析出温度を下げることにより、炭化物の微細化に寄与する作用を有する。このような効果を得るため、Mnは0.1%以上含有する必要がある。なお、好ましくは0.3%以上である。一方、2.0%を超える多量の含有は、フェライト変態を抑制し、ベイナイトやマルテンサイトへの変態を促進する。このため、Ti、V等との微細な炭化物形成が抑制される。このため、Mnは2.0%以下に限定した。なお、好ましくは1.5%以下、さらに好ましくは1.0%以下である。このようなことから、Mnは0.1〜2.0%の範囲に限定した。
Mn: 0.1-2.0%
Mn is an element having a function of increasing the strength of a steel sheet by dissolving in steel and further detoxifying harmful S as MnS by combining with S. In addition, Mn has an effect of contributing to refinement of carbide by lowering the ferrite transformation start temperature and lowering the precipitation temperature of carbide in cooling after rolling. In order to obtain such an effect, Mn needs to be contained by 0.1% or more. In addition, Preferably it is 0.3% or more. On the other hand, a large content exceeding 2.0% suppresses ferrite transformation and promotes transformation to bainite and martensite. For this reason, fine carbide formation with Ti, V, etc. is controlled. For this reason, Mn was limited to 2.0% or less. In addition, Preferably it is 1.5% or less, More preferably, it is 1.0% or less. For these reasons, Mn is limited to a range of 0.1 to 2.0%.

P:0.05%以下
Pは、粒界に偏析して、延性や靭性を劣化させ、鋼板特性に悪影響を及ぼす元素である。また、Pは、圧延後の冷却においてフェライト変態を促進し、炭化物の析出温度を上昇させ、フェライト粒を粗大化するとともに、炭化物を粗大に析出させる。また、Pは、溶接性を低下させる。このため、本発明ではできるだけ低減することが望ましいが、このような悪影響は、0.05%までは許容できる。このため、Pは0.05%以下に限定した。なお、好ましくは0.03%以下、さらに好ましくは0.01%以下である。
P: 0.05% or less
P is an element that segregates at the grain boundaries, deteriorates ductility and toughness, and adversely affects the steel sheet characteristics. P promotes ferrite transformation in cooling after rolling, raises the precipitation temperature of carbides, coarsens ferrite grains, and coarsely precipitates carbides. Moreover, P reduces weldability. For this reason, it is desirable to reduce as much as possible in the present invention, but such an adverse effect is acceptable up to 0.05%. For this reason, P was limited to 0.05% or less. In addition, Preferably it is 0.03% or less, More preferably, it is 0.01% or less.

S:0.030%以下
Sは、熱間における延性を著しく低下させ、熱間割れを誘発し、表面性状を著しく劣化させる元素である。さらに、Sは、強度にほとんど寄与しないばかりか、粗大な硫化物を形成することにより、延性、伸びフランジ性を低下させ、さらには溶接性を低下するなど、鋼板特性に悪影響を及ぼすため、極力低減することが望ましい。なお、このような悪影響はSが0.030%を超えると顕著となるため、Sは0.030%以下に限定した。なお、好ましくは0.010%以下、より好ましくは0.003%以下、さらに好ましくは0.001%以下である。
S: 0.030% or less
S is an element that significantly reduces hot ductility, induces hot cracking, and significantly deteriorates surface properties. Furthermore, S not only contributes to the strength, but also forms coarse sulfides, thereby reducing the ductility and stretch flangeability, and further reducing the weldability. It is desirable to reduce. In addition, since such a bad influence becomes remarkable when S exceeds 0.030%, S was limited to 0.030% or less. In addition, Preferably it is 0.010% or less, More preferably, it is 0.003% or less, More preferably, it is 0.001% or less.

Al:0.10%以下
Alは、脱酸剤として作用する元素であり、Alキルド鋼として、このような効果を得るために0.01%以上含有することが望ましい。また、Alは、圧延後の冷却でフェライト変態を促進する作用を有し、それにより、フェライト粒の粗大化や、炭化物の析出温度の上昇を介して炭化物を粗大に析出させるなどの悪影響を及ぼす。そのため、多量の含有は避ける必要がある。さらに0.10%を超える多量の含有は、鋼中でアルミ酸化物の増加を招き、清浄度の低下、延性の低下などの悪影響を招く。このようなことから、Alは0.10%以下に限定した。なお、好ましくは0.06%以下である。
Al: 0.10% or less
Al is an element that acts as a deoxidizer, and as Al killed steel, it is desirable to contain 0.01% or more in order to obtain such an effect. In addition, Al has the effect of promoting ferrite transformation by cooling after rolling, thereby adversely affecting the coarsening of ferrite grains and the coarse precipitation of carbides through the increase in carbide precipitation temperature. . Therefore, it is necessary to avoid containing a large amount. Further, a large content exceeding 0.10% leads to an increase in aluminum oxide in the steel, and adverse effects such as a decrease in cleanliness and a decrease in ductility. For these reasons, Al is limited to 0.10% or less. In addition, Preferably it is 0.06% or less.

N:0.010%以下
Nは、Ti、V 等と高温で粗大な窒化物を形成し、強度への寄与が少ないうえ、Ti、V等による高強度化への寄与を減少させる。さらに、Nの多量含有は、熱間圧延中にスラブ割れを誘起し、表面疵を発生させる恐れがある。このようなことから、Nはできるだけ低減することが望ましいが、0.010%までであれば許容できる。このため、Nは0.010%以下に限定した。なお、好ましくは0.005%以下、より好ましくは0.003%以下、さらに好ましくは0.002%以下である。
N: 0.010% or less
N forms coarse nitrides at high temperatures with Ti, V, etc., and contributes less to strength, while reducing contributions to higher strength due to Ti, V, etc. Furthermore, a large amount of N may induce slab cracking during hot rolling and generate surface defects. For these reasons, it is desirable to reduce N as much as possible, but it is acceptable up to 0.010%. For this reason, N was limited to 0.010% or less. In addition, Preferably it is 0.005% or less, More preferably, it is 0.003% or less, More preferably, it is 0.002% or less.

Ti:0.01〜1.00%、V:0.01〜1.00%のうちから選ばれた1種または2種
Ti、Vはいずれも、Cと結合して微細な炭化物を形成し、高強度化および比例限の上昇に寄与する元素であり、本発明ではTi、Vのうちのいずれかまたは両方を含有する。このような効果を得るためには、Ti:0.01%以上、V:0.01%以上を含有する必要がある。一方、Ti:1.00%、V:1.00%を超えて多量に含有しても、強度、比例限の上昇が飽和し、含有量に見合う効果を期待できなくなり、経済的に不利となる。このため、Ti:1.00%以下、V:1.00%以下に限定した。このようなことから、Ti:0.01〜1.00%、V:0.01〜1.00%の範囲に限定した。
One or two selected from Ti: 0.01-1.00%, V: 0.01-1.00%
Ti and V are elements that combine with C to form fine carbides and contribute to increasing strength and increasing the proportional limit. In the present invention, either Ti or V is contained. . In order to obtain such an effect, it is necessary to contain Ti: 0.01% or more and V: 0.01% or more. On the other hand, even if contained in a large amount exceeding Ti: 1.00%, V: 1.00%, the increase in strength and proportional limit is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it was limited to Ti: 1.00% or less and V: 1.00% or less. For these reasons, Ti is limited to the range of 0.01 to 1.00% and V: 0.01 to 1.00%.

C、Ti、Vは、上記した範囲内で、かつ次(1)式および次(2)式を満足するように調整して含有することとする。
(12/48)×Ti+(12/51)×V≧ 0.04 ‥‥(1)
C ≧ 0.9×((12/48)×Ti+(12/51)×V) ‥‥(2)
(ここで、C、Ti、V:各元素の含有量(質量%))
(1)式の左辺{(12/48)×Ti+(12/51)×V}は、Ti、V含有量を、原子比で、炭化物を形成する炭素量に換算した値、炭素量換算値である。この炭素量換算値が0.04未満では、Ti、V含有量が少なすぎて所望の高強度化、所望の比例限を確保できなくなる。このため、{(12/48)×Ti+(12/51)×V}は0.04以上に限定した。なお、好ましくは0.06以上、より好ましくは0.10以上である。一方、{(12/48)×Ti+(12/51)×V}が0.20を超えて大きくなると、強度、比例限の上昇がさほど大きくならず、含有量に見合う効果が期待できなくなる。このため、{(12/48)×Ti+(12/51)×V}は0.20以下とすることが好ましい。なお、より好ましくは0.15以下である。
C, Ti, and V are contained within the above range and adjusted so as to satisfy the following formulas (1) and (2).
(12/48) x Ti + (12/51) x V≥ 0.04 (1)
C ≧ 0.9 × ((12/48) × Ti + (12/51) × V) (2)
(Here, C, Ti, V: Content of each element (mass%))
The left side {(12/48) × Ti + (12/51) × V} of the formula (1) is a value obtained by converting the Ti and V contents into the amount of carbon that forms carbides in terms of atomic ratio, and the converted amount of carbon. It is. If this carbon amount conversion value is less than 0.04, the Ti and V contents are too small to ensure the desired high strength and the desired proportional limit. For this reason, {(12/48) × Ti + (12/51) × V} is limited to 0.04 or more. In addition, Preferably it is 0.06 or more, More preferably, it is 0.10 or more. On the other hand, when {(12/48) × Ti + (12/51) × V} exceeds 0.20, the increase in strength and proportional limit does not increase so much, and an effect commensurate with the content cannot be expected. For this reason, {(12/48) × Ti + (12/51) × V} is preferably 0.20 or less. In addition, More preferably, it is 0.15 or less.

さらに、Ti、Vの含有量が原子比でC含有量より多くなると、含有するTi、Vが炭化物として析出する割合が少なくなり、生成する析出物が粗大化し、所望の高強度、比例限を確保できなくなる。そのため、C含有量が、(2)式を満足するように、Ti、Vの炭素量換算値である{(12/48)×Ti+(12/51)×V}の0.9倍以上となるように、調整することとした。なお、好ましくは1.0倍以上、さらに好ましくは1.1倍以上である。   Furthermore, if the Ti and V contents are higher than the C content by atomic ratio, the proportion of Ti and V contained will precipitate as carbides, the resulting precipitates will become coarse, and the desired high strength and proportional limit will be achieved. It cannot be secured. Therefore, the C content is 0.9 times or more of {(12/48) × Ti + (12/51) × V}, which is the carbon amount converted value of Ti and V, so as to satisfy the formula (2). It was decided to adjust. In addition, Preferably it is 1.0 times or more, More preferably, it is 1.1 times or more.

このようなことから、C、Ti、Vの含有量を、上記した含有範囲内で、かつ(1)式および(2)式を満足するように調整することとした。
上記した成分が基本の成分であるが、本発明では、基本の組成に加えて選択元素として、さらに、Nb:0.005〜0.600%、Mo:0.005〜0.600%、Ta:0.005〜0.600%、W:0.005〜0.600%のうちから選ばれた1種または2種以上、および/または、B:0.0002〜0.0050%、および/または、Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%のうちから選ばれた1種または2種以上、および/または、Sb:0.005〜0.050%、および/または、Ca:0.0005〜0.01%、REM:0.0005〜0.01%のうちから選ばれた1種または2種、を含有できる。
For this reason, the contents of C, Ti, and V were adjusted so as to satisfy the expressions (1) and (2) within the above-described content range.
The above components are basic components. In the present invention, Nb: 0.005 to 0.600%, Mo: 0.005 to 0.600%, Ta: 0.005 to 0.600%, W: One or more selected from 0.005 to 0.600% and / or B: 0.0002 to 0.0050% and / or Cr: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Cu: 0.01 to 1 or more selected from 1.0%, and / or Sb: 0.005 to 0.050%, and / or Ca: 0.0005 to 0.01%, REM: 1 selected from 0.0005 to 0.01% Species or two can be contained.

Nb:0.005〜0.600%、Mo:0.005〜0.600%、Ta:0.005〜0.600%、W:0.005〜0.600%のうちから選ばれた1種または2種以上
Nb、Mo、Ta、Wはいずれも、微細析出物を形成し、析出強化で、強度の上昇や比例限の上昇に寄与する元素であり、必要に応じて選択して1種または2種以上含有できる。このような効果を得るためには、Nb:0.005%以上、Mo:0.005%以上、Ta:0.005%以上、W:0.005%以上それぞれ含有することが好ましい。なお、より好ましくは、Nb:0.100%以上、Mo:0.100%以上、Ta:0.100%以上、W:0.100%以上である。一方、Nb:0.600%、Mo:0.600%、Ta:0.600%、W:0.600%を、それぞれ超えて多量に含有しても、効果が飽和し含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、含有する場合には、Nb:0.600%以下、Mo:0.600%以下、Ta:0.600%以下、W:0.600%以下にそれぞれ限定することが好ましい。なお、より好ましくはNb:0.300%以下、Mo:0.300%以下、Ta:0.300%以下、W:0.300%以下である。このようなことから、含有する場合には、Nb:0.005〜0.600%、Mo:0.005〜0.600%、Ta:0.005〜0.600%、W:0.005〜0.600%、の範囲に限定することが好ましい。
One or more selected from Nb: 0.005-0.600%, Mo: 0.005-0.600%, Ta: 0.005-0.600%, W: 0.005-0.600%
Nb, Mo, Ta, and W are all elements that form fine precipitates and contribute to the increase in strength and the increase in proportionality by precipitation strengthening. Select one or more as required. Can be contained. In order to obtain such an effect, it is preferable to contain Nb: 0.005% or more, Mo: 0.005% or more, Ta: 0.005% or more, and W: 0.005% or more. More preferably, Nb is 0.100% or more, Mo is 0.100% or more, Ta is 0.100% or more, and W is 0.100% or more. On the other hand, even if it contains Nb: 0.600%, Mo: 0.600%, Ta: 0.600%, W: 0.600% in large amounts, the effect is saturated and an effect commensurate with the content cannot be expected. Disadvantageous. For this reason, when it contains, it is preferable to limit to Nb: 0.600% or less, Mo: 0.600% or less, Ta: 0.600% or less, W: 0.600% or less, respectively. More preferably, Nb is 0.300% or less, Mo is 0.300% or less, Ta is 0.300% or less, and W is 0.300% or less. Therefore, when it is contained, it is preferable to limit it to the range of Nb: 0.005 to 0.600%, Mo: 0.005 to 0.600%, Ta: 0.005 to 0.600%, W: 0.005 to 0.600%.

B:0.0002〜0.0050%
Bは、圧延後の冷却において、フェライト変態開始温度を低下させる作用を有し、炭化物の析出温度を下げて炭化物の微細化に寄与する。また、Bは、粒界に偏析して粒界強度を増加させ、耐二次加工脆性の向上に寄与する。このような効果を得るために、Bは、0.0002%以上含有することが好ましい。より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。一方、0.0050%を超える多量の含有は、熱間での変形抵抗を増加させ、圧延を困難にすると共に、延性低下の原因となる。このため、Bは、0.0050%以下に限定することが好ましい。なお、より好ましくは0.0030%以下、さらに好ましくは0.0020%以下である。このようなことから、含有する場合には、Bは0.0002〜0.0050%の範囲に限定することが好ましい。
B: 0.0002 to 0.0050%
B has the effect of lowering the ferrite transformation start temperature in cooling after rolling, and contributes to the refinement of the carbide by lowering the precipitation temperature of the carbide. Further, B segregates at the grain boundary to increase the grain boundary strength, and contributes to improvement of secondary work embrittlement resistance. In order to obtain such an effect, B is preferably contained in an amount of 0.0002% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.0010% or more. On the other hand, a large content exceeding 0.0050% increases hot deformation resistance, makes rolling difficult, and causes a decrease in ductility. For this reason, B is preferably limited to 0.0050% or less. In addition, More preferably, it is 0.0030% or less, More preferably, it is 0.0020% or less. Therefore, when contained, B is preferably limited to a range of 0.0002 to 0.0050%.

Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%のうちから選ばれた1種または2種以上
Cr、Ni、Cuはいずれも、組織の微細化を介して、高強度化に寄与する元素であり、必要に応じて選択して1種または2種以上を含有できる。このような効果を得るためは、それぞれ0.01%以上含有することが好ましい。一方、それぞれ1.0%を超えて多量に含有しても、効果が飽和し、含有量に見合う効果を期待できないため、経済的に不利となる。このようなことから、含有する場合には、Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%の範囲にそれぞれ限定することが好ましい。
One or more selected from Cr: 0.01-1.0%, Ni: 0.01-1.0%, Cu: 0.01-1.0%
Cr, Ni, and Cu are all elements that contribute to increasing the strength through the refinement of the structure, and can be selected as necessary to contain one or more. In order to obtain such an effect, each content is preferably 0.01% or more. On the other hand, even if contained in a large amount exceeding 1.0%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when it is contained, it is preferable to limit to Cr: 0.01 to 1.0%, Ni: 0.01 to 1.0%, and Cu: 0.01 to 1.0%, respectively.

Sb:0.005〜0.050%
Sbは、熱間圧延時にスラブ(鋼素材)表面に偏析し、スラブの窒化を防止して、粗大な窒化物の形成を抑制する作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには、0.005%以上含有することが好ましい。一方、0.050%を超えて多量に含有すると、材料コストの高騰を招く。このようなことから、含有する場合には、Sbは0.005〜0.050%の範囲に限定することが好ましい。
Sb: 0.005 to 0.050%
Sb segregates on the surface of the slab (steel material) during hot rolling, prevents slab nitriding, and suppresses the formation of coarse nitrides, and can be contained as necessary. In order to acquire such an effect, it is preferable to contain 0.005% or more. On the other hand, if the content exceeds 0.050%, the material cost increases. For these reasons, when contained, Sb is preferably limited to a range of 0.005 to 0.050%.

Ca:0.0005〜0.01%、REM:0.0005〜0.01%のうちから選ばれた1種または2種
Ca、REMはいずれも、硫化物の形態制御を介して、延性、伸びフランジ性の向上に寄与する元素であり、必要に応じて選択して含有できる。このような効果を得るためは、それぞれ、Ca:0.0005%以上、REM:0.0005%以上含有することが好ましい。一方、それぞれ、0.01%を超えて多量に含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、含有する場合には、Ca:0.0005〜0.01%、REM:0.0005〜0.01%の範囲にそれぞれ限定することが好ましい。
One or two selected from Ca: 0.0005-0.01%, REM: 0.0005-0.01%
Both Ca and REM are elements that contribute to the improvement of ductility and stretch flangeability through the form control of sulfides, and can be selected and contained as necessary. In order to acquire such an effect, it is preferable to contain Ca: 0.0005% or more and REM: 0.0005% or more, respectively. On the other hand, even if each content exceeds 0.01%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when it contains, it is preferable to limit to Ca: 0.0005-0.01% and REM: 0.0005-0.01%, respectively.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。不可避的不純物としては、Sn、Mg、Co、As、Pb、Zn、O等が例示できるが、これらの不純物元素は、合計で0.5%以下であれば、特性上問題がなく、許容できる。
また、本発明高強度冷延薄鋼板では、上記した組成を有し、さらに面積率で95%以上のフェライト相を主相とし、該主相と面積率で0〜5%の第二相とからなる組織を有する。
The balance other than the components described above consists of Fe and inevitable impurities. Examples of unavoidable impurities include Sn, Mg, Co, As, Pb, Zn, O, etc. However, these impurity elements are acceptable as long as the total is 0.5% or less, with no problem in characteristics.
The high-strength cold-rolled steel sheet of the present invention has the above-described composition, and further has a ferrite phase with an area ratio of 95% or more as a main phase, and the main phase and the second phase with an area ratio of 0 to 5% It has an organization consisting of

主相:面積率で95%以上のフェライト相
本発明では、成形性を高めるため、面積率で95%以上のフェライト相を主相とする。第二相として、ベイナイト相やマルテンサイト相などの低温変態相が存在すると、変態時に可動転位が導入され、比例限が低下する。このため、比例限を上昇させるには、フェライト相以外の第二相は、面積率で0%とすることが好ましい。存在しても面積率で5%以下である。このようなことから、主相であるフェライト相は、面積率で95%以上とした。なお、好ましくは面積率で98%以上、さらに好ましくは100%である。
Main phase: ferrite phase having an area ratio of 95% or more In the present invention, a ferrite phase having an area ratio of 95% or more is used as a main phase in order to improve moldability. If a low-temperature transformation phase such as a bainite phase or a martensite phase is present as the second phase, movable dislocations are introduced during transformation and the proportional limit is lowered. For this reason, in order to increase the proportional limit, the area ratio of the second phase other than the ferrite phase is preferably 0%. Even if it exists, the area ratio is 5% or less. For this reason, the ferrite phase as the main phase is set to 95% or more in area ratio. The area ratio is preferably 98% or more, and more preferably 100%.

また、本発明高強度冷延薄鋼板では、10nm未満の析出物の析出密度が5.0×104μm−3以上、転位密度が5.0×1014m−2以上である組織を有する。
粒径:10nm未満の析出物の析出密度:5.0×104μm−3以上
本発明では、微細な析出物で可動転位を固着し、比例限を高める。粗大な析出物は、強度への影響がほとんどない。微細な析出物として、本発明では、粒径:10nm未満の析出物とする。なお、好ましい粒径は、5nm未満、さらに好ましくは3nm未満である。ここでいう「粒径」は最大径である。粒径:10nm未満の析出物の析出密度が、5.0×104μm−3未満では、所望の高比例限を確保できなくなる。このため、粒径:10nm未満の析出物の析出密度を5.0×104μm−3以上に限定した。なお、好ましくは10.0×104μm−3以上、より好ましくは20.0×104 μm−3以上である。
The high-strength cold-rolled thin steel sheet of the present invention has a structure in which the precipitate density of less than 10 nm is 5.0 × 10 4 μm −3 or more and the dislocation density is 5.0 × 10 14 m −2 or more.
Particle size: Precipitation density of precipitates of less than 10 nm: 5.0 × 10 4 μm −3 or more In the present invention, movable dislocations are fixed with fine precipitates to increase the proportional limit. Coarse precipitates have little impact on strength. In the present invention, the fine precipitate is a precipitate having a particle size of less than 10 nm. The preferred particle size is less than 5 nm, more preferably less than 3 nm. The “particle diameter” here is the maximum diameter. Particle size: If the precipitation density of precipitates of less than 10 nm is less than 5.0 × 10 4 μm −3 , the desired high proportional limit cannot be secured. For this reason, the precipitation density of precipitates having a particle size of less than 10 nm was limited to 5.0 × 10 4 μm −3 or more. In addition, it is preferably 10.0 × 10 4 μm −3 or more, more preferably 20.0 × 10 4 μm −3 or more.

転位密度:5.0×1014 m−2以上
本発明では、冷間圧延等の加工により導入した転位を上記したように、粒径10nm未満の微細析出物で固着し、所望の高比例限を得る。所望の比例限を確保するためには、転位密度で5.0×1014m−2以上を必要とする。導入された転位の密度が、5.0×1014m−2未満では、比例限の上昇が少なく、所望の比例限を確保できない。このため、転位密度は5.0×1014m−2以上に限定した。なお、好ましくは10.0×1014m−2以上、より好ましくは20.0×1014m−2以上、さらに好ましくは30.0×1014m−2以上である。また、100.0×1014m−2を超えて転位を導入しても、効果が飽和し、転位の導入工程に見合う効果が期待できなくなるため、転位密度は100.0×1014m−2以下で十分である。本発明冷延薄鋼板中に存在する転位は、タングル化していない、ランダムのままの転位である。
Dislocation density: 5.0 × 10 14 m −2 or more In the present invention, as described above, dislocations introduced by processing such as cold rolling are fixed with fine precipitates having a particle size of less than 10 nm to obtain a desired high proportional limit. . In order to secure a desired proportional limit, a dislocation density of 5.0 × 10 14 m −2 or more is required. If the density of the introduced dislocations is less than 5.0 × 10 14 m −2 , the proportional limit is hardly increased and the desired proportional limit cannot be secured. For this reason, the dislocation density is limited to 5.0 × 10 14 m −2 or more. In addition, it is preferably 10.0 × 10 14 m −2 or more, more preferably 20.0 × 10 14 m −2 or more, and further preferably 30.0 × 10 14 m −2 or more. Also, even if dislocations exceeding 100.0 × 10 14 m −2 are introduced, the effect is saturated and an effect commensurate with the dislocation introduction process cannot be expected. Therefore, a dislocation density of 100.0 × 10 14 m −2 or less is sufficient. It is. The dislocations present in the cold-rolled thin steel sheet of the present invention are dislocations that are not tangled and remain random.

なお、本発明高強度冷延薄鋼板は、鋼板表面にめっき層を形成してもよい。めっき層としては、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、電気亜鉛めっき層などがいずれも好適である。また、化成処理などの皮膜を形成してもよいことはいうまでもない。また、形成するめっき層を、亜鉛とAlの複合めっき層、亜鉛とNiの複合めっき層、Alめっき層、AlとSiの複合めっき層などとしてもよい。   In the high strength cold-rolled thin steel sheet of the present invention, a plating layer may be formed on the steel sheet surface. As the plating layer, a hot dip galvanized layer, an alloyed hot dip galvanized layer, an electrogalvanized layer and the like are all suitable. Needless to say, a film such as a chemical conversion treatment may be formed. The plating layer to be formed may be a zinc / Al composite plating layer, a zinc / Ni composite plating layer, an Al plating layer, an Al / Si composite plating layer, or the like.

つぎに、本発明高強度冷延薄鋼板の製造条件について説明する。
本発明では、上記した組成の鋼素材に、熱間圧延と、冷間圧延を施し、冷延薄鋼板とする。
鋼素材の製造方法は、とくに限定する必要はなく、常用の方法がいずれも適用できる。
例えば、上記した組成の溶鋼を転炉等を利用した溶製方法で溶製し、連続鋳造法等の常用の鋳造方法でスラブ等の鋳片とし、鋼素材とする、常用の方法が例示できる。
Next, production conditions for the high-strength cold-rolled steel sheet of the present invention will be described.
In the present invention, the steel material having the above composition is subjected to hot rolling and cold rolling to obtain a cold rolled thin steel sheet.
The method for producing the steel material is not particularly limited, and any conventional method can be applied.
For example, it is possible to exemplify a conventional method in which molten steel having the above composition is melted by a melting method using a converter or the like, and a slab or the like is cast by a conventional casting method such as a continuous casting method to obtain a steel material. .

得られた鋼素材に、熱間圧延を施す。
得られた鋼素材が、熱間圧延が可能な温度を保持している場合にはそのまま、熱間圧延を施してもよい。また、鋼素材が温片、冷片となっている場合には、所定の加熱温度に再加熱したのち、熱間圧延を施す。
熱間圧延のための加熱温度は、1200℃以上溶融点未満とすることが好ましい。加熱温度を高温とすることにより、炭化物形成元素を完全に固溶することができ、その後の過程で微細な析出物として析出させることができる。加熱温度が1200℃未満では、炭化物形成元素を完全に固溶することができない。なお、鋼素材の加熱は、1200℃以上で10min以上保持することが好ましく、さらに好ましくは1250℃以上で30min以上であり、より好ましくは1300℃以上で10min以上であり、もっと好ましくは1400℃以上で10min以上である。
The obtained steel material is hot rolled.
When the obtained steel material maintains a temperature at which hot rolling is possible, hot rolling may be performed as it is. In addition, when the steel material is a hot piece or a cold piece, the steel material is reheated to a predetermined heating temperature and then hot rolled.
The heating temperature for hot rolling is preferably 1200 ° C. or higher and lower than the melting point. By setting the heating temperature to a high temperature, the carbide-forming element can be completely dissolved, and can be precipitated as fine precipitates in the subsequent process. If the heating temperature is less than 1200 ° C, the carbide-forming element cannot be completely dissolved. The heating of the steel material is preferably maintained at 1200 ° C or higher for 10 minutes or more, more preferably 1250 ° C or higher for 30 minutes or longer, more preferably 1300 ° C or higher for 10 minutes or longer, more preferably 1400 ° C or higher. 10min or more.

加熱された鋼素材には、ついで、粗圧延と仕上圧延からなる熱間圧延が施され、熱延板とされる。
粗圧延は、とくに限定する必要はなく、常用の粗圧延がいずれも適用できる。
粗圧延を施されて所定寸法のシートバーとされたのち、ついで仕上圧延が施されて、熱延板とされる。仕上圧延は、仕上圧延終了温度が850℃以上となる圧延とする。
The heated steel material is then subjected to hot rolling comprising rough rolling and finish rolling to form a hot rolled sheet.
The rough rolling is not particularly limited, and any conventional rough rolling can be applied.
After rough rolling to obtain a sheet bar having a predetermined size, finish rolling is performed to obtain a hot rolled sheet. In the finish rolling, the finish rolling finish temperature is 850 ° C. or higher.

仕上圧延終了温度:850℃以上
仕上圧延終了温度が850℃未満の低温になると、圧延後の冷却でフェライト変態が促進され、炭化物の析出が促進された粗大な炭化物となり、所望の高比例限を達成できなくなる。また、仕上圧延終了温度がフェライト域になるような低温となると、歪誘起析出により粗大な炭化物が析出する。このため、仕上圧延終了温度は850℃以上に限定した。なお、好ましくは880℃以上、より好ましくは920℃以上、さらに好ましくは940℃以上である。
Finish rolling end temperature: 850 ° C or higher When the finish rolling end temperature is lower than 850 ° C, ferrite transformation is promoted by cooling after rolling, resulting in coarse carbide with accelerated carbide precipitation, and the desired high proportional limit is achieved. Can't be achieved. In addition, when the finish rolling finish temperature is low enough to be in the ferrite region, coarse carbides precipitate due to strain-induced precipitation. For this reason, the finish rolling end temperature is limited to 850 ° C. or higher. In addition, Preferably it is 880 degreeC or more, More preferably, it is 920 degreeC or more, More preferably, it is 940 degreeC or more.

仕上圧延終了後、700℃までの温度域を、30℃/s以上の平均冷却速度で冷却し、巻取温度:500℃以上でコイル状に巻き取り、熱延板とする。本発明では、巻き取りの過程で微細な析出物を析出させる。
仕上圧延終了から700℃までの平均冷却速度:30℃/s以上
仕上圧延終了から700℃までの温度域での冷却が、平均で30℃/s未満と遅い場合には、フェライト変態が促進され、炭化物が大きく析出する。このため、本発明では、仕上圧延終了後の冷却を、仕上圧延終了から700℃までの平均冷却速度で、30℃/s以上に限定した。なお、好ましくは50℃/s以上、より好ましくは70℃/s以上である。冷却速度の上限はとくに限定する必要はないが、鋼板形状、温度制御の観点から1000℃/s以下とすることが好ましい。
After finishing rolling, the temperature range up to 700 ° C. is cooled at an average cooling rate of 30 ° C./s or more, and the coil is wound into a coil at a winding temperature of 500 ° C. or more to obtain a hot rolled sheet. In the present invention, fine precipitates are deposited in the winding process.
Average cooling rate from finish rolling to 700 ° C: 30 ° C / s or more When the cooling in the temperature range from finish rolling to 700 ° C is slower than 30 ° C / s on average, ferrite transformation is promoted Carbide is largely precipitated. For this reason, in the present invention, cooling after finishing rolling is limited to 30 ° C./s or more at an average cooling rate from finishing finishing to 700 ° C. In addition, Preferably it is 50 degrees C / s or more, More preferably, it is 70 degrees C / s or more. The upper limit of the cooling rate is not particularly limited, but is preferably 1000 ° C./s or less from the viewpoint of steel plate shape and temperature control.

巻取温度:500℃以上
巻取温度が500℃未満と低いと、ベイナイトやマルテンサイトなどの低温変態相の生成が促進され、フェライト相を主相とする所望組織の形成が阻害され、微細な炭化物の析出も抑制される。このため、巻取温度は500℃以上に限定した。なお、好ましくは550℃以上、より好ましくは600℃以上である。一方、炭化物の粗大化抑制の観点から、巻取温度は700℃以下とすることが好ましい。より好ましくは650℃以下である。
Winding temperature: 500 ° C or higher If the winding temperature is lower than 500 ° C, the formation of low-temperature transformation phases such as bainite and martensite is promoted, and the formation of the desired structure with the ferrite phase as the main phase is hindered. Carbide precipitation is also suppressed. For this reason, the coiling temperature was limited to 500 ° C. or higher. In addition, Preferably it is 550 degreeC or more, More preferably, it is 600 degreeC or more. On the other hand, from the viewpoint of suppressing the coarsening of the carbide, the coiling temperature is preferably 700 ° C. or lower. More preferably, it is 650 ° C. or lower.

得られた熱延板には、次いで酸洗処理と、冷圧率:10〜80%の冷間圧延とが施され、冷延板とされる。酸洗処理は、常用の酸洗がいずれも適用できる。
冷圧率:10〜80%
冷間圧延は、鋼板に転位を導入するために行う。転位の導入により、強度および比例限の上昇が期待できる。このような効果を得るためには、冷間圧延の圧下率(冷圧率)を10%以上とする。なお、好ましくは20%以上、より好ましくは30%以上である。冷圧率が10%未満では、所望の高強度、高比例限が得られない。一方、80%を超えて冷圧率が大きくなると、加工性が著しく劣化する。このため、冷圧率は80%以下に限定した。なお、好ましくは70%以下である。
The obtained hot-rolled sheet is then subjected to pickling treatment and cold rolling at a cold pressure ratio of 10 to 80% to obtain a cold-rolled sheet. As the pickling treatment, any conventional pickling can be applied.
Cold pressure ratio: 10-80%
Cold rolling is performed to introduce dislocations into the steel sheet. With the introduction of dislocations, an increase in strength and proportional limit can be expected. In order to obtain such an effect, the rolling reduction (cold pressure ratio) of cold rolling is set to 10% or more. In addition, Preferably it is 20% or more, More preferably, it is 30% or more. If the cold pressure ratio is less than 10%, the desired high strength and high proportional limit cannot be obtained. On the other hand, if the cold pressure ratio exceeds 80%, the workability deteriorates remarkably. For this reason, the cold pressure rate was limited to 80% or less. In addition, Preferably it is 70% or less.

なお、得られた冷延板には、さらに、焼鈍処理を施して冷延焼鈍板としてもよい。焼鈍処理は、成形性向上のために行う。焼鈍処理は、生産性の観点から、連続焼鈍とする。連続焼鈍処理の条件は、均熱温度:600〜800℃、均熱時間:300s以下とすることが好ましい。
均熱温度:600〜800℃
焼鈍処理における均熱温度は、所望の成形性を確保するために、600℃以上とする。均熱温度が600℃未満では、回復が生じないため、成形性の改善は認められない。一方、均熱温度が800℃を超える高温では、析出物が粗大化するとともに、再結晶が進行し、強度、比例限が低下する。このため、焼鈍処理の均熱温度は、600〜800℃の範囲の温度に限定した。なお、好ましくは780℃以下、より好ましくは760℃以下である。
In addition, the obtained cold-rolled sheet may be further subjected to an annealing treatment to form a cold-rolled annealed sheet. Annealing treatment is performed to improve formability. The annealing treatment is continuous annealing from the viewpoint of productivity. The conditions for the continuous annealing treatment are preferably soaking temperature: 600 to 800 ° C., soaking time: 300 s or less.
Soaking temperature: 600-800 ° C
The soaking temperature in the annealing treatment is set to 600 ° C. or higher in order to ensure the desired formability. When the soaking temperature is less than 600 ° C., no recovery occurs, and thus no improvement in moldability is observed. On the other hand, when the soaking temperature is higher than 800 ° C., the precipitates become coarse and recrystallization progresses, so that the strength and the proportional limit decrease. For this reason, the soaking temperature of the annealing treatment was limited to a temperature in the range of 600 to 800 ° C. In addition, Preferably it is 780 degrees C or less, More preferably, it is 760 degrees C or less.

なお、均熱温度までの加熱速度はとくに限定する必要はないが、1〜100℃/sとすることが、生産性、温度制御の観点から好ましい。
均熱時間:300s以下
所望の成形性向上を確保するためには、均熱時間は30s以上とすることが望ましい。均熱時間が30s未満では、回復が生じないため、所望の成形性向上が得られない。一方、300sを超えて長時間では、微細な析出物が粗大化するとともに、再結晶が進行し、転位密度も低下する。このため、均熱時間は30〜300sとした。なお、好ましくは200s以下、より好ましくは100s以下である。
The heating rate up to the soaking temperature is not particularly limited, but is preferably 1 to 100 ° C./s from the viewpoint of productivity and temperature control.
Soaking time: 300 s or less In order to ensure the desired formability improvement, the soaking time is desirably 30 s or more. If the soaking time is less than 30 s, recovery does not occur, and the desired formability cannot be improved. On the other hand, for a long time exceeding 300 s, fine precipitates become coarse, recrystallization proceeds, and the dislocation density also decreases. For this reason, the soaking time was set to 30 to 300 s. In addition, Preferably it is 200 s or less, More preferably, it is 100 s or less.

また、均熱温度からの冷却速度は、とくに限定する必要はないが、1〜100℃/sの範囲とすることが生産性、温度制御の観点から好ましい。
溶融亜鉛めっき処理を施す場合には、焼鈍処理(連続焼鈍処理)の冷却途中で鋼板を、浴温が420〜500℃である亜鉛めっき浴中に浸漬して、鋼板表面にめっき層を形成することが好ましい。なお、溶融亜鉛めっき処理は、均熱帯の出口側に亜鉛めっき浴を配置した連続亜鉛めっき設備を使用して行うことが好ましい。
The cooling rate from the soaking temperature is not particularly limited, but is preferably in the range of 1 to 100 ° C./s from the viewpoint of productivity and temperature control.
When hot dip galvanizing treatment is performed, the steel sheet is immersed in a galvanizing bath having a bath temperature of 420 to 500 ° C. during the cooling of the annealing treatment (continuous annealing treatment) to form a plating layer on the steel plate surface. It is preferable. In addition, it is preferable to perform the hot dip galvanization process using the continuous galvanization equipment which has arrange | positioned the galvanization bath to the exit side of the soaking zone.

また、溶融亜鉛めっき処理を施され、表面に溶融亜鉛めっき層を形成された溶融亜鉛めっき鋼板には、必要に応じて溶融亜鉛めっき層の合金化処理を施しても良い。
合金化処理の加熱温度:460〜600℃
ZnとFeの合金化を行うには、460℃以上の温度にめっき層を加熱する必要がある。一方、600℃を超えて加熱温度が高くなると、合金化が進行しすぎて、めっきが脆くなる。このため、溶融亜鉛めっき層の合金化処理は460〜600℃の温度範囲で行うこととした。なお、好ましくは570℃以下である。上記した温度での保持は、1s以上、好ましくは10s以下である。合金化処理の加熱温度における保持時間が10sを超えて長時間となると、地鉄中の析出物が粗大化し、鋼板の強度が低下する。このため、合金化処理における保持時間は1〜10sとすることが好ましい。
Moreover, you may perform the alloying process of a hot dip galvanized layer as needed to the hot dip galvanized steel plate which hot-dip galvanized process was performed and the hot dip galvanized layer was formed in the surface.
Heating temperature for alloying treatment: 460-600 ° C
In order to alloy Zn and Fe, it is necessary to heat the plating layer to a temperature of 460 ° C. or higher. On the other hand, when the heating temperature is higher than 600 ° C., alloying proceeds too much and the plating becomes brittle. For this reason, the alloying treatment of the hot dip galvanized layer is performed in the temperature range of 460 to 600 ° C. In addition, Preferably it is 570 degrees C or less. Holding at the above-described temperature is 1 s or more, preferably 10 s or less. When the holding time at the heating temperature of the alloying treatment exceeds 10 s and becomes a long time, precipitates in the ground iron become coarse, and the strength of the steel sheet decreases. For this reason, it is preferable that the holding time in an alloying process shall be 1-10 s.

以下、実施例に基づき、本発明についてさらに説明する。   Hereinafter, based on an Example, this invention is further demonstrated.

表1に示す組成を有する溶鋼を転炉で溶製し、連続鋳造法で鋳片(スラブ)とした鋼素材を出発素材とした。これら鋼素材に、表2に示す条件で熱間圧延、冷間圧延を施し、表2に示す板厚の冷延鋼板とした。なお、冷間圧延前には、熱延板に酸洗処理を施したことはいうまでもない。また、一部の鋼板には、さらに表2に示す条件で焼鈍処理、あるいはさらに溶融亜鉛めっき処理、あるいはさらにめっき層の合金化処理を施した。   Molten steel having the composition shown in Table 1 was melted in a converter, and a steel material made into a slab by a continuous casting method was used as a starting material. These steel materials were hot-rolled and cold-rolled under the conditions shown in Table 2 to obtain cold-rolled steel sheets having the thicknesses shown in Table 2. Needless to say, the hot-rolled sheet was pickled before cold rolling. Further, some of the steel sheets were further subjected to annealing treatment, further galvanizing treatment, or further alloying treatment of the plating layer under the conditions shown in Table 2.

得られた鋼板から試験片を採取し、組織観察、引張試験を実施し、強度特性を評価した。試験方法はつぎの通りとした。
(1)組織観察
得られた鋼板から組織観察用試験片を採取し、圧延方向断面を研磨、ナイタール腐食して、光学顕微鏡(倍率:500倍)を用いて組織を観察し、300×300μm2領域について組織を撮像し、フェライトの面積率を算出した。
Test pieces were collected from the obtained steel plates, subjected to structure observation and tensile tests, and evaluated for strength characteristics. The test method was as follows.
(1) Microstructure observation A test specimen for microstructural observation was collected from the obtained steel sheet, the cross section in the rolling direction was polished and subjected to nital corrosion, and the microstructure was observed using an optical microscope (magnification: 500 times). 300 × 300 μm 2 The structure of the region was imaged, and the area ratio of ferrite was calculated.

また、得られた鋼板から、研削、機械的研磨、電解研磨等により、薄膜試料を作製し、透過型電子顕微鏡(倍率:30万倍)を用いて、100×100nm2の領域10箇所で、析出物を観察し、10nm未満の析出物の数を測定した。なお、その際、収束電子回折法により測定視野での膜厚も求め、10nm未満の析出物の析出密度(個/μm3)を算出した。また、10nm未満の析出物500個について、その径を測定し、算術平均して平均粒径を求めた。なお、析出物の粒径測定に際しては、析出物が球形でないことから、その最大値を測定し当該析出物の粒径とした。 Moreover, from the obtained steel plate, a thin film sample was prepared by grinding, mechanical polishing, electrolytic polishing, etc., and using a transmission electron microscope (magnification: 300,000 times), 10 regions of 100 × 100 nm 2 area, Precipitates were observed and the number of precipitates less than 10 nm was measured. At that time, the film thickness in the measurement field of view was also obtained by a convergent electron diffraction method, and the precipitation density (pieces / μm 3 ) of precipitates of less than 10 nm was calculated. Further, the diameter of 500 precipitates less than 10 nm was measured, and the average particle diameter was obtained by arithmetic averaging. In measuring the particle size of the precipitate, since the precipitate was not spherical, the maximum value was measured and used as the particle size of the precipitate.

また、得られた鋼板から、研削、機械的研磨、化学研磨により、板厚1/4面が表面となるようにX線回折用試験片(大きさ:厚さ×20mm×20mm)を採取し、Cu管球を用いたX線回折法により、局所歪ηを求め、次式
ρ=14.4×η2/b2
を用いて、転位密度ρを測定した。ここで、bはバーガースベクトル(0.25nm)である。なお、局所歪は、Hallの方法(W.H.Hall:J. Inst. Met.,77(1950),1127参照)を用いて得られた値を使用するものとする。また、上記した式は、G.K.Williams and R.E.Smallmannによる式(G.K.Williams and R.E.Smallmann:Philos. Mag., 8(1956),34)を用いた。
(2)引張試験
得られた鋼板から、圧延方向に直角な方向(C方向)が試験片長手方向となるように引張試験片(JIS 5号試験片)を採取し、JIS Z 2241の規定に準拠して、引張試験を行い引張特性(降伏強さYP、引張強さTS、伸びEl)を求めた。また、得られた鋼板から、圧延方向に直角な方向(C方向)が試験片長手方向となるように引張試験片(JIS 5号試験片)を採取し、比例限を求めた。引張試験片の平行部両面に歪ゲージ(ゲージ長:5mm)を貼付して、歪速度:1mm/minで引張試験を行い、応力−歪曲線を求め、得られた応力−歪曲線の傾きが小さくなり始める点(直線からずれ始める点)の応力を比例限応力とした。なお、歪は、試験片両面に貼付した歪ゲージで測定された値の平均値とした。
In addition, from the obtained steel plate, a specimen for X-ray diffraction (size: thickness x 20 mm x 20 mm) is collected by grinding, mechanical polishing, and chemical polishing so that the 1/4 thickness is the surface. The local strain η is obtained by the X-ray diffraction method using a Cu tube, and the following equation is given: ρ = 14.4 × η 2 / b 2
Was used to measure the dislocation density ρ. Here, b is a Burgers vector (0.25 nm). As the local strain, a value obtained by using the Hall method (WHHall: J. Inst. Met., 77 (1950), 1127) is used. Moreover, the above-mentioned formula used the formula by GKWilliams and RESmallmann (GKWilliams and RESmallmann: Philos. Mag., 8 (1956), 34).
(2) Tensile test A tensile test piece (JIS No. 5 test piece) is taken from the obtained steel sheet so that the direction perpendicular to the rolling direction (C direction) is the longitudinal direction of the test piece, and stipulated in JIS Z 2241 In accordance with the tensile test, tensile properties (yield strength YP, tensile strength TS, elongation El) were determined. Moreover, from the obtained steel plate, a tensile test piece (JIS No. 5 test piece) was sampled so that the direction perpendicular to the rolling direction (C direction) was the test piece longitudinal direction, and the proportional limit was obtained. Strain gauges (gauge length: 5 mm) are affixed to both sides of the parallel part of a tensile test piece, a tensile test is performed at a strain rate of 1 mm / min, a stress-strain curve is obtained, and the slope of the obtained stress-strain curve is The stress at the point at which it began to decrease (the point at which it started to deviate from the straight line) was defined as proportional limit stress. The strain was an average value of values measured with strain gauges attached to both sides of the test piece.

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2015147958
Figure 2015147958

Figure 2015147958
Figure 2015147958

Figure 2015147958
Figure 2015147958

本発明例はいずれも、引張強さTS:980MPa以上で、(0.6×TS)MPa以上の高比例限を有する高強度冷延薄鋼板となっている。一方、本発明の範囲を外れる比較例は、所望の引張強さが得られていないか、あるいは所望の高比例限が確保できていないか、所望の引張強さおよび所望の比例限がともに得られていない。   All of the inventive examples are high-strength cold-rolled thin steel sheets having a tensile strength TS: 980 MPa or more and a high proportional limit of (0.6 × TS) MPa or more. On the other hand, in the comparative example that is outside the scope of the present invention, the desired tensile strength is not obtained, or the desired high proportional limit is not ensured, or both the desired tensile strength and the desired proportional limit are obtained. It is not done.

Claims (12)

冷延薄鋼板であって、質量%で、
C :0.04〜0.25%、 Si:0.30%以下、
Mn:0.1〜2.0%、 P :0.05%以下、
S :0.030%以下、 Al:0.10%以下、
N :0.010%以下
を含み、さらに、Ti:0.01〜1.00%、V:0.01〜1.00%のうちから選ばれた1種または2種を含有し、かつ、C、Ti、Vを下記(1)式および下記(2)式を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成と、
面積率で95%以上のフェライト相を主相とし、該主相と面積率で0〜5%の第二相とからなり、さらに、10nm未満の析出物の析出密度が5.0×104μm−3以上で、転位密度が5.0×1014m−2以上である組織とを有し、
引張強さ:980MPa以上で、比例限が高いことを特徴とする高強度冷延薄鋼板。

(12/48)×Ti+(12/51)×V≧0.04 ‥‥(1)
C ≧ 0.9×((12/48)×Ti+(12/51)×V) ‥‥(2)
ここで、C、Ti、V:各元素の含有量(質量%)
Cold rolled thin steel sheet in mass%,
C: 0.04-0.25%, Si: 0.30% or less,
Mn: 0.1 to 2.0%, P: 0.05% or less,
S: 0.030% or less, Al: 0.10% or less,
N: not more than 0.010%, further containing one or two selected from Ti: 0.01 to 1.00%, V: 0.01 to 1.00%, and C, Ti and V in the following (1) And a composition comprising the balance Fe and unavoidable impurities, adjusted to satisfy the formula and the following formula (2):
The ferrite phase with an area ratio of 95% or more is the main phase, and consists of the main phase and the second phase with an area ratio of 0 to 5%. Further, the precipitation density of precipitates of less than 10 nm is 5.0 × 10 4 μm Having a structure of 3 or more and a dislocation density of 5.0 × 10 14 m −2 or more,
Tensile strength: 980 MPa or higher, high strength cold-rolled thin steel sheet characterized by high proportional limit.
Record
(12/48) × Ti + (12/51) × V ≧ 0.04 (1)
C ≧ 0.9 × ((12/48) × Ti + (12/51) × V) (2)
Here, C, Ti, V: Content of each element (mass%)
前記組成に加えてさらに質量%で、Nb:0.005〜0.600%、Mo:0.005〜0.600%、Ta:0.005〜0.600%、W:0.005〜0.600%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の高強度冷延薄鋼板。   In addition to the above-mentioned composition, by mass%, Nb: 0.005 to 0.600%, Mo: 0.005 to 0.600%, Ta: 0.005 to 0.600%, W: 0.005 to 0.600% The high-strength cold-rolled thin steel sheet according to claim 1, which is contained. 前記組成に加えてさらに質量%で、B:0.0002〜0.0050%を含有することを特徴とする
請求項1または2に記載の高強度冷延薄鋼板。
The high-strength cold-rolled steel sheet according to claim 1 or 2, further comprising B: 0.0002 to 0.0050% by mass% in addition to the composition.
前記組成に加えてさらに質量%で、Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%
のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1ないし3のいずれかに記載の高強度冷延薄鋼板。
In addition to the above composition, it is further mass%, Cr: 0.01-1.0%, Ni: 0.01-1.0%, Cu: 0.01-1.0%
The high-strength cold-rolled steel sheet according to any one of claims 1 to 3, comprising one or more selected from among the above.
前記組成に加えてさらに質量%で、Sb:0.005〜0.050%含有することを特徴とするを含有することを特徴とする請求項1ないし4のいずれかに記載の高強度冷延薄鋼板。   The high-strength cold-rolled thin steel sheet according to any one of claims 1 to 4, further comprising Sb: 0.005 to 0.050% in addition to the composition. 前記組成に加えてさらに質量%で、Ca:0.0005〜0.01%、REM:0.0005〜0.01%のうちから選ばれた1種または2種を含有することを特徴とする請求項1ないし5のいずれかに記載の高強度冷延薄鋼板。   6. In addition to the above composition, the composition further contains one or two selected from Ca: 0.0005 to 0.01% and REM: 0.0005 to 0.01% by mass%. The high-strength cold-rolled thin steel sheet described in 1. 請求項1ないし6のいずれかに記載の高強度冷延薄鋼板が、連続焼鈍処理を施されてなる冷延焼鈍板であることを特徴とする高強度冷延薄鋼板。   The high-strength cold-rolled thin steel sheet according to any one of claims 1 to 6, wherein the high-strength cold-rolled thin steel sheet is a cold-rolled annealed sheet that has been subjected to a continuous annealing treatment. 鋼板表面にめっき層を形成してなることを特徴とする請求項1ないし7のいずれかに記載の高強度冷延薄鋼板。   The high strength cold-rolled thin steel sheet according to any one of claims 1 to 7, wherein a plated layer is formed on the surface of the steel sheet. 鋼素材に、熱間圧延と、冷間圧延を施し、冷延薄鋼板とするにあたり、
前記鋼素材を、質量%で、
C :0.04〜0.25%、 Si:0.30%以下、
Mn:0.1〜2.0%、 P :0.05%以下、
S :0.030%以下、 Al:0.10%以下、
N :0.010%以下
を含み、さらに、Ti:0.01〜1.00%、V:0.01〜1.00%のうちから選ばれた1種または2種を含有し、かつ、C、Ti、Vを下記(1)式および下記(2)式を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成の鋼素材とし、
前記熱間圧延を、粗圧延と仕上圧延からなる圧延とし、該仕上圧延が仕上圧延終了温度:850℃以上とする圧延とし、該仕上圧延終了から700℃までの平均冷却速度で30℃/s以上の冷却速度で冷却し、巻取温度:500℃以上で巻き取り熱延板とし、
前記冷間圧延を、前記熱延板に酸洗処理を施したのち、冷圧率:10〜80%で冷間圧延を施し冷延板とする圧延とすることを特徴とする引張強さ:980MPa以上で、比例限の高い高強度冷延薄鋼板の製造方法。
The steel material is subjected to hot rolling and cold rolling to form a cold rolled steel sheet.
The steel material in mass%,
C: 0.04-0.25%, Si: 0.30% or less,
Mn: 0.1 to 2.0%, P: 0.05% or less,
S: 0.030% or less, Al: 0.10% or less,
N: not more than 0.010%, further containing one or two selected from Ti: 0.01 to 1.00%, V: 0.01 to 1.00%, and C, Ti and V in the following (1) And a steel material having a composition comprising the balance Fe and inevitable impurities, adjusted to satisfy the formula and the following formula (2):
The hot rolling is rolling consisting of rough rolling and finish rolling, and the finish rolling is a finish rolling finish temperature: 850 ° C. or higher, and the average cooling rate from the finish rolling finish to 700 ° C. is 30 ° C./s. Cool at the above cooling rate, take-up temperature: 500 ° C or higher to make a hot-rolled steel plate,
Tensile strength, characterized in that the cold rolling is made into a cold rolled sheet by subjecting the hot rolled sheet to pickling treatment and then cold rolling at a cold pressure ratio of 10 to 80%. A manufacturing method of high-strength cold-rolled steel sheets with a high proportional limit at 980 MPa or higher.
前記冷延板に、さらに均熱温度:600〜800℃、均熱時間:300s以下である連続焼鈍処理を施し、冷延焼鈍板とすることを特徴とする請求項9に記載の高強度冷延薄鋼板の製造方法。   10. The high-strength cold-cooled sheet according to claim 9, wherein the cold-rolled sheet is further subjected to a continuous annealing treatment having a soaking temperature of 600 to 800 ° C. and a soaking time of 300 s or less to obtain a cold-rolled annealed sheet. A method for producing a thin steel sheet. 前記連続焼鈍処理の冷却途中で、浴温:420〜500℃の亜鉛めっき浴に浸漬し、鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理を施し、めっき鋼板とすることを特徴とする請求項10に記載の高強度冷延薄鋼板の製造方法。   During the cooling of the continuous annealing treatment, it is immersed in a galvanizing bath having a bath temperature of 420 to 500 ° C., and is subjected to a hot dip galvanizing treatment to form a hot dip galvanized layer on the steel plate surface to obtain a plated steel plate. The manufacturing method of the high intensity | strength cold-rolled thin steel plate of Claim 10. 前記溶融亜鉛めっき処理後に、さらにめっき層の合金化処理を施すことを特徴と請求項11に記載の高強度冷延薄鋼板の製造方法。   The method for producing a high-strength cold-rolled steel sheet according to claim 11, wherein after the hot-dip galvanizing treatment, an alloying treatment of a plating layer is further performed.
JP2014020532A 2014-02-05 2014-02-05 High-strength cold-rolled thin steel sheet with high proportional limit and method for producing the same Expired - Fee Related JP6119627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014020532A JP6119627B2 (en) 2014-02-05 2014-02-05 High-strength cold-rolled thin steel sheet with high proportional limit and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014020532A JP6119627B2 (en) 2014-02-05 2014-02-05 High-strength cold-rolled thin steel sheet with high proportional limit and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015147958A true JP2015147958A (en) 2015-08-20
JP6119627B2 JP6119627B2 (en) 2017-04-26

Family

ID=53891564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014020532A Expired - Fee Related JP6119627B2 (en) 2014-02-05 2014-02-05 High-strength cold-rolled thin steel sheet with high proportional limit and method for producing the same

Country Status (1)

Country Link
JP (1) JP6119627B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147959A (en) * 2014-02-05 2015-08-20 Jfeスチール株式会社 High-strength cold-rolled thin steel sheet having high proportional limit and excellent bendability, and production method thereof
JPWO2017038911A1 (en) * 2015-09-02 2017-10-12 Jfeスチール株式会社 Insulating coating solution and method for producing metal with insulating coating
CN108350550A (en) * 2015-11-20 2018-07-31 Posco公司 The excellent high strength cold rolled steel plate of shearing and its manufacturing method
WO2020196326A1 (en) * 2019-03-22 2020-10-01 日本製鉄株式会社 High-strength steel sheet and method for manufacturing same
WO2020196311A1 (en) * 2019-03-22 2020-10-01 日本製鉄株式会社 High-strength steel plate and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174802A (en) * 2007-01-19 2008-07-31 Jfe Steel Kk High-yield-ratio and high-strength cold-rolled steel sheet and its manufacturing method
JP2009235441A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp High-yield ratio and high-strength cold rolled steel sheet having excellent stretch flange formability
JP2010138444A (en) * 2008-12-11 2010-06-24 Nisshin Steel Co Ltd Steel sheet with high proportion limit superior in bending workability and manufacturing method therefor
JP2012180547A (en) * 2011-02-28 2012-09-20 Nisshin Steel Co Ltd Steel sheet for clutch plate excellent in wear resistance, and method for producing the same
WO2013077298A1 (en) * 2011-11-21 2013-05-30 新日鐵住金株式会社 Hot-rolled steel sheet for nitriding and cold-rolled steel sheet for nitriding with excellent fatigue strength and manufacturing method therefor, as well as automobile parts of excellent fatigue strength using same
JP2013227656A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Cold rolled steel sheet and method for producing the same
JP2015147959A (en) * 2014-02-05 2015-08-20 Jfeスチール株式会社 High-strength cold-rolled thin steel sheet having high proportional limit and excellent bendability, and production method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174802A (en) * 2007-01-19 2008-07-31 Jfe Steel Kk High-yield-ratio and high-strength cold-rolled steel sheet and its manufacturing method
JP2009235441A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp High-yield ratio and high-strength cold rolled steel sheet having excellent stretch flange formability
JP2010138444A (en) * 2008-12-11 2010-06-24 Nisshin Steel Co Ltd Steel sheet with high proportion limit superior in bending workability and manufacturing method therefor
JP2012180547A (en) * 2011-02-28 2012-09-20 Nisshin Steel Co Ltd Steel sheet for clutch plate excellent in wear resistance, and method for producing the same
WO2013077298A1 (en) * 2011-11-21 2013-05-30 新日鐵住金株式会社 Hot-rolled steel sheet for nitriding and cold-rolled steel sheet for nitriding with excellent fatigue strength and manufacturing method therefor, as well as automobile parts of excellent fatigue strength using same
JP2013227656A (en) * 2012-03-30 2013-11-07 Nisshin Steel Co Ltd Cold rolled steel sheet and method for producing the same
JP2015147959A (en) * 2014-02-05 2015-08-20 Jfeスチール株式会社 High-strength cold-rolled thin steel sheet having high proportional limit and excellent bendability, and production method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147959A (en) * 2014-02-05 2015-08-20 Jfeスチール株式会社 High-strength cold-rolled thin steel sheet having high proportional limit and excellent bendability, and production method thereof
JPWO2017038911A1 (en) * 2015-09-02 2017-10-12 Jfeスチール株式会社 Insulating coating solution and method for producing metal with insulating coating
CN108350550A (en) * 2015-11-20 2018-07-31 Posco公司 The excellent high strength cold rolled steel plate of shearing and its manufacturing method
WO2020196326A1 (en) * 2019-03-22 2020-10-01 日本製鉄株式会社 High-strength steel sheet and method for manufacturing same
JPWO2020196326A1 (en) * 2019-03-22 2020-10-01
WO2020196311A1 (en) * 2019-03-22 2020-10-01 日本製鉄株式会社 High-strength steel plate and method for manufacturing same
JPWO2020196311A1 (en) * 2019-03-22 2020-10-01
KR20210125056A (en) * 2019-03-22 2021-10-15 닛폰세이테츠 가부시키가이샤 High-strength steel sheet and its manufacturing method
JP7136336B2 (en) 2019-03-22 2022-09-13 日本製鉄株式会社 High-strength steel plate and its manufacturing method
JP7136335B2 (en) 2019-03-22 2022-09-13 日本製鉄株式会社 High-strength steel plate and its manufacturing method
KR102658165B1 (en) 2019-03-22 2024-04-19 닛폰세이테츠 가부시키가이샤 High-strength steel plate and its manufacturing method
US12018344B2 (en) 2019-03-22 2024-06-25 Nippon Steel Corporation High-strength steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP6119627B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6465256B1 (en) steel sheet
KR101601566B1 (en) High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each
JP5018935B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
KR101575832B1 (en) Hot-rolled steel sheet having high yield ratio and excellent low-temperature impact energy absorption and haz softening resistance and method for producing same
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
KR101485237B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP5870012B2 (en) High yield ratio high strength steel plate with excellent workability
JP5994356B2 (en) High-strength thin steel sheet with excellent shape freezing property and method for producing the same
JPWO2013118679A1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
US20140234655A1 (en) Hot-dip galvanized steel sheet and method for producing same
JP6443492B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP6610749B2 (en) High strength cold rolled steel sheet
JP6119627B2 (en) High-strength cold-rolled thin steel sheet with high proportional limit and method for producing the same
JP4855442B2 (en) Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
JP6048423B2 (en) High strength thin steel sheet with excellent toughness and method for producing the same
KR102217100B1 (en) High-strength steel sheet and its manufacturing method
JP4815974B2 (en) Manufacturing method of high strength cold-rolled steel sheet with excellent rigidity
JP6119628B2 (en) High-strength cold-rolled thin steel sheet having a high proportional limit and excellent bending workability, and a method for producing the same
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP6123693B2 (en) High-strength steel sheet with excellent delayed fracture resistance on sheared surface and method for producing the same
JP2018003114A (en) High strength steel sheet and manufacturing method therefor
JP2018003115A (en) High strength steel sheet and manufacturing method therefor
JPWO2021020439A1 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP4622783B2 (en) High-strength thin steel sheet with excellent rigidity and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees