JP2015146942A - muscle strengthening system - Google Patents

muscle strengthening system Download PDF

Info

Publication number
JP2015146942A
JP2015146942A JP2014022017A JP2014022017A JP2015146942A JP 2015146942 A JP2015146942 A JP 2015146942A JP 2014022017 A JP2014022017 A JP 2014022017A JP 2014022017 A JP2014022017 A JP 2014022017A JP 2015146942 A JP2015146942 A JP 2015146942A
Authority
JP
Japan
Prior art keywords
muscle
subject
stimulation
electrical stimulation
exercise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014022017A
Other languages
Japanese (ja)
Other versions
JP6418750B2 (en
Inventor
顕治 河村
Kenji Kawamura
顕治 河村
片山 淳
Atsushi Katayama
淳 片山
陽一 根木
Yoichi Negi
陽一 根木
俊夫 岸本
Toshio Kishimoto
俊夫 岸本
圭吾 永山
Keigo Nagayama
圭吾 永山
康伸 池田
Yasunobu Ikeda
康伸 池田
服部 道尚
Michinao Hatsutori
道尚 服部
都築 常明
Tsuneaki Tsuzuki
常明 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Og Giken Co Ltd
Original Assignee
Og Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Og Giken Co Ltd filed Critical Og Giken Co Ltd
Priority to JP2014022017A priority Critical patent/JP6418750B2/en
Publication of JP2015146942A publication Critical patent/JP2015146942A/en
Application granted granted Critical
Publication of JP6418750B2 publication Critical patent/JP6418750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a muscle strengthening system capable of evaluating change in a muscle quality by exercises combining electric stimulation for the suppression and prevention of muscle strength decline in the elderly.SOLUTION: A muscle strengthening system includes: exercise stimulation detection means for detecting a state of exercise stimulation that acts on a subject; electric stimulation means for applying a stimulation current to a muscle of the subject that contracts by exercise stimulation; electric stimulation control means for controlling the output of the electric stimulation means according to a signal of the exercise stimulation detection means; myoelectricity detection means for detecting the myoelectricity of the subject for an arbitrary period from the stop of the electrification by the electric stimulation means to the start of the next electrification; and myoelectricity waveform analysis means for analyzing the waveform of the detected myoelectricity.

Description

本発明は、主に体幹及び下肢筋群の筋力増強、機能回復等のために用いる筋力増強システムに関する。   The present invention relates to a muscular strength enhancement system mainly used for muscular strength enhancement and functional recovery of trunk and lower limb muscle groups.

一般的に高齢者は加齢に伴い筋量や筋力が低下するが、特に、加齢による筋量低下はサルコペニア、筋力低下はダイナペニアとされ、その改善や予防のために近年様々な研究が行われている。その中で、筋力低下(ダイナペニア)は筋量低下(サルコペニア)よりも進行が速く、この筋力低下の方が高齢者のQOLに大きな影響を及ぼすとの報告もなされている。即ち、この筋力低下は、転倒や骨粗鬆症性骨折リスクを増大させ、障害や死亡リスクが高くなるだけでなく、転倒により大腿骨頚部など下肢の骨折や腰椎の圧迫骨折が引き起こされると身体機能が著しく損なわれ、長期臥床を強いられて寝たきりの一因となる。近年世界的な高齢化が社会問題となっており、サルコペニアやダイナペニアの改善および予防のために対策を講じることは喫緊の課題となっている。   In general, elderly people lose muscle mass and strength as they age, but in particular, aging is considered to be sarcopenia, and muscle weakness is dynapenia. It has been broken. Among them, muscle weakness (dynapenia) progresses faster than muscle mass decline (sarcopenia), and it has been reported that this muscle weakness has a greater effect on QOL of elderly people. In other words, this muscle weakness increases the risk of falls and osteoporotic fractures and increases the risk of disability and death, and when the fall causes fractures of the lower limbs such as the femoral neck and compression fractures of the lumbar spine, the physical function is remarkably increased. It is damaged and forced to sleep for a long time and contributes to bedridden. In recent years, global aging has become a social problem, and it is an urgent task to take measures to improve and prevent sarcopenia and dynapenia.

高齢者は加齢や不活動によって筋繊維の再生能力が低下するために速筋繊維が選択的に委縮する。速筋繊維が委縮して一旦筋力が低下してしまうとこれを回復することは極めて困難な状況となる。特に、筋力が低下した高齢者は、速筋を鍛錬することを主目的とした運動やトレーニングのメニューをこなすことは困難であり、一旦低下した筋力を回復させることは事実上不可能である。   In elderly people, the ability to regenerate muscle fibers decreases due to aging and inactivity, and fast muscle fibers are selectively contracted. Once the fast muscle fibers are contracted and the muscular strength is reduced, it is extremely difficult to recover the muscle strength. In particular, it is difficult for an elderly person whose muscular strength has been reduced to perform exercise and training menus whose main purpose is to train fast muscles, and it is virtually impossible to recover the muscular strength once reduced.

そこで、本件出願人は、下記特許文献1に開示される運動装置を考案している。該装置は、速筋及び遅筋双方に対する運動効果を向上させると共に、転倒リスクを回避しつつバランス能力の訓練を安全に行えるようにすること等を目的として、使用者が搭乗する搭乗板の移動に対応して使用者の腰部と下肢の少なくとも一部位に電気刺激を付与する電気刺激併用型運動装置である。   Therefore, the present applicant has devised an exercise device disclosed in Patent Document 1 below. The device is intended to improve the exercise effect on both the fast and slow muscles, and to safely carry out balance ability training while avoiding the risk of falls. In response to this, the electrical stimulation combined exercise apparatus applies electrical stimulation to at least part of the user's lower back and lower limbs.

一方、トレーニングやリハビリテーション実施後は、その効果を検証するための評価が重要であり、筋力測定の他、筋群の収縮状況を評価する筋電測定等が広く行われている。しかし、上記のような電気刺激併用型運動装置のように電気刺激によって収縮した筋に対して筋電測定を行うと、電気刺激のノイズも検出してしまい純粋な筋収縮のデータを検出することができないので、電気刺激による筋収縮に対して筋電測定を行うことは全く無意味、或いは行わないことが常識であった。従って、上記電気刺激併用型運動装置おいて、該運動そのものの効果は勿論のこと、サルコペニアやダイナペニアの改善と予防に対する有効性等を検証・評価する手法の確立が望まれていた。   On the other hand, after training and rehabilitation, evaluation for verifying the effect is important. In addition to muscle strength measurement, myoelectric measurement for evaluating the contraction state of muscle groups is widely performed. However, if myoelectric measurement is performed on muscles contracted by electrical stimulation, such as the above-mentioned exercise device combined with electrical stimulation, noise of electrical stimulation is also detected and pure muscle contraction data is detected. Therefore, it is common sense that it is completely meaningless or not to perform myoelectric measurement for muscle contraction caused by electrical stimulation. Accordingly, it has been desired to establish a method for verifying and evaluating the effectiveness of improvement and prevention of sarcopenia and dynapenia as well as the effect of the exercise itself in the above-mentioned electric stimulation combined exercise apparatus.

特開2007−111222公報JP 2007-111122 A

本発明は上記問題に鑑みて、電気刺激を併用した運動において、その運動効果や筋肉の質を評価できる筋力増強システムを提供することにある。   In view of the above problems, an object of the present invention is to provide a muscle strengthening system that can evaluate the exercise effect and the quality of muscles in exercise combined with electrical stimulation.

即ち、請求項1記載の発明は、被験者に対する運動刺激の作用状況を検出する運動刺激検出手段と、運動刺激により収縮する被験者の筋に刺激電流を通電する電気刺激手段と、前記運動刺激検出手段の信号に応じて前記電気刺激手段の出力を制御する電気刺激制御手段と、前記電気刺激手段による通電が休止してから次に通電が開始されるまでの間の任意の期間で被験者の筋電を検出する筋電検出手段と、で構成されることを特徴とする筋力増強システムである。   That is, the invention according to claim 1 is an exercise stimulus detection unit that detects an action state of an exercise stimulus on a subject, an electrical stimulation unit that supplies a stimulation current to a muscle of the subject that contracts by the exercise stimulus, and the exercise stimulus detection unit. Electrical stimulation control means for controlling the output of the electrical stimulation means in response to the signal of EMG, and the myoelectricity of the subject in an arbitrary period from when the energization by the electrical stimulation means is stopped until the next energization is started And a myoelectric detection means for detecting muscular strength.

請求項2に記載の発明は、請求項1に記載の発明において、検出した筋電波形を解析する筋電波形解析手段を備え、該筋電波形解析手段による解析結果から、速筋と遅筋の活動の割合を推定する。   The invention according to claim 2 is the invention according to claim 1, further comprising myoelectric waveform analysis means for analyzing the detected myoelectric waveform, and based on the analysis result by the myoelectric waveform analysis means, fast muscle and slow muscle Estimate the percentage of activity.

請求項3に記載の発明は、請求項1または請求項2のいずれかに記載の発明において、被験者が搭乗する搭乗板と、該搭乗板を揺動させる駆動機構部と、前記搭乗板の揺動の反転のタイミングを検出する揺動反転検出手段と、前記駆動機構部を制御する揺動制御部とからなる荷重立位揺動運動装置を備え、前記荷重立位揺動運動装置は被験者に対して運動刺激を作用させると共に、運動刺激作用状況として、前記揺動反転検出手段により前記搭乗板の揺動の反転のタイミングが検出される。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the boarding board on which the subject is boarded, the drive mechanism that swings the boarding board, and the shaking of the boarding board. A swing reversal detecting means for detecting the reversal timing of the motion and a swing standing swing motion device comprising a swing control unit for controlling the drive mechanism, and the load standing swing motion device is provided to the subject. On the other hand, a movement stimulus is applied to the movement, and a movement reversal detecting means detects the reversal timing of the swing of the riding board.

請求項4に記載の発明は、請求項3に記載の発明において、被験者の姿勢制御能力を判定する姿勢制御解析手段を備える。   According to a fourth aspect of the present invention, there is provided the posture control analyzing means for determining the posture control ability of the subject in the third aspect of the invention.

請求項1記載の発明によれば、被験者に対する運動刺激の作用状況を検出する運動刺激検出手段と、運動刺激により収縮する被験者の筋に刺激電流を通電する電気刺激手段と、前記運動刺激検出手段の信号に応じて前記電気刺激手段の出力を制御する電気刺激制御手段と、前記電気刺激手段による通電が休止してから次に通電が開始されるまでの間の任意の期間で被験者の筋電を検出する筋電検出手段と、で構成されているので、運動刺激で主に遅筋を、電気刺激で主に速筋を同時に活性化させながら、両刺激の相乗効果で効率よく筋力を増強することができ、かつ、電気刺激手段による通電が休止してから次に通電が開始されるまでの間の任意の期間で被験者の筋電を検出することによって、電気刺激併用型運動により収縮した筋肉に対して筋電検出を行うことができる。   According to the first aspect of the present invention, the motion stimulus detection means for detecting the action state of the motion stimulus for the subject, the electrical stimulus means for energizing the stimulus current to the muscle of the subject contracted by the motion stimulus, and the motion stimulus detection means Electrical stimulation control means for controlling the output of the electrical stimulation means in response to the signal of EMG, and the myoelectricity of the subject in an arbitrary period from when the energization by the electrical stimulation means is stopped until the next energization is started It is composed of a myoelectric detection means that detects muscles, and while activating the slow muscles mainly by exercise stimuli and the fast muscles mainly by electrical stimuli simultaneously, the muscle strength is efficiently enhanced by the synergistic effect of both stimuli. And can be contracted by exercise combined with electrical stimulation by detecting myoelectricity of the subject in any period between when the energization by the electrical stimulation means is stopped and when the energization is started next Against muscle It is possible to perform the myoelectric detection.

請求項2記載の発明によれば、検出した筋電波形を解析する筋電波形解析手段を備え、前記筋電波形解析手段による解析結果から速筋と遅筋の活動の割合を推定するので、該割合の経時的変化や健常者等との比較評価により、筋肉の質という側面からダイナペニアの進行度合いや電気刺激併用運動の効果検証を行うことが可能となる。即ち、加齢や不活動に起因する速筋の選択的委縮は、筋量や筋力が低下するだけでなく筋肉の質そのものが変化していると考えられ、速筋と遅筋の活動の割合を筋肉の質と定義し、この継時的変化を比較評価することにより、ダイナペニアの進行度合いや電気刺激併用運動の効果検証を行うことが可能となり、高齢者の筋力低下の改善と予防効果が期待できる。   According to the second aspect of the invention, the electromyographic waveform analyzing means for analyzing the detected myoelectric waveform is provided, and the ratio of the fast muscle and the slow muscle activity is estimated from the analysis result by the myoelectric waveform analyzing means. By comparing the ratio with time and comparative evaluation with healthy subjects, it is possible to verify the progress of dynapenia and the effect of exercise combined with electrical stimulation from the aspect of muscle quality. In other words, selective atrophy of fast muscles due to aging and inactivity not only decreases muscle mass and strength but also changes the quality of muscle itself. Is defined as the quality of the muscle, and the comparative change of this change over time makes it possible to verify the progress of dynapenia and the effect of exercise combined with electrical stimulation. I can expect.

請求項3記載の発明によれば、被験者が搭乗する搭乗板と、該搭乗板を揺動させる駆動機構部と、前記搭乗板の揺動の反転のタイミングを検出する揺動反転検出手段と、前記駆動機構部を制御する揺動制御部とからなる荷重立位揺動運動装置を備え、前記荷重立位揺動運動装置は被験者に対して運動刺激を作用させると共に、運動刺激作用状況として、前記揺動反転検出手段により前記搭乗板の揺動の反転のタイミングが検出されるので、被験者が筋力低下の著しい高齢者であっても、立位を保持することができる程度であれば、自ら努力することなく軽い運動強度で体幹や下肢筋群の良好な閉運動連鎖型の筋収縮が得られ、かつ遅筋と速筋を相乗効果で効率よく鍛錬しながら、筋電解析結果から筋肉の質の変化を把握することができ、筋力低下の改善や予防、電気刺激併用運動の効果検証を行うことが期待できる。即ち、荷重立位揺動運動装置による運動刺激は、駆動機構部による搭乗板の強制的な揺動運動刺激であり、この刺激を被験者に作用させると被験者の平衡感覚における反射機能を利用して立位バランス維持に必要な体幹や下肢筋群の不随意筋収縮を誘発することが可能となる。平衡感覚における反射機能は主に小脳や脳幹が司る機能であるために脳の高次機能が介入することがないので、被験者自らが「運動しなければならない」といった気持ちを鼓舞するような努力を必要とすることなく筋収縮を得ることができる。更に、各種関節疾患、心疾患、或いは糖尿病等の疾病や外傷のために高強度の運動ができない患者や高齢者等であっても安全かつ効果的な運動が行え、効率的な筋力増強効果により、各種疾病や外傷の治療効果の増大が期待できる。   According to the invention of claim 3, a boarding board on which the subject is boarded, a drive mechanism unit that rocks the boarding board, a rocking reversal detecting means for detecting a reversal timing of the rocking of the boarding board, A load standing rocking exercise device comprising a rocking control unit that controls the drive mechanism unit, the load standing rocking exercise device applies a motion stimulus to a subject, and as a motion stimulation action situation, Since the swing reversal detection means detects the reversal timing of the swing of the boarding board, even if the subject can hold a standing position even if the subject is an elderly person with a significant decrease in muscle strength, It is possible to obtain good closed chain muscle contraction of the trunk and lower extremity muscle group with light exercise intensity without effort, and synergistically and efficiently train slow and fast muscles, Can grasp the change in quality of the muscle strength Improvement and prevention below is possible to effect verification of electrical stimulation in combination movement can be expected. That is, the motion stimulus by the load standing swing motion device is a forced swing motion stimulus of the boarding board by the drive mechanism, and when this stimulus is applied to the subject, the reflex function in the subject's sense of equilibrium is utilized. It is possible to induce involuntary muscle contraction of the trunk and lower limb muscle groups necessary for maintaining the standing balance. Since the reflex function in the balance sense is mainly a function of the cerebellum and brainstem, higher-order functions of the brain do not intervene, so make efforts to inspire the feeling that the subject himself must “exercise” Muscle contraction can be obtained without need. Furthermore, even for patients and elderly people who cannot exercise at high intensity due to various joint diseases, heart diseases, or diseases such as diabetes, or trauma, safe and effective exercise can be performed, and effective muscle strengthening effect can be achieved. Expected to increase the therapeutic effect of various diseases and trauma.

請求項4記載の発明によれば、被験者の姿勢制御能力を判定する姿勢制御解析手段を備えているので、筋肉の質の評価に加えて転倒リスクの評価、改善、予防が期待できる。即ち、姿勢制御解析結果と筋電解析結果と併せて評価することにより、より高精度な筋の質の評価や、バランス能力の評価ができ、筋力増強と姿勢制御両面から転倒予防効果が期待できる。   According to the invention described in claim 4, since the posture control analyzing means for determining the posture control ability of the subject is provided, it is expected to evaluate, improve and prevent the fall risk in addition to the evaluation of the muscle quality. That is, by evaluating together with the posture control analysis result and the myoelectric analysis result, it is possible to evaluate the muscle quality and balance ability with higher accuracy and to expect the fall prevention effect from both the strength enhancement and posture control aspects. .

本発明の実施例の筋力増強システムの構成図である。It is a block diagram of the muscular strength augmentation system of the Example of this invention. 本発明の実施例の筋力増強システムの回路等の構成図である。It is a block diagram of the circuit etc. of the muscular strength augmentation system of the Example of this invention. 本発明の実施例の筋力増強システムの信号出力波形の例である。It is an example of the signal output waveform of the muscular strength augmentation system of the example of the present invention.

図1に示す通り、本発明における筋力増強システム1の実施例は、被験者に運動刺激を作用させる荷重立位揺動運動装置21と、電気刺激手段40、電気刺激制御手段41、筋電検出手段50が内蔵されると共に、荷重立位揺動運動装置21、電気刺激手段40、筋電検出手段50等の連動を司る主制御部11を備える制御装置10と、検出した各種データを記録する記録手段62と筋電波形解析手段63等を備える記録解析装置60と、荷重立位揺動運動装置21や制御装置10を遠隔操作することができる無線リモコン9とで構成されている。尚、他の実施例として、本実施例に付加して、荷重立位揺動運動装置21に搭乗した被験者Mの床反力を測定する床反力計71と、姿勢制御状況を運動学的に解析する動作解析装置80等で構成される姿勢制御解析手段70を設けてもよい。   As shown in FIG. 1, the embodiment of the muscular strength augmenting system 1 according to the present invention includes a load standing and oscillating exercise device 21 that applies exercise stimulus to a subject, electrical stimulation means 40, electrical stimulation control means 41, and myoelectric detection means. 50, and the control device 10 including the main control unit 11 that controls the interlocking of the load standing and swinging motion device 21, the electrical stimulation means 40, the myoelectric detection means 50, and the like, and a record for recording various detected data It comprises a recording analysis device 60 comprising means 62, myoelectric waveform analysis means 63 and the like, and a wireless remote controller 9 capable of remotely operating the load standing oscillating motion device 21 and the control device 10. As another embodiment, in addition to the present embodiment, a floor reaction force meter 71 that measures the floor reaction force of the subject M who has boarded the load standing and oscillating motion device 21, and a posture control situation is kinematic. Attitude control analysis means 70 constituted by a motion analysis device 80 or the like for analysis may be provided.

図1及び図2に示す通り、荷重立位揺動運動装置21は、被験者Mが搭乗する搭乗板25を駆動機構部26により水平方向に強制的に往復移動させる。駆動機構部26は、揺動制御部22から入力される各種信号に基いて駆動され、本実施例において搭乗板25の揺動周期は0.3〜3Hzで調節可能であり、更に時々刻々と揺動周期を変化させることも可能に構成されている。図2に示すように、揺動周期、運動時間等の各種運動条件は、無線リモコン9を操作して揺動制御部22に入力される。尚、搭乗板25は水平方向の往復移動としているが、例えば移動方向や移動量を可変にしたり、任意の方向に傾斜させたり、搭乗板25を分割して左右肢別々の動きができるようにするなど、被験者Mの姿勢を保持するための筋収縮が得られる運動刺激が得られれば、搭乗板25の動きの態様は例示された態様や構造に限定されるものではない。   As shown in FIGS. 1 and 2, the load standing and oscillating motion device 21 forcibly reciprocates the boarding board 25 on which the subject M is boarded in the horizontal direction by the drive mechanism unit 26. The drive mechanism section 26 is driven based on various signals input from the swing control section 22, and in this embodiment, the swing period of the board 25 can be adjusted from 0.3 to 3 Hz, and from moment to moment. It is also possible to change the oscillation cycle. As shown in FIG. 2, various exercise conditions such as the oscillation cycle and the exercise time are input to the oscillation control unit 22 by operating the wireless remote controller 9. Although the board 25 is reciprocated in the horizontal direction, for example, the direction and amount of movement can be made variable, the board can be tilted in any direction, and the board 25 can be divided so that the left and right limbs can move separately. As long as an exercise stimulus capable of obtaining muscle contraction for maintaining the posture of the subject M is obtained, the manner of movement of the boarding board 25 is not limited to the exemplified manner and structure.

荷重立位揺動運動装置21には、被験者Mに対する運動刺激の作用状況を検出するため、搭乗板25の反転のタイミングを検出する揺動反転検出手段24が運動刺激検出手段23として設けられている。揺動反転検出手段24は、具体的には駆動機構部のモータと連動するエンコーダ、搭乗板25の反転位置に設けられるリミットスイッチなどが考えられるが、この構成に限定されるものではなく、搭乗板25の位置や速度、或いは駆動機構部26の作動状況を把握できる各種センサー類を設けて、運動刺激の作用状況を検出するようにしてもよい。図2に示すように、揺動反転検出手段24で検出された信号は、電気刺激や筋電検出のタイミングを設定する信号として制御装置10に送信される。   The load standing swing motion device 21 is provided with a swing inversion detection means 24 for detecting the inversion timing of the board 25 as the motion stimulus detection means 23 in order to detect the action state of the motion stimulus with respect to the subject M. Yes. Specifically, the swing reversal detecting means 24 may be an encoder interlocked with the motor of the drive mechanism section, a limit switch provided at the reversal position of the boarding plate 25, but is not limited to this configuration. Various sensors that can grasp the position and speed of the plate 25 or the operating status of the drive mechanism section 26 may be provided to detect the operating status of the motion stimulus. As shown in FIG. 2, the signal detected by the swing inversion detection means 24 is transmitted to the control device 10 as a signal for setting the timing of electrical stimulation or myoelectric detection.

また、図1に示すように、荷重立位揺動運動装置21には、被験者Mの該装置による運動中の転倒事故を防止するために手摺30や懸架部31が設けられる。手摺30は、運動中に被験者Mが自ら把持することにより立位姿勢を保持し転倒を防止するものである。また、懸架部31は、支柱部32と装具33で構成され、被験者Mに装着した装具33のベルト部34を懸架部31に接続することによって被験者Mの立位を保持する。尚、ベルト部34は、被験者Mの姿勢制御に係る筋収縮に影響が出ないようにその長さが調節可能に構成されている。   As shown in FIG. 1, the load standing swing motion device 21 is provided with a handrail 30 and a suspension portion 31 in order to prevent a fall accident during a motion of the subject M by the device. The handrail 30 holds the standing posture by the subject M holding himself / herself during exercise and prevents the handrail 30 from falling. Moreover, the suspension part 31 is comprised by the support | pillar part 32 and the equipment 33, and hold | maintains the test subject's M standing position by connecting the belt part 34 of the equipment 33 with which the test subject M was mounted | worn to the suspension part 31. The length of the belt portion 34 is adjustable so that the muscle contraction related to the posture control of the subject M is not affected.

更に、荷重立位揺動運動装置21には、異常発生時に搭乗板25の駆動を停止する緊急停止手段35が設けられる。緊急停止手段35の具体例としては、被験者Mまたは周囲で装置の操作を行う操作者や監視を行う介助者等が押下する押釦スイッチをはじめ、被験者Mの身体に接続して転倒等の異常動作時に脱落するように構成されるマグネットスイッチ、被験者Mの心拍等のバイタルチェックを行う生体信号検出センサー、駆動機構部の異常動作や発熱等を検出するセンサー類等が挙げられる。図2に示すように、緊急停止手段35で異常を検出すると、この検出結果を揺動制御部22に異常信号として送信することによって搭乗板25の駆動を停止するように構成されている。   Further, the load standing swing motion device 21 is provided with an emergency stop means 35 for stopping the driving of the board 25 when an abnormality occurs. Specific examples of the emergency stop means 35 include an abnormal operation such as a fall by connecting to the body of the subject M, including a pushbutton switch pressed by the subject M or an operator who operates the apparatus around the subject or a monitoring assistant. Examples include a magnet switch configured to drop off occasionally, a biological signal detection sensor that performs vital checks such as the heartbeat of the subject M, and sensors that detect abnormal operation of the drive mechanism, heat generation, and the like. As shown in FIG. 2, when an abnormality is detected by the emergency stop means 35, the detection result is transmitted to the swing control unit 22 as an abnormality signal, thereby stopping the driving of the board 25.

図2に示すように、制御装置10には、電気刺激手段40、電気刺激制御手段41、筋電検出手段50が内蔵されると共に、荷重立位揺動運動装置21、電気刺激手段40、筋電検出手段50等の連動を司る主制御部11を具備している。その他、制御装置10には、電気刺激の出力の大きさを調節する出力調節器42、電気刺激の刺激条件や筋電検出のタイミング等を設定する操作部12、電気刺激用導子43の電気刺激用導子コード44や筋電検出用導子51の筋電検出用導子コード52、或いは揺動反転検出手段24から入力された信号を外部機器に転送するケーブル等を接続するコネクタ部13等が設けられる。   As shown in FIG. 2, the control device 10 includes an electrical stimulation unit 40, an electrical stimulation control unit 41, and a myoelectric detection unit 50, and also includes a load standing oscillating motion device 21, an electrical stimulation unit 40, a muscle A main control unit 11 that controls the interlocking of the electric power detection means 50 and the like is provided. In addition, the control device 10 includes an output regulator 42 that adjusts the magnitude of the electrical stimulation output, the operation unit 12 that sets the stimulation conditions of the electrical stimulation, the timing of detection of myoelectricity, and the like. Connector portion 13 for connecting a stimulation conductor cord 44, a myoelectric detection conductor cord 52 of the myoelectric detection conductor 51, or a cable for transferring a signal input from the swing inversion detection means 24 to an external device. Etc. are provided.

図2及び図3に示すように、電気刺激制御手段41は、揺動反転検出手段24で検出された信号を受けて、操作部12から入力された各種刺激条件と出力調節器42から入力される指令に基づいて、搭乗板25の揺動に応じたタイミングで被験者Mの体幹や下肢に装着された電気刺激用導子43にパルス状の電気刺激電流を電気刺激手段40から出力させる。刺激電流は基本的に双方向矩形波の低周波パルスであるが、筋力増強を目的としてパルス状に出力できるものであれば、周波数や波形は問わない。尚、本実施例の電気刺激の具体例は、基本刺激周波数は5.0kHz、刺激周波数は20〜100Hz、刺激強度は0〜35mA、立ち上がり/立ち下がり時間は0〜3sec、通電時間は0.1〜3secであり、それぞれその範囲内で調節可能である。   As shown in FIGS. 2 and 3, the electrical stimulation control means 41 receives the signal detected by the swing inversion detection means 24 and receives various stimulation conditions input from the operation unit 12 and the output regulator 42. The electrical stimulation means 40 outputs a pulsed electrical stimulation current to the electrical stimulation conductor 43 mounted on the trunk or lower limb of the subject M at a timing corresponding to the swinging of the board 25. The stimulation current is basically a bi-directional rectangular wave low-frequency pulse, but any frequency or waveform can be used as long as it can be output in pulses for the purpose of enhancing muscle strength. In addition, the specific example of the electrical stimulation of the present embodiment is that the basic stimulation frequency is 5.0 kHz, the stimulation frequency is 20 to 100 Hz, the stimulation intensity is 0 to 35 mA, the rise / fall time is 0 to 3 sec, and the energization time is 0. 1 to 3 sec, and can be adjusted within the range.

電気刺激を出力するタイミングは、搭乗板25の反転と同時、或いは反転時点から所望の時間経過後に出力するよう操作部12で調節することができ、被験者Mの個体差や刺激部位、或いは運動の速度や強度等の諸条件を考慮して最も効果的なタイミングに設定することが可能である。具体的には、揺動反転検出手段24の検出信号に対する電気刺激出力のタイミングは−3〜+3secで調節可能とし、搭乗板25の反転位置に対し、例えば主動筋と拮抗筋のいずれに通電するかを調節可能に構成されている。例えば、搭乗板25の揺動周期を0.5Hz、電気刺激の刺激周波数を20Hz、刺激時間を1sec、刺激休止時間を1secの条件で刺激を行うように調節すれば、揺動運動刺激と同期して自然な電気刺激が可能となる。更に、揺動反転検出手段24の検出信号に対する電気刺激出力のタイミングのプラスマイナスを反転させると、揺動刺激により大きく収縮している主動筋に通電するか、または反対の拮抗筋に通電するかを選択調節できる。尚、主動筋と拮抗筋のいずれに通電するか、或いは主動筋と拮抗筋を同時に通電するかを、操作部や無線リモコンで選択設定できるように構成してもよい。   The timing for outputting the electrical stimulation can be adjusted by the operation unit 12 at the same time as the inversion of the boarding board 25 or after a desired time has elapsed since the inversion time. It is possible to set the most effective timing in consideration of various conditions such as speed and strength. Specifically, the timing of the electrical stimulation output with respect to the detection signal of the rocking reversal detection means 24 can be adjusted in a range of −3 to +3 sec, and, for example, either the main muscle or the antagonist muscle is energized with respect to the reversal position of the boarding plate 25. It is configured to be adjustable. For example, if the boarding board 25 is adjusted so that the oscillation period is 0.5 Hz, the stimulation frequency of the electrical stimulation is 20 Hz, the stimulation time is 1 sec, and the stimulation pause time is 1 sec, it is synchronized with the rocking motion stimulation. And natural electrical stimulation becomes possible. Further, when the plus or minus of the timing of the electrical stimulus output with respect to the detection signal of the swing inversion detection means 24 is reversed, whether the main muscle that is greatly contracted by the swing stimulus or the opposite antagonist muscle is energized? Can be selected and adjusted. Note that it may be configured such that either the main muscle or the antagonist muscle can be energized, or whether the main muscle and the antagonist muscle are energized at the same time can be selected and set by the operation unit or the wireless remote controller.

筋電検出手段50は、電気刺激手段40による通電が休止してから次に通電が開始されるまでの間の任意の期間で被験者Mの体幹や下肢に装着された筋電検出用導子51を通じて筋電を検出する。具体的には、図3に示すように、電気刺激手段40から出力されるパルスの合間で、パルス出力の終了時点から所望の時間経過後に筋電検出を開始し、次のパルス出力が開始される直前に筋電検出を終了する。電気刺激直後は、筋電が全体的に重畳したような波形となるため、低周波出力後の乱れ部分を無視して筋電を検出できるようパルス出力の終了時点から所望の時間経過後に筋電検出を開始するように構成されている。検出した筋電データはA/D変換されて記録解析装置60に取り込まれる。   The myoelectric detection means 50 is a myoelectric detection conductor attached to the trunk or lower limb of the subject M in an arbitrary period after the energization by the electrical stimulation means 40 is stopped until the next energization is started. Myoelectricity is detected through 51. Specifically, as shown in FIG. 3, myoelectric detection is started after a desired time has elapsed from the end of pulse output between pulses output from the electrical stimulation means 40, and the next pulse output is started. Immediately before the detection of myoelectricity. Immediately after the electrical stimulation, the myoelectric waveform is superimposed as a whole, so that the myoelectricity can be detected ignoring the disturbance after the low-frequency output so that the myoelectricity can be detected after the desired time has elapsed since the end of the pulse output. It is configured to initiate detection. The detected myoelectric data is A / D converted and taken into the recording analysis device 60.

図2に示す通り、電気刺激手段40と筋電検出手段50は、複数の対象部位または筋に対して電気刺激及び筋電検出できるよう複数のチャンネルCH1〜CHnが設けられる。本実施例における具体例は、電気刺激用導子43と筋電検出用導子51はいずれも2つの電極を一組として構成され、各導子はそれぞれ電気刺激用導子コード44や筋電検出用導子コード52で制御装置のコネクタ部13に接続される。尚、電気刺激用導子43と筋電検出用導子51はそれぞれ独立して設けられるのが一般的ではあるが、対象の部位が多くなると導子の装着に手間取る、或いは対象の筋が比較的小さい時に適切な位置に導子を装着できないといった問題を解消するため、電気刺激用導子43の電極のいずれか1極を、筋電検出用導子51の電極として兼用するように構成することが望ましい。   As shown in FIG. 2, the electrical stimulation means 40 and the myoelectric detection means 50 are provided with a plurality of channels CH1 to CHn so that electrical stimulation and myoelectric detection can be performed on a plurality of target sites or muscles. In a specific example of this embodiment, the electrical stimulation conductor 43 and the myoelectric detection conductor 51 are both configured as a set of two electrodes, and each conductor is composed of an electrical stimulation conductor cord 44 or myoelectricity, respectively. The detection conductor cord 52 is connected to the connector portion 13 of the control device. In general, the electrical stimulation conductor 43 and the myoelectric detection conductor 51 are provided independently of each other. However, when the number of target parts increases, it takes time to install the conductor or the target muscles are compared. In order to solve the problem that the conductor cannot be mounted at an appropriate position when the size is small, any one of the electrodes of the electrical stimulation conductor 43 is also used as the electrode of the myoelectric detection conductor 51. It is desirable.

図3に示すように、揺動反転のタイミングと、電気刺激のパルス出力と、筋電検出のタイミングは、主制御部11において発信される基本クロック15に基づいて制御される。基本クロック15は、荷重立位揺動運動装置21の運動開始、即ち、搭乗板25の駆動開始と同時に発信されるようになっているが、揺動反転検出手段24の最初の信号を受信した時点から発信するようにしてもよい。   As shown in FIG. 3, the timing of swing inversion, the pulse output of electrical stimulation, and the timing of detection of myoelectricity are controlled based on a basic clock 15 transmitted from the main control unit 11. The basic clock 15 is transmitted at the same time as the movement of the load standing oscillating motion device 21, that is, the driving of the boarding plate 25, but receives the first signal of the oscillating reversal detecting means 24. You may make it transmit from the time.

図2に示すように、記録解析装置60は、制御装置10から得られる筋電等の各種データを記録する記録手段62と、記録された筋電データを解析する筋電波形解析手段63を備え、具体例としてはパーソナルコンピューター61である。記録解析装置60には、被験者Mを特定する個人情報や傷病履歴等が予め入力・蓄積されると共に、被験者Mに関連する、運動実施日時、運動刺激の強度や回数、電気刺激の条件や導子の装着部位、床反力計71や動作解析装置80の各種計測結果等も蓄積される。その他、筋力測定や各種運動能力テスト等、本実施例の構成装置以外の機器から得られる各種データも含め、サルコペニアやダイナペニアの改善や予防に供するために必要なあらゆる情報が蓄積されるように構成してもよい。更に、記録解析装置60には、評価プログラムが備えられており、上記蓄積された情報や解析結果を総合的に判断して、サルコペニアやダイナペニアの改善度合いや姿勢制御能力の評価を行う。   As shown in FIG. 2, the recording analysis device 60 includes recording means 62 for recording various data such as myoelectricity obtained from the control device 10, and myoelectric waveform analysis means 63 for analyzing the recorded myoelectric data. A specific example is a personal computer 61. In the record analysis device 60, personal information for identifying the subject M, history of injury and illness, and the like are input and accumulated in advance, and the date and time of exercise, the intensity and number of exercise stimuli related to the subject M, the conditions and guidance of electrical stimulation, and the like. The child mounting site, various measurement results of the floor reaction force meter 71 and the motion analysis device 80 are also accumulated. In addition, it is configured to accumulate all information necessary for improvement and prevention of sarcopenia and dynapenia, including various data obtained from devices other than the component device of this embodiment, such as muscle strength measurement and various exercise ability tests. May be. Further, the recording analysis apparatus 60 is provided with an evaluation program, and comprehensively determines the accumulated information and analysis results, and evaluates the improvement degree of sarcopenia and dynapenia and the posture control ability.

筋電波形解析手段63は、その解析結果から遅筋と速筋の活動割合を推定することができる。具体的には、記録された筋電波形をフーリエ変換やウエーブレット変換の手法を用いて周波数解析すると、低周波成分は遅筋、高周波数成分は速筋の活動としてその割合がその解析結果に反映される。また、筋電波形の積分値は筋量を反映する。   The electromyogram analysis means 63 can estimate the activity ratio of the slow muscle and the fast muscle from the analysis result. Specifically, when the recorded myoelectric waveform is subjected to frequency analysis using the Fourier transform or wavelet transform technique, the low frequency component is the slow muscle and the high frequency component is the fast muscle activity. Reflected. The integrated value of the myoelectric waveform reflects the muscle mass.

必要に応じて、荷重立位揺動運動装置21に搭乗した被験者Mの床反力を測定する床反力計71と、姿勢制御状況を運動学的に解析する動作解析装置80等を設けてもよい。床反力計71と動作解析装置80から得られるデータは記録解析装置60に送られて記録手段62に蓄積され各種解析や評価に活用される。   If necessary, a floor reaction force meter 71 for measuring the floor reaction force of the subject M who has boarded the load standing and oscillating motion device 21 and a motion analysis device 80 for kinematically analyzing the posture control status are provided. Also good. Data obtained from the floor reaction force meter 71 and the motion analysis device 80 is sent to the recording analysis device 60 and stored in the recording means 62 for use in various analyzes and evaluations.

例えば、床反力計71は、荷重立位揺動運動装置21の搭乗板25上に設けられる。床反力計71は左右肢個々の床反力の大きさと3次元的方向の継時的変化が検出され、得られたデータは記録解析装置60に送信され記録手段62に蓄積される。   For example, the floor reaction force meter 71 is provided on the boarding plate 25 of the load standing swing motion device 21. The floor reaction force meter 71 detects the magnitude of the floor reaction force of the left and right limbs and the temporal change in the three-dimensional direction, and the obtained data is transmitted to the recording analysis device 60 and stored in the recording means 62.

また、動作解析装置80は、主に、被験者Mの所定の部位に装着されるマーカーと、荷重立位揺動運動装置21の周辺に設けられる被験者Mの姿勢制御状況を画像として取り込む複数のカメラ81と、前記記録解析装置60内に組み込まれカメラ81から得られた画像データから前記マーカーの継時的変化を数値的に解析する動作解析プログラム82で構成される。動作解析プログラム82から得られたデータを、記録解析装置60内に組み込まれた筋骨格シミュレーションプログラム85に反映してマーカーの継時的変化を解析することによって、被験者Mの姿勢制御状況を継時的変化として数値化しその特徴を把握することができる。   In addition, the motion analysis device 80 mainly includes a plurality of cameras that capture, as images, a marker that is attached to a predetermined part of the subject M and a posture control status of the subject M that is provided in the vicinity of the load standing swing motion device 21. 81 and an operation analysis program 82 that numerically analyzes the temporal change of the marker from the image data obtained from the camera 81 incorporated in the recording analysis device 60. By reflecting the data obtained from the motion analysis program 82 in the musculoskeletal simulation program 85 incorporated in the recording analysis device 60 and analyzing the change of the marker over time, the posture control status of the subject M is continuously changed. It can be quantified as a general change and its characteristics can be grasped.

動作解析装置80によって把握する特徴の例としては、重心動揺の3次元的解析の他、重心の揺れ、頭部の揺れ、股関節と足関節の協調パターン、重心の揺れの規則性、頭部の揺れの規則性、重心の揺れのハースト指数、頭部の揺れのハースト指数等を評価する。また、一般的な重心動揺軌跡長等も求め評価することも可能である。例えば、動作解析装置80から得られたデータを筋骨格シミュレーションプログラム85に反映させると、マーカーの位置から被験者の各関節位置の動きや骨格の位置関係が解明され、この骨格の位置関係に被験者の身体の各部位の重量を反映させて各部位の重心を明らかにすると、被験者の総合的な重心が求められ、その結果当該重心の3次元的な動揺解析を行うことができる。   Examples of features grasped by the motion analysis device 80 include a three-dimensional analysis of center of gravity swing, a center of gravity swing, a head swing, a cooperative pattern of hip and ankle joints, regularity of center of gravity swing, Evaluate the regularity of shaking, the Hurst exponent of shaking of the center of gravity, the Hurst exponent of shaking of the head, etc. It is also possible to obtain and evaluate a general center of gravity fluctuation trajectory length and the like. For example, when the data obtained from the motion analysis device 80 is reflected in the musculoskeletal simulation program 85, the movement of each joint position of the subject and the positional relationship of the skeleton are elucidated from the position of the marker. When the center of gravity of each part is clarified by reflecting the weight of each part of the body, the total center of gravity of the subject is obtained, and as a result, three-dimensional motion analysis of the center of gravity can be performed.

更に、床反力計71や動作解析装置80のデータを筋骨格シミュレーションプログラム85に反映させることによって、被験者Mの姿勢制御動作に応じて個々の筋の収縮状況をシミュレーションできるように構成してもよい。具体的には、筋骨格シミュレーションプログラム85で解明した被験者の各関節の位置データと床反力計71から得られた床反力データとの位置関係から各関節の関節モーメント(トルク)が求められ、これを元に数値最適化手法を用いたシミュレーション(逆動力学的解析)を行うことにより筋張力が算出される。   Further, by reflecting the data of the floor reaction force meter 71 and the motion analysis device 80 in the musculoskeletal simulation program 85, the contraction state of each muscle can be simulated according to the posture control operation of the subject M. Good. Specifically, the joint moment (torque) of each joint is obtained from the positional relationship between the position data of each joint of the subject clarified by the musculoskeletal simulation program 85 and the floor reaction force data obtained from the floor reaction force meter 71. Based on this, muscle tension is calculated by performing a simulation (inverse dynamic analysis) using a numerical optimization method.

このようにして得られた姿勢制御に係る筋の収縮状況のシミュレーション結果と筋電解析結果を総合して解釈することにより筋肉の質の評価や姿勢制御能力判定を行うことが可能となり、筋力低下の改善や予防、電気刺激併用運動の効果検証を行うことが期待できる。   It is possible to evaluate muscle quality and determine posture control ability by comprehensively interpreting the muscle contraction simulation results and myoelectric analysis results obtained in this way for posture control. It can be expected that the improvement and prevention of exercise and the verification of the effect of exercise combined with electrical stimulation will be performed.

尚、無線リモコン9は、荷重立位揺動運動装置21や制御装置10の他、床反力計71、動作解析装置80を遠隔操作するように構成してもよい。即ち、運動刺激、電気刺激、筋電計測、床反力、動作解析装置80の作動や測定の開始や停止を、制御装置10の主制御部11を介して無線リモコン9で同時に行えるように構成することにより、複数の装置の各種操作労力が軽減できる他、運動刺激や電気刺激の作用状況、筋電計測、床反力や姿勢制御のデータが全て時系列で関連付けることが可能となり、これらのデータの解析や、筋肉の質や姿勢制御能力の評価が容易に行えるようになる。更に、上述の緊急停止手段35を無線リモコン9にも設けることにより、異常発生時に迅速に荷重立位揺動運動装置21や電気刺激手段40等を緊急停止できるようにしてもよい。   Note that the wireless remote controller 9 may be configured to remotely operate the floor reaction force meter 71 and the motion analysis device 80 in addition to the load standing swing motion device 21 and the control device 10. That is, it is configured so that the wireless remote controller 9 can simultaneously start and stop exercise stimulation, electrical stimulation, myoelectric measurement, floor reaction force, operation analysis device 80, and measurement start and stop via the main control unit 11 of the control device 10. In addition to reducing the operational effort of multiple devices, it is possible to correlate all of the data of motion stimulation and electrical stimulation action status, myoelectric measurement, floor reaction force and posture control data in time series. Data analysis and muscle quality and posture control ability can be easily evaluated. Furthermore, the emergency stop means 35 described above may also be provided in the wireless remote controller 9 so that the load standing oscillating motion device 21, the electrical stimulation means 40, and the like can be urgently stopped when an abnormality occurs.

次に、本発明の実施例に係る筋力増強システム1の動作について説明する。   Next, operation | movement of the muscular strength augmentation system 1 which concerns on the Example of this invention is demonstrated.

予め、使用する装置類の電源を投入する。その後、運動刺激の各種条件を設定する。本実施例においては、運動刺激条件として、搭乗板25の揺動周波数、揺動ストローク、訓練時間等を設定することができる。   Turn on the power of the devices to be used in advance. After that, various conditions for exercise stimulation are set. In this embodiment, the swing frequency, swing stroke, training time, etc. of the board 25 can be set as the motion stimulation conditions.

電気刺激の各種条件を設定する。本実施例においては、電気刺激条件として、搭乗板25の反転のタイミングから電気刺激出力までの時間のほか、通電時間、立ち上がり/立ち下がり時間、刺激周波数等を設定することができる。   Set various conditions for electrical stimulation. In this embodiment, as the electrical stimulation conditions, in addition to the time from the inversion timing of the boarding board 25 to the electrical stimulation output, the energization time, the rise / fall time, the stimulation frequency, and the like can be set.

筋電計測の各種条件を設定する。本実施例においては、電気刺激の出力停止後から筋電計測開始までの時間のほか、筋電計測時間、ゲイン、ハムフィルタ、カットオフ周波数等を設定することができる。   Set various conditions for EMG measurement. In the present embodiment, in addition to the time from when the output of electrical stimulation is stopped until the start of myoelectric measurement, the myoelectric measurement time, gain, ham filter, cutoff frequency, and the like can be set.

その他、必要に応じて床反力計測や動作解析を行う場合は、これら装置の計測条件等を設定する。   In addition, when performing floor reaction force measurement and motion analysis as necessary, measurement conditions and the like of these devices are set.

被験者Mの対象の部位に電気刺激用導子43と筋電検出用導子51を装着する。運動中の振動で導子が脱落しないようにする場合は、バンドや衣類等で導子を固定するようにしてもよい。その他、動作解析装置80を活用する場合は、マーカーを被験者Mの所定部位に装着する。   The electrical stimulation conductor 43 and the myoelectric detection conductor 51 are attached to the target site of the subject M. In order to prevent the conductor from dropping off due to vibration during movement, the conductor may be fixed with a band or clothing. In addition, when utilizing the motion analysis apparatus 80, a marker is attached to a predetermined part of the subject M.

転倒事故を防止するために被験者Mに装具33を装着し、被験者Mを荷重立位揺動運動装置21の搭乗板25上に立たせて、装具33のベルト部34を懸架部31に接続する。この時、被験者Mの姿勢制御に係る筋収縮に影響が出ないようにベルト部34の長さを調節する。   In order to prevent a fall accident, the subject 33 is equipped with the equipment 33, the subject M is placed on the board 25 of the load standing swing motion device 21, and the belt portion 34 of the equipment 33 is connected to the suspension portion 31. At this time, the length of the belt portion 34 is adjusted so that the muscle contraction related to the posture control of the subject M is not affected.

制御装置10の電気刺激の出力調節ツマミ42がゼロになっていることを確認してから、電気刺激用導子43は電気刺激用導子コード44で、筋電検出用導子51は筋電検出用導子コード52で制御装置10のコネクタ部13に接続し、被験者Mに強い痛みがないか確認しながら適正な筋収縮が得られる程度に出力調節ツマミ42を回して電気刺激の出力を調節する。具体的には、出力確認用の刺激電流は、出力調節ツマミ42の操作量に応じた大きさで出力されるようになっており、出力調節ツマミ42を回し始めると出力確認用の刺激電流の通電を開始し、その後、出力調節ツマミ42の操作を停止してから所定時間が経過すると通電を停止する。この操作を数回行うことで、適正な出力が得られるように出力を調節することができる。尚、出力調節労力を軽減する具体例として、出力調節開始時は接続された複数組のチャンネルの出力を全て同時に調節可能にして一旦大まかに調節した後、部位によって出力の大きさを調節したい場合は、対象部位に装着された導子が接続されているチャンネルを選択して個々に調節するように構成してもよい。   After confirming that the electrical stimulation output adjustment knob 42 of the control device 10 is zero, the electrical stimulation conductor 43 is the electrical stimulation conductor cord 44 and the myoelectric detection conductor 51 is the myoelectric sensor. The detection conductor cord 52 is connected to the connector portion 13 of the control device 10, and the output adjustment knob 42 is turned to the extent that proper muscle contraction is obtained while checking whether the subject M has strong pain, and the output of the electrical stimulation is performed. Adjust. More specifically, the stimulation current for output confirmation is output in a magnitude corresponding to the operation amount of the output adjustment knob 42. When the output adjustment knob 42 starts to be turned, the stimulation current for output confirmation is Energization is started, and thereafter, energization is stopped when a predetermined time elapses after the operation of the output adjustment knob 42 is stopped. By performing this operation several times, the output can be adjusted so as to obtain an appropriate output. As a specific example to reduce the output adjustment effort, at the start of output adjustment, if you want to adjust the output level depending on the part after adjusting the output of multiple connected channels all at the same time and adjusting it once May be configured to select and individually adjust the channel to which the conductor attached to the target site is connected.

無線リモコン9を操作して運動及び計測を開始する。この操作が行われると、荷重立位揺動運動装置21の駆動機構部26が作動し搭乗板25の揺動が開始され、搭乗板25の反転時には揺動反転検出手段24により搭乗板25の反転のタイミングが検出される。この信号が制御装置10に送信されると、設定された所定の時間が経過してから電気刺激が出力され、更にその後所定の時間が経過すると筋電計測が開始される。搭乗板25の揺動は揺動制御部22で、電気刺激の出力及び筋電の計測のタイミングは、予め設定された条件に基いて主制御部11において制御される。   The wireless remote controller 9 is operated to start exercise and measurement. When this operation is performed, the drive mechanism portion 26 of the load standing swing motion device 21 is actuated to start swinging of the boarding plate 25. When the boarding plate 25 is reversed, the swinging reversal detecting means 24 causes the boarding plate 25 to move. The timing of inversion is detected. When this signal is transmitted to the control device 10, the electrical stimulation is output after the set predetermined time has elapsed, and the myoelectric measurement is started after the predetermined time has passed. The swing of the board 25 is controlled by the swing control unit 22, and the timing of the electrical stimulation output and the myoelectric measurement is controlled by the main control unit 11 based on preset conditions.

訓練中、荷重立位揺動運動装置21の運動刺激が被験者Mに作用すると、姿勢制御のために、必要とされる収縮力が低い時には耐疲労性の高い遅筋が主体的に活動し、高い収縮力が必要になると収縮力が大きい反面疲労しやすい速筋が参加するリクルートメント特性と呼ばれるパターンで活動する。一方、電気刺激が作用すると、太い神経に支配されている速筋が先に刺激されて収縮し、低い収縮力でも筋疲労を招く逆リクルートメント現象が生じる。運動刺激と電気刺激が同時に作用すると刺激レベル(即ち運動負荷)が低くても遅筋と速筋の両方が活動し、相乗効果で効率的な運動刺激となる。この運動は、高齢者であっても、自ら努力することなく、安全かつ容易に実施できる経度の刺激でありながら、効率的な運動が行え、サルコペニアやダイナペニアの改善や予防効果が期待できる。   During exercise, when the exercise stimulus of the load standing and oscillating motion device 21 acts on the subject M, the slow muscle with high fatigue resistance acts actively when the required contraction force is low for posture control, When a high contraction force is required, it acts in a pattern called a recruitment characteristic in which fast muscles that tend to get tired participate, while the contraction force is large. On the other hand, when electrical stimulation acts, fast muscles governed by thick nerves are first stimulated to contract, and a reverse recruitment phenomenon that causes muscle fatigue occurs even with a low contraction force. When an exercise stimulus and an electrical stimulus are applied simultaneously, both slow and fast muscles are activated even if the stimulus level (ie, exercise load) is low, resulting in a synergistic and efficient exercise stimulus. This exercise, even for elderly people, is a longitude stimulus that can be carried out safely and easily without effort, and can perform an effective exercise, which can be expected to improve and prevent sarcopenia and dynapenia.

電気刺激のパルスの合間をぬって筋電計測が行われる。主制御部11は、基本クロック15に基づいて、揺動反転のタイミングに応じてパルス状の電気刺激を出力すると共に、次のパルスが出力されるまでの間で筋電を計測するよう、電気刺激手段40と筋電検出手段50を制御する。   EMG measurement is performed between the pulses of electrical stimulation. Based on the basic clock 15, the main control unit 11 outputs a pulsed electrical stimulus in accordance with the timing of the reversal of oscillation, and measures the electromyogram until the next pulse is output. The stimulation means 40 and the myoelectric detection means 50 are controlled.

揺動反転検出手段24により検出された搭乗板25の反転のタイミングや、電気刺激の出力状況、筋電計測結果は記録解析装置60に送信され時系列で関連付けされて蓄積される。床反力計71や動作解析装置80の計測も行う場合は、その計測データも同様に記録解析装置60に蓄積される。これらのデータは訓練時間が終了するまで蓄積される。   The reversal timing of the boarding board 25 detected by the rocking reversal detection means 24, the output status of the electrical stimulation, and the electromyogram measurement results are transmitted to the recording analysis device 60 and stored in association with each other in time series. When the floor reaction force meter 71 and the motion analysis device 80 are also measured, the measurement data is similarly stored in the recording analysis device 60. These data are accumulated until the training time is over.

訓練時間が終了すると、各種装置の作動と測定も同時に終了する。訓練時間終了後、記録解析装置60の筋電波形解析手段63は筋電波形を周波数解析して対象の筋肉の速筋と遅筋の活動割合を解析すると共に、筋電波形を積分して筋量を解析する。また、姿勢制御解析手段70は、床反力計と動作解析装置から得られたデータから、3次元重心動揺等姿勢制御状況を解析する。この解析結果は評価プログラム90に入力され、姿勢制御能力や筋肉の質の評価が行われる。評価結果は評価プログラム90から出力されて記録解析装置60で表示・蓄積される。   When the training time is over, the operation and measurement of various devices are also finished at the same time. After the training time, the myoelectric waveform analysis means 63 of the recording analysis device 60 analyzes the myoelectric waveform to analyze the rate of activity of the fast and slow muscles of the target muscle, and integrates the myoelectric waveform to obtain the muscle. Analyze the quantity. Further, the posture control analysis means 70 analyzes a posture control situation such as three-dimensional center-of-gravity shaking from data obtained from the floor reaction force meter and the motion analysis device. This analysis result is input to the evaluation program 90, and posture control ability and muscle quality are evaluated. The evaluation results are output from the evaluation program 90 and displayed / accumulated by the recording analysis device 60.

この運動と測定は、被験者Mの筋肉の質が訓練開始前の改善目標が達成されるまで一定の期間行われる。評価プログラム90は、この期間内に蓄積されたデータや評価結果を継時的に比較評価したり健常者と比較評価することにより、サルコペニアやダイナペニアの改善度や運動効果の検証を行う。   This exercise and measurement is performed for a certain period of time until the improvement of the muscle quality of the subject M before the start of training is achieved. The evaluation program 90 verifies the degree of improvement and the exercise effect of sarcopenia and dynapenia by comparing and evaluating the data and evaluation results accumulated during this period over time or by comparing and evaluating with a healthy person.

上記評価において、特に運動刺激と電気刺激が同時に作用する筋の筋電を計測・解析し、運動刺激と電気刺激が同時に作用した際の筋の遅筋と速筋の活動割合を推定することにより、筋肉の質の評価という側面から電気刺激併用型運動の効果を検証することができ、更にその効果の検証により電気刺激併用型運動のサルコペニアやダイナペニアに対する効果が裏付けられれば、サルコペニアやダイナペニアの改善や予防を客観的に評価しながら行うことが可能となる。   In the above evaluation, especially by measuring and analyzing the myoelectricity of muscles that exercise and electrical stimuli act simultaneously, and estimating the rate of activity of slow and fast muscles when exercise and electrical stimuli act simultaneously If the effect of electrical stimulation combined exercise can be verified from the aspect of muscle quality evaluation, and the verification of the effect supports the effect of electrical stimulation combined exercise on sarcopenia and dynapenia, improvement of sarcopenia and dynapenia And prevention can be performed objectively.

本発明は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において適宜変更が可能であることは言うまでもない。例えば、運動刺激を作用させる一例として荷重立位揺動運動装置21を採用しているが、これは被験者Mが自ら努力することなく筋力を強化できるようにするためであって、運動刺激はこれに限定されることなく、ウォーキング、スクワットなどの筋力トレーニング等、運動機器を利用するしないに関わらず、筋力強化を目的としたリハビリテーションや各種トレーニング全般で行われる運動によるものとしてもよい。その場合には、各種スイッチ、加速度や関節角度、荷重等を検出するセンサー、或いは動作解析に用いるマーカー等を被験者Mに携帯または装着して、リアルタイムに運動刺激の作用状況を検出するようにしてもよい。また、機器を用いる運動であれば、使用する機器の作動を物理的変化量として検出できる、荷重、加速度、光等のセンサーを設けて検出できるようにしてもよい。   It goes without saying that the present invention is not limited to the above-described embodiments, and can be modified as appropriate without departing from the spirit of the present invention. For example, the load standing swinging exercise device 21 is adopted as an example for applying the exercise stimulus, but this is for the subject M to strengthen the muscular strength without making an effort himself. It is good also as for the exercise | movement performed by the rehabilitation for the purpose of muscular strength reinforcement | strengthening, and various exercises in general regardless of not using exercise equipment, such as walking, the strength training, such as squat. In that case, various switches, sensors for detecting acceleration, joint angles, loads, etc., or markers used for motion analysis, etc. are carried or attached to the subject M, and the action status of the motion stimulus is detected in real time. Also good. Moreover, if it is the exercise | movement which uses an apparatus, you may make it detect by providing sensors, such as a load, an acceleration, and light, which can detect the action | operation of the apparatus to be used as a physical change amount.

更に、筋電検出自体を運動刺激検出手段23として活用することも可能である。即ち、運動刺激により筋収縮が開始されたことを筋電検出し、この信号に応じて電気刺激及び床反力、動作解析を制御することも可能である。   Furthermore, the myoelectric detection itself can be used as the motion stimulus detection means 23. That is, it is also possible to detect myoelectricity that muscle contraction has been started by an exercise stimulus, and to control electrical stimulation, floor reaction force, and motion analysis according to this signal.

また、筋電計測は筋音計測に置き換えることによっても本願発明の目的を達成することができる。   The object of the present invention can also be achieved by replacing myoelectric measurement with myophone measurement.

本発明は、電気刺激併用型運動の効果の検証、及びサルコペニアやダイナペニアの改善や予防に供する筋力増強システムとして適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied as a muscular strength augmentation system for verifying the effect of exercise combined with electrical stimulation and for improving and preventing sarcopenia and dynapenia.

M 被験者
1 筋力増強システム
10 制御装置
11 主制御部
21 荷重立位揺動運動装置
40 電気刺激手段
50 筋電検出手段
60 記録解析装置
63 筋電波形解析手段
70 姿勢制御解析手段
M test subject 1 muscle strength augmentation system 10 control device 11 main control unit 21 load standing swing motion device 40 electrical stimulation means 50 myoelectric detection means 60 recording analysis device 63 myoelectric waveform analysis means 70 posture control analysis means

Claims (4)

被験者に対する運動刺激の作用状況を検出する運動刺激検出手段と、
運動刺激により収縮する被験者の筋に刺激電流を通電する電気刺激手段と、
前記運動刺激検出手段の信号に応じて前記電気刺激手段の出力を制御する電気刺激制御手段と、
前記電気刺激手段による通電が休止してから次に通電が開始されるまでの間の任意の期間で被験者の筋電を検出する筋電検出手段と、
で構成されることを特徴とする筋力増強システム。
A motion stimulus detection means for detecting the action status of the motion stimulus on the subject;
Electrical stimulation means for energizing a stimulation current to the muscle of a subject that contracts due to exercise stimulation;
Electrical stimulation control means for controlling the output of the electrical stimulation means in accordance with a signal from the motion stimulation detection means;
Myoelectric detection means for detecting myoelectricity of a subject in an arbitrary period from when the energization by the electrical stimulation means is stopped to when energization is started next;
A muscle strengthening system characterized by comprising.
検出した筋電波形を解析する筋電波形解析手段を備え、
該前記筋電波形解析手段による解析結果から、速筋と遅筋の活動の割合を推定する請求項1に記載の筋力増強システム。
EMG waveform analysis means for analyzing the detected EMG waveform is provided,
The muscle strength augmentation system according to claim 1, wherein a ratio of fast muscle and slow muscle activity is estimated from an analysis result by the electromyogram analyzing means.
被験者が搭乗する搭乗板と、
該搭乗板を揺動させる駆動機構部と、
前記搭乗板の揺動の反転のタイミングを検出する揺動反転検出手段と、
前記駆動機構部を制御する揺動制御部とからなる荷重立位揺動運動装置を備え、
前記荷重立位揺動運動装置は被験者に対して運動刺激を作用させると共に、
運動刺激作用状況として、前記揺動反転検出手段により前記搭乗板の揺動の反転のタイミングが検出される請求項1または請求項2のいずれかに記載の筋力増強システム。
A board on which the subject boarded,
A drive mechanism for swinging the boarding plate;
Swing inversion detection means for detecting the timing of the inversion of the boarding plate swing;
A load standing swing motion device comprising a swing control section for controlling the drive mechanism section;
The load standing oscillating motion device applies a motion stimulus to a subject,
The muscular strength augmentation system according to claim 1 or 2, wherein a timing of reversal of the swing of the boarding board is detected by the swing reversal detection means as a motion stimulation action situation.
被験者の姿勢制御能力を判定する姿勢制御解析手段を備える請求項3に記載の筋力増強システム。
The muscular strength augmentation system according to claim 3 provided with posture control analysis means which judges a subject's posture control ability.
JP2014022017A 2014-02-07 2014-02-07 Muscle strengthening system Active JP6418750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014022017A JP6418750B2 (en) 2014-02-07 2014-02-07 Muscle strengthening system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014022017A JP6418750B2 (en) 2014-02-07 2014-02-07 Muscle strengthening system

Publications (2)

Publication Number Publication Date
JP2015146942A true JP2015146942A (en) 2015-08-20
JP6418750B2 JP6418750B2 (en) 2018-11-07

Family

ID=53890846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022017A Active JP6418750B2 (en) 2014-02-07 2014-02-07 Muscle strengthening system

Country Status (1)

Country Link
JP (1) JP6418750B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035241A (en) * 2015-08-07 2017-02-16 オージー技研株式会社 Muscle power enhancing system
JP2017148173A (en) * 2016-02-23 2017-08-31 トヨタ自動車株式会社 Walking training apparatus and control method thereof
JP2020081148A (en) * 2018-11-20 2020-06-04 株式会社 Mtg Training method
CN111543989A (en) * 2020-05-12 2020-08-18 中国人民解放军总医院第八医学中心 Proprioception information detection system and proprioception recovery system
JP2020130596A (en) * 2019-02-19 2020-08-31 株式会社Cesデカルト Ultrasonic diagnostic apparatus, ultrasonic diagnostic program, and ultrasonic echo image analysis method
US10822525B2 (en) 2015-09-25 2020-11-03 Yamaguchi Seiken Kogyo Co., Ltd. Polishing composition and method for polishing magnetic disk substrate
CN114366563A (en) * 2022-01-17 2022-04-19 山东科技大学 Parallel ankle rehabilitation robot system based on machine vision

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102356124B1 (en) * 2020-06-12 2022-01-26 경상국립대학교병원 System for evaluating ratio of fast muscle fiber to slow muscle fiber based on evoked electromyogram

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090556A (en) * 1983-10-26 1985-05-21 中野 彰善 Sight restoring apparatus
JP2001327611A (en) * 2000-05-23 2001-11-27 Minato Ikagaku Kk Electric stimulation device with myoelectric signal measuring function
JP2002331007A (en) * 2001-05-08 2002-11-19 Keio Gijuku Motion assisting apparatus
JP2004141223A (en) * 2002-10-22 2004-05-20 Tanita Corp Muscle measuring apparatus
JP2004209040A (en) * 2003-01-06 2004-07-29 Og Giken Co Ltd Electrical stimulation type muscular strength intensifier
JP2007111222A (en) * 2005-10-20 2007-05-10 Og Giken Co Ltd Exercise apparatus combined with electrical stimulation
JP2008519609A (en) * 2004-11-10 2008-06-12 ユニヴェルシテ リブル ドゥ ブリュッセル Apparatus and method for measuring EMG signals
JP2010068241A (en) * 2008-09-10 2010-03-25 Olympus Imaging Corp Image sensor and image capturing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090556A (en) * 1983-10-26 1985-05-21 中野 彰善 Sight restoring apparatus
JP2001327611A (en) * 2000-05-23 2001-11-27 Minato Ikagaku Kk Electric stimulation device with myoelectric signal measuring function
JP2002331007A (en) * 2001-05-08 2002-11-19 Keio Gijuku Motion assisting apparatus
JP2004141223A (en) * 2002-10-22 2004-05-20 Tanita Corp Muscle measuring apparatus
JP2004209040A (en) * 2003-01-06 2004-07-29 Og Giken Co Ltd Electrical stimulation type muscular strength intensifier
JP2008519609A (en) * 2004-11-10 2008-06-12 ユニヴェルシテ リブル ドゥ ブリュッセル Apparatus and method for measuring EMG signals
JP2007111222A (en) * 2005-10-20 2007-05-10 Og Giken Co Ltd Exercise apparatus combined with electrical stimulation
JP2010068241A (en) * 2008-09-10 2010-03-25 Olympus Imaging Corp Image sensor and image capturing apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035241A (en) * 2015-08-07 2017-02-16 オージー技研株式会社 Muscle power enhancing system
US10822525B2 (en) 2015-09-25 2020-11-03 Yamaguchi Seiken Kogyo Co., Ltd. Polishing composition and method for polishing magnetic disk substrate
JP2017148173A (en) * 2016-02-23 2017-08-31 トヨタ自動車株式会社 Walking training apparatus and control method thereof
JP2020081148A (en) * 2018-11-20 2020-06-04 株式会社 Mtg Training method
JP7140646B2 (en) 2018-11-20 2022-09-21 株式会社 Mtg training method
JP2022180435A (en) * 2018-11-20 2022-12-06 株式会社 Mtg training method
JP2020130596A (en) * 2019-02-19 2020-08-31 株式会社Cesデカルト Ultrasonic diagnostic apparatus, ultrasonic diagnostic program, and ultrasonic echo image analysis method
JP7252512B2 (en) 2019-02-19 2023-04-05 株式会社Cesデカルト ULTRASOUND DIAGNOSTIC APPARATUS, ULTRASOUND DIAGNOSTIC PROGRAM, AND ANALYSIS METHOD OF ULTRASOUND ECHO IMAGE
CN111543989A (en) * 2020-05-12 2020-08-18 中国人民解放军总医院第八医学中心 Proprioception information detection system and proprioception recovery system
CN114366563A (en) * 2022-01-17 2022-04-19 山东科技大学 Parallel ankle rehabilitation robot system based on machine vision
CN114366563B (en) * 2022-01-17 2023-12-22 山东科技大学 Parallel ankle rehabilitation robot system based on machine vision

Also Published As

Publication number Publication date
JP6418750B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6418750B2 (en) Muscle strengthening system
KR101383059B1 (en) Wearable vibratory stimulation device and operational protocol thereof
US10549066B2 (en) Device for rehabilitation, rehabilitation system provided therewith, program for rehabilitation and rehabilitation method
US20180028810A1 (en) System for controlling stimulation impulses
KR101566788B1 (en) Brain computer interface based functional electrical stimulator
Colombo et al. Measuring changes of movement dynamics during robot-aided neurorehabilitation of stroke patients
JP6751881B2 (en) Spinal cord electrical stimulator for walking training
US20240066283A1 (en) Electrostimulation apparatus
JP7004965B2 (en) Balance function training device
Gomez-Vargas et al. Therapy with t-flex ankle-exoskeleton for motor recovery: A case study with a stroke survivor
JP6587451B2 (en) Muscle strengthening system
KR101392065B1 (en) Apparatus for active xercise for physically handicapped
Goljar et al. Psychophysiological responses to robot training in different recovery phases after stroke
Frisoli et al. Training and assessment of upper limb motor function with a robotic exoskeleton after stroke
Ng et al. Mechanomyography sensors for detection of muscle activities and fatigue during Fes-evoked contraction
RU2703838C1 (en) Method for recovering motor function of limb
Androwis et al. Alterations of neuromuscular signals as a result of vestibular stimulation
JP2021027990A (en) Muscle stimulation method and central nervous system stimulation method
Ikeda et al. Muscle activity during gait-like motion provided by MRI compatible lower-extremity motion simulator
Berceli Tension and Trauma Releasing Exercises
JP7178091B2 (en) Exercise training device and method of operation thereof
JP2012019852A (en) Respiration guiding device
KR102528506B1 (en) Rehabilitation status monitoring system using analysis of exercise condition and electroencephalogram
KR101806557B1 (en) Athletic system and method for strengthening muscular strength
Leskovar et al. An investigation of proprioception illusion using a stimulator with feedback control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6418750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250