JP2015141864A - lithium ion battery - Google Patents

lithium ion battery Download PDF

Info

Publication number
JP2015141864A
JP2015141864A JP2014015396A JP2014015396A JP2015141864A JP 2015141864 A JP2015141864 A JP 2015141864A JP 2014015396 A JP2014015396 A JP 2014015396A JP 2014015396 A JP2014015396 A JP 2014015396A JP 2015141864 A JP2015141864 A JP 2015141864A
Authority
JP
Japan
Prior art keywords
negative electrode
porous body
conductive porous
positive electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014015396A
Other languages
Japanese (ja)
Inventor
伊藤 友一
Yuichi Ito
友一 伊藤
寛 浜口
Hiroshi Hamaguchi
寛 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014015396A priority Critical patent/JP2015141864A/en
Publication of JP2015141864A publication Critical patent/JP2015141864A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To prevent metal from being precipitated on a negative electrode, thereby suppressing an increase in battery resistance.SOLUTION: A lithium ion battery includes a lamination unit 100 including a positive electrode 101 and a negative electrode 102 disposed to face each other via a conductive porous body 104. The lithium ion battery has a separator 103 provided between the positive electrode 101 and the conductive porous body 104 and between the negative electrode 102 and the conductive porous body 104. The conductive porous body 104 is electrically connected to the negative electrode 102.

Description

本発明はリチウムイオン電池に関する。   The present invention relates to a lithium ion battery.

特開2000−311716号公報(特許文献1)には、非晶質炭素材を負極活物質とし、マンガン酸リチウムを正極活物質としたリチウム二次電池において、非晶質炭素材の平均粒径を10μm以下とすることが開示されている。   Japanese Patent Laid-Open No. 2000-311716 (Patent Document 1) discloses an average particle diameter of an amorphous carbon material in a lithium secondary battery using an amorphous carbon material as a negative electrode active material and lithium manganate as a positive electrode active material. Is 10 μm or less.

特開2000−311716号公報JP 2000-311716 A

リチウムイオン電池には、正極から溶出した金属が負極上に析出するという問題がある。負極上に金属が析出すると、電極反応に利用できる反応面積が減少し、電池抵抗が増加する。特許文献1に開示される技術は、負極活物質を小径粒子とすることにより、負極の表面積すなわち反応面積を大きくして、負極上に金属が析出しても相対的にその影響を小さくするものである。しかしながら当該技術は、負極上に金属が析出するという問題を根本的に解決するものではない。   The lithium ion battery has a problem that metal eluted from the positive electrode is deposited on the negative electrode. When metal deposits on the negative electrode, the reaction area available for electrode reaction decreases, and the battery resistance increases. The technique disclosed in Patent Document 1 is a technique in which the negative electrode active material is made into small-diameter particles, thereby increasing the surface area of the negative electrode, that is, the reaction area, and relatively reducing the influence even if metal is deposited on the negative electrode. It is. However, this technique does not fundamentally solve the problem of metal deposition on the negative electrode.

本発明は上記のような課題に鑑みてなされたものであって、その目的とするところは、負極上への金属析出を防止して、電池抵抗の増加を抑制することにある。   The present invention has been made in view of the above problems, and an object thereof is to prevent metal deposition on the negative electrode and suppress an increase in battery resistance.

リチウムイオン電池は、導電性多孔質体を介して、正極と負極とが対向配置された積層単位を備え、該正極と該導電性多孔質体との間、および該負極と該導電性多孔質体との間にセパレータを有し、該導電性多孔質体は、該負極と電気的に接続されている。   The lithium ion battery includes a laminated unit in which a positive electrode and a negative electrode are arranged to face each other through a conductive porous body, and between the positive electrode and the conductive porous body and between the negative electrode and the conductive porous body. A separator is provided between the conductive porous body and the negative electrode, and the conductive porous body is electrically connected to the negative electrode.

このリチウムイオン電池では、正極と負極との間に導電性多孔質体(たとえば金属メッシュ)が介在する。そして導電性多孔質体は負極と電気的に接続されている。そのため導電性多孔質体と負極とは等電位にある。これにより正極で金属の溶出が起こり、金属イオンが電気泳動によって負極側へと移動する場合、金属イオンは負極へと到達する以前に、導電性多孔質体において電子を受け取り、導電性多孔質体において析出する。したがって、負極上に金属が析出することを防止することができ、以って電池抵抗の増加を抑制できる。   In this lithium ion battery, a conductive porous body (for example, a metal mesh) is interposed between the positive electrode and the negative electrode. The conductive porous body is electrically connected to the negative electrode. Therefore, the conductive porous body and the negative electrode are equipotential. As a result, when metal elution occurs in the positive electrode and the metal ions move to the negative electrode side by electrophoresis, the metal ions receive electrons in the conductive porous body before reaching the negative electrode, and the conductive porous body It precipitates in. Accordingly, it is possible to prevent the metal from being deposited on the negative electrode, thereby suppressing an increase in battery resistance.

本発明のリチウムイオン電池によれば、電池抵抗の増加を抑制することができる。   According to the lithium ion battery of the present invention, an increase in battery resistance can be suppressed.

本発明の一実施形態に係るリチウムイオン電池の積層単位の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the lamination | stacking unit of the lithium ion battery which concerns on one Embodiment of this invention. 図1に示す積層単位における金属の析出現象を図解する模式図である。FIG. 2 is a schematic diagram illustrating a metal precipitation phenomenon in the stacked unit shown in FIG. 1. 参考例に係るリチウムイオン電池の積層単位における金属の析出現象を図解する模式図である。It is a schematic diagram illustrating the metal precipitation phenomenon in the lamination | stacking unit of the lithium ion battery which concerns on a reference example. 金属析出に伴う反応面積の低下を図解する模式図である。It is a schematic diagram illustrating the reduction of the reaction area accompanying metal deposition. 負極上の金属析出量と電池抵抗との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the metal precipitation amount on a negative electrode, and battery resistance. 本発明の一実施形態に係わるリチウムイオン電池の構成と抵抗増加率および負極上の金属析出量との関係を示すグラフである。It is a graph which shows the relationship between the structure of the lithium ion battery concerning one Embodiment of this invention, a resistance increase rate, and the metal deposition amount on a negative electrode.

以下、本発明の一実施形態(以下「本実施形態」とも記す)について詳細に説明するが、本実施形態はこれらに限定されるものではない。   Hereinafter, an embodiment of the present invention (hereinafter, also referred to as “this embodiment”) will be described in detail, but the present embodiment is not limited thereto.

<リチウムイオン電池>
(参考例)
まず参考例を用いて、正極からの金属溶出に伴って電池性能が低下するメカニズムを説明する。
<Lithium ion battery>
(Reference example)
First, using a reference example, the mechanism by which the battery performance decreases as the metal is eluted from the positive electrode will be described.

図3は、参考例のリチウムイオン電池における積層単位の構成、および金属の析出現象を図解する模式図である。図3に示す参考例の電池は、正極201、セパレータ203および負極202がこの順に積層された積層単位200を有する。   FIG. 3 is a schematic diagram illustrating the configuration of the stack unit and the metal deposition phenomenon in the lithium ion battery of the reference example. The battery of the reference example shown in FIG. 3 has a stacked unit 200 in which a positive electrode 201, a separator 203, and a negative electrode 202 are stacked in this order.

積層単位200では、正極201から金属イオン(M+)が溶出した場合、金属イオン(M+)はセパレータ203を透過して、負極202上において電子を受け取り、金属(M)となって析出する。 In the stacked unit 200, when metal ions (M + ) are eluted from the positive electrode 201, the metal ions (M + ) pass through the separator 203, receive electrons on the negative electrode 202, and deposit as metal (M). .

図4を参照して、金属(M)が負極202上に析出すると、リチウムイオン(Li+)との反応面積が減少して、電池抵抗の増加および電池容量の低下が引き起こされる。図5は、負極202上における金属析出量と電池抵抗との関係を示すグラフである。図5より、負極上の金属析出量が多いほど、電池抵抗が増加している様子が確認できる。 Referring to FIG. 4, when metal (M) is deposited on negative electrode 202, the reaction area with lithium ions (Li + ) decreases, causing an increase in battery resistance and a decrease in battery capacity. FIG. 5 is a graph showing the relationship between the amount of metal deposited on the negative electrode 202 and the battery resistance. From FIG. 5, it can be confirmed that the battery resistance increases as the amount of deposited metal on the negative electrode increases.

次に、本実施形態のリチウムイオン電池について説明する。
(実施形態)
図1は、本実施形態における積層単位の構成の一例を示す模式図である。図1を参照して、リチウムイオン電池は、導電性多孔質体104を介して、正極101と負極102とが対向配置された積層単位100を備える。
Next, the lithium ion battery of this embodiment will be described.
(Embodiment)
FIG. 1 is a schematic diagram illustrating an example of a configuration of a stack unit in the present embodiment. Referring to FIG. 1, the lithium ion battery includes a laminated unit 100 in which a positive electrode 101 and a negative electrode 102 are arranged to face each other with a conductive porous body 104 interposed therebetween.

積層単位100は、正極101と導電性多孔質体104との間にセパレータ103を有している。また積層単位100は、負極102と導電性多孔質体104との間にもセパレータ103を有している。   The stacked unit 100 includes a separator 103 between the positive electrode 101 and the conductive porous body 104. The laminated unit 100 also has a separator 103 between the negative electrode 102 and the conductive porous body 104.

そして導電性多孔質体104は、負極102と電気的に接続されている。これにより導電性多孔質体104と負極102とが等電位となる。   The conductive porous body 104 is electrically connected to the negative electrode 102. As a result, the conductive porous body 104 and the negative electrode 102 are equipotential.

図2は、積層単位100において、正極101から金属イオン(M+)が溶出した場合の析出現象を図解する模式図である。図2に示すように、正極101から溶出した金属イオン(M+)は、電気泳動によって負極102側へと移動する。しかし導電性多孔質体104が負極102と等電位であるため、金属イオン(M+)は負極102に到達することはできず、導電性多孔質体104において電子を受け取り、金属(M)となって析出する。したがって、負極102における反応面積の低下が防止される。 FIG. 2 is a schematic diagram illustrating the precipitation phenomenon when metal ions (M + ) are eluted from the positive electrode 101 in the stacked unit 100. As shown in FIG. 2, the metal ions (M + ) eluted from the positive electrode 101 move to the negative electrode 102 side by electrophoresis. However, since the conductive porous body 104 is equipotential with the negative electrode 102, the metal ions (M + ) cannot reach the negative electrode 102, receive electrons in the conductive porous body 104, and the metal (M) To be deposited. Therefore, a reduction in the reaction area in the negative electrode 102 is prevented.

なお電解液中のLi+はイオン化傾向が大きいことから、導電性多孔質体104に析出しないものと考えられる。また本実施形態において、電池の形状は特に制限されるものではなく、円筒形、角形、パウチ形(ラミネート型ともいう)、シート形、コイン形等の従来公知のあらゆる外形を有することができる。 Since Li + in the electrolytic solution has a large ionization tendency, it is considered that it does not precipitate on the conductive porous body 104. In the present embodiment, the shape of the battery is not particularly limited, and can have any conventionally known outer shape such as a cylindrical shape, a square shape, a pouch shape (also referred to as a laminate type), a sheet shape, and a coin shape.

以下、本実施形態のリチウムイオン電池を構成する各部について説明する。
(積層単位)
積層単位100は、正極101と負極102と導電性多孔質体104とを備える。積層単位100において、正極101と負極102とは、導電性多孔質体104を介して対向配置されている。
Hereinafter, each part which comprises the lithium ion battery of this embodiment is demonstrated.
(Lamination unit)
The laminated unit 100 includes a positive electrode 101, a negative electrode 102, and a conductive porous body 104. In the stacked unit 100, the positive electrode 101 and the negative electrode 102 are disposed to face each other with the conductive porous body 104 interposed therebetween.

本実施形態のリチウムイオン電池は、積層単位100を2つ以上備えることもできる。また積層単位100は巻回されていてもよい。さらに積層単位100は、積層あるいは巻回された電極群において部分的に構成されるものであってもよい。   The lithium ion battery of this embodiment can also include two or more stacking units 100. Moreover, the lamination | stacking unit 100 may be wound. Furthermore, the stack unit 100 may be partially configured in a stacked or wound electrode group.

(導電性多孔質体)
導電性多孔質体104は導電性を有し、かつ電解液が浸透・透過できる連通孔を有する限り、如何なる構成であってもよい。導電性多孔質体としては、たとえば、金属メッシュ、パンチングメタル、エキスパンドメタル、金属の発泡体、金属の焼結体、金属繊維の集合体(織物、編物等)等を例示することができる。また多孔質体の素材は、金属のみに限られず、たとえば樹脂(PP、PE等)製の多孔質体に金属を蒸着して導電性を付与したもの等であってもよい。導電性多孔質体を構成し得る金属としては、たとえばCu、Ag、Ni、Pt、Au等を例示することができる。
(Conductive porous material)
The conductive porous body 104 may have any configuration as long as it has conductivity and has a communication hole through which the electrolytic solution can permeate and permeate. Examples of the conductive porous body include metal mesh, punching metal, expanded metal, metal foam, metal sintered body, metal fiber aggregate (woven fabric, knitted fabric, etc.), and the like. The material of the porous body is not limited to metal, but may be, for example, a material obtained by depositing metal on a porous body made of resin (PP, PE, etc.) to impart conductivity. Examples of the metal that can form the conductive porous body include Cu, Ag, Ni, Pt, Au, and the like.

導電性多孔質体と負極とを電気的に接続する手段は特に制限されるものではない。たとえば、超音波溶着や抵抗溶接によって直接接続してもよいし、リードタブのような別途の導通経路によって接続されていてもよい。   The means for electrically connecting the conductive porous body and the negative electrode is not particularly limited. For example, it may be directly connected by ultrasonic welding or resistance welding, or may be connected by a separate conduction path such as a lead tab.

(正極)
正極101は、正極活物質および集電体等から構成される。正極101の構成は特に制限されるものではなく、たとえば金属箔(集電体)上に正極活物質を含む正極合材層が塗工されたものであってもよいし、正極活物質を含む正極合材(造粒物)がペレット状やシート状に成形されたものであってもよい。
(Positive electrode)
The positive electrode 101 includes a positive electrode active material and a current collector. The configuration of the positive electrode 101 is not particularly limited. For example, a positive electrode mixture layer containing a positive electrode active material may be coated on a metal foil (current collector), or the positive electrode active material may be included. The positive electrode mixture (granulated product) may be formed into a pellet shape or a sheet shape.

正極活物質は、リチウムイオン電池の正極として作用し得るものであればよく、たとえばLiCoO2、LiNiO2、LiNiaCob2(a+b=1、0<a<1、0<b<1)、LiMnO2、LiMn24、LiNiaCobMnc2(a+b+c=1、0<a<1、0<b<1、0<c<1)、LiFePO4等を用いることができる。 The positive electrode active material may be any material that can act as a positive electrode of a lithium ion battery. For example, LiCoO 2 , LiNiO 2 , LiNi a Co b O 2 (a + b = 1, 0 <a <1, 0 <b <1) , LiMnO 2, LiMn 2 O 4 , LiNi a Co b Mn c O 2 (a + b + c = 1,0 <a <1,0 <b <1,0 <c <1), it is possible to use LiFePO 4, or the like.

正極101の典型的な構成としては、正極活物質と導電助材〔(アセチレンブラック(AB)等〕と結着材〔ポリフッ化ビニリデン(PVdF)等〕とを含む正極合材層が、Al箔等の集電体上に固着されたものを例示することができる。正極合材における各成分の組成は、たとえば正極活物質(80〜98質量%程度)、導電助材(1〜10質量%程度)、結着材(1〜10質量%程度)である。   As a typical configuration of the positive electrode 101, a positive electrode mixture layer including a positive electrode active material, a conductive additive [(acetylene black (AB), etc.), and a binder (polyvinylidene fluoride (PVdF), etc.) is an Al foil. Examples of the composition of each component in the positive electrode mixture include, for example, a positive electrode active material (about 80 to 98% by mass), a conductive additive (1 to 10% by mass). Degree) and a binder (about 1 to 10% by mass).

(負極)
負極102は、負極活物質および集電体等から構成される。負極102の構成も特に制限されるものではなく、たとえば金属箔(集電体)上に負極活物質を含む負極合材層が塗工されたものであってもよいし、負極活物質を含む負極合材(造粒物)がペレット状やシート状に成形されたものであってもよい。
(Negative electrode)
The negative electrode 102 includes a negative electrode active material and a current collector. The configuration of the negative electrode 102 is not particularly limited. For example, a negative electrode mixture layer containing a negative electrode active material may be coated on a metal foil (current collector), or the negative electrode active material may be included. The negative electrode mixture (granulated product) may be formed into a pellet shape or a sheet shape.

負極活物質は、リチウムイオン電池の負極として作用し得るものであればよく、たとえば天然黒鉛、人造黒鉛等の炭素系負極活物質や、珪素、錫等の合金系負極活物質、あるいはLi金属、Li−Al合金等を用いることができる。   The negative electrode active material only needs to be capable of acting as a negative electrode of a lithium ion battery, for example, a carbon-based negative electrode active material such as natural graphite or artificial graphite, an alloy-based negative electrode active material such as silicon or tin, or Li metal, A Li—Al alloy or the like can be used.

負極102の典型的な構成としては、負極活物質と増粘材〔カルボキシメチルセルロース(CMC)等〕と結着材〔スチレンブタジエンゴム(SBR)等〕と含む負極合材層が、Cu箔等の集電体上に固着されたものを例示することができる。負極合材における各成分の組成は、たとえば負極活物質(90〜99質量%程度)、増粘材および結着材(1〜10質量%程度)である。   As a typical configuration of the negative electrode 102, a negative electrode mixture layer including a negative electrode active material, a thickening material [carboxymethyl cellulose (CMC) or the like] and a binder (styrene butadiene rubber (SBR) or the like) is formed of Cu foil or the like. The thing fixed on the electrical power collector can be illustrated. The composition of each component in the negative electrode mixture is, for example, a negative electrode active material (about 90 to 99% by mass), a thickener and a binder (about 1 to 10% by mass).

(セパレータ)
セパレータ103は電解液を保持しつつ、正極101と導電性多孔質体104との電気的な接触、および負極102と導電性多孔質体104との電気的な接触を防止する。セパレータ103には、たとえばポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン系材料からなる微多孔膜や不織布を用いることができる。
(Separator)
The separator 103 holds the electrolytic solution and prevents electrical contact between the positive electrode 101 and the conductive porous body 104 and electrical contact between the negative electrode 102 and the conductive porous body 104. As the separator 103, for example, a microporous film or a nonwoven fabric made of a polyolefin-based material such as polyethylene (PE) or polypropylene (PP) can be used.

(電解液)
本実施形態において、電解液の組成は特に制限されない。電解液には、たとえばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、γ−ブチロラクトン(GBL)およびビニレンカーボネート(VC)等の環状カーボネート類や、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)およびジエチルカーボネート(DEC)等の鎖状カーボネート類からなる混合溶媒に、たとえばLiPF6、LiBF4、LiClO4、LiAsF6、Li(CF3SO22N、LiCF3SO3等のLi塩を溶解させたものを用いることができる。なお電解液の代わりに、固体状あるいはゲル状の電解質を用いることもできる。
(Electrolyte)
In the present embodiment, the composition of the electrolytic solution is not particularly limited. Examples of the electrolyte include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (GBL) and vinylene carbonate (VC), dimethyl carbonate (DMC), ethyl For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li (CF 3 SO 2 ) 2 N, LiCF 3 SO 3 are mixed in a mixed solvent composed of chain carbonates such as methyl carbonate (EMC) and diethyl carbonate (DEC). What dissolved Li salts, such as, can be used. A solid or gel electrolyte can also be used instead of the electrolyte.

以下、実施例を用いて本実施形態をより詳細に説明するが、本実施形態はこれらに限定されるものではない。   Hereinafter, although this embodiment is described in detail using an example, this embodiment is not limited to these.

以下のように高電圧タイプ(上限電圧4.2V)のラミネート型電池を作製して、耐久試験(高温充電保存試験)を行なって、負極上への金属析出量および電池の抵抗増加率を評価した。   A laminated battery of a high voltage type (upper limit voltage 4.2V) is manufactured as follows, and an endurance test (high temperature charge storage test) is performed to evaluate the amount of metal deposited on the negative electrode and the resistance increase rate of the battery. did.

<実施例>
(正極の作製)
Ni、CoおよびMnを含む3元系正極活物質と、AB(導電助材)と、PVdF(結着材)と、N−メチル−2−ピロリドン(溶媒)とを混合・混練して正極合材スラリーを得、該正極合材スラリーをAl箔(集電体)上に塗工、乾燥して、Al箔上に正極合材層を形成した。そして正極合材層を圧延することにより正極101を得た。
<Example>
(Preparation of positive electrode)
A ternary positive electrode active material containing Ni, Co and Mn, AB (conducting aid), PVdF (binder), and N-methyl-2-pyrrolidone (solvent) are mixed and kneaded to mix the positive electrodes. A material slurry was obtained, and the positive electrode mixture slurry was coated on an Al foil (current collector) and dried to form a positive electrode mixture layer on the Al foil. And the positive electrode 101 was obtained by rolling a positive mix layer.

(負極の作製)
黒鉛粉末(負極活物質)と、CMC(増粘材)と、SBR(結着材)とを水中で混練して負極合材スラリーを得、該負極合材スラリーをCu箔(集電体)上に塗工、乾燥して、Cu箔上に負極合材層を形成した。そして負極合材層を圧延することにより負極102を得た。
(Preparation of negative electrode)
Graphite powder (negative electrode active material), CMC (thickening material), and SBR (binder) are kneaded in water to obtain a negative electrode mixture slurry, and the negative electrode mixture slurry is made of Cu foil (current collector). It was coated and dried on top to form a negative electrode mixture layer on the Cu foil. And the negative electrode 102 was obtained by rolling a negative electrode compound-material layer.

(電解液の調製)
ECとDMCとEMCとを、EC:DMC:EMC=3:4:3(体積比)となるように混合して混合溶媒を得た。次いで混合溶媒に、LiPF6(1.0mol/L)を溶解させることにより電解液を調製した。
(Preparation of electrolyte)
EC, DMC, and EMC were mixed so that EC: DMC: EMC = 3: 4: 3 (volume ratio) to obtain a mixed solvent. Next, an electrolytic solution was prepared by dissolving LiPF 6 (1.0 mol / L) in the mixed solvent.

(組み立て)
図1に示す積層単位100からなる電極群を作製し、該電極群をラミネートシートからなる電池外装体に挿入した。さらに電池外装体に電解液を注液し、電池外装体の周縁を熱溶着によって封止することにより、実施例に係るリチウムイオン電池を得た。
(assembly)
An electrode group composed of the laminate unit 100 shown in FIG. 1 was prepared, and the electrode group was inserted into a battery outer package composed of a laminate sheet. Furthermore, the lithium ion battery which concerns on an Example was obtained by injecting electrolyte solution to a battery exterior body, and sealing the periphery of a battery exterior body by heat welding.

<比較例>
図3に示す積層単位200からなる電極群を作製することを除いては、実施例と同材料および同条件を用いて、比較例に係るリチウムイオン電池を作製した。
<Comparative example>
A lithium ion battery according to a comparative example was manufactured using the same material and the same conditions as in the example except that the electrode group including the stacked unit 200 shown in FIG. 3 was manufactured.

<評価>
まず各電池の充電状態(SOC)を80%に調整して、初期の電池抵抗を測定した。次いで各電池を60℃に設定された恒温槽内で20日間保存して、保存後の電池抵抗を測定した。そして、保存後の電池抵抗を初期の電池抵抗で除することにより、抵抗増加率を算出した。
<Evaluation>
First, the state of charge (SOC) of each battery was adjusted to 80%, and the initial battery resistance was measured. Next, each battery was stored in a thermostat set at 60 ° C. for 20 days, and the battery resistance after storage was measured. The resistance increase rate was calculated by dividing the battery resistance after storage by the initial battery resistance.

さらに各電池を解体して負極を回収し、負極上の金属(Ni、CoおよびMn)析出量を誘導結合プラズマ発光分光分析装置(ICP−AES)によって測定した。測定結果を図6に示す。   Furthermore, each battery was disassembled to collect the negative electrode, and the amount of metal (Ni, Co and Mn) deposited on the negative electrode was measured by an inductively coupled plasma emission spectrometer (ICP-AES). The measurement results are shown in FIG.

図6に示すように、導電性多孔質体を介して、正極と負極とが対向配置された積層単位を備え、該正極と該導電性多孔質体との間、および該負極と該導電性多孔質体との間にセパレータを有し、該導電性多孔質体は、該負極と電気的に接続されている、実施例のリチウムイオン電池は、かかる条件を満たさない比較例のリチウムイオン電池と比較して、耐久試験後における負極上への金属析出量が少なく、かつ抵抗増加率の低いものであった。   As shown in FIG. 6, a laminate unit in which a positive electrode and a negative electrode are arranged to face each other with a conductive porous body interposed therebetween, between the positive electrode and the conductive porous body, and between the negative electrode and the conductive material. The lithium ion battery of the example which has a separator between the porous body and the conductive porous body is electrically connected to the negative electrode does not satisfy the above conditions. In comparison with, the amount of metal deposited on the negative electrode after the durability test was small, and the resistance increase rate was low.

この結果から、実施例のリチウムイオン電池では、導電性多孔質体に金属が析出することにより、負極上への金属析出が抑制できたものと考えられる。   From this result, it is considered that in the lithium ion battery of the example, metal deposition on the negative electrode could be suppressed by metal deposition on the conductive porous body.

以上のように本実施形態および実施例の説明を行なったが、今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等意味および範囲内でのすべての変更が含まれることが意図される。   Although the present embodiment and examples have been described as described above, it should be considered that the embodiments and examples disclosed this time are illustrative and not restrictive in all respects. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

100,200 積層単位、101,201 正極、102,202 負極、103,203 セパレータ、104 導電性多孔質体。   100,200 Laminating unit, 101,201 positive electrode, 102,202 negative electrode, 103,203 separator, 104 conductive porous body.

Claims (1)

導電性多孔質体を介して、正極と負極とが対向配置された積層単位を備え、
前記正極と前記導電性多孔質体との間、および前記負極と前記導電性多孔質体との間にセパレータを有し、
前記導電性多孔質体は、前記負極と電気的に接続されている、リチウムイオン電池。
A laminate unit in which a positive electrode and a negative electrode are arranged to face each other through a conductive porous body,
Having a separator between the positive electrode and the conductive porous body, and between the negative electrode and the conductive porous body;
The conductive porous body is a lithium ion battery that is electrically connected to the negative electrode.
JP2014015396A 2014-01-30 2014-01-30 lithium ion battery Pending JP2015141864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015396A JP2015141864A (en) 2014-01-30 2014-01-30 lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015396A JP2015141864A (en) 2014-01-30 2014-01-30 lithium ion battery

Publications (1)

Publication Number Publication Date
JP2015141864A true JP2015141864A (en) 2015-08-03

Family

ID=53772096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015396A Pending JP2015141864A (en) 2014-01-30 2014-01-30 lithium ion battery

Country Status (1)

Country Link
JP (1) JP2015141864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020795A3 (en) * 2014-08-08 2016-03-31 株式会社半導体エネルギー研究所 Electronic device equipped with capacitive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020795A3 (en) * 2014-08-08 2016-03-31 株式会社半導体エネルギー研究所 Electronic device equipped with capacitive device
US11217865B2 (en) 2014-08-08 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Electronic device including power storage device

Similar Documents

Publication Publication Date Title
US10673046B2 (en) Separator for lithium metal based batteries
CN108899583B (en) Electrolyte system for silicon-containing electrodes
US10026955B2 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
WO2018179817A1 (en) Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US20190013552A1 (en) Electrolyte system suppressing or minimizing metal contaminants and dendrite formation in lithium ion batteries
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2015046218A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP6560879B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
US20180198157A1 (en) Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery comprising the same and lithium secondary battery
US10276868B2 (en) Non-aqueous electrolyte rechargeable battery
US10840508B2 (en) Lithium ion secondary battery
JP2011159506A (en) Nonaqueous secondary battery
US9385398B2 (en) Method for manufacturing lithium secondary battery
JP2017021949A (en) Nonaqueous lithium battery and application method thereof
JP2006216305A (en) Secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2012252951A (en) Nonaqueous electrolyte secondary battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JP4582684B2 (en) Non-aqueous secondary battery
JPWO2015111585A1 (en) Lithium ion battery system
JP2015095427A (en) Lithium ion secondary battery
JPWO2018135253A1 (en) Positive electrode active material, positive electrode and lithium ion secondary battery
US10468726B2 (en) Negative electrode for preventing deposition of manganese and battery cell including the same
JP2013137939A (en) Nonaqueous secondary battery
JP2015141864A (en) lithium ion battery