JP2015140340A - Method for producing monoalkyl sulfate - Google Patents

Method for producing monoalkyl sulfate Download PDF

Info

Publication number
JP2015140340A
JP2015140340A JP2014015960A JP2014015960A JP2015140340A JP 2015140340 A JP2015140340 A JP 2015140340A JP 2014015960 A JP2014015960 A JP 2014015960A JP 2014015960 A JP2014015960 A JP 2014015960A JP 2015140340 A JP2015140340 A JP 2015140340A
Authority
JP
Japan
Prior art keywords
sulfate
lithium
group
monoalkyl sulfate
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014015960A
Other languages
Japanese (ja)
Other versions
JP6206220B2 (en
Inventor
雄一 古藤
Yuichi Koto
雄一 古藤
敷田 庄司
Shoji Shikita
庄司 敷田
達雄 藤野
Tatsuo Fujino
達雄 藤野
陽平 遠山
Yohei Toyama
陽平 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2014015960A priority Critical patent/JP6206220B2/en
Publication of JP2015140340A publication Critical patent/JP2015140340A/en
Application granted granted Critical
Publication of JP6206220B2 publication Critical patent/JP6206220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing high purity monoalkyl sulfate by reacting dialkyl sulfate and alkali metal salt in an organic solvent.SOLUTION: There is provided the method for producing monoalkyl sulfate by reacting dialkyl sulfate represented by the formula (I) and an alkali metal salt represented by the formula (II). (I) (II), where R represents an alkyl group having 1 to 18 carbon atoms or a haloalkyl group having 1 to 18 carbon atoms, Mrepresents a lithium ion, a sodium ion or a potassium ion and Xrepresents an anion species having a primary acid dissociation constant (pKa1) in a water of conjugate acid thereof of 10.

Description

モノアルキル硫酸塩の製造方法において、ジアルキル硫酸とアルカリ金属塩を有機溶媒中で反応させることを特徴とするモノアルキル硫酸塩の製造方法に関する。   In the manufacturing method of a monoalkyl sulfate, it is related with the manufacturing method of the monoalkyl sulfate characterized by making a dialkyl sulfuric acid and an alkali metal salt react in an organic solvent.

モノアルキル硫酸塩は、洗浄剤、化粧品、又は医薬品分野で古くから広く使われている。また、最近ではモノアルキル硫酸塩を使用して、有機溶媒中でイオン液体を合成する研究も行われている(特許文献1、非特許文献1)。
モノアルキル硫酸塩の製造方法としては、アルコールと硫酸又はクロロスルホン酸等との反応によりモノアルキル硫酸を生成させ、アルカリ水溶液によりその塩として得る方法(非特許文献2、非特許文献3)、ジアルキル硫酸をアルカリ水溶液によって加水分解してモノアルキル硫酸塩とする方法が知られている(特許文献2)。
Monoalkyl sulfates have long been widely used in the field of detergents, cosmetics or pharmaceuticals. In recent years, studies have also been conducted on the synthesis of ionic liquids in organic solvents using monoalkyl sulfates (Patent Document 1, Non-Patent Document 1).
Monoalkyl sulfate production methods include a method of producing monoalkyl sulfate by reacting alcohol with sulfuric acid or chlorosulfonic acid, etc., and obtaining the salt with an alkaline aqueous solution (Non-patent Documents 2 and 3), dialkyl A method is known in which sulfuric acid is hydrolyzed with an alkaline aqueous solution to form a monoalkyl sulfate (Patent Document 2).

国際公開第2004/024279号International Publication No. 2004/024279 特開平8−041009号JP-A-8-041009

Green Chemistry, 2011, 13, 2901Green Chemistry, 2011, 13, 2901 The Journal of Physical Chemistry, 1982, 86, 2632The Journal of Physical Chemistry, 1982, 86, 2632 Canadian Journal of Chemistry, 1984, 62, 128Canadian Journal of Chemistry, 1984, 62, 128

一般にイオン液体中に、水分やハロゲン化合物、その他の不純物を多く含むと粘度が上昇したり、電位窓が著しく狭くなることが知られており、高純度なイオン液体を製造するためには原料となる塩が高純度であることが要求される。一方、上記特許文献1、2及び非特許文献1〜3に記載の製造方法では目的物であるモノアルキル硫酸塩の水分については何ら開示されていない。また、モノアルキル硫酸塩の副生成物である硫酸イオンの含有量についても満足できるレベルまで低減できてはいなかった。更にクロロスルホン酸を出発原料として用いた場合、複数の工程が必要であった。   In general, it is known that if an ionic liquid contains a large amount of moisture, halogen compounds, or other impurities, the viscosity increases or the potential window becomes extremely narrow. In order to produce a high purity ionic liquid, The resulting salt is required to be highly pure. On the other hand, the production methods described in Patent Documents 1 and 2 and Non-Patent Documents 1 to 3 disclose nothing about the water content of the target monoalkyl sulfate. Further, the content of sulfate ions, which are by-products of monoalkyl sulfates, has not been reduced to a satisfactory level. Furthermore, when chlorosulfonic acid was used as a starting material, multiple steps were required.

本発明は、ジアルキル硫酸とアルカリ金属塩を有機溶媒中で反応させることで高純度なモノアルキル硫酸塩の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of a highly purified monoalkyl sulfate by making a dialkyl sulfuric acid and an alkali metal salt react in an organic solvent.

本発明者らは、モノアルキル硫酸塩の製造方法において鋭意検討した結果、ジアルキル硫酸とアルカリ金属塩を有機溶媒中で反応させることにより、高純度なモノアルキル硫酸塩を製造できることを見出し、本発明を完成するに至った。   As a result of intensive studies in the production method of monoalkyl sulfates, the present inventors have found that high-purity monoalkyl sulfates can be produced by reacting dialkyl sulfuric acid and alkali metal salts in an organic solvent. It came to complete.

すなわち、本発明は、下記を提供するものである。
一般式(I)で表されるジアルキル硫酸と一般式(II)で表されるアルカリ金属塩を有機溶媒中で反応させることを特徴とするモノアルキル硫酸塩の製造方法。
That is, the present invention provides the following.
A method for producing a monoalkyl sulfate, comprising reacting a dialkyl sulfate represented by the general formula (I) and an alkali metal salt represented by the general formula (II) in an organic solvent.

Figure 2015140340
Figure 2015140340

Figure 2015140340
(式中、Rは炭素数1〜18のアルキル基又は炭素数1〜18のハロアルキル基を示し、Mはリチウムイオン、ナトリウムイオン、又はカリウムイオンを示し、Xはその共役酸の水中における第一酸解離定数(pKa1)が10以下のアニオン種を示す。)
Figure 2015140340
(In the formula, R represents an alkyl group having 1 to 18 carbon atoms or a haloalkyl group having 1 to 18 carbon atoms, M + represents a lithium ion, a sodium ion, or a potassium ion, and X represents the conjugate acid in water. (The first acid dissociation constant (pKa1) indicates an anion species of 10 or less.)

本発明によれば、高純度のモノアルキル硫酸塩を高収率で製造することが可能となる。   According to the present invention, it is possible to produce a high-purity monoalkyl sulfate with a high yield.

本発明は、一般式(I)で表されるジアルキル硫酸と一般式(II)で表されるアルカリ金属塩を有機溶媒中で反応させ、モノアルキル硫酸塩を製造する方法に関する。   The present invention relates to a method for producing a monoalkyl sulfate by reacting a dialkyl sulfate represented by the general formula (I) and an alkali metal salt represented by the general formula (II) in an organic solvent.

Figure 2015140340
Figure 2015140340

Figure 2015140340
(式中、Rは炭素数1〜18のアルキル基又は炭素数1〜18のハロアルキル基を示し、Mはリチウムイオン、ナトリウムイオン、又はカリウムイオンを示し、Xはその共役酸の水中における第一酸解離定数(pKa1)が10以下のアニオン種を示す。)
Figure 2015140340
(In the formula, R represents an alkyl group having 1 to 18 carbon atoms or a haloalkyl group having 1 to 18 carbon atoms, M + represents a lithium ion, a sodium ion, or a potassium ion, and X represents the conjugate acid in water. (The first acid dissociation constant (pKa1) indicates an anion species of 10 or less.)

一般式(I)で表されるジアルキル硫酸において、Rは炭素数1〜18のアルキル基又は炭素数1〜18のハロアルキル基を示し、炭素数1〜12のアルキル基又は炭素数1〜12のハロアルキル基が好ましく、炭素数1〜6のアルキル基が更に好ましい。   In the dialkyl sulfuric acid represented by the general formula (I), R represents an alkyl group having 1 to 18 carbon atoms or a haloalkyl group having 1 to 18 carbon atoms, and an alkyl group having 1 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms. A haloalkyl group is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.

Rの具体例としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、もしくはオクタデシル基等の直鎖のアルキル基、iso−プロピル基,sec−ブチル基、tert−ブチル基、iso−アミル基、tert−アミル基、もしくは2−エチルヘキシル基等の分枝鎖のアルキル基、又はクロロメチル基、2−フルオロエチル基、もしくは2,2,2−トリフルオロエチル基等のハロゲン化アルキル基が好適に挙げられる。
中でもメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、ウンデシル基、ドデシル基、iso−プロピル基,sec−ブチル基、tert−ブチル基、iso−アミル基、tert−アミル基、2−エチルヘキシル基、クロロメチル基、2−フルオロエチル基、又は2,2,2−トリフルオロエチル基が好ましく、メチル基、エチル基、n−プロピル基、n−ブチル基、iso−プロピル基,sec−ブチル基、クロロメチル基、2−フルオロエチル基、又は2,2,2−トリフルオロエチル基がより好ましく、メチル基、エチル基、n−プロピル基、n−ブチル基、iso−プロピル基、又はsec−ブチル基が更に好ましい。
Specific examples of R include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n- Linear alkyl group such as decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group or octadecyl group, iso-propyl group, sec-butyl group, tert-butyl group, Halogenation of branched chain alkyl groups such as iso-amyl group, tert-amyl group, or 2-ethylhexyl group, or chloromethyl group, 2-fluoroethyl group, or 2,2,2-trifluoroethyl group An alkyl group is preferred.
Among them, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, undecyl group, Dodecyl group, iso-propyl group, sec-butyl group, tert-butyl group, iso-amyl group, tert-amyl group, 2-ethylhexyl group, chloromethyl group, 2-fluoroethyl group, or 2,2,2- A trifluoroethyl group is preferred, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an iso-propyl group, a sec-butyl group, a chloromethyl group, a 2-fluoroethyl group, or 2,2,2- A trifluoroethyl group is more preferable, and a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an iso-propyl group, or a sec-butyl group is further preferable.

本発明で使用されるジアルキル硫酸としては、具体的に以下のものが挙げられる。
ジメチル硫酸、ジエチル硫酸、ジ−n−プロピル硫酸、ジ−n−ブチル硫酸、ジ−n−ペンチル硫酸、ジ−n−ヘキシル硫酸、ジ−n−ヘプチル硫酸、ジ−n−オクチル硫酸、ジ−n−ノニル硫酸、ジ−n−デシル硫酸、ジウンデシル硫酸、ジドデシル硫酸、ジトリデシル硫酸、ジテトラデシル硫酸、ジペンタデシル硫酸、ジヘキサデシル硫酸、ジヘプタデシル硫酸、ジオクタデシル硫酸、ジ−iso−プロピル硫酸、ジ−sec−ブチル硫酸、ジ−tert−ブチル硫酸、ジ−iso−アミル硫酸、ジ−tert−アミル硫酸、ジ−2−エチルヘキシル硫酸、ビス(クロロメチル)硫酸、ビス(2−フルオロエチル)硫酸、又はビス(2,2,2−トリフルオロエチル)硫酸等が好適に挙げられる。
それらの中でも、ジメチル硫酸、ジエチル硫酸、ジ−n−プロピル硫酸、ジ−n−ブチル硫酸、ジ−n−ペンチル硫酸、ジ−n−ヘキシル硫酸、ジ−n−ヘプチル硫酸、ジ−n−オクチル硫酸、ジ−n−ノニル硫酸、ジ−n−デシル硫酸、ジウンデシル硫酸、ジドデシル硫酸、ジ−iso−プロピル硫酸,ジ−sec−ブチル硫酸、ジ−tert−ブチル硫酸、ジ−iso−アミル硫酸、ジ−tert−アミル硫酸、ジ−2−エチルヘキシル硫酸、ビス(クロロメチル)硫酸、ビス(2−フルオロエチル)硫酸、又はビス(2,2,2−トリフルオロエチル)硫酸が好ましく、ジメチル硫酸、ジエチル硫酸、ジ−n−プロピル硫酸、ジ−n−ブチル硫酸、ジ−iso−プロピル硫酸,ジ−sec−ブチル硫酸、ビス(クロロメチル)硫酸、ビス(2−フルオロエチル)硫酸、又はビス(2,2,2−トリフルオロエチル)硫酸がより好ましく、ジメチル硫酸、ジエチル硫酸、ジ−n−プロピル硫酸、ジ−n−ブチル硫酸、ジ−iso−プロピル硫酸、又はジ−sec−ブチル硫酸が更に好ましい。
Specific examples of the dialkyl sulfuric acid used in the present invention include the following.
Dimethyl sulfate, diethyl sulfate, di-n-propyl sulfate, di-n-butyl sulfate, di-n-pentyl sulfate, di-n-hexyl sulfate, di-n-heptyl sulfate, di-n-octyl sulfate, di- n-nonyl sulfate, di-n-decyl sulfate, diundecyl sulfate, didodecyl sulfate, ditridecyl sulfate, ditetradecyl sulfate, dipentadecyl sulfate, dihexadecyl sulfate, diheptadecyl sulfate, dioctadecyl sulfate, di-iso-propyl sulfate, di-sec-butyl sulfate , Di-tert-butylsulfuric acid, di-iso-amylsulfuric acid, di-tert-amylsulfuric acid, di-2-ethylhexylsulfuric acid, bis (chloromethyl) sulfuric acid, bis (2-fluoroethyl) sulfuric acid, or bis (2, (2,2-trifluoroethyl) sulfuric acid and the like are preferred.
Among them, dimethyl sulfate, diethyl sulfate, di-n-propyl sulfate, di-n-butyl sulfate, di-n-pentyl sulfate, di-n-hexyl sulfate, di-n-heptyl sulfate, di-n-octyl Sulfuric acid, di-n-nonyl sulfate, di-n-decyl sulfate, diundecyl sulfate, didodecyl sulfate, di-iso-propyl sulfate, di-sec-butyl sulfate, di-tert-butyl sulfate, di-iso-amyl sulfate, Di-tert-amylsulfuric acid, di-2-ethylhexylsulfuric acid, bis (chloromethyl) sulfuric acid, bis (2-fluoroethyl) sulfuric acid, or bis (2,2,2-trifluoroethyl) sulfuric acid are preferred, dimethylsulfuric acid, Diethyl sulfate, di-n-propyl sulfate, di-n-butyl sulfate, di-iso-propyl sulfate, di-sec-butyl sulfate, bis (chloromethyl) sulfate, bi (2-Fluoroethyl) sulfuric acid or bis (2,2,2-trifluoroethyl) sulfuric acid is more preferred, and dimethylsulfuric acid, diethylsulfuric acid, di-n-propylsulfuric acid, di-n-butylsulfuric acid, di-iso- More preferred is propyl sulfuric acid or di-sec-butyl sulfuric acid.

一般式(II)で表されるアルカリ金属塩において、Mはリチウムイオン、ナトリウムイオン、又はカリウムイオンを示し、これらの中でリチウムイオン又はナトリウムイオンが好ましく、リチウムイオンがより好ましい。 In the alkali metal salt represented by the general formula (II), M + represents a lithium ion, a sodium ion, or a potassium ion. Among these, a lithium ion or a sodium ion is preferable, and a lithium ion is more preferable.

前記アルカリ金属塩において、Xはその共役酸の水中における第一酸解離定数(pKa1)が10以下のアニオン種を示し、pKa1が7以下のアニオン種がより好ましく、pKa1が5以下のアニオン種が更に好ましい。pKa1が10より大きいアニオン種の場合、Xの塩基性が強くなるため、副反応が進行して硫酸イオンが生成しやすい。
は、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜12の脂肪族カルボン酸アニオン、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数7〜18の芳香族カルボン酸アニオン、シュウ酸アニオン、ハロゲン原子のアニオン、又は炭酸アニオンが好適に挙げられる。これらの中でも、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜6の脂肪族カルボン酸アニオン、炭素数7〜12の芳香族カルボン酸アニオン、塩素アニオン、臭素アニオン、又は炭酸アニオンが好ましい。
In the alkali metal salt, X represents an anion species having a first acid dissociation constant (pKa1) of its conjugate acid in water of 10 or less, more preferably an anion species having pKa1 of 7 or less, and an anion species having pKa1 of 5 or less. Is more preferable. If pKa1 is greater than 10 anionic species, X - for basicity stronger, sulfate ion easily generated secondary reaction proceeds.
X represents an aliphatic carboxylate anion having 1 to 12 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom, and 7 to 7 carbon atoms in which at least one hydrogen atom may be substituted with a halogen atom. Preferred examples include 18 aromatic carboxylate anions, oxalate anions, halogen anions, or carbonate anions. Among these, at least one hydrogen atom may be substituted with a halogen atom, an aliphatic carboxylate anion having 1 to 6 carbon atoms, an aromatic carboxylate anion having 7 to 12 carbon atoms, a chlorine anion, a bromine anion, or Carbonate anions are preferred.

一般式(II)で表されるアルカリ金属塩の具体例としては、酢酸リチウム、酢酸ナトリウム、もしくは酢酸カリウム等の酢酸塩、ギ酸リチウム、ギ酸ナトリウム、もしくはギ酸カリウム等のギ酸塩、プロピオン酸リチウム、プロピオン酸ナトリウム、もしくはプロピオン酸カリウム等のプロピオン酸塩、トリフルオロ酢酸リチウム、トリフルオロ酢酸ナトリウム、もしくはトリフルオロ酢酸カリウム等のトリフルオロ酢酸塩、シュウ酸リチウムもしくはシュウ酸ナトリウム等のシュウ酸塩、安息香酸リチウム、安息香酸ナトリウム、もしくは安息香酸カリウム等の安息香酸塩、等のカルボン酸アルカリ金属塩、フッ化リチウム、フッ化ナトリウム、もしくはフッ化カリウム等のフッ化物、塩化リチウム、塩化ナトリウム、もしくは塩化カリウム等の塩化物、臭化リチウム、臭化ナトリウム、もしくは臭化カリウム等の臭化物、ヨウ化リチウム、ヨウ化ナトリウム、もしくはヨウ化カリウム等のヨウ化物等のハロゲン化アルカリ金属塩、又は炭酸リチウム、炭酸ナトリウム、もしくは炭酸カリウム等の炭酸塩、等の炭酸アルカリ金属塩等が好適に挙げられるが、これらに何ら限定されるものではない。   Specific examples of the alkali metal salt represented by the general formula (II) include acetates such as lithium acetate, sodium acetate, or potassium acetate, formates such as lithium formate, sodium formate, or potassium formate, lithium propionate, Propionate such as sodium propionate or potassium propionate, trifluoroacetate such as lithium trifluoroacetate, sodium trifluoroacetate or potassium trifluoroacetate, oxalate such as lithium oxalate or sodium oxalate, benzoate Carboxylic acid alkali metal salts such as lithium benzoate, sodium benzoate, or benzoate such as potassium benzoate, fluorides such as lithium fluoride, sodium fluoride, or potassium fluoride, lithium chloride, sodium chloride, or chloride Cali Chlorides such as lithium, bromides such as lithium bromide, sodium bromide, or potassium bromide, alkali metal halides such as iodides such as lithium iodide, sodium iodide, or potassium iodide, or lithium carbonate, Suitable examples include sodium carbonate or carbonates such as potassium carbonate, and alkali metal carbonates such as potassium carbonate, but are not limited thereto.

上記アルカリ金属塩の中でも酢酸リチウム、酢酸ナトリウム、ギ酸リチウム、ギ酸ナトリウム、プロピオン酸リチウム、プロピオン酸ナトリウム、トリフルオロ酢酸リチウム、トリフルオロ酢酸ナトリウム、シュウ酸リチウム、シュウ酸ナトリウム、安息香酸リチウム、安息香酸ナトリウム、フッ化リチウム、フッ化ナトリウム、塩化リチウム、塩化ナトリウム、臭化リチウム、臭化ナトリウム、炭酸リチウム、又は炭酸ナトリウムが好ましく、酢酸リチウム、酢酸ナトリウム、ギ酸リチウム、ギ酸ナトリウム、プロピオン酸リチウム、トリフルオロ酢酸リチウム、トリフルオロ酢酸ナトリウム、塩化リチウム、塩化ナトリウム、炭酸リチウム、又はナトリウムがより好ましく、酢酸リチウム、ギ酸リチウム、プロピオン酸リチウム、塩化リチウム、又は炭酸リチウムが更に好ましい。
上記アルカリ金属塩の中でも、リチウム塩はナトリウム塩、カリウム塩と比べ反応性が低いため副反応による硫酸イオンの生成が少なく、また、有機溶媒への溶解度が高く除去しやすいためである。
Among the alkali metal salts, lithium acetate, sodium acetate, lithium formate, sodium formate, lithium propionate, sodium propionate, lithium trifluoroacetate, sodium trifluoroacetate, lithium oxalate, sodium oxalate, lithium benzoate, benzoic acid Sodium, lithium fluoride, sodium fluoride, lithium chloride, sodium chloride, lithium bromide, sodium bromide, lithium carbonate, or sodium carbonate are preferred, and lithium acetate, sodium acetate, lithium formate, sodium formate, lithium propionate, More preferred are lithium fluoroacetate, sodium trifluoroacetate, lithium chloride, sodium chloride, lithium carbonate, or sodium, and lithium acetate, lithium formate, lithium propionate, lithium chloride Um, or lithium carbonate is more preferable.
Among the above alkali metal salts, lithium salts are less reactive than sodium salts and potassium salts, so that there is little production of sulfate ions due to side reactions, and they are highly soluble in organic solvents and are easy to remove.

アルカリ金属塩の使用量としては、その下限はモル数の合計が一般式(I)で表されるジアルキル硫酸1モルに対して、0.5モル以上であることが好ましく、0.7モル以上であることがより好ましく、0.9モル以上であることが更に好ましい。0.5モルより少ないと反応が十分に進行せず、収率が低下するためである。上限としては2モル以下が好ましく、1.5モル以下がより好ましく、1.1モル以下であることが更に好ましい。アルカリ金属塩の使用量が2モルより多いと副反応が進行しやすく、収率が低下してしまい、不純物が増加してしまうためである。   As the use amount of the alkali metal salt, the lower limit is preferably 0.5 mol or more, and 0.7 mol or more with respect to 1 mol of the dialkyl sulfuric acid whose total number of moles is represented by the general formula (I). It is more preferable that it is 0.9 mol or more. This is because if the amount is less than 0.5 mol, the reaction does not proceed sufficiently and the yield decreases. As an upper limit, 2 mol or less is preferable, 1.5 mol or less is more preferable, and it is still more preferable that it is 1.1 mol or less. This is because when the amount of the alkali metal salt used is more than 2 mol, the side reaction tends to proceed, the yield decreases, and the impurities increase.

本発明で使用される有機溶媒としては、アルコール、ニトリル、ケトン、スルホン、アミド、エーテル、又はエステル等が好適に挙げられ、中でもアルコール、ケトン、又はエーテルが好ましく、アルコールがより好ましい。   As the organic solvent used in the present invention, alcohols, nitriles, ketones, sulfones, amides, ethers, esters, and the like are preferably exemplified. Among them, alcohols, ketones, or ethers are preferable, and alcohols are more preferable.

前記有機溶媒としては具体的に以下のものが好適に挙げられる。
メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、もしくはsec−ブタノール等のアルコール、アセトニトリルもしくはプロピオニトリル等のニトリル、アセトン、メチルエチルケトン、もしくはメチルイソブチルケトン等のケトン、ジメチルスルホキシド等のスルホン、N,N−ジメチルホルムアミドもしくはN,N−ジメチルアセトアミド等のアミド、ジエチルエーテルもしくはテトラヒドロフラン等のエーテル、酢酸エチル、プロピオン酸エチル、炭酸ジメチル、炭酸ジエチル、もしくは炭酸エチルメチル等のエステル、トルエンもしくはキシレン等の芳香族、又はジクロロメタン、1,2−ジクロロエタン、もしくはo−ジクロロベンゼン等のハロゲン系炭化水素が好適に挙げられるが、反応を阻害しない溶媒であれば、何らこれらに限定されるものではない。
Specific examples of the organic solvent include the following.
Alcohol such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, or sec-butanol, nitrile such as acetonitrile or propionitrile, ketone such as acetone, methyl ethyl ketone, or methyl isobutyl ketone, sulfone such as dimethyl sulfoxide Amides such as N, N-dimethylformamide or N, N-dimethylacetamide, ethers such as diethyl ether or tetrahydrofuran, esters such as ethyl acetate, ethyl propionate, dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate, toluene or xylene Preferred examples include aromatic hydrocarbons such as dichloromethane and halogen-based hydrocarbons such as dichloromethane, 1,2-dichloroethane, and o-dichlorobenzene. If inhibition was not solvent, not intended to be limited thereto.

上記有機溶媒の中でも、メタノール、エタノール、n−プロパノール、もしくはn−ブタノール等のアルコール、アセトン、メチルエチルケトン、もしくはメチルイソブチルケトン等のケトン、又はジエチルエーテルもしくはテトラヒドロフラン等のエーテルが好ましく、メタノール、エタノール、n−プロパノール、又はn−ブタノール等のアルコールがより好ましく、メタノール又はエタノールが更に好ましい。   Among the above organic solvents, alcohols such as methanol, ethanol, n-propanol, or n-butanol, ketones such as acetone, methyl ethyl ketone, or methyl isobutyl ketone, or ethers such as diethyl ether or tetrahydrofuran are preferable, and methanol, ethanol, n Alcohol such as -propanol or n-butanol is more preferable, and methanol or ethanol is still more preferable.

前記有機溶媒としてアルコールを使用する場合は、特に下記一般式(III)で表されるアルコールを使用すると、原料のジアルキル硫酸や目的のアルキル硫酸塩と使用するアルコールとのエステル交換反応が進行し、純度が低下するおそれがないため好ましい。   When using an alcohol as the organic solvent, particularly when an alcohol represented by the following general formula (III) is used, a transesterification reaction between the starting dialkyl sulfuric acid or the target alkyl sulfate and the alcohol used proceeds. This is preferable because there is no risk of the purity being lowered.

Figure 2015140340
(式中、Rは一般式(I)のRと同義である。)
Figure 2015140340
(In the formula, R has the same meaning as R in formula (I).)

有機溶媒の使用量の下限は、一般式(I)で表されるジアルキル硫酸1質量部に対して、0.5質量部以上が好ましく、1質量部以上がより好ましい。有機溶媒の使用量の上限は、一般式(I)で表されるジアルキル硫酸1質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましい。   The lower limit of the amount of the organic solvent used is preferably 0.5 parts by mass or more and more preferably 1 part by mass or more with respect to 1 part by mass of the dialkyl sulfuric acid represented by the general formula (I). The upper limit of the amount of the organic solvent used is preferably 10 parts by mass or less and more preferably 5 parts by mass or less with respect to 1 part by mass of the dialkyl sulfuric acid represented by the general formula (I).

上記一般式(I)で表されるジアルキル硫酸と一般式(II)で表されるアルカリ金属塩との反応において、反応温度の上限としては、80℃以下が好ましく、70℃以下がより好ましく、60℃以下が特に好ましい。反応温度が80℃より高い場合、副反応が進行しやすくなるためである。下限としては、0℃以上が好ましく、5℃以上がより好ましく、10℃以上が特に好ましい。反応温度が0℃より低い場合、反応速度が大幅に低下するためである。ただし、使用する有機溶媒の沸点が80℃以下の場合、その有機溶媒の沸点を反応温度の上限とし、使用する有機溶媒の融点が0℃以上の場合、その有機溶媒の融点を反応温度の下限とする。   In the reaction of the dialkyl sulfuric acid represented by the general formula (I) and the alkali metal salt represented by the general formula (II), the upper limit of the reaction temperature is preferably 80 ° C. or less, more preferably 70 ° C. or less, 60 ° C. or lower is particularly preferable. This is because when the reaction temperature is higher than 80 ° C., the side reaction easily proceeds. As a minimum, 0 degreeC or more is preferable, 5 degreeC or more is more preferable, and 10 degreeC or more is especially preferable. This is because when the reaction temperature is lower than 0 ° C., the reaction rate is greatly reduced. However, when the boiling point of the organic solvent used is 80 ° C. or lower, the boiling point of the organic solvent is the upper limit of the reaction temperature. When the melting point of the organic solvent used is 0 ° C. or higher, the melting point of the organic solvent is the lower limit of the reaction temperature. And

反応時間としては、上記の反応温度や、アルカリ金属塩及び溶媒の使用量により上下するが、下限は0.5時間以上であることが好ましく、1時間以上であることがより好ましい。0.5時間未満では反応が十分に進行しないからである。一方で、上限は24時間以下であることが好ましく、16時間以下であることがより好ましい。24時間を超えてしまうと、副生成物である硫酸イオンが増加しやすくなるためである。   The reaction time varies depending on the reaction temperature and the amount of alkali metal salt and solvent used, but the lower limit is preferably 0.5 hours or more, and more preferably 1 hour or more. This is because the reaction does not proceed sufficiently in less than 0.5 hours. On the other hand, the upper limit is preferably 24 hours or less, and more preferably 16 hours or less. This is because if it exceeds 24 hours, sulfate ions as a by-product are likely to increase.

反応後の処理方法としては、反応溶媒と共にジアルキル硫酸を減圧留去するだけでも十分高純度なモノアルキル硫酸塩を得ることができるが、得られた結晶を溶媒中で洗浄し、モノアルキル硫酸塩の結晶を濾別する方法により、更に純度を高めることができる。   As a treatment method after the reaction, a sufficiently high-purity monoalkyl sulfate can be obtained only by distilling off the dialkyl sulfuric acid together with the reaction solvent under reduced pressure, but the obtained crystals are washed in a solvent to obtain a monoalkyl sulfate. The purity can be further increased by the method of filtering out the crystals.

上記処理に使用される溶媒としては、有機溶媒であれば何ら限定されない。具体的な溶媒としては、前記反応溶媒と同じものが好適に挙げられるが、アセトニトリル又はプロピオニトリル等のニトリル、ジエチルエーテル、ジイソプロピルエーテル、又はテトラヒドロフラン等のエーテル、酢酸エチル、プロピオン酸エチル、炭酸ジメチル、炭酸ジエチル又は炭酸エチルメチル等のエステル、トルエン又はキシレン等の芳香族、ジクロロメタン、1,2−ジクロロエタン、又はo−ジクロロベンゼン等のハロゲン系炭化水素が好ましく、酢酸エチル、プロピオン酸エチル、炭酸ジメチル、炭酸ジエチル、トルエン、又はキシレンがより好ましい。   As a solvent used for the said process, if it is an organic solvent, it will not be limited at all. Specific examples of the solvent include the same solvents as those described above, but nitriles such as acetonitrile and propionitrile, ethers such as diethyl ether, diisopropyl ether, and tetrahydrofuran, ethyl acetate, ethyl propionate, and dimethyl carbonate. Preferred are esters such as diethyl carbonate or ethyl methyl carbonate, aromatics such as toluene or xylene, and halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, or o-dichlorobenzene, ethyl acetate, ethyl propionate, dimethyl carbonate More preferred is diethyl carbonate, toluene, or xylene.

溶媒量としては、化合物及び溶媒種によって上下するが、下限はモノアルキル硫酸塩の結晶に対して0.5質量部以上が好ましく、1質量部以上がより好ましい。上限は20質量部以下であることが好ましく、10質量部以下であることがより好ましい。   The amount of the solvent varies depending on the compound and the solvent species, but the lower limit is preferably 0.5 parts by mass or more and more preferably 1 part by mass or more based on the monoalkyl sulfate crystal. The upper limit is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less.

操作としては、モノアルキル硫酸塩の結晶と溶媒を反応容器中で撹拌させた後濾過する方法や、フィルター上のモノアルキル硫酸塩に溶媒を振り掛け洗浄する方法等が挙げられるが、これらに何ら限定されるものではない。   Examples of the operation include a method in which the monoalkyl sulfate crystals and the solvent are stirred in the reaction vessel and then filtered, and a method in which the monoalkyl sulfate on the filter is sprinkled and washed, but is not limited thereto. Is not to be done.

本発明において製造されるモノアルキル硫酸塩の水分値としては、300ppm以下が好ましく、200ppm以下がより好ましく、100ppm以下が更に好ましい。また、含まれる硫酸イオン含量としては、1000ppm以下が好ましく、500ppm以下がより好ましく、200ppm以下が更に好ましい。   The water value of the monoalkyl sulfate produced in the present invention is preferably 300 ppm or less, more preferably 200 ppm or less, and still more preferably 100 ppm or less. Moreover, as a sulfate ion content contained, 1000 ppm or less is preferable, 500 ppm or less is more preferable, and 200 ppm or less is still more preferable.

モノアルキル硫酸塩の純度、硫酸イオン、塩化物イオン、酢酸イオン、及び炭酸イオンの含有量はイオンクロマトグラフィーを用いて測定した。また、水分はカールフィッシャー水分計を用いて測定した。   The purity of monoalkyl sulfate, and the contents of sulfate ion, chloride ion, acetate ion, and carbonate ion were measured using ion chromatography. The moisture was measured using a Karl Fischer moisture meter.

〔実施例1〕モノメチル硫酸リチウムの製造
温度計、還流冷却器を備えた反応容器にメタノール10.00gと塩化リチウム3.39g(80.0mmol)を加え、5℃以下に冷却した。これにジメチル硫酸10.09g(80.0mmol)を内温20℃以下で10分かけて滴下し、その後、50℃で1時間撹拌した。反応終了後、炭酸ジメチル17.00gを加え、反応液を22.62gまで減圧濃縮し、得られた濃縮物に炭酸ジメチル5.70gを添加し、室温で1時間撹拌した。結晶を濾別、50℃で減圧乾燥し、目的のモノメチル硫酸リチウムの白色結晶5.48gを得た(収率58%)。得られたモノメチル硫酸リチウムの分析結果を以下に示す。
純度:99.73%、硫酸イオン:78ppm、塩化物イオン:15ppm、水分:25ppm
[Example 1] Production of lithium monomethyl sulfate In a reaction vessel equipped with a thermometer and a reflux condenser, 10.00 g of methanol and 3.39 g (80.0 mmol) of lithium chloride were added and cooled to 5 ° C or lower. To this was added dropwise 10.09 g (80.0 mmol) of dimethylsulfuric acid at an internal temperature of 20 ° C. or lower over 10 minutes, and then the mixture was stirred at 50 ° C. for 1 hour. After completion of the reaction, 17.00 g of dimethyl carbonate was added, the reaction solution was concentrated under reduced pressure to 22.62 g, 5.70 g of dimethyl carbonate was added to the resulting concentrate, and the mixture was stirred at room temperature for 1 hour. The crystals were separated by filtration and dried under reduced pressure at 50 ° C. to obtain 5.48 g of white crystals of the desired lithium monomethyl sulfate (yield 58%). The analysis results of the obtained lithium monomethyl sulfate are shown below.
Purity: 99.73%, sulfate ion: 78 ppm, chloride ion: 15 ppm, moisture: 25 ppm

〔実施例2〕モノメチル硫酸リチウムの製造
温度計、還流冷却器を備えた反応容器にメタノール10.00gと酢酸リチウム5.28g(80.0mmol)を加え、5℃以下に冷却した。これにジメチル硫酸10.09g(80.0mmol)を内温20℃以下で10分かけて滴下し、その後、50℃で5時間撹拌した。反応終了後、炭酸ジメチル17.00gを加え、反応液を23.55gまで減圧濃縮し、得られた濃縮物に炭酸ジメチル4.77gを添加し、室温で1時間撹拌した。結晶を濾別、50℃で減圧乾燥し、目的のモノメチル硫酸リチウムの白色結晶5.66gを得た(収率60%)。得られたモノメチル硫酸リチウムの分析結果を以下に示す。
純度:99.80%、硫酸イオン:52ppm、酢酸イオン:112ppm、水分:18ppm
[Example 2] Production of lithium monomethyl sulfate In a reaction vessel equipped with a thermometer and a reflux condenser, 10.00 g of methanol and 5.28 g (80.0 mmol) of lithium acetate were added and cooled to 5 ° C or lower. To this was added dropwise 10.09 g (80.0 mmol) of dimethyl sulfate at an internal temperature of 20 ° C. or less over 10 minutes, and then the mixture was stirred at 50 ° C. for 5 hours. After completion of the reaction, 17.00 g of dimethyl carbonate was added, the reaction solution was concentrated under reduced pressure to 23.55 g, 4.77 g of dimethyl carbonate was added to the resulting concentrate, and the mixture was stirred at room temperature for 1 hour. The crystals were separated by filtration and dried under reduced pressure at 50 ° C. to obtain 5.66 g of the desired white monomethyl lithium sulfate crystals (yield 60%). The analysis results of the obtained lithium monomethyl sulfate are shown below.
Purity: 99.80%, sulfate ion: 52 ppm, acetate ion: 112 ppm, moisture: 18 ppm

〔実施例3〕モノメチル硫酸リチウムの製造
温度計、還流冷却器を備えた反応容器にメタノール10.00gと炭酸リチウム2.96g(40.0mmol)を加えた。これにジメチル硫酸10.09g(80.0mmol)を室温で10分かけて滴下し、その後、50℃で15時間撹拌した。反応終了後、炭酸ジメチル17.00gを加え、反応液を21.90gまで減圧濃縮し、得られた濃縮物に炭酸ジメチル6.42gを添加し、室温で1時間撹拌した。結晶を濾別、50℃で減圧乾燥し、目的のモノメチル硫酸リチウムの白色結晶5.19gを得た(収率55%)。得られたモノメチル硫酸リチウムの分析結果を以下に示す。
純度:99.65%、硫酸イオン:63ppm、炭酸イオン:232ppm、水分:89ppm
[Example 3] Production of lithium monomethyl sulfate To a reaction vessel equipped with a thermometer and a reflux condenser, 10.00 g of methanol and 2.96 g (40.0 mmol) of lithium carbonate were added. To this was added dropwise 10.09 g (80.0 mmol) of dimethyl sulfate at room temperature over 10 minutes, and then the mixture was stirred at 50 ° C. for 15 hours. After completion of the reaction, 17.00 g of dimethyl carbonate was added, the reaction solution was concentrated under reduced pressure to 21.90 g, 6.42 g of dimethyl carbonate was added to the resulting concentrate, and the mixture was stirred at room temperature for 1 hour. The crystals were separated by filtration and dried under reduced pressure at 50 ° C. to obtain 5.19 g of the target white monomethyl lithium sulfate crystals (yield 55%). The analysis results of the obtained lithium monomethyl sulfate are shown below.
Purity: 99.65%, sulfate ion: 63 ppm, carbonate ion: 232 ppm, moisture: 89 ppm

〔実施例4〕モノエチル硫酸リチウムの製造
温度計、還流冷却器を備えた反応容器にエタノール12.00gと酢酸リチウム5.28g(80.0mmol)を加え、5℃以下に冷却した。これにジエチル硫酸12.33g(80.0mmol)を内温20℃以下で10分かけて滴下し、その後、50℃で10時間撹拌した。反応終了後、炭酸ジエチル21.00gを加え、反応液を25.13gまで減圧濃縮し、得られた濃縮物に炭酸ジエチル6.55gを添加し、室温で1時間撹拌した。結晶を濾別、50℃で減圧乾燥し、目的のモノエチル硫酸リチウムの白色結晶6.65gを得た(収率63%)。得られたモノエチル硫酸リチウムの分析結果を以下に示す。
純度:99.83%、硫酸イオン:69ppm、酢酸イオン:150ppm、水分:23ppm
[Example 4] Production of lithium monoethyl sulfate To a reaction vessel equipped with a thermometer and a reflux condenser, 12.00 g of ethanol and 5.28 g (80.0 mmol) of lithium acetate were added and cooled to 5 ° C or lower. To this, 12.33 g (80.0 mmol) of diethyl sulfuric acid was added dropwise at an internal temperature of 20 ° C. or lower over 10 minutes, and then stirred at 50 ° C. for 10 hours. After completion of the reaction, 21.00 g of diethyl carbonate was added, the reaction solution was concentrated under reduced pressure to 25.13 g, 6.55 g of diethyl carbonate was added to the resulting concentrate, and the mixture was stirred at room temperature for 1 hour. The crystals were separated by filtration and dried under reduced pressure at 50 ° C. to obtain 6.65 g of the target white crystals of lithium monoethyl sulfate (yield 63%). The analysis results of the obtained lithium monoethyl sulfate are shown below.
Purity: 99.83%, sulfate ion: 69 ppm, acetate ion: 150 ppm, moisture: 23 ppm

〔実施例5〕モノ−iso−プロピル硫酸リチウムの製造
温度計、還流冷却器を備えた反応容器にイソプロパノール15.00gと酢酸リチウム5.28g(80.0mmol)を加え、5℃以下に冷却した。これにジ−iso−プロピル硫酸14.58g(80.0mmol)を内温20℃以下で10分かけて滴下し、その後、50℃で10時間撹拌した。反応終了後、炭酸−iso−プロピル25.00gを加え、反応液を28.35gまで減圧濃縮し、得られた濃縮物に炭酸ジ−iso−プロピル6.72gを添加し、室温で1時間撹拌した。結晶を濾別、50℃で減圧乾燥し、目的のモノ−iso−プロピル硫酸リチウムの白色結晶7.72gを得た(収率66%)。得られたモノ−iso−プロピル硫酸リチウムの分析結果を以下に示す。
純度:99.69%、硫酸イオン:91ppm、酢酸イオン:191ppm、水分:28ppm
[Example 5] Production of lithium mono-iso-propyl sulfate To a reaction vessel equipped with a thermometer and a reflux condenser, 15.00 g of isopropanol and 5.28 g (80.0 mmol) of lithium acetate were added and cooled to 5 ° C or lower. . Di-iso-propylsulfuric acid 14.58g (80.0mmol) was dripped at this over 10 minutes at the internal temperature of 20 degrees C or less, Then, it stirred at 50 degreeC for 10 hours. After completion of the reaction, 25.00 g of carbonic acid-iso-propyl was added, the reaction solution was concentrated under reduced pressure to 28.35 g, and 6.72 g of di-iso-propyl carbonate was added to the resulting concentrate, followed by stirring at room temperature for 1 hour. did. The crystals were separated by filtration and dried under reduced pressure at 50 ° C. to obtain 7.72 g of the target white mono-iso-propyl lithium sulfate crystals (yield 66%). The analysis results of the obtained mono-iso-propyl lithium sulfate are shown below.
Purity: 99.69%, sulfate ion: 91 ppm, acetate ion: 191 ppm, moisture: 28 ppm

〔実施例6〕モノメチル硫酸ナトリウムの製造
温度計、還流冷却器を備えた反応容器にメタノール10.00gと酢酸ナトリウム6.56g(80.0mmol)を加え、5℃以下に冷却した。これにジメチル硫酸10.09g(80.0mmol)を内温20℃以下で10分かけて滴下し、その後、50℃で5時間撹拌した。反応終了後、炭酸ジメチル17.00gを加え、反応液を25.32gまで減圧濃縮し、得られた濃縮物に炭酸ジメチル6.87gを添加し、室温で1時間撹拌した。結晶を濾別、50℃で減圧乾燥し、目的のモノメチル硫酸ナトリウムの白色結晶6.55gを得た(収率61%)。得られたモノメチル硫酸ナトリウムの分析結果を以下に示す。
純度:99.53%、硫酸イオン:345ppm、酢酸イオン:273ppm、水分:33ppm
[Example 6] Production of sodium monomethyl sulfate 10.00 g of methanol and 6.56 g (80.0 mmol) of sodium acetate were added to a reaction vessel equipped with a thermometer and a reflux condenser, and cooled to 5 ° C or lower. To this was added dropwise 10.09 g (80.0 mmol) of dimethyl sulfate at an internal temperature of 20 ° C. or less over 10 minutes, and then the mixture was stirred at 50 ° C. for 5 hours. After completion of the reaction, 17.00 g of dimethyl carbonate was added, the reaction solution was concentrated under reduced pressure to 25.32 g, 6.87 g of dimethyl carbonate was added to the resulting concentrate, and the mixture was stirred at room temperature for 1 hour. The crystals were separated by filtration and dried under reduced pressure at 50 ° C. to obtain 6.55 g of the desired white sodium monomethyl sulfate crystals (yield 61%). The analysis results of the obtained sodium monomethyl sulfate are shown below.
Purity: 99.53%, sulfate ion: 345 ppm, acetate ion: 273 ppm, moisture: 33 ppm

〔実施例7〕モノエチル硫酸ナトリウムの製造
温度計、還流冷却器を備えた反応容器にエタノール12.00gと酢酸ナトリウム6.56g(80.0mmol)を加え、5℃以下に冷却した。これにジエチル硫酸12.33g(80.0mmol)を内温20℃以下で10分かけて滴下し、その後、50℃で10時間撹拌した。反応終了後、炭酸ジエチル21.00gを加え、反応液を26.30gまで減圧濃縮し、得られた濃縮物に炭酸ジエチル9.25gを添加し、室温で1時間撹拌した。結晶を濾別、50℃で減圧乾燥し、目的のモノエチル硫酸リチウムの白色結晶7.70gを得た(収率65%)。得られたモノエチル硫酸ナトリウムの分析結果を以下に示す。
純度:99.59%、硫酸イオン:287ppm、酢酸イオン:357ppm、水分:27ppm
[Example 7] Production of sodium monoethyl sulfate To a reaction vessel equipped with a thermometer and a reflux condenser, 12.00 g of ethanol and 6.56 g (80.0 mmol) of sodium acetate were added and cooled to 5 ° C or lower. To this, 12.33 g (80.0 mmol) of diethyl sulfuric acid was added dropwise at an internal temperature of 20 ° C. or lower over 10 minutes, and then stirred at 50 ° C. for 10 hours. After completion of the reaction, 21.00 g of diethyl carbonate was added, the reaction solution was concentrated under reduced pressure to 26.30 g, 9.25 g of diethyl carbonate was added to the resulting concentrate, and the mixture was stirred at room temperature for 1 hour. The crystals were separated by filtration and dried under reduced pressure at 50 ° C. to obtain 7.70 g of the target white crystals of lithium monoethyl sulfate (yield 65%). The analysis results of the obtained sodium monoethyl sulfate are shown below.
Purity: 99.59%, sulfate ion: 287 ppm, acetate ion: 357 ppm, moisture: 27 ppm

〔実施例8〕モノメチル硫酸カリウムの製造
温度計、還流冷却器を備えた反応容器にメタノール10.00gと酢酸カリウム7.85g(80.0mmol)を加え、5℃以下に冷却した。これにジメチル硫酸10.09g(80.0mmol)を内温20℃以下で10分かけて滴下し、その後、50℃で5時間撹拌した。反応終了後、炭酸ジメチル17.00gを加え、反応液を27.67gまで減圧濃縮し、得られた濃縮物に炭酸ジメチル8.39gを添加し、室温で1時間撹拌した。結晶を濾別、50℃で減圧乾燥し、目的のモノメチル硫酸カリウムの白色結晶7.57gを得た(収率63%)。得られたモノメチル硫酸カリウムの分析結果を以下に示す。
純度:99.47%、硫酸イオン:408ppm、酢酸イオン:319ppm、水分:43ppm
[Example 8] Production of potassium monomethyl sulfate To a reaction vessel equipped with a thermometer and a reflux condenser, 10.00 g of methanol and 7.85 g (80.0 mmol) of potassium acetate were added and cooled to 5 ° C or lower. To this was added dropwise 10.09 g (80.0 mmol) of dimethyl sulfate at an internal temperature of 20 ° C. or less over 10 minutes, and then the mixture was stirred at 50 ° C. for 5 hours. After completion of the reaction, 17.00 g of dimethyl carbonate was added, the reaction solution was concentrated under reduced pressure to 27.67 g, 8.39 g of dimethyl carbonate was added to the resulting concentrate, and the mixture was stirred at room temperature for 1 hour. The crystals were separated by filtration and dried under reduced pressure at 50 ° C. to obtain 7.57 g of white monomethyl potassium sulfate crystals (yield 63%). The analysis results of the obtained potassium monomethyl sulfate are shown below.
Purity: 99.47%, sulfate ion: 408 ppm, acetate ion: 319 ppm, moisture: 43 ppm

〔比較例1〕モノメチル硫酸リチウムの製造
温度計、還流冷却器を備えた反応容器に水酸化リチウム一水和物3.29g(78.4mmol)に、水36g、ジメチル硫酸10.09g(80.0mmol)を加え、70℃で15分撹拌した。室温まで冷却し反応物に、ヘキサン20mLを添加、撹拌し、過剰のジメチル硫酸を除去する操作を3回繰り返した。その後、減圧乾燥し、モノメチル硫酸リチウム9.06gを得た(収率96%)。得られたモノメチル硫酸リチウムの分析結果を以下に示す。
純度=98.60%、硫酸イオン:10900ppm、水分:2200ppm
〔比較例2〕モノメチル硫酸ナトリウムの製造
温度計、還流冷却器を備えた反応容器に水酸化ナトリウム3.14g(78.4mmol)に、水36g、ジメチル硫酸10.09g(80.0mmol)を加え、70℃で15分撹拌した。室温まで冷却し反応物に、ヘキサン20mLを添加、撹拌し、過剰のジメチル硫酸を除去する操作を3回繰り返した。その後、減圧乾燥し、モノメチル硫酸リチウム10.09gを得た(収率94%)。得られたモノメチル硫酸リチウムの分析結果を以下に示す。
純度=98.12%、硫酸イオン:15400ppm、水分:3100ppm
[Comparative Example 1] Production of lithium monomethyl sulfate In a reaction vessel equipped with a thermometer and a reflux condenser, 3.29 g (78.4 mmol) of lithium hydroxide monohydrate, 36 g of water and 10.09 g (80. 0 mmol) was added and the mixture was stirred at 70 ° C. for 15 minutes. The operation of cooling to room temperature and adding 20 mL of hexane to the reaction product and stirring to remove excess dimethyl sulfate was repeated three times. Then, it dried under reduced pressure and obtained 9.06 g of lithium monomethyl sulfate (yield 96%). The analysis results of the obtained lithium monomethyl sulfate are shown below.
Purity = 98.60%, sulfate ion: 10900 ppm, moisture: 2200 ppm
[Comparative Example 2] Production of sodium monomethyl sulfate To a reaction vessel equipped with a thermometer and a reflux condenser, 3.14 g (78.4 mmol) of sodium hydroxide was added 36 g of water and 10.09 g (80.0 mmol) of dimethyl sulfate. And stirred at 70 ° C. for 15 minutes. The operation of cooling to room temperature and adding 20 mL of hexane to the reaction product and stirring to remove excess dimethyl sulfate was repeated three times. Thereafter, it was dried under reduced pressure to obtain 10.09 g of lithium monomethyl sulfate (yield 94%). The analysis results of the obtained lithium monomethyl sulfate are shown below.
Purity = 98.12%, sulfate ion: 15400 ppm, moisture: 3100 ppm

本発明によれば、ジアルキル硫酸とアルカリ金属塩を有機溶媒中で反応させることにより、高純度なモノアルキル硫酸塩を製造することができる。   According to the present invention, a high-purity monoalkyl sulfate can be produced by reacting a dialkyl sulfuric acid and an alkali metal salt in an organic solvent.

Claims (6)

一般式(I)で表されるジアルキル硫酸と一般式(II)で表されるアルカリ金属塩を有機溶媒中で反応させることを特徴とするモノアルキル硫酸塩の製造方法。
Figure 2015140340
Figure 2015140340
(式中、Rは炭素数1〜18のアルキル基又は炭素数1〜18のハロアルキル基を示し、Mはリチウムイオン、ナトリウムイオン、又はカリウムイオンを示し、Xはその共役酸の水中における第一酸解離定数(pKa1)が10以下のアニオン種を示す。)
A method for producing a monoalkyl sulfate, comprising reacting a dialkyl sulfate represented by the general formula (I) and an alkali metal salt represented by the general formula (II) in an organic solvent.
Figure 2015140340
Figure 2015140340
(In the formula, R represents an alkyl group having 1 to 18 carbon atoms or a haloalkyl group having 1 to 18 carbon atoms, M + represents a lithium ion, a sodium ion, or a potassium ion, and X represents the conjugate acid in water. (The first acid dissociation constant (pKa1) indicates an anion species of 10 or less.)
前記一般式(II)において、Xが、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数1〜12の脂肪族カルボン酸アニオン、少なくとも一つの水素原子がハロゲン原子で置換されていてもよい炭素数7〜18の芳香族カルボン酸アニオン、シュウ酸アニオン、ハロゲン原子のアニオン、及び炭酸アニオンから選ばれる一種であることを特徴とする請求項1に記載のモノアルキル硫酸塩の製造方法。 In the general formula (II), X - is at least one hydrogen atom is an aliphatic carboxylic acid anion having 1 to 12 carbon atoms which may be substituted with a halogen atom, at least one hydrogen atom is replaced with a halogen atom The monoalkyl sulfate according to claim 1, wherein the monoalkyl sulfate is a kind selected from an aromatic carboxylate anion having 7 to 18 carbon atoms, an oxalate anion, an anion of a halogen atom, and a carbonate anion. Production method. 前記一般式(II)において、Mがリチウムイオンであることを特徴とする請求項1に記載のモノアルキル硫酸塩の製造方法。 In the said general formula (II), M <+> is a lithium ion, The manufacturing method of the monoalkyl sulfate of Claim 1 characterized by the above-mentioned. 前記有機溶媒が、一般式(III)で表されるアルコールであることを特徴とする請求項1に記載のモノアルキル硫酸塩の製造方法。
Figure 2015140340
(式中、Rは一般式(I)のRと同義である)
The method for producing a monoalkyl sulfate according to claim 1, wherein the organic solvent is an alcohol represented by the general formula (III).
Figure 2015140340
(Wherein R has the same meaning as R in formula (I))
モノアルキル硫酸塩の水分が300ppm以下であることを特徴とする請求項1〜4のいずれかに記載のモノアルキル硫酸塩の製造方法。   The water content of a monoalkyl sulfate is 300 ppm or less, The manufacturing method of the monoalkyl sulfate in any one of Claims 1-4 characterized by the above-mentioned. モノアルキル硫酸塩中の硫酸イオン含量が1000ppm以下であることを特徴とする請求項1〜5のいずれかに記載のモノアルキル硫酸塩の製造方法。   The method for producing a monoalkyl sulfate according to any one of claims 1 to 5, wherein the sulfate content in the monoalkyl sulfate is 1000 ppm or less.
JP2014015960A 2014-01-30 2014-01-30 Method for producing monoalkyl sulfate Active JP6206220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015960A JP6206220B2 (en) 2014-01-30 2014-01-30 Method for producing monoalkyl sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015960A JP6206220B2 (en) 2014-01-30 2014-01-30 Method for producing monoalkyl sulfate

Publications (2)

Publication Number Publication Date
JP2015140340A true JP2015140340A (en) 2015-08-03
JP6206220B2 JP6206220B2 (en) 2017-10-04

Family

ID=53770937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015960A Active JP6206220B2 (en) 2014-01-30 2014-01-30 Method for producing monoalkyl sulfate

Country Status (1)

Country Link
JP (1) JP6206220B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107868053A (en) * 2016-09-22 2018-04-03 深圳新宙邦科技股份有限公司 A kind of preparation method of the hydrocarbyl carbonate salt of sulfuric acid one
WO2019082543A1 (en) * 2017-10-25 2019-05-02 ダイキン工業株式会社 Electrolyte solution, electrochemical device, and lithium ion secondary battery and module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250718A (en) * 1992-09-28 1993-10-05 Shell Oil Company Process for the preparation of secondary alkyl sulfate-containing surfactant compositions
JPH07507284A (en) * 1992-05-28 1995-08-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing surfactant composition containing secondary alkyl sulfate
JPH0841009A (en) * 1994-07-28 1996-02-13 Taoka Chem Co Ltd Production of high-purity monoalkyl sulfate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07507284A (en) * 1992-05-28 1995-08-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing surfactant composition containing secondary alkyl sulfate
US5250718A (en) * 1992-09-28 1993-10-05 Shell Oil Company Process for the preparation of secondary alkyl sulfate-containing surfactant compositions
JPH0841009A (en) * 1994-07-28 1996-02-13 Taoka Chem Co Ltd Production of high-purity monoalkyl sulfate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF ORGANIC CHEMISTRY, vol. volume 71, number 19, JPN6017029707, 2006, pages 7473 - 7476 *
JOURNAL OF ORGANIC CHEMISTRY, vol. volume 75, number 18, JPN6017029708, 2010, pages 6149 - 6153 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107868053A (en) * 2016-09-22 2018-04-03 深圳新宙邦科技股份有限公司 A kind of preparation method of the hydrocarbyl carbonate salt of sulfuric acid one
CN107868053B (en) * 2016-09-22 2021-05-14 深圳新宙邦科技股份有限公司 Preparation method of alkyl sulfate
WO2019082543A1 (en) * 2017-10-25 2019-05-02 ダイキン工業株式会社 Electrolyte solution, electrochemical device, and lithium ion secondary battery and module
CN111247681A (en) * 2017-10-25 2020-06-05 大金工业株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and assembly
JP2021141069A (en) * 2017-10-25 2021-09-16 ダイキン工業株式会社 Manufacturing method of ethyllithium sulfate
EP4007031A1 (en) * 2017-10-25 2022-06-01 Daikin Industries, Ltd. Method for producing lithium ethyl sulfate
JP7177367B2 (en) 2017-10-25 2022-11-24 ダイキン工業株式会社 Method for producing lithium ethyl sulfate

Also Published As

Publication number Publication date
JP6206220B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6426226B2 (en) Crystal form of 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
US20110034716A1 (en) Sulfonylimide salt and method for producing the same
JP6206220B2 (en) Method for producing monoalkyl sulfate
US9540331B2 (en) Preparation method of dexmedetomidine intermediate
WO2011040497A9 (en) Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
US9738608B2 (en) Synthesis of lactam based ionic liquid
US20200283401A1 (en) Novel method for preparing (2r)-2-(2-methoxyphenyl)-2-(oxane-4-yloxy)ethane-1-ol compound, and intermediate used therein
JP5783769B2 (en) Method for producing barium alkanedisulfonate and method for producing alkanedisulfonic acid
JP5816700B2 (en) Process for producing β-mercaptocarboxylic acid
JP2010138087A (en) Method for producing n,n,n-trialkyladamantane ammonium alkyl carbonate
EP3424896B1 (en) Method for producing liquid composition containing monoetherate, liquid composition, and method for producing polymerizable compound
JP5186910B2 (en) Method for producing tris (perfluoroalkanesulfonyl) methidoate
EP3181545B1 (en) Process for the preparation of ospemifene
JP6577317B2 (en) Method for producing fluorosulfonylimide compound
CN111051278B (en) Method for producing perfluoroalkyl sulfimide metal salt
JP5798141B2 (en) Production method of high-purity tartaric acid dialkyl ester
US20140339096A1 (en) Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
US9249169B2 (en) Process for the preparation of phosphonium sulfonates
JP6451496B2 (en) Method for producing diphenyl carbonate, diphenyl carbonate obtained by the production method, polycarbonate produced from the diphenyl carbonate, catalyst for producing diphenyl carbonate, method for producing the catalyst
WO2017150244A1 (en) Method for producing perfluoroalkane sulfonyl imide acid metal salt
US10472312B2 (en) Method for producing phenoxyethanol derivative
US9206119B2 (en) Process for preparing β-mercaptocarboxylic acid
JP2016169176A (en) Method for producing n-(2-hydroxyethyl) carbazoles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6206220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350