JP2015140264A - Functional film, and method for producing the same - Google Patents

Functional film, and method for producing the same Download PDF

Info

Publication number
JP2015140264A
JP2015140264A JP2014012352A JP2014012352A JP2015140264A JP 2015140264 A JP2015140264 A JP 2015140264A JP 2014012352 A JP2014012352 A JP 2014012352A JP 2014012352 A JP2014012352 A JP 2014012352A JP 2015140264 A JP2015140264 A JP 2015140264A
Authority
JP
Japan
Prior art keywords
functional film
polymer
producing
graphene
film according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014012352A
Other languages
Japanese (ja)
Other versions
JP6267524B2 (en
Inventor
博之 野本
Hiroyuki Nomoto
博之 野本
深谷 重一
Juichi Fukaya
重一 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2014012352A priority Critical patent/JP6267524B2/en
Publication of JP2015140264A publication Critical patent/JP2015140264A/en
Application granted granted Critical
Publication of JP6267524B2 publication Critical patent/JP6267524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a functional film which has high water repellency and is made inexpensive, and to provide a method for producing the functional film.SOLUTION: The method for producing the functional film comprises the steps of: preparing the functional film in which graphene nanoribbons are assembled, and a polycyclic aromatic compound in which a halogen is bonded to at least two carbons; subjecting the polycyclic aromatic compound to a radical polymerization reaction to produce a polymer; and subjecting aromatic rings in the produced polymer to a dehydrogenation-condensation-cyclization reaction to grow the polymer anisotropically so that the functional film, in which graphene nanoribbons are assembled, can be formed.

Description

本発明は、機能性膜及びその製造方法に関する。特に、グラフェンナノリボンが集合してなる、機能性膜及びその製造方法に関する。   The present invention relates to a functional film and a manufacturing method thereof. In particular, the present invention relates to a functional film formed by gathering graphene nanoribbons and a method for producing the same.

近年、黒鉛、グラフェン、カーボンブラック又はカーボンナノチューブなどの炭素材料を構成成分とした膜あるいはフィルムが、耐久性や導電性などの様々な機能を有するとして注目を集めている。   In recent years, a film or film containing a carbon material such as graphite, graphene, carbon black, or carbon nanotube as a constituent component has attracted attention as having various functions such as durability and conductivity.

例えば、下記特許文献1では、カーボンナノチューブとポリウレタン樹脂とを含有する表面保護フィルムが開示されている。上記表面保護フィルムは、透明性や帯電防止性に優れるとされている。   For example, Patent Document 1 below discloses a surface protective film containing a carbon nanotube and a polyurethane resin. The surface protective film is said to be excellent in transparency and antistatic properties.

特開2007−137052号公報JP 2007-137052 A

しかしながら、特許文献1のフィルムは、透明性、帯電防止性に優れるものの、ポリウレタンを含有しているため、撥水性が不十分であった。また、高価なカーボンナノチューブを含有するため、コストが高いという問題点があった。   However, although the film of Patent Document 1 is excellent in transparency and antistatic properties, it has insufficient water repellency because it contains polyurethane. Further, since expensive carbon nanotubes are contained, there is a problem that the cost is high.

本発明の目的は、撥水性が高く、かつ安価な機能性膜及びその製造方法を提供することにある。   An object of the present invention is to provide a functional film having high water repellency and a low cost, and a method for producing the same.

本発明に係る機能性膜は、グラフェンナノリボンが集合してなる。   The functional film according to the present invention is formed by aggregating graphene nanoribbons.

本発明に係る機能性膜のある特定の局面では、上記グラフェンナノリボンの一部が、上記機能性膜の厚み方向に、突起状に延びている。   In a specific aspect of the functional film according to the present invention, a part of the graphene nanoribbon extends in a protruding shape in the thickness direction of the functional film.

本発明に係る機能性膜の他の特定の局面では、上記グラフェンナノリボンの主面同士が重なるように集合している。   In another specific aspect of the functional film according to the present invention, the principal surfaces of the graphene nanoribbons are assembled so as to overlap each other.

本発明に係る機能性膜は、好ましくは、BET比表面積が10cm/g以上である。 The functional film according to the present invention preferably has a BET specific surface area of 10 cm 2 / g or more.

本発明に係る機能性膜は、好ましくは、上記グラフェンナノリボンの長さが5〜200nmであり、幅が0.4〜10nmである。   In the functional film according to the present invention, preferably, the graphene nanoribbon has a length of 5 to 200 nm and a width of 0.4 to 10 nm.

本発明に係る機能性膜は、好ましくは、撥水性膜である。   The functional film according to the present invention is preferably a water-repellent film.

本発明に係る機能性膜は、好ましくは、撥油性膜である。   The functional film according to the present invention is preferably an oil repellent film.

本発明の他の広い局面では、本発明に従って構成されている機能性膜の製造方法が提供される。本発明の製造方法は、少なくとも2個の炭素にハロゲンが結合している、多環芳香族化合物を用意する工程と、上記多環芳香族化合物を重合することによりポリマーを生成する工程と、上記ポリマーを生成すると共に、上記ポリマー内の芳香環を脱水素縮環反応させることにより、上記ポリマーを異方成長させ、グラフェンナノリボンが集合してなる機能性膜を形成する工程とを備える。   In another broad aspect of the present invention, a method for producing a functional membrane constructed in accordance with the present invention is provided. The production method of the present invention includes a step of preparing a polycyclic aromatic compound in which halogen is bonded to at least two carbons, a step of producing a polymer by polymerizing the polycyclic aromatic compound, And forming a functional film in which graphene nanoribbons are assembled by anisotropically growing the polymer by dehydrogenating and condensing an aromatic ring in the polymer.

本発明の製造方法のある特定の局面では、上記多環芳香族化合物を重合することによりポリマーを生成する工程と、上記ポリマーを生成すると共に、上記ポリマー内の芳香環を脱水素縮環反応させることにより、上記ポリマーを異方成長させ、グラフェンナノリボンが集合してなる機能性膜を形成する工程とが、CVD法によって行われる。上記重合は、好ましくはラジカル重合である。   In a specific aspect of the production method of the present invention, the step of producing a polymer by polymerizing the polycyclic aromatic compound, the polymer is produced, and the aromatic ring in the polymer is dehydrogenated and condensed. Thus, a step of forming the functional film formed by anisotropically growing the polymer and collecting graphene nanoribbons is performed by a CVD method. The polymerization is preferably radical polymerization.

本発明に係る機能性膜は、グラフェンナノリボンが集合してなる。従って、本発明によれば、撥水性が高く、かつ安価な機能性膜を提供することができる。   The functional film according to the present invention is formed by aggregating graphene nanoribbons. Therefore, according to the present invention, a functional film having high water repellency and low cost can be provided.

本発明に係る機能性膜の製造方法によれば、撥水性が高く、かつ安価な機能性膜を製造することが可能である。   According to the method for producing a functional film of the present invention, it is possible to produce a functional film having high water repellency and low cost.

本発明に係る機能性膜を製造するための反応スキームの一例である。It is an example of the reaction scheme for manufacturing the functional film | membrane which concerns on this invention. (a)〜(c)は、グラフェンナノリボンが突起状に成長することを説明するための模式図である。(A)-(c) is a schematic diagram for demonstrating that a graphene nanoribbon grows in a projection shape. グラフェンナノリボンの主面同士が重なるように集合することを説明するための模式図である。It is a schematic diagram for demonstrating gathering so that the main surfaces of a graphene nanoribbon may overlap.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

本発明に係る機能性膜は、グラフェンナノリボンが集合してなる。本発明において、グラフェンナノリボンとは、異方成長した細長い短冊状のグラフェンのことをいう。   The functional film according to the present invention is formed by aggregating graphene nanoribbons. In the present invention, the graphene nanoribbon refers to an elongated strip-like graphene that is anisotropically grown.

なお、グラフェンとは、層状化合物である黒鉛を構成している一層のことをいう。従って、グラフェンは、黒鉛を剥離処理することにより製造することができる。また、剥離によらなくとも、シリコンカーバイドを加熱処理する方法や、CVD法により基板上で合成する方法など、様々な方法で製造することも可能である。   Note that graphene refers to one layer constituting graphite, which is a layered compound. Therefore, graphene can be manufactured by exfoliating graphite. In addition, it is possible to manufacture by various methods such as a method of heat-treating silicon carbide and a method of synthesizing on a substrate by a CVD method without using peeling.

上記グラフェンナノリボンの長さとしては、特に限定されないが、長さが、5〜200nmであることが好ましい。グラフェンナノリボンの長さを上記範囲に限定した場合、後述の突起構造の形成が容易であるため好ましい。上記グラフェンナノリボンの幅についても、特に限定されないが、0.4〜10nmであることが好ましい。その場合、より一層緻密な膜が形成されるため好ましい。   The length of the graphene nanoribbon is not particularly limited, but the length is preferably 5 to 200 nm. In the case where the length of the graphene nanoribbon is limited to the above range, it is preferable because a projection structure described later can be easily formed. The width of the graphene nanoribbon is not particularly limited, but is preferably 0.4 to 10 nm. In that case, a denser film is formed, which is preferable.

以下、本発明に係る上記機能性膜の製造方法の詳細を先に説明し、次に本発明の上記機能性膜を説明する。   Hereafter, the detail of the manufacturing method of the said functional film concerning this invention is demonstrated previously, and the said functional film of this invention is demonstrated next.

(機能性膜の製造方法)
図1は、本発明に係る機能性膜を製造するための反応スキームの一例である。本発明に係る機能性膜の製造方法では、少なくとも2個の炭素原子にハロゲンが結合している多環芳香族化合物をモノマーとして用いる。
(Method for producing functional film)
FIG. 1 is an example of a reaction scheme for producing a functional film according to the present invention. In the method for producing a functional film according to the present invention, a polycyclic aromatic compound in which halogen is bonded to at least two carbon atoms is used as a monomer.

上記少なくとも2個の炭素原子にハロゲンが結合している多環芳香族モノマーとしては、特に限定されないが、アズレン、ナフタレン、アントラセン、フルオレン、フェナレン、フェナントレン、ベンズ[a]アントラセン、ベンゾ[a]フルオレン、ベンゾ[c]フェナントレン、クリセン、フルオランテン、ピレン、テトラセン、トリフェニレン、ベンゾ[a]フルオランテン、ベンゾ[b]フルオランテン、ベンゾ[l]フルオランテン、ベンゾ[k]フルオランテン、ジベンズ[a,h]アントラセン、ジベンズ[a,l]アントラセン、ペンタセン、ペリレン、ピセン、テトラフェニレン、アンタントレン、1,12−ベンゾピレン、サーキュレン、コランニュレン、コロネン、ジコロニレン、ジインデノペリレン、ヘリセン、ヘプタセン、ヘキサセン、ケクレン、オバレン、ゼトレン、ビナフタレン、ビアントリルなどのハロゲン化物を用いることができる。より具体的には、5,6−ジブロモアズレン、1,3−ジブロモアズレン、4,7−ジブロモアズレン、2,6−ジブロモナフタレン、1,7−ジブロモナフタレン、1,5−ジブロモナフタレン、1,4−ジブロモナフタレン、1,2−ジブロモナフタレン、2,3−ジブロモナフタレン、1,6−ジブロモナフタレン、1,3−ジブロモナフタレン、2,7−ジブロモナフタレン、9,10−ジブロモアントラセン、1,5−ジブロモアントラセン、2,7−ジブロモアントラセン、2,6−ジブロモアントラセン、1,8−ジブロモアントラセン、2,3−ジブロモアントラセン、3,9−ジブロモアントラセン、2,7−ジブロモフルオレン、9,10−ジブロモフェナントレン、1,8−ジブロモフェナントレン、3,9−ジブロモフェナントレン、2,7−ジブロモフェナントレン、1,6−ジブロモフェナントレン、3,6−ジブロモフェナントレン、2,8−ジブロモクリセン、3,8−ジブロモフルオランテン、1,6−ジブロモピレン、1,8−ジブロモピレン、1,3−ジブロモピレン、2,7−ジブロモピレン、2,8−ジブロモペンタセン、2,9−ジブロモペンタセン、2,3−ジブロモペンタセン、2,10−ジブロモペンタセン、3,9−ジブロモペリレン、3,10−ジブロモペリレン、1,7−ジブロモペリレン、5,8−ジブロモピセン、2,2’−ジブロモ−1,1’−ビナフタレン、10,10’−ジブロモ−9,9’−ビアントリルなどが挙げられる。   The polycyclic aromatic monomer in which halogen is bonded to the at least two carbon atoms is not particularly limited, but azulene, naphthalene, anthracene, fluorene, phenalene, phenanthrene, benz [a] anthracene, benzo [a] fluorene. , Benzo [c] phenanthrene, chrysene, fluoranthene, pyrene, tetracene, triphenylene, benzo [a] fluoranthene, benzo [b] fluoranthene, benzo [l] fluoranthene, benzo [k] fluoranthene, dibenz [a, h] anthracene, dibenz [A, l] anthracene, pentacene, perylene, picene, tetraphenylene, anthanthrene, 1,12-benzopyrene, circulene, corannulene, coronene, dicolonylene, diindenoperylene, helicene, f Possible recommendation, hexacene, kekulene, ovalene, zethrene, binaphthalene, it is used halide such bianthryl. More specifically, 5,6-dibromoazulene, 1,3-dibromoazulene, 4,7-dibromoazulene, 2,6-dibromonaphthalene, 1,7-dibromonaphthalene, 1,5-dibromonaphthalene, 1, 4-dibromonaphthalene, 1,2-dibromonaphthalene, 2,3-dibromonaphthalene, 1,6-dibromonaphthalene, 1,3-dibromonaphthalene, 2,7-dibromonaphthalene, 9,10-dibromoanthracene, 1,5 -Dibromoanthracene, 2,7-dibromoanthracene, 2,6-dibromoanthracene, 1,8-dibromoanthracene, 2,3-dibromoanthracene, 3,9-dibromoanthracene, 2,7-dibromofluorene, 9,10- Dibromophenanthrene, 1,8-dibromophenanthrene, 3,9-dibro Phenanthrene, 2,7-dibromophenanthrene, 1,6-dibromophenanthrene, 3,6-dibromophenanthrene, 2,8-dibromochrysene, 3,8-dibromofluoranthene, 1,6-dibromopyrene, 1,8- Dibromopyrene, 1,3-dibromopyrene, 2,7-dibromopyrene, 2,8-dibromopentacene, 2,9-dibromopentacene, 2,3-dibromopentacene, 2,10-dibromopentacene, 3,9-dibromo Perylene, 3,10-dibromoperylene, 1,7-dibromoperylene, 5,8-dibromopicene, 2,2′-dibromo-1,1′-binaphthalene, 10,10′-dibromo-9,9′-bianthryl and the like Is mentioned.

ハロゲン化されている炭素の数としては、2個以上であれば特に限定されないが、2個であることが好ましい。また、結合している2個のハロゲンは、図1の反応スキームのモノマーである9,10−ジブロモアントラセンのように、線対称となっていることがより好ましい。2個のハロゲンが線対称となるように結合している場合、より一層細長い帯状に成長しやすいためである。もっとも、後述するように、グラフェンが異方成長するものであれば、線対称とならなくてもよい。   The number of halogenated carbons is not particularly limited as long as it is 2 or more, but 2 is preferable. Moreover, it is more preferable that the two bonded halogens are line symmetric like 9,10-dibromoanthracene which is a monomer in the reaction scheme of FIG. This is because when two halogens are combined so as to be line symmetric, they can easily grow into a strip shape. However, as will be described later, as long as graphene grows anisotropically, line symmetry is not necessary.

図1に示すように、上記少なくとも2個の炭素原子にハロゲンXが結合している多環芳香族モノマーの炭素−ハロゲンX間の結合は、熱によって解離し、上記多環芳香族モノマーのハロゲンXが結合していた部分にラジカルが発生する。このラジカルを起点として、上記多環芳香族モノマーをラジカル重合することにより、ポリマーが生成する。なお、本反応スキームにおいては、ラジカル重合によりポリマーを合成したが、その他適宜の重合方法によっても上記ポリマーを合成できる。   As shown in FIG. 1, the bond between carbon and halogen X of the polycyclic aromatic monomer in which halogen X is bonded to at least two carbon atoms is dissociated by heat, and the halogen of the polycyclic aromatic monomer is A radical is generated at the portion where X was bonded. Starting from this radical, a polymer is produced by radical polymerization of the polycyclic aromatic monomer. In this reaction scheme, the polymer was synthesized by radical polymerization, but the polymer can be synthesized by any other suitable polymerization method.

本発明においては、上記ポリマーの生成と共に、上記ポリマー内の芳香環を脱水素縮環反応させることにより、上記ポリマーが異方成長する。これによって、グラフェンナノリボンが集合してなる機能性膜が形成される。   In the present invention, the polymer grows anisotropically by dehydrogenating and condensing the aromatic ring in the polymer together with the production of the polymer. As a result, a functional film formed by gathering graphene nanoribbons is formed.

本発明の機能性膜は、上記のように多環芳香族を有するグラフェンナノリボンが集合して形成されるため、撥水性が高い。また、本発明の機能性膜は、少なくとも2個の炭素原子にハロゲンが結合している多環芳香族化合物を原材料に用いているため、安価に製造することができる。   The functional film of the present invention has high water repellency because the graphene nanoribbons having polycyclic aromatic groups are aggregated as described above. In addition, the functional film of the present invention can be manufactured at low cost because a polycyclic aromatic compound in which halogen is bonded to at least two carbon atoms is used as a raw material.

上記一連の機能性膜の製造工程は、具体的には、CVD法(化学気相成長法)やスパッタリング法により行うことができる。CVD法によって、製造することが好ましい。   Specifically, the series of manufacturing steps of the functional film can be performed by a CVD method (chemical vapor deposition method) or a sputtering method. It is preferable to manufacture by the CVD method.

CVD法では、例えば、少なくとも2個の炭素原子にハロゲンが結合している多環芳香族化合物を減圧下で加熱することにより、昇華させた後、予め加熱した基板に吹き付けることにより製造できる。なお、上記反応は減圧下に限定されず、空気が存在しない限りにおいて、水素ガスの存在下においても行うことができる。そして、上記減圧下での加熱は、300℃〜480℃で、20分間行われることが好ましい。また、基板としては、ガラス板を用い、330℃〜450℃に加熱することが望ましい。   In the CVD method, for example, a polycyclic aromatic compound in which halogen is bonded to at least two carbon atoms is sublimated by heating under reduced pressure and then sprayed onto a preheated substrate. The above reaction is not limited to a reduced pressure, and can be performed in the presence of hydrogen gas as long as air is not present. And it is preferable that the heating under the said pressure reduction is performed for 20 minutes at 300 to 480 degreeC. Moreover, as a board | substrate, it is desirable to use a glass plate and to heat at 330 to 450 degreeC.

CVD法においては、基板上で、上記多環芳香族モノマーをラジカル重合することにより、ポリマーが生成する。そして、上記ポリマーの生成と共に、上記ポリマー内の芳香環が脱水素縮環反応することにより、上記ポリマーがガラス板上で異方成長する。このようにして、CVD法では、基板上で、グラフェンナノリボンが集合してなる機能性膜が形成される。   In the CVD method, a polymer is generated by radical polymerization of the polycyclic aromatic monomer on a substrate. And with the production | generation of the said polymer, the said polymer grows anisotropically on a glass plate because the aromatic ring in the said polymer carries out dehydrogenation condensation reaction. In this way, in the CVD method, a functional film formed by aggregating graphene nanoribbons is formed on the substrate.

CVD法においては、図2(a)〜(c)に示すように、図示しない基板上において、グラフェンナノリボン1が異方成長する。従って、図2(b)に示すように、成長するグラフェンナノリボン1同士がぶつかり合うことがある。その結果、図2(c)に示すように、グラフェンナノリボン1の一部が、機能性膜の厚み方向に、突起状に延びるように成長することがある。また、CVD法では、図3に示すように、グラフェンナノリボン1の主面同士が重なり合うように集合することもある。   In the CVD method, as shown in FIGS. 2A to 2C, the graphene nanoribbon 1 grows anisotropically on a substrate (not shown). Therefore, as shown in FIG. 2B, the growing graphene nanoribbons 1 may collide with each other. As a result, as shown in FIG. 2C, a part of the graphene nanoribbon 1 may grow in a protruding shape in the thickness direction of the functional film. Further, in the CVD method, as shown in FIG. 3, the main surfaces of the graphene nanoribbons 1 may be gathered so as to overlap each other.

このように、CVD法により、機能性膜を作製した場合、グラフェンナノリボンの一部が機能性膜の厚み方向に突起状に延びていたり、グラフェンナノリボンの主面同士が重なり合うように集合していることがある。従って、CVD法により作製した機能性膜の表面には凹凸が多い。そのため、CVD法により作製した機能成膜は、撥水性だけでなく、撥油性にも優れたものとなる。   Thus, when a functional film is produced by the CVD method, a part of the graphene nanoribbons extends in a protruding shape in the thickness direction of the functional film, or the main surfaces of the graphene nanoribbons are gathered so as to overlap Sometimes. Therefore, the surface of the functional film produced by the CVD method has many irregularities. Therefore, the functional film produced by the CVD method is excellent not only in water repellency but also in oil repellency.

(機能性膜)
本発明に係る機能性膜は、グラフェンナノリボンが集合してなる。ここで、上記グラフェンナノリボンの厚みは、単原子レベルであるため、上記機能成膜は可視光域に吸収を持たず、透明性を有する。従って、上記機能性膜は、基材の加飾性を阻害しない。
(Functional membrane)
The functional film according to the present invention is formed by aggregating graphene nanoribbons. Here, since the thickness of the graphene nanoribbon is at a monoatomic level, the functional film does not absorb in the visible light region and has transparency. Therefore, the said functional film does not inhibit the decorating property of a base material.

また、上記グラフェンナノリボンは、異方成長したグラフェンであるため、多環芳香族を有している。従って、上記グラフェンナンリボンが集合してなる本発明の機能性膜は、撥水性に優れている。   Moreover, since the graphene nanoribbon is anisotropically grown graphene, it has a polycyclic aromatic group. Therefore, the functional film of the present invention in which the graphennan ribbon is assembled is excellent in water repellency.

本発明の機能性膜は、上述したように、安価な少なくとも2個の炭素原子にハロゲンが結合している多環芳香族化合物を原材料に用いている。また、嫌気ガス中で加熱することにより、簡便に製造することができる。従って、本発明の機能性膜は、安価に製造することができる。   As described above, the functional film of the present invention uses, as a raw material, an inexpensive polycyclic aromatic compound in which halogen is bonded to at least two carbon atoms. Moreover, it can manufacture simply by heating in anaerobic gas. Therefore, the functional film of the present invention can be manufactured at low cost.

本発明の機能性膜では、グラフェンナノリボンの一部が、機能性膜の厚み方向に、突起状に延びていることが好ましい。この場合、機能性膜の表面に凹凸が形成されるため、上記機能性膜は、撥水性だけでなく、撥油性にも優れたものとなる。このように、上記機能性膜は、水と油の双方をはじくことができるため、防汚性に優れたものとなる。従って、タッチパネルなどのディスプレイの表面材料として使用した場合、指紋がつくことを防止できる。   In the functional film of the present invention, it is preferable that a part of the graphene nanoribbon extends in a protruding shape in the thickness direction of the functional film. In this case, since the irregularities are formed on the surface of the functional film, the functional film is excellent not only in water repellency but also in oil repellency. Thus, since the functional film can repel both water and oil, it has excellent antifouling properties. Therefore, when used as a surface material of a display such as a touch panel, fingerprints can be prevented from being attached.

なお、グラフェンナノリボンの主面同士が重なるように集合することにより、機能性膜の表面に凹凸が形成された場合においても、同様の効果が得られる。従って、本発明においては、グラフェンナノリボンの主面同士が重なるように集合していることが望ましい。   In addition, the same effect is acquired even when an unevenness | corrugation is formed in the surface of a functional film by gathering so that the main surfaces of a graphene nanoribbon may overlap. Therefore, in the present invention, it is desirable that the main surfaces of the graphene nanoribbons are gathered so as to overlap each other.

上記のように表面の凹凸が大きい場合、上記機能性膜は、撥水性だけでなく、撥油性にも優れたものとなるため、本発明の機能性膜のBET比表面積は、高い方が望ましい。より好ましくは、BET比表面積が10cm/g以上である。 When the surface irregularities are large as described above, the functional film is excellent not only in water repellency but also in oil repellency. Therefore, it is desirable that the BET specific surface area of the functional film of the present invention is high. . More preferably, the BET specific surface area is 10 cm 2 / g or more.

さらに、本発明の機能成膜を構成するグラフェンナノリボンは、多環芳香族を有するため、基材への密着性が高く、耐久性に優れる。従って、本発明の機能性膜は、流体摩擦を低減することができる。上記機能性膜は、このように流体摩擦を低減することができるため、例えば、石油の輸送に用いるパイプラインの内壁に用いた場合、石油の流速を高めても、静電気による爆発が起こりにくくなる。また、船舶や飛行機などの外壁として利用することもできる。   Furthermore, the graphene nanoribbon constituting the functional film of the present invention has a polycyclic aromatic group, and therefore has high adhesion to a substrate and excellent durability. Therefore, the functional film of the present invention can reduce fluid friction. Since the functional film can reduce fluid friction in this way, for example, when used on the inner wall of a pipeline used for transporting oil, even if the flow rate of oil is increased, explosion due to static electricity hardly occurs. . It can also be used as an outer wall of ships, airplanes and the like.

次に、具体的な実施例及び比較例につき説明する。なお、本発明は以下の実施例及び比較例に限定されるものではない。   Next, specific examples and comparative examples will be described. The present invention is not limited to the following examples and comparative examples.

(実施例1)
原材料として、10,10’−ジブロモ−9,9’−ビアントリルを用い、CVD法により、基板であるガラス板上に堆積させた。CVD法による膜の形成は、アルゴン/水素 (水素ガス割合3%)ガスの存在下、430℃の温度で、20分間、加熱することにより行った。また、ガラス板は、430℃に加熱して用いた。
Example 1
10,10′-Dibromo-9,9′-bianthryl was used as a raw material, and was deposited on a glass plate as a substrate by a CVD method. Film formation by the CVD method was performed by heating at a temperature of 430 ° C. for 20 minutes in the presence of argon / hydrogen (hydrogen gas ratio 3%) gas. The glass plate was heated to 430 ° C. and used.

(実施例2)
原材料として、1,6−ジブロモピレンを用いたこと以外は、実施例1と同様にして、基板であるガラス板上に膜を形成した。
(Example 2)
A film was formed on a glass plate as a substrate in the same manner as in Example 1 except that 1,6-dibromopyrene was used as a raw material.

(実施例3)
原材料として、2,6−ジブロモナフタレンを用いたこと以外は、実施例1と同様にして、基板であるガラス板上に膜を形成した。
(Example 3)
A film was formed on a glass plate as a substrate in the same manner as in Example 1 except that 2,6-dibromonaphthalene was used as a raw material.

(比較例1)
原材料として、ベンゼンを用い、CVD法により、基板である銅板上に堆積させた。銅板は650℃に加熱することによって行った。その他の点は、実施例1と同様にして、銅板上に膜を形成した。
(Comparative Example 1)
Benzene was used as a raw material, and was deposited on a copper plate as a substrate by a CVD method. The copper plate was heated by heating to 650 ° C. Other points were the same as in Example 1, and a film was formed on the copper plate.

(比較例2)
原材料として、エタノールを用い、CVD法により、基板である銅板上に堆積させた。銅板は850℃に加熱することによって行った。その他の点は、実施例1と同様にして、銅板上に膜を形成した。
(Comparative Example 2)
Ethanol was used as a raw material, and was deposited on a copper plate as a substrate by a CVD method. The copper plate was heated by heating to 850 ° C. Other points were the same as in Example 1, and a film was formed on the copper plate.

(評価方法)
(1)接触角:
接触角の測定は、JIS3257における静的法により行った。すなわち、鉛直方向に対して水平に保った試験片平面上に蒸留水またはオリーブオイル(商品名:BOSCOエクストラバージンオリーブオイル)を1μL滴下し、水平面と固液界面で生じた角度を接触角として測定した。
(Evaluation method)
(1) Contact angle:
The contact angle was measured by the static method in JIS 3257. That is, 1 μL of distilled water or olive oil (trade name: BOSCO extra virgin olive oil) was dropped on the plane of the test piece kept horizontal with respect to the vertical direction, and the angle formed at the horizontal plane and the solid-liquid interface was measured as the contact angle. did.

(2)BET比表面積:
実施例1〜3及び比較例1,2により得られた膜のBET比表面積を、島津製作所社製比表面積測定装置ASAP−2000で窒素ガスを用い測定した。
(2) BET specific surface area:
The BET specific surface areas of the films obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were measured with a specific surface area measuring device ASAP-2000 manufactured by Shimadzu Corporation using nitrogen gas.

結果を下記の表1に示す。   The results are shown in Table 1 below.

Figure 2015140264
Figure 2015140264

表1から明らかなように、少なくとも2個の炭素原子にハロゲンが結合している多環芳香族化合物を原材料に用いた、実施例1〜3で形成される膜は、比較例1、2の膜と比較して、接触角とBET比表面積が効果的に高められていることが確認できた。また、このことにより、実施例1〜3では、表面に凹凸のある膜が形成されていることが確認できた。   As is apparent from Table 1, the films formed in Examples 1 to 3 using polycyclic aromatic compounds in which halogen is bonded to at least two carbon atoms as raw materials are the same as those in Comparative Examples 1 and 2. It was confirmed that the contact angle and the BET specific surface area were effectively increased as compared with the membrane. Moreover, it has confirmed that the film | membrane with an unevenness | corrugation on the surface was formed in Examples 1-3 by this.

1…グラフェンナノリボン 1. Graphene nanoribbon

Claims (10)

グラフェンナノリボンが集合してなる、機能性膜。   A functional film made up of graphene nanoribbons. 前記グラフェンナノリボンの一部が、前記機能性膜の厚み方向に、突起状に延びている、請求項1に記載の機能性膜。   The functional film according to claim 1, wherein a part of the graphene nanoribbon extends in a protruding shape in the thickness direction of the functional film. 前記グラフェンナノリボンの主面同士が重なるように集合している、請求項1又は2に記載の機能性膜。   The functional film according to claim 1, wherein main surfaces of the graphene nanoribbons are gathered so as to overlap each other. BET比表面積が10cm/g以上である、請求項1〜3のいずれか一項に記載の機能性膜。 The functional film as described in any one of Claims 1-3 whose BET specific surface area is 10 cm < 2 > / g or more. 前記グラフェンナノリボンの長さが5〜200nmであり、幅が0.4〜10nmである、請求項1〜4のいずれか一項に記載の機能性膜。   The functional film according to claim 1, wherein the graphene nanoribbon has a length of 5 to 200 nm and a width of 0.4 to 10 nm. 前記機能性膜が撥水性膜である、請求項1〜5のいずれか一項に記載の機能性膜。   The functional film according to claim 1, wherein the functional film is a water-repellent film. 前記機能性膜が撥油性膜である、請求項1〜6のいずれか一項に記載の機能性膜。   The functional film according to any one of claims 1 to 6, wherein the functional film is an oil-repellent film. 請求項1〜7のいずれか一項に記載の機能性膜の製造方法であって、
少なくとも2個の炭素にハロゲンが結合している、多環芳香族化合物を用意する工程と、
前記多環芳香族化合物を重合することによりポリマーを生成する工程と、
前記ポリマーを生成すると共に、前記ポリマー内の芳香環を脱水素縮環反応させることにより、前記ポリマーを異方成長させ、グラフェンナノリボンが集合してなる機能性膜を形成する工程とを備える、機能性膜の製造方法。
A method for producing a functional film according to any one of claims 1 to 7,
Providing a polycyclic aromatic compound in which a halogen is bonded to at least two carbons;
Producing a polymer by polymerizing the polycyclic aromatic compound;
A step of forming the polymer and forming a functional film in which graphene nanoribbons are assembled by anisotropically growing the polymer by dehydrocondensation reaction of an aromatic ring in the polymer. For producing a conductive film.
前記多環芳香族化合物を重合することによりポリマーを生成する工程と、前記ポリマーを生成すると共に、前記ポリマー内の芳香環を脱水素縮環反応させることにより、前記ポリマーを異方成長させ、グラフェンナノリボンが集合してなる機能性膜を形成する工程とが、CVD法によって行われる、請求項8に記載の機能性膜の製造方法。   A step of producing a polymer by polymerizing the polycyclic aromatic compound; and producing the polymer and dehydrogenating and condensing an aromatic ring in the polymer to grow the polymer anisotropically, The method for producing a functional film according to claim 8, wherein the step of forming a functional film formed by aggregating nanoribbons is performed by a CVD method. 前記重合がラジカル重合である、請求項8または9に記載の機能性膜の製造方法。
The method for producing a functional film according to claim 8 or 9, wherein the polymerization is radical polymerization.
JP2014012352A 2014-01-27 2014-01-27 Functional membrane and method for producing the same Active JP6267524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012352A JP6267524B2 (en) 2014-01-27 2014-01-27 Functional membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012352A JP6267524B2 (en) 2014-01-27 2014-01-27 Functional membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015140264A true JP2015140264A (en) 2015-08-03
JP6267524B2 JP6267524B2 (en) 2018-01-24

Family

ID=53770871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012352A Active JP6267524B2 (en) 2014-01-27 2014-01-27 Functional membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP6267524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172237A (en) * 2017-03-31 2018-11-08 富士通株式会社 Graphene nanoribbon and precursor molecule for use in its production
JP2022121449A (en) * 2017-09-12 2022-08-19 富士通株式会社 Production method of compound and production method of graphene nanoribbon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356317A (en) * 2001-03-27 2002-12-13 Osaka Gas Co Ltd Graphite ribbon and its producing method
JP2011096980A (en) * 2009-11-02 2011-05-12 Toshiba Corp Semiconductor device, and method for manufacturing the same
WO2013072292A1 (en) * 2011-11-14 2013-05-23 Basf Se Segmented graphene nanoribbons

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356317A (en) * 2001-03-27 2002-12-13 Osaka Gas Co Ltd Graphite ribbon and its producing method
JP2011096980A (en) * 2009-11-02 2011-05-12 Toshiba Corp Semiconductor device, and method for manufacturing the same
WO2013072292A1 (en) * 2011-11-14 2013-05-23 Basf Se Segmented graphene nanoribbons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
平野善崇他: "新規化学気相成長法によるグラフェンナノリボンの表面合成", 高分子学会予稿集, vol. 62, no. 2, JPN6017020352, 28 August 2013 (2013-08-28), JP, pages 2 - 15, ISSN: 0003571259 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172237A (en) * 2017-03-31 2018-11-08 富士通株式会社 Graphene nanoribbon and precursor molecule for use in its production
JP2022121449A (en) * 2017-09-12 2022-08-19 富士通株式会社 Production method of compound and production method of graphene nanoribbon

Also Published As

Publication number Publication date
JP6267524B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
Tay et al. Trimethylamine borane: a new single-source precursor for monolayer h-BN single crystals and h-BCN thin films
Wood et al. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition
Zhang et al. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition
Liu et al. Segregation growth of graphene on Cu–Ni alloy for precise layer control
Tian et al. Graphene induced surface reconstruction of Cu
Wofford et al. Graphene islands on Cu foils: the interplay between shape, orientation, and defects
Wang et al. Size-selective carbon nanoclusters as precursors to the growth of epitaxial graphene
Gunther et al. Single terrace growth of graphene on a metal surface
US9213241B2 (en) Method of making nanostructure
CN102897750B (en) PrPrearation method for graphene film
De Castro et al. New transfer method of CVD-grown graphene using a flexible, transparent and conductive polyaniline-rubber thin film for organic electronic applications
US20120298620A1 (en) Method for making graphene composite structure
KR20130000786A (en) Stable graphene film and preparing method of the same
CN104556014B (en) A kind of method of nonmetallic surface low temperature preparation doped graphene
JP6065244B2 (en) Method for producing a kind of graphene
JP6267524B2 (en) Functional membrane and method for producing the same
CN103613094A (en) Method for preparing graphene and porous amorphous carbon films simultaneously
CN105483824A (en) Method for preparing monocrystal double-layer graphene
Sun et al. Nonisothermal synthesis of AB-stacked bilayer graphene on Cu foils by atmospheric pressure chemical vapor deposition
US10246795B2 (en) Transfer-free method for forming graphene layer
JP2014098107A (en) Holding material used in outer space
KR102015912B1 (en) Method for manufacturing graphene and the graphene manufactured by the same
Wang et al. Free-molecular-flow modulated synthesis of hexagonal boron nitride monolayers
KR102117954B1 (en) Polymer for transferring graphene and transfer method of graphene using the same
KR20130026679A (en) Organic field-effect transistor and preparing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R151 Written notification of patent or utility model registration

Ref document number: 6267524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151