JP2015139434A - Microorganism detection method, and microorganism detection kit - Google Patents

Microorganism detection method, and microorganism detection kit Download PDF

Info

Publication number
JP2015139434A
JP2015139434A JP2014015768A JP2014015768A JP2015139434A JP 2015139434 A JP2015139434 A JP 2015139434A JP 2014015768 A JP2014015768 A JP 2014015768A JP 2014015768 A JP2014015768 A JP 2014015768A JP 2015139434 A JP2015139434 A JP 2015139434A
Authority
JP
Japan
Prior art keywords
nucleic acid
cells
complex
cell
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014015768A
Other languages
Japanese (ja)
Other versions
JP6139425B2 (en
JP2015139434A5 (en
Inventor
隆志 副島
Takashi Soejima
隆志 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP2014015768A priority Critical patent/JP6139425B2/en
Publication of JP2015139434A publication Critical patent/JP2015139434A/en
Publication of JP2015139434A5 publication Critical patent/JP2015139434A5/ja
Application granted granted Critical
Publication of JP6139425B2 publication Critical patent/JP6139425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting living cells of a microorganism in a specimen conveniently in a short time by discriminating the living cells from dead cells or damaged cells.SOLUTION: A living cell of a microorganism in a specimen can be detected by discriminating the living cell from a dead cell or a damaged cell through following steps of: a) adding, to the specimen, an agent which inhibits an amplification by nucleic acid amplifying method of the nucleic acid of the microorganism selectively for a dead cell; b) performing a treatment which improves permeability of the cell of the microorganism; c) amplifying a target region of a nucleic acid of the microorganism in the specimen by isothermal nucleic acid amplification method using a chain-substituted type nucleic acid elongation enzyme without extracting the nucleic acid from the cell; and d) analyzing an amplification product.

Description

本発明は、食品や生体試料中に含まれる微生物、工業用水や市水等の環境中に含まれる微生物の検出法、及び微生物検出キットに関する。さらに詳しくは、食品や生体試料、拭き取り試料、工業用水や市水等の環境中に含まれる微生物の生細胞の選択的な検出が可能な検出法及び微生物検出キットに関する。   The present invention relates to a method for detecting microorganisms contained in foods and biological samples, microorganisms contained in environments such as industrial water and city water, and a microorganism detection kit. More specifically, the present invention relates to a detection method and a microorganism detection kit that can selectively detect living cells of microorganisms contained in an environment such as foods, biological samples, wiped samples, industrial water, and city water.

食品や生体試料、拭き取り試料、又は環境中の一般生菌数の測定には、従来、平板培養法が用いられてきた。しかし、平板培養法は結果が得られるまでに2日間から一ヶ月程度の時間を要し、細菌の同定も困難であるという問題があった。   Conventionally, a plate culture method has been used to measure the number of general live bacteria in foods, biological samples, wiped samples, or the environment. However, the plate culture method has a problem that it takes about 2 days to 1 month to obtain the result, and it is difficult to identify bacteria.

近年では、被検試料をエチジウムモノアザイド(EMA、ethidium monoazide)等のDNAを架橋する架橋剤や、トポイソメラーゼ阻害剤及び/又はDNAジャイレース阻害剤で処理した後、試料中の微生物中の染色体DNAを選択的に核酸増幅反応により増幅することによって、試料中の生菌を検出する技術が提案され、成果を挙げている(特許文献1〜4)。   In recent years, a test sample is treated with a crosslinking agent that crosslinks DNA such as ethidium monoazide (EMA), a topoisomerase inhibitor and / or a DNA gyrase inhibitor, and then a chromosome in a microorganism in the sample. A technique for detecting viable bacteria in a sample by selectively amplifying DNA by a nucleic acid amplification reaction has been proposed and has been achieved (Patent Documents 1 to 4).

上記のような架橋剤、トポイソメラーゼ阻害剤及びDNAジャイレース阻害剤は、細胞内に侵入すると、DNAに結合もしくはインターカレートしたりしてトポイソメラーゼやDNAジャイレース(酵素)の働きを阻害したり、又はDNAを架橋し、その結果、染色体DNAが破壊(断片化・切断)される。これらの薬剤は、生菌の細胞壁よりも死菌及び損傷菌の細胞壁の方が透過しやすいため、生菌よりも損傷菌や死菌の染色体DNAが優先的に断片化される。したがって、染色体DNAの特定の領域をターゲットとしたPCRにより、生菌を損傷菌や死菌に比べて選択的に検出することができる。   When the above crosslinking agent, topoisomerase inhibitor and DNA gyrase inhibitor enter the cell, they bind to or intercalate with DNA to inhibit the action of topoisomerase or DNA gyrase (enzyme), Alternatively, the DNA is cross-linked, and as a result, the chromosomal DNA is destroyed (fragmentation / cutting). Since these drugs are more permeable to the cell walls of dead and damaged bacteria than the cell walls of live bacteria, the chromosomal DNA of the damaged or dead bacteria is preferentially fragmented over the live bacteria. Therefore, viable bacteria can be selectively detected compared with damaged or dead bacteria by PCR targeting a specific region of chromosomal DNA.

上記PCRの鋳型としては、従来、被検試料に含まれる微生物細胞から抽出した核酸が用いられていたが、細胞からの核酸の抽出を行わずに、核酸増幅阻害物質の働きを抑制する薬剤の存在下でPCRを行うことで、迅速に生菌を検出する方法が開示されている(特許文献4)。以下、このような、細胞からの核酸の抽出を行わずに核酸増幅を行う方法を「ダイレクト法」と記載することがある。この方法では、核酸増幅を、核酸増幅阻害物質の働きを抑制する薬剤、マグネシウム塩、及び有機酸塩又はリン酸塩を前記被検試料に添加して行うことが好ましいとされている。   Conventionally, nucleic acids extracted from microbial cells contained in a test sample have been used as the PCR template. However, a drug that suppresses the action of a nucleic acid amplification inhibitor without extracting nucleic acids from cells is used. A method of rapidly detecting viable bacteria by carrying out PCR in the presence has been disclosed (Patent Document 4). Hereinafter, such a method of performing nucleic acid amplification without extracting nucleic acid from cells may be referred to as “direct method”. In this method, nucleic acid amplification is preferably performed by adding a drug that suppresses the function of a nucleic acid amplification inhibitor, a magnesium salt, and an organic acid salt or phosphate to the test sample.

核酸を増幅する手法として、鎖置換活性を有するDNAポリメラーゼを用いて遺伝子増幅反応を等温で進行させる方法(LAMP(Loop-mediated Isothermal Amplification)法)が開発されている(特許文献5)。この方法は、4種類のプライマーを用い、それらのうち2種類のインナープライマーは、それらの3’と5’側で標的核酸配列中の異なる2領域を認識し、5’側の配列はその3’側からの伸長反応で合成した相補鎖領域内にアニールするよう設計される。増幅反応は、これらのインナープライマーと、インナープライマーを起点に合成されたDNA鎖を鋳型DNAから一本鎖として剥がすために用いられるより2種類のアウタープライマーにより生成する、ステムループ構造を持つダンベル型の構造を起点とし、自己伸長反応と鎖置換合成反応を繰り返すことで、進行する。この方法では、増幅反応は等温(60〜65°C)で行われる。
また、ダンベル構造の5'末端側のループの一本鎖部分に相補的な配列を持つ2種類のループプライマーを用いることにより、DNA合成の起点を増やし、反応時間を短縮することが可能となる(特許文献6)。
As a method for amplifying a nucleic acid, a method (LAMP (Loop-mediated Isothermal Amplification) method) in which a gene amplification reaction proceeds isothermally using a DNA polymerase having strand displacement activity has been developed (Patent Document 5). This method uses four types of primers, and two of them recognize two different regions in the target nucleic acid sequence on the 3 ′ and 5 ′ sides, and the sequence on the 5 ′ side is the 3 It is designed to anneal in the complementary strand region synthesized by the extension reaction from the side. The amplification reaction is a dumbbell type with a stem-loop structure that is generated by these inner primers and two types of outer primers that are used to remove the DNA strand synthesized from the inner primer as a single strand from the template DNA. It proceeds by repeating the self-elongation reaction and the strand displacement synthesis reaction starting from the structure of In this method, the amplification reaction is performed isothermally (60-65 ° C).
In addition, by using two types of loop primers having sequences complementary to the single-stranded portion of the loop on the 5 ′ end side of the dumbbell structure, it becomes possible to increase the starting point of DNA synthesis and shorten the reaction time. (Patent Document 6).

LAMP法は、増幅効率が高く、特別な装置を必要としないという利点がある。LAMP法における増幅反応の検出は、増幅反応に伴って生成するピロリン酸マグネシウムによる白濁や、蛍光色素であるカルセインを用いて行われている。カルセインはマンガンイオンと結合することによって消光しているが、核酸増幅反応が進むと増幅反応に伴って生成するピロリン酸イオンによってカルセインからマンガンイオンが奪われ、カルセインはフリーとなって蛍光を発するようになる。増幅反応のリアルタイムな検出は、ピロリン酸マグネシウムの白濁を濁度測定装置を用いて測定することよって行われているが、それには専用の装置を必要とする。カルセインを用いる場合は、LAMP法に用いられる試薬キット(栄研化学
Loopamp蛍光・目視検出試薬。Loopampは同社の商標)の説明書によれば、蛍光は増幅反
応終了後に観察される。すなわち、カルセインを用いた増幅反応のリアルタイムな検出は、通常行われていない。
The LAMP method has the advantage of high amplification efficiency and does not require a special device. Detection of the amplification reaction in the LAMP method is performed using white turbidity due to magnesium pyrophosphate generated in association with the amplification reaction or calcein which is a fluorescent dye. Calcein is quenched by binding to manganese ions, but as the nucleic acid amplification reaction proceeds, pyrophosphate ions generated along with the amplification reaction deprive calcein of manganese ions, causing calcein to become free and fluoresce. become. The amplification reaction is detected in real time by measuring the white turbidity of magnesium pyrophosphate using a turbidity measuring device, which requires a dedicated device. When using calcein, the reagent kit used in the LAMP method (Eiken Chemical)
Loopamp fluorescence / visual detection reagent. According to the instructions of Loopamp (trademark of the company), fluorescence is observed after completion of the amplification reaction. That is, real-time detection of an amplification reaction using calcein is not usually performed.

鎖置換活性を有する核酸伸長酵素を用いる核酸増幅法(等温核酸増幅法とも呼ばれている)としては、LAMP法の他に、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)(特許文献7)、SDA(Strand Displacement Amplification)法(特許文献8)、LCR(Ligase Chain Reaction)法(非特許文献1)、TMA(Transcription Mediated Amplification)法(特許文献9)、SMAP(SMart Amplification Process)法(非特許文献2)、及びTRC(Transcription-Reverse Transcription-Concerted
)法(非特許文献3)等が知られている。
As a nucleic acid amplification method using a nucleic acid elongation enzyme having strand displacement activity (also called isothermal nucleic acid amplification method), in addition to the LAMP method, ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids) (Patent Document 7) ), SDA (Strand Displacement Amplification) method (Patent Document 8), LCR (Ligase Chain Reaction) method (Non-Patent Document 1), TMA (Transcription Mediated Amplification) method (Patent Document 9), SMAP (SMart Amplification Process) method ( Non-Patent Document 2) and TRC (Transcription-Reverse Transcription-Concerted)
) Method (Non-Patent Document 3) and the like are known.

上記のように、LAMP法のような、鎖置換活性を有する核酸伸長酵素を用いる等温増幅法が種々開発されている。しかしながら、細胞からの核酸の抽出を行わずに核酸増幅を行う方法(ダイレクト法)に、等温増幅法を適用することは知られていない。   As described above, various isothermal amplification methods using a nucleic acid elongation enzyme having a strand displacement activity, such as the LAMP method, have been developed. However, it is not known that the isothermal amplification method is applied to a method of performing nucleic acid amplification without extracting nucleic acid from cells (direct method).

国際公開第2001/077379International Publication No. 2001/077379 国際公開第2007/094077International Publication No. 2007/094077 国際公開第2009/022558International Publication No. 2009/022558 国際公開第2011/010740International Publication No. 2011/010740 国際公開第00/28082International Publication No. 00/28082 国際公開第2002/024902International Publication No. 2002/024902 国際公開第00/56877International Publication No. 00/56877 米国特許第5,455,166号U.S. Pat.No. 5,455,166 国際公開第91/01384International Publication No. 91/01384

Barany, F., Proc. Natl. Acad. Sci. USA, 88:189-193, 1991Barany, F., Proc. Natl. Acad. Sci. USA, 88: 189-193, 1991 Mitani, Y., Seibutsu Butsuri Kagaku, 52(4):183-187, 2008Mitani, Y., Seibutsu Butsuri Kagaku, 52 (4): 183-187, 2008 Nakaguchi, Y. et al., J. Clin. Microbiol., 42(9):4284-4292, 2004Nakaguchi, Y. et al., J. Clin. Microbiol., 42 (9): 4284-4292, 2004

本発明は、細胞からの核酸の抽出を行わずに核酸増幅を行う方法(ダイレクト法)を、短時間で簡便に行う技術を提供することを課題とする。   An object of the present invention is to provide a technique for performing nucleic acid amplification without directly extracting nucleic acids from cells (direct method) in a short time.

本発明者は、ダイレクト法における核酸増幅を、LAMP法のような等温増幅法で行うことに想到した。しかしながら、単にダイレクト法とLAMP法を組み合わせただけでは核酸増幅
が行われず、両方を組み合わせて核酸増幅を行うために必要な条件が存在することを見出した。
The present inventor has conceived that nucleic acid amplification in the direct method is performed by an isothermal amplification method such as the LAMP method. However, the present inventors have found that nucleic acid amplification is not performed simply by combining the direct method and the LAMP method, and there are conditions necessary for performing nucleic acid amplification by combining both.

また、本発明者は、リアルタイムに核酸増幅を検出できる方法を検討した。リアルタイムPCRで用いられているSYBR Greenやアクリジンのような核酸検出試薬は、LAMP法では使
用されていない。これらの試薬はDNAインターカレート剤であるが、PCRのように高温
処理を伴わない等温増幅法では、鋳型核酸の二本鎖にこれらのインターカレート剤が挿入し、固定される。その後、鎖置換型核酸伸長酵素により核酸が伸長する際に、それらのインターカレート剤に妨害され、遺伝子増幅ができなくなるためと考えられた。そして、本発明者は、カルセインを用いた、核酸増幅のリアルタイムな検出について検討を行った。
本発明は、上記検討の結果、完成するに至った。
In addition, the present inventor examined a method capable of detecting nucleic acid amplification in real time. Nucleic acid detection reagents such as SYBR Green and acridine used in real-time PCR are not used in the LAMP method. These reagents are DNA intercalating agents. However, in an isothermal amplification method that does not involve high-temperature treatment such as PCR, these intercalating agents are inserted and fixed in the double strand of the template nucleic acid. Then, it was thought that when the nucleic acid was extended by the strand displacement type nucleic acid extender, the intercalating agent interfered with it and gene amplification could not be performed. Then, the present inventor examined real-time detection of nucleic acid amplification using calcein.
As a result of the above studies, the present invention has been completed.

すなわち本発明は、被検試料中の微生物の生細胞を、死細胞又は損傷細胞と識別して検出する方法であって、以下の工程:
a)前記被検試料に、微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤を添加する工程、
b)微生物の細胞の透過性を高める処理を行う工程、
c)被検試料中の微生物の核酸のターゲット領域を、細胞からの核酸の抽出を行わずに、鎖置換型核酸伸長酵素を用いた等温核酸増幅法により増幅する工程、及び
d)増幅産物を解析する工程、
を含み、前記微生物の細胞の透過性を高める処理は、それによって細胞からの核酸の抽出を行わずに、生細胞に選択的な核酸増幅を可能にする処理である、方法を提供する。
That is, the present invention is a method for detecting a living cell of a microorganism in a test sample by distinguishing it from a dead cell or a damaged cell, which comprises the following steps:
a) a step of adding, to the test sample, an agent that selectively inhibits the dead cells from amplifying microorganism nucleic acids by a nucleic acid amplification method;
b) performing a treatment for increasing the permeability of cells of microorganisms;
c) a step of amplifying a target region of a nucleic acid of a microorganism in a test sample by an isothermal nucleic acid amplification method using a strand displacement type nucleic acid elongation enzyme without extracting the nucleic acid from the cell, and d) an amplification product Process to analyze,
And the process of increasing the permeability of the microorganism cell is thereby a process that allows selective nucleic acid amplification in living cells without the extraction of nucleic acids from the cells.

前記方法は、前記薬剤が、350nm〜700nmの波長の光照射により核酸に共有結合する薬剤、及び白金族元素の錯体から選ばれ、薬剤が350nm〜700nmの波長の光照射により核酸に共有結合する薬剤である場合には、同薬剤が添加された被検試料に350nm〜700nmの波長の光照射処理を行う工程を含むことを好ましい態様としている。
また前記方法は、前記薬剤が、350nm〜700nmの波長の光照射により核酸に共有結合する薬剤であり、エチジウムモノアザイド、エチジウムジアザイド、プロピジウムモノアザイド、プソラーレン、4,5',8−トリメチルプソラーレン、及び8−メトキ
シプソラーレンから選択されることを好ましい態様としている。
In the method, the drug is selected from a drug that is covalently bonded to a nucleic acid by light irradiation with a wavelength of 350 nm to 700 nm and a platinum group element complex, and the drug is covalently bonded to a nucleic acid by light irradiation with a wavelength of 350 nm to 700 nm. In the case of a drug, a preferred embodiment includes a step of performing a light irradiation treatment with a wavelength of 350 nm to 700 nm on a test sample to which the drug is added.
The method is a drug in which the drug is covalently bonded to a nucleic acid by irradiation with light having a wavelength of 350 nm to 700 nm, and is ethidium monoazide, ethidium diazide, propidium monoazide, psoralen, 4,5 ′, 8− A preferred embodiment is selected from trimethylpsoralen and 8-methoxypsoralen.

また前記方法は、前記薬剤が白金族元素の錯体であり、白金錯体、パラジウム錯体、及びイリジウム錯体から選ばれることを好ましい態様としている。
また前記方法は、前記白金族元素の錯体が白金錯体であり、NH3、RNH2、ハロゲン元素
、カルボキシレート基、ピリジン基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2 -、R2S、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、及びR-(ただし、「R」はいずれも飽和又は不飽和有機基を表す)からなる群から選ばれる配位子を含むことを好ましい態様としている。
また前記方法は、前記白金族元素の錯体がパラジウム錯体であり、NH3、RNH2、ハロゲ
ン元素、カルボキシレート基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2 -、R2S、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、R-(ただし、「R」はいずれも飽和又は不飽和有機基を表す)、NO2 -、Ar-NH2、Ar-CN(Arは不飽和有機基)、N2、SO3 2-、イミダゾール環、不飽和環状有機基、及びN3 -
ら選ばれる配位子を含むことを好ましい態様としている。
また前記方法は、前記白金族元素の錯体がイリジウム錯体であり、NH3、RNH2、ハロゲ
ン元素(Cl、F、Br、I、At)、カルボキシレート(-CO-O-)基、ピリジン基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2-、NO2 -、N2、N3 -、R2S
、R2P-、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、およびR-
(ただし、「R」はいずれも飽和又は不飽和有機基を表す)からなる群から選ばれる配位
子を含むことを好ましい態様としている。
Moreover, the said method makes it a preferable aspect that the said chemical | medical agent is a complex of a platinum group element, and is chosen from a platinum complex, a palladium complex, and an iridium complex.
In the method, the complex of the platinum group element is a platinum complex, and NH 3 , RNH 2 , a halogen element, a carboxylate group, a pyridine group, H 2 O, CO 3 2− , OH , NO 3 , ROH , N 2 H 4, PO 4 3-, R 2 O, RO -, ROPO 3 2-, (RO) 2 PO 2 -, R 2 S, R 3 P, RS -, CN -, RSH, RNC, ( RS) 2 PO 2 , (RO) 2 P (O) S , SCN , CO, H , and R (wherein “R” represents a saturated or unsaturated organic group). It is a preferable aspect to include a ligand selected from:
In the method, the platinum group complex is a palladium complex, NH 3 , RNH 2 , halogen element, carboxylate group, H 2 O, CO 3 2− , OH , NO 3 , ROH, N 2 H 4, PO 4 3-, R 2 O, RO -, ROPO 3 2-, (RO) 2 PO 2 -, R 2 S, R 3 P, RS -, CN -, RSH, RNC, (RS) 2 PO 2 , (RO) 2 P (O) S , SCN , CO, H , R (where “R” represents a saturated or unsaturated organic group), NO 2 , Ar— A preferred embodiment includes a ligand selected from NH 2 , Ar—CN (Ar is an unsaturated organic group), N 2 , SO 3 2− , an imidazole ring, an unsaturated cyclic organic group, and N 3 . .
In the method, the platinum group element complex is an iridium complex, and NH 3 , RNH 2 , a halogen element (Cl, F, Br, I, At), a carboxylate (—CO—O—) group, a pyridine group , H 2 O, CO 3 2- , OH -, NO 3 -, ROH, N 2 H 4, PO 4 3-, R 2 O, RO -, ROPO 3 2-, (RO) 2 PO 2-, NO 2 -, N 2, N 3 -, R 2 S
, R 2 P -, R 3 P, RS -, CN -, RSH, RNC, (RS) 2 PO 2 -, (RO) 2 P (O) S -, SCN -, CO, H -, and R -
(However, “R” represents a saturated or unsaturated organic group.) A preferred embodiment includes a ligand selected from the group consisting of.

また前記方法は、前記微生物の細胞の透過性を高める処理が、加熱処理、電子線照射、電圧印加、酵素処理、及び浸透圧ショックから選ばれることを好ましい態様としている。
また前記方法は、前記処理が加熱処理であり、処理条件が65〜100℃、0.5〜30分であることを好ましい態様としている。
Moreover, the said method makes it the preferable aspect that the process which improves the permeability | transmittance of the cell of the said microorganism is chosen from heat processing, electron beam irradiation, voltage application, enzyme treatment, and an osmotic shock.
Moreover, the said method makes it the preferable aspect that the said process is heat processing and process conditions are 65-100 degreeC and 0.5 to 30 minutes.

また前記方法は、鎖置換型核酸伸長酵素を用いた等温核酸増幅法が、LAMP法、ICAN法、SDA法、LCR法、TMA法、SMAP法、及びTRC法から選ばれることを好ましい態様としている。   In the above method, the isothermal nucleic acid amplification method using a strand displacement type nucleic acid elongation enzyme is preferably selected from the LAMP method, ICAN method, SDA method, LCR method, TMA method, SMAP method, and TRC method. .

また前記方法は、前記工程c)を、下記組成の溶液中で行うことを好ましい態様としている。
Tris-HCl(pH7〜9) 10mM〜25mM
KCl 5mM〜15mM
MgSO4 5mM〜40mM
界面活性剤 0.1%〜0.4%
ベタイン 0.5M〜1M
dNTPs 各1mM〜1.5mM
鎖置換型核酸伸長酵素 0.2〜0.6U/μl
Moreover, the said method makes it the preferable aspect to perform the said process c) in the solution of the following composition.
Tris-HCl (pH 7 ~ 9) 10mM ~ 25mM
KCl 5mM ~ 15mM
MgSO 4 5mM~40mM
Surfactant 0.1% -0.4%
Betaine 0.5M-1M
dNTPs 1mM to 1.5mM each
Strand displacement type nucleic acid elongation enzyme 0.2-0.6 U / μl

また前記方法は、界面活性剤がポリエチレングリコールソルビタンモノラウラートであることを好ましい態様としている。
また前記方法は、鎖置換型核酸伸長酵素が、Bstポリメラーゼ及び/又はCsaポリメラーゼであることを好ましい態様としている。
In the method, the surfactant is preferably polyethylene glycol sorbitan monolaurate.
Moreover, the said method makes it a preferable aspect that strand displacement type | mold nucleic acid elongase is Bst polymerase and / or Csa polymerase.

また前記方法は、前記ターゲット領域が50〜5000塩基のターゲット領域であることを好ましい態様としている。
また前記方法は、前記ターゲット領域が、被検試料の核酸の5S rRNA遺伝子、1
6S rRNA遺伝子、23S rRNA遺伝子、及びtRNA遺伝子から選択される遺伝子に対応するターゲット領域であることを好ましい態様としている。
また前記方法は、前記ターゲット領域の増幅をカルセイン存在下で行い、増幅産物をカルセインの蛍光によりリアルタイムに検出することを好ましい態様としている。
Moreover, the said method makes it a preferable aspect that the said target region is a 50-5000 base target region.
In the method, the target region is a 5S rRNA gene of a nucleic acid of a test sample, 1
A preferred embodiment is a target region corresponding to a gene selected from 6S rRNA gene, 23S rRNA gene, and tRNA gene.
Further, the method is preferably configured such that amplification of the target region is performed in the presence of calcein, and the amplification product is detected in real time by fluorescence of calcein.

また前記方法は、等温核酸増幅を、配列番号1、2、3、4、9、及び10の配列を有するプライマーのセット、配列番号10、11、12、13、14、及び17の配列を有するプライマーのセット、並びに配列番号18、19、20、及び21の配列を有するプライマーのセットから選ばれるプライマーのセットを用いて行うことを好ましい態様としている。   The method also includes isothermal nucleic acid amplification, a set of primers having the sequences of SEQ ID NOs: 1, 2, 3, 4, 9, and 10, and sequences of SEQ ID NOs: 10, 11, 12, 13, 14, and 17. It is a preferred embodiment to use a set of primers and a set of primers selected from the set of primers having the sequences of SEQ ID NOs: 18, 19, 20, and 21.

また、本発明は、鎖置換型核酸伸長酵素を用いた等温核酸増幅法により、被検試料中の微生物の生細胞を、死細胞又は損傷細胞と識別して検出するためのキットであって、下記の要素を含むキットを提供する:
1)微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤、
2)下記組成の反応液を調製するための試薬、
Tris-HCl(pH7〜9) 10mM〜25mM
KCl 5mM〜15mM
MgSO4 5mM〜40mM
界面活性剤 0.1%〜0.4%
ベタイン 0.5M〜1M
dNTPs 各1mM〜1.5mM
3)検出対象の微生物の核酸のターゲット領域を等温核酸増幅法により増幅するためのプライマー。
Further, the present invention is a kit for detecting a living cell of a microorganism in a test sample by distinguishing it from a dead cell or a damaged cell by an isothermal nucleic acid amplification method using a strand displacement nucleic acid elongation enzyme, Provide a kit containing the following elements:
1) a drug that selectively inhibits dead cells from amplifying microorganism nucleic acids by a nucleic acid amplification method;
2) a reagent for preparing a reaction solution having the following composition;
Tris-HCl (pH 7 ~ 9) 10mM ~ 25mM
KCl 5mM ~ 15mM
MgSO 4 5mM~40mM
Surfactant 0.1% -0.4%
Betaine 0.5M-1M
dNTPs 1mM to 1.5mM each
3) A primer for amplifying the target region of the nucleic acid of the microorganism to be detected by an isothermal nucleic acid amplification method.

前記キットは、さらに、鎖置換型核酸伸長酵素を含むことを好ましい態様としている。
また前記キットは、さらにカルセインを含むことを好ましい態様としている。
In a preferred embodiment, the kit further includes a strand displacement type nucleic acid elongation enzyme.
In addition, the kit preferably includes calcein.

前記キットにおいて、鎖置換型核酸伸長酵素、微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤、界面活性剤、及びプライマーは、前記方法について記載したのと同様である。   In the kit, the agent, surfactant, and primer that selectively inhibit the dead cell from amplifying the strand displacement nucleic acid elongase, the nucleic acid of the microorganism by the nucleic acid amplification method are the same as those described for the method. .

また本発明は、被検試料中の微生物の生細胞を、死細胞又は損傷細胞と識別して検出する方法であって、以下の工程:
a)前記被検試料に、微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤を添加する工程、
c)被検試料中の微生物の核酸のターゲット領域を核酸増幅法により増幅する工程、及びd)増幅産物を解析する工程、
を含む方法において、工程a)を蛋白質、糖類、脂質、及び酵母エキスからなる群から選択される成分を0.5〜10質量%含む細胞懸濁液中で行うことを特徴とする方法を提供する。
Further, the present invention is a method for detecting a living cell of a microorganism in a test sample by distinguishing it from a dead cell or a damaged cell, which comprises the following steps:
a) a step of adding, to the test sample, an agent that selectively inhibits the dead cells from amplifying microorganism nucleic acids by a nucleic acid amplification method;
c) a step of amplifying a target region of a nucleic acid of a microorganism in a test sample by a nucleic acid amplification method, and d) a step of analyzing an amplification product,
A process comprising performing a) in a cell suspension containing 0.5 to 10% by mass of a component selected from the group consisting of proteins, sugars, lipids, and yeast extracts To do.

前記方法は、検出対象の微生物が、レジオネラ属細菌、カンピロバクター属細菌、ビブリオ属細菌、リステリア属細菌、クロストリジウム属細菌、ヘリコバクター属細菌、マイコバクテリウム属細菌、クラミジア科細菌、リケッチア属細菌、及び、ナイゼリア属細菌であることを好ましい態様としている。   In the method, the microorganism to be detected is Legionella bacteria, Campylobacter bacteria, Vibrio bacteria, Listeria bacteria, Clostridium bacteria, Helicobacter bacteria, Mycobacterium bacteria, Chlamydiaceae bacteria, Rickettsia bacteria, and A preferred embodiment is a bacterium belonging to the genus Neisseria.

本発明の方法によれば、簡便に、微生物の生細胞を、死細胞又は損傷細胞と識別して検出することができる。本発明により、核酸増幅法による簡易かつ迅速な食品及び生体試料、拭き取り試料、工業用水、環境用水、排水等の環境中の微生物の生細胞・損傷細胞・死細胞の判別が可能となる。本発明の方法及びキットは、自主検査に応用可能であり、経済性にも優れている。   According to the method of the present invention, living cells of microorganisms can be detected by distinguishing them from dead cells or damaged cells. According to the present invention, it is possible to discriminate between living cells, damaged cells, and dead cells of microorganisms in an environment such as food and biological samples, wiped samples, industrial water, environmental water, wastewater, and the like by a nucleic acid amplification method. The method and kit of the present invention can be applied to self-inspection and are excellent in economy.

ダイレクト-LAMP法(白金錯体処理又は未処理)による生きた微生物のスタンダードカーブ。横軸は生細胞数を、縦軸はCt値を示す(図2も同様。)。「Direct-LAMP」は未処理を示し、「Pt-Direct-LAMP」は白金錯体処理を示す。Standard curve of living microorganisms by direct-LAMP method (platinum complex treatment or untreated). The horizontal axis represents the number of living cells, and the vertical axis represents the Ct value (the same applies to FIG. 2). “Direct-LAMP” indicates untreated, and “Pt-Direct-LAMP” indicates platinum complex treatment. ダイレクト-定量PCR法(白金錯体処理又は未処理)による生きた微生物のスタンダードカーブ。「Direct-qPCR」は未処理を示し、「Pt-Direct-qPCR」は白金錯体処理を示す。Standard curve of living microorganisms by direct-quantitative PCR method (platinum complex treatment or untreated). “Direct-qPCR” indicates untreated, and “Pt-Direct-qPCR” indicates platinum complex treatment.

次に、本発明の好ましい実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されず、本発明の範囲内で自由に変更することができるものである。尚、本明細書において百分率は特に断りのない限り質量による表示である。
本発明の方法においては、その検出の対象として、鎖置換型核酸伸長酵素を用いた等温核酸増幅法により増幅することが可能であれば、核酸の種類はいずれであってもよい。等温核酸増幅法の鋳型は通常二本鎖DNAであるが、検出対象がRNAの場合は、RNAから逆転写及びDNAポリメラーゼ反応によって二本鎖を形成させることによって、鋳型と
することができる。
Next, a preferred embodiment of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be freely changed within the scope of the present invention. In the present specification, percentages are expressed by mass unless otherwise specified.
In the method of the present invention, any kind of nucleic acid may be used as a detection target as long as it can be amplified by an isothermal nucleic acid amplification method using a strand displacement type nucleic acid elongation enzyme. The template of the isothermal nucleic acid amplification method is usually double-stranded DNA, but when the detection target is RNA, it can be used as a template by forming a double strand from RNA by reverse transcription and DNA polymerase reaction.

<1>本発明の方法
本発明の方法は、被検試料中の微生物の生細胞を、死細胞又は損傷細胞と識別して検出する方法であって、以下の工程:
a)前記被検試料に、微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤を添加する工程、
b)微生物の細胞の透過性を高める処理を行う工程、
c)被検試料中の微生物の核酸のターゲット領域を、細胞からの核酸の抽出を行わずに、鎖置換型核酸伸長酵素を用いた等温核酸増幅法により増幅する工程、及び
d)増幅産物を解析する工程、
を含む。前記微生物の細胞の透過性を高める処理は、それによって細胞からの核酸の抽出を行わずに、生細胞に選択的な核酸増幅を可能にする処理である。
<1> Method of the Present Invention The method of the present invention is a method for detecting living cells of microorganisms in a test sample by distinguishing them from dead cells or damaged cells, and the following steps:
a) a step of adding, to the test sample, an agent that selectively inhibits the dead cells from amplifying microorganism nucleic acids by a nucleic acid amplification method;
b) performing a treatment for increasing the permeability of cells of microorganisms;
c) a step of amplifying a target region of a nucleic acid of a microorganism in a test sample by an isothermal nucleic acid amplification method using a strand displacement type nucleic acid elongation enzyme without extracting the nucleic acid from the cell, and d) an amplification product Process to analyze,
including. The treatment for increasing the permeability of the cells of the microorganism is a treatment that enables nucleic acid amplification selective to living cells without extracting nucleic acids from the cells.

本明細書において、「被検試料」とは、その中に存在する微生物の生細胞を検出する対象であり、核酸増幅法による染色体DNA、又はRNAの特定領域の増幅によって存在を検出することが可能なものであれば特に制限されないが、食品、生体試料、飲料水、工業用水、環境用水、排水、土壌、又は拭き取り試料等が挙げられる。
特に、食品としては、清涼飲料、炭酸飲料、栄養飲料、果汁飲料、乳酸菌飲料等の飲料(これらの飲料の濃縮原液及び調製用粉末を含む);アイスクリーム、アイスシャーベット、かき氷等の氷菓;加工乳、乳飲料、発酵乳、バター等の乳製品;経腸栄養食品、流動食、育児用ミルク、スポーツ飲料;特定保健用食品、健康補助食品等の機能性食品等が好ましい。
In the present specification, the “test sample” is a target for detecting living cells of microorganisms present therein, and the presence is detected by amplification of a specific region of chromosomal DNA or RNA by a nucleic acid amplification method. Although it will not restrict | limit if it is possible, A foodstuff, biological sample, drinking water, industrial water, environmental water, drainage, soil, or a wipe sample etc. are mentioned.
In particular, as food, beverages such as soft drinks, carbonated drinks, nutrient drinks, fruit juice drinks, lactic acid bacteria drinks (including concentrated concentrates and powders for preparation of these drinks); ice confectionery such as ice cream, ice sherbet, shaved ice; Dairy products such as milk, milk drinks, fermented milk, butter; enteral nutrition foods, liquid foods, milk for childcare, sports drinks; functional foods such as foods for specified health use and health supplements are preferred.

また、生体試料としては、血液試料、尿試料、髄液試料、滑液試料、胸水試料、喀痰試料、糞便試料、鼻腔粘液試料、喉頭粘液試料、胃洗浄液試料、膿汁試料、皮膚粘膜試料、口腔粘液試料、呼吸器粘膜試料、消化器粘膜試料、眼結膜試料、胎盤試料、生殖細胞試料、産道試料、母乳試料、唾液試料、嘔吐物、又は水疱内容等が例示される。
さらに、環境用水としては、市水、地下水、河川水、又は雨水等が例示される。
Biological samples include blood samples, urine samples, spinal fluid samples, synovial fluid samples, pleural effusion samples, sputum samples, stool samples, nasal mucus samples, laryngeal mucus samples, gastric lavage fluid samples, pus juice samples, skin mucosa samples, oral cavity Examples include mucus samples, respiratory mucosa samples, digestive mucosa samples, eye conjunctiva samples, placenta samples, germ cell samples, birth canal samples, breast milk samples, saliva samples, vomiting, or blister contents.
Furthermore, examples of the environmental water include city water, ground water, river water, and rain water.

本発明においては、被検試料は、前記のような食品、生体試料、飲料水、工業用水、環境用水、排水、土壌、又は拭き取り試料等そのものであってもよく、これらを希釈もしくは濃縮したもの、又は本発明の方法による処理以外の前処理をしたものであってもよい。前記前処理としては、加熱処理、濾過、遠心分離等が挙げられる。   In the present invention, the test sample may be a food, biological sample, drinking water, industrial water, environmental water, waste water, soil, or a wipe sample itself as described above, or a diluted or concentrated product thereof. Alternatively, pretreatment other than the treatment according to the method of the present invention may be performed. Examples of the pretreatment include heat treatment, filtration, and centrifugation.

また、被検試料中に存在する微生物以外の細胞、タンパク質コロイド粒子、脂肪及び糖質等の夾雑物は、これらを分解する活性を有する酵素による処理等によって除去又は低減させてもよい。前記被検試料中に存在する微生物以外の細胞としては、被検試料が乳、乳製品、乳又は乳製品を原料とする食品である場合には、ウシ白血球及び乳腺上皮細胞等が挙げられる。また、被検試料が血液試料、尿試料、髄液試料、滑液試料又は胸水試料等の生体試料の場合には、赤血球、白血球(顆粒球、好中球、好塩基球、単球、リンパ球等)、及び血小板等が挙げられる。   In addition, cells other than microorganisms, protein colloid particles, fats and carbohydrates, etc. present in the test sample may be removed or reduced by treatment with an enzyme having the activity of decomposing them. Examples of cells other than microorganisms present in the test sample include bovine leukocytes and mammary epithelial cells when the test sample is milk, dairy products, milk or foods made from dairy products. When the test sample is a biological sample such as a blood sample, urine sample, spinal fluid sample, synovial fluid sample or pleural effusion sample, red blood cells, white blood cells (granulocytes, neutrophils, basophils, monocytes, lymphoid cells) Spheres), and platelets.

前記酵素としては、前記夾雑物を分解することができ、かつ、検出対象の微生物の生細胞を損傷しないものであれば特に制限されないが、例えば、脂質分解酵素、タンパク質分解酵素、及び糖質分解酵素が挙げられる。前記酵素は、1種類の酵素を単独で用いてもよいし、2種又はそれ以上の酵素を併用してもよいが、脂質分解酵素及びタンパク質分解酵素の両方、又は脂質分解酵素、タンパク質分解酵素、及び糖質分解酵素の全てを用いることが好ましい。
脂質分解酵素としては、リパーゼ、フォスファターゼ等が、タンパク質分解酵素として
はセリンプロテアーゼ、システインプロテアーゼ、プロテイナーゼK、プロナーゼ等が、糖質分解酵素としてはアミラーゼ、セルラーゼ等が挙げられる。
The enzyme is not particularly limited as long as it can decompose the contaminants and does not damage the living cells of the microorganism to be detected. For example, a lipolytic enzyme, a proteolytic enzyme, and a carbohydrase Enzymes. As the enzyme, one kind of enzyme may be used alone, or two or more kinds of enzymes may be used in combination, but both lipolytic enzyme and proteolytic enzyme, or lipolytic enzyme, proteolytic enzyme It is preferable to use all of saccharide-degrading enzymes.
Examples of the lipolytic enzyme include lipase and phosphatase, examples of the proteolytic enzyme include serine protease, cysteine protease, proteinase K, and pronase, and examples of the carbohydrase include amylase and cellulase.

「微生物」は、本発明の方法により検出される対象であり、核酸増幅法により検出することが可能であって、かつ、微生物のDNAの核酸増幅法による増幅を阻害する薬剤の作用が生細胞と死細胞や損傷細胞とで異なるものであれば、特に制限されないが、好ましくは細菌、糸状菌、酵母、又はウイルス等が挙げられる。細菌としては、グラム陽性菌及びグラム陰性菌のいずれもが含まれる。   A “microorganism” is an object to be detected by the method of the present invention, and can be detected by a nucleic acid amplification method, and the action of a drug that inhibits the amplification of microbial DNA by the nucleic acid amplification method is a living cell. Although it will not restrict | limit especially if it is different with a dead cell and a damaged cell, Preferably bacteria, a filamentous fungus, yeast, or a virus is mentioned. Bacteria include both gram-positive bacteria and gram-negative bacteria.

グラム陽性菌としては、黄色ブドウ球菌や表皮ブドウ球菌などのブドウ球菌属;ミクロコッカス属;Streptcoccus pyogenes、Streptococcus pneumoniae(肺炎球菌)等のスト
レプトコッカス属;Enterococcus faecalisなどエンテロコッカス属;エロコッカス属;Bacillus cereus(セレウス菌)、Bacillus subtilis(バチラス・ズブチリス)、Bacillus licheniformis(バチラス・リヘニフォルミス)等のバチラス属(栄養型細胞が望まし
い);ボツリヌス菌やウエルシュ菌などのクロストリジウム属;ヒト型結核菌やウシ型結核菌;マイコバクテリウム・イントラセルラー、マイコバクテリウム・アビウムなどのマイコバクテリウム属(抗酸菌及び非定型抗酸菌群);ライ菌;アクチノミセス属;ノカルジア属;ノカルジオプシス属;アクチノマズラ属;ストレプトミセス属;デルマトフィルス属;ユーバクテリウム属;コリネバクテリウム属;プロピオニバクテリウム属等が挙げられる。
Gram-positive bacteria include Staphylococcus, such as Staphylococcus aureus and Staphylococcus epidermidis; Micrococcus, Streptococcus pyogenes, Streptococcus pneumoniae, and other Streptococcus; Enterococcus faecalis, Enterococcus; Erococcus, Bacillus cereus Bacillus subtilis and Bacillus licheniformis (preferably vegetative cells); Clostridium such as Clostridium botulinum and Clostridium perfringens; Mycobacterium tuberculosis and bovine tuberculosis Mycobacterium genus (mycobacteria and atypical mycobacteria group) such as Mycobacterium intracellulare, Mycobacterium abium; Rae bacteria; Actinomyces; Nocardia; Nocardiopsis; Actinomadura; Streptomyces Genus; Dell Tofirusu genus; Eubacterium; Corynebacterium; Propionibacterium genus, and the like.

また、グラム陰性菌としては、レジオネラ属;サルモネラ属;O157、O26、O11、O145を始めとする腸管出血性大腸菌;カンピロバクター属;アルコバクター属;ヘリコバクター属;緑膿菌などのシュードモナス属;バークホルデリア属;アシネトバクター属;アルカリゲネス属;クリセオバクテリウム属;モラクセラ属;コクシェラ属;ブルセラ属;野兎病菌(Francisella tularensis)等のフランシセラ属;バルトネラ属;ボルデテラ属;インフルエンザ菌(Haemophilus influenzae)等のヘモフィルス属;パスツレラ属;クロモバクテリウム属;ストレプトバシラス属;赤痢菌等のシゲラ属、エルシニア属、エシェリヒア・コリなどエシェリヒア属、クレブシェラ属、シトロバクター属、エドワージエラ属、エンテロバクター属、ハフニア属、プレジオモナス属、プロテウス属、プロビデンシア属、モルガネラ属、セラチア属等の腸内細菌科;ビブリオ属;エロモナス属;バクテロイデス属;プレボテラ属;ポルフィロオナス属;フソバクテリウム属;レプトトリキア属;ベイヨネラ属;ブラキスピラ属;レプトスピラ属;トレポネーマ属;ブタ赤痢スピロヘータ;ボレリア属;マイコプラズマ;リケッチア;クラミジア等が挙げられる。   Gram-negative bacteria include Legionella spp .; Salmonella spp .; Enterohemorrhagic Escherichia coli including O157, O26, O11, O145; Campylobacter spp .; Alcobacter spp .; Helicobacter spp .; Pseudomonas spp. Deria; Acinetobacter; Alkagenes; Chryseobacterium; Moraxella; Coxella; Brucella; Francisella, such as Francisella tularensis; Balticella; Bordeterra; Haemophilus influenzae, Genus; Pasteurella genus; Chromobacterium genus; Streptobacillus genus; Shigella genus such as Shigella, Yersinia, Escherichia coli, etc. Enterobacteriaceae such as Genus, Proteus, Providencia, Morganella, Serratia, etc .; Vibrio; Eromonas; Bacteroides; Prevoterra; Porphyroonas; Fusobacterium; Leptotricia; Examples include Treponema; swine dysentery spirochete; Borrelia; Mycoplasma; Rickettsia; Chlamydia and the like.

ウイルスとしては、ポックスウイルス科、ヘルペスウイルス科、アデノウイルス科、パピローマウイルス科、ポリオーマウイルス科、パルボウイルス科、ピコルナウイルス科、カリシウイルス科、アストロウイルス科、コロナウイルス科、トガウイルス科、フラビウイルス科、オルトミクソウイルス科、パラミクソウイルス科、ラブドウイルス科、フィロウイルス科、ボルナウイルス科、アレナウイルス科、ブニヤウイルス科、レオウイルス科、レトロウイルス科、肝炎ウイルスなどが挙げられる。   Viruses include Poxviridae, Herpesviridae, Adenoviridae, Papillomaviridae, Polyomaviridae, Parvoviridae, Picornaviridae, Caliciviridae, Astroviridae, Coronaviridae, Togaviridae, Examples include Flaviviridae, Orthomyxoviridae, Paramyxoviridae, Rhabdoviridae, Filoviridae, Bornaviridae, Arenaviridae, Bunyaviridae, Reoviridae, Retroviridae, and Hepatitis Virus.

ウイルスに関しては、水中でのウイルスの活性化・不活性化測定法において、光反応性核酸架橋剤(EMA)を作用させ、その後RT-PCR法により活性化ウイルスのみを測定する方
法が知られている(http://www.recwet.t.u-tokyo.ac.jp/furumailab/j/sotsuron/H21/H21sotsuron.html、Development of ethidium monoazide (EMA)-RT-PCR for selective detection of enteric viruses. 15th International Symposium on Health-Related Water Microbiology. (May 31-Jun 05, 2009, Ursulines Conference Centre, Naxos, Greece))。
すなわち、EMAは活性化ウイルスは透過せず、物理的損傷の激しいヌクレオカプシドを
有する不活性化ウイルスのみに透過し、EMAにより活性化ウィルス(Live)と不活性化ウ
ィルス(Dead)を識別することが可能なことが示唆されている。したがって、本発明は、細菌、糸状菌や酵母のみならず、ウイルスにも適用できると考えられる。
Regarding viruses, a method of measuring only activated viruses by RT-PCR is known in the method of measuring activation / deactivation of viruses in water by allowing photoreactive nucleic acid cross-linking agent (EMA) to act. (Http://www.recwet.tu-tokyo.ac.jp/furumailab/j/sotsuron/H21/H21sotsuron.html, Development of ethidium monoazide (EMA) -RT-PCR for selective detection of enteric viruses.15th International Symposium on Health-Related Water Microbiology. (May 31-Jun 05, 2009, Ursulines Conference Centre, Naxos, Greece)).
In other words, EMA does not permeate activated viruses, only permeates only inactivated viruses with nucleocapsids that are severely physically damaged, and EMA can distinguish between activated viruses (Live) and inactivated viruses (Dead). It has been suggested that it is possible. Therefore, it is considered that the present invention can be applied not only to bacteria, filamentous fungi and yeasts but also to viruses.

また、後記実施例に示されるように、本発明の方法より、グラム陰性細菌及びグラム陽性細菌の生細胞と死細胞の識別が可能であることが示された。したがって、グラム陰性細菌の細胞壁外膜と同成分の最外殻エンベロープを有するウイルスについても、生細胞と死細胞の識別に使用できると考えられる。また、エンベロープを有しない所謂ヌクレオカプシド(タンパク質膜)のみ保有するウイルスは、外膜を有さず、直接ペプチドグリカン層が外界と接触するグラム陽性細菌に比較的類似しているため、本発明による生細胞と死細胞の識別が可能であると考えられる。   Further, as shown in Examples below, it was shown that the method of the present invention can distinguish between live and dead cells of Gram negative bacteria and Gram positive bacteria. Therefore, it is considered that a virus having the outermost envelope having the same component as the cell wall outer membrane of Gram-negative bacteria can be used for distinguishing between live cells and dead cells. In addition, since a virus having only a so-called nucleocapsid (protein membrane) without an envelope does not have an outer membrane and is relatively similar to a Gram-positive bacterium in which the peptidoglycan layer directly contacts the outside world, the living cell according to the present invention It is considered possible to identify dead cells.

本発明において「生細胞」(Live cell)とは、一般に好適な培養条件によって培養し
た際に増殖が可能であって、その微生物が有する代謝活性を示す状態(Viable-and-Culturable state)であり、細胞壁の損傷はほとんど無い微生物をいう。なお、ここでいう代
謝活性とはATP活性やエステラーゼ活性を例示することができる。本発明においては、ウイルス粒子も、便宜的に「細胞」と呼ぶ。「生細胞」は、ウイルスに関しては、哺乳動物細胞に感染し、増殖できる状態をいう。
In the present invention, a “live cell” is a state that can grow when cultured under suitable culture conditions and exhibits the metabolic activity of the microorganism (Viable-and-Culturable state). A microorganism that has almost no damage to the cell wall. The metabolic activity mentioned here can be exemplified by ATP activity and esterase activity. In the present invention, virus particles are also referred to as “cells” for convenience. “Live cell” refers to a state in which a mammalian cell can be infected and propagated with respect to a virus.

「死細胞」(Dead cell)とは、好適な培養条件によって培養した場合であっても増殖
は不可能であって、代謝活性を示さない状態(Dead)の微生物である。また、細胞壁の構造は維持されているものの、細胞壁自体は高度に損傷を受けており、ヨウ化プロピジウムのような弱透過性の核染色剤等が細胞壁を透過する状態である。ウイルスに関しては、哺乳動物細胞に感染できない状態をいう。
“Dead cells” are microorganisms that cannot grow even when cultured under suitable culture conditions and do not exhibit metabolic activity (Dead). In addition, although the structure of the cell wall is maintained, the cell wall itself is highly damaged, and a weakly permeable nuclear stain such as propidium iodide penetrates the cell wall. Regarding virus, it means a state in which mammalian cells cannot be infected.

「損傷細胞」(Injured cell又はViable-but-Non Culturable cell)とは、人為的ストレス又は環境的ストレスにより損傷を受けているために、一般に好適な培養条件によって培養した場合であっても、増殖は困難であるが、その微生物が有する代謝活性は、生細胞と比較すると低下しているものの死細胞と比較すると有意に活性を有する状態の微生物である。ウイルスに関しては、哺乳動物細胞に感染したとしても、細胞中で増殖できない状態をいう。
本明細書においては、特記しない限り、「生細胞」、「死細胞」及び「損傷細胞」は、微生物の生細胞、死細胞及び損傷細胞を意味する。
“Injured cells” (Viable-but-Non Culturable cells) are damaged by human or environmental stress, and are generally proliferated even when cultured under suitable culture conditions. Although it is difficult, the microorganism has a metabolic activity that is lower than that of living cells, but is significantly more active than that of dead cells. Regarding virus, it means a state in which, even if a mammalian cell is infected, it cannot grow in the cell.
In the present specification, unless otherwise specified, “live cells”, “dead cells” and “damaged cells” mean live cells, dead cells and damaged cells of microorganisms.

特に、食品衛生検査や臨床検査において、穏和な加熱処理や抗生物質投与により、損傷細胞の状態を呈した細菌の検出が注目されており、本発明においては、生細胞の検出のみならず、生細胞と死細胞又は損傷細胞との識別も可能な微生物の検出方法を提供するものである。   In particular, in food hygiene inspections and clinical tests, attention has been focused on the detection of bacteria exhibiting damaged cells by mild heat treatment and antibiotic administration. In the present invention, not only the detection of living cells but also the detection of living cells. It is an object of the present invention to provide a method for detecting a microorganism that can distinguish cells from dead cells or damaged cells.

尚、生細胞、損傷細胞及び死細胞の細胞数単位は、通常、いずれも細胞数(cells)/
mlで表される。
生細胞の細胞数は、好適な平板培地上で好適な条件で培養したときのコロニー形成数(cfu/ml(colony forming units / ml))で近似させることができる。また、損傷
細胞の標準試料は、例えば、生細胞懸濁液を加熱処理、例えば沸騰水中で加熱処理することにより調製することができるが、その場合は、損傷細胞の細胞数は、加熱処理する前の生細胞懸濁液のcfu/mlで近似させることができる。尚、損傷細胞を調製するための沸騰水中での加熱時間は、微生物の種類により異なるが、例えば実施例に記載された細菌では、50秒程度で損傷細胞を調製することができる。さらに、損傷細胞の標準試料は、抗生物質処理によっても調製することができるが、その場合は、損傷細胞の細胞数は、生細胞懸濁液を抗生物質で処理した後、抗生物質を除去し、可視光(波長600nm)の透
過度、すなわち濁度を測定し、生細胞数濃度が予め判っている生細胞懸濁液の濁度と比較することにより、好適な平板培地上で好適な条件で培養したときのコロニー形成数(cfu/ml)で近似させることができる。
ウイルスでは、細胞数単位は、プラーク形成単位(pfu又はPFU(plaque-forming
units))で表される。
本明細書では細胞数は対数で表し、「a log cfu/ml」、「a log cells/ml」は、各々10acfu/ml、10a個細胞/mlを表す。
The unit of cell number of living cells, damaged cells and dead cells is usually the number of cells / cells / cell.
Expressed in ml.
The number of living cells can be approximated by the number of colonies formed (cfu / ml (colony forming units / ml)) when cultured on a suitable plate medium under suitable conditions. In addition, a standard sample of damaged cells can be prepared, for example, by subjecting a living cell suspension to heat treatment, for example, heat treatment in boiling water. In this case, the number of damaged cells is heat treated. It can be approximated by cfu / ml of the previous live cell suspension. In addition, although the heating time in the boiling water for preparing damaged cells changes with kinds of microorganisms, in the case of bacteria described in the examples, damaged cells can be prepared in about 50 seconds. In addition, standard samples of damaged cells can also be prepared by antibiotic treatment, in which case the number of damaged cells is determined by treating the live cell suspension with antibiotics and then removing the antibiotics. By measuring the transmittance of visible light (wavelength 600 nm), that is, turbidity, and comparing it with the turbidity of a live cell suspension whose live cell number concentration is known in advance, the preferable conditions on a suitable plate medium Can be approximated by the number of colonies formed (cfu / ml).
In viruses, the cell number unit is plaque-forming unit (pfu or PFU (plaque-forming).
units)).
In this specification, the number of cells is expressed in logarithm, and “a log cfu / ml” and “a log cells / ml” represent 10 a cfu / ml and 10 a cells / ml, respectively.

尚、本発明の方法は、生細胞の検出が目的であり、生細胞と区別される微生物は、損傷細胞であっても死細胞であってもよい。   The method of the present invention is intended for detection of live cells, and the microorganisms distinguished from live cells may be damaged cells or dead cells.

本発明において、「生細胞の検出」とは、被検試料中の生細胞の有無の判別及び生細胞の量の決定のいずれをも含む。また、生細胞の量とは、絶対的な量に限られず、対照試料に対する相対的な量であってもよい。また、「生細胞を、死細胞又は損傷細胞と識別して検出する」とは、死細胞又は損傷細胞に比べて選択的に検出することを意味する。尚、「生細胞と死細胞又は損傷細胞との識別」には、生細胞と、死細胞及び損傷細胞の両方との識別も含まれる。   In the present invention, “detection of living cells” includes both determination of presence / absence of living cells in the test sample and determination of the amount of living cells. Further, the amount of living cells is not limited to an absolute amount, and may be an amount relative to a control sample. Further, “detecting a living cell by discriminating it from a dead cell or a damaged cell” means selectively detecting a dead cell or a damaged cell. Note that “discrimination between live cells and dead cells or damaged cells” includes discrimination between live cells and both dead cells and damaged cells.

以下、本発明の方法を工程毎に説明する。尚、前記したように、以下の工程の前に、任意の工程として、被検試料を、被検試料中に存在する微生物以外の細胞、タンパク質コロイド粒子、脂肪、又は糖質を分解する活性を有する酵素で処理する工程を含んでいてもよい。   Hereinafter, the method of the present invention will be described step by step. As described above, prior to the following steps, as an optional step, the test sample may have an activity of degrading cells other than microorganisms, protein colloid particles, fat, or carbohydrates present in the test sample. The process of processing with the enzyme which has may be included.

(1)工程a)
被検試料に、微生物の核酸(DNA又はRNA)の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤を添加する。すなわち、被検試料中の微生物を、前記薬剤で処理する。前記薬剤としては、350nm〜700nmの波長の光照射により核酸に共有結合する薬剤、及び白金族元素の錯体が挙げられる。
(1) Step a)
To the test sample, an agent that selectively inhibits dead cells from amplifying microorganism nucleic acid (DNA or RNA) by the nucleic acid amplification method is added. That is, the microorganism in the test sample is treated with the drug. Examples of the drug include a drug covalently bonded to a nucleic acid by irradiation with light having a wavelength of 350 nm to 700 nm, and a platinum group element complex.

350nm〜700nmの波長の光照射により核酸に共有結合する薬剤は、二本鎖DNA又はRNAにインターカレートし、光照射により共有結合して分子間を架橋する。また、前記薬剤は、一本鎖DNA又はRNAに対しては、光照射により共有結合して、核酸増幅反応を阻害すると推定される。以下、前記薬剤を単に「架橋剤」と記載することがある。   A drug that is covalently bonded to a nucleic acid by irradiation with light having a wavelength of 350 nm to 700 nm intercalates into double-stranded DNA or RNA, and is covalently bonded by irradiation with light to crosslink between the molecules. In addition, it is estimated that the drug is covalently bonded to single-stranded DNA or RNA by light irradiation to inhibit the nucleic acid amplification reaction. Hereinafter, the drug may be simply referred to as “crosslinking agent”.

前記架橋剤は、生細胞と、損傷細胞又は死細胞及びウシ白血球等の体細胞、白血球、血小板等に対する作用が異なるものであることが好ましく、より具体的には、生細胞の細胞壁よりも損傷細胞もしくは死細胞の細胞壁、又はウシ白血球等の体細胞、白血球、血小板等の細胞膜に対して透過性が高いものであることが好ましい。
前記架橋剤としては、エチジウムモノアザイド(ethidium monoazide)、エチジウムジアジド(ethidium diazide)、プソラーレン(psolaren)、4,5',8−トリメチルプ
ソラーレン(4,5',8-trimethyl psolaren)、及び8−メトキシプソラーレン(8-methoxy
psolaren)、プロピジウムモノアザイド(propidium monoazide)等が挙げられる。架橋剤は、1種類を単独で用いてもよいし、2種又はそれ以上を併用してもよい。
架橋剤による処理の条件は、適宜設定することが可能であり、例えば、国際公開第2011/010740に開示されている条件を採用することができる。
It is preferable that the cross-linking agent has a different action on living cells, damaged cells or somatic cells such as dead cells and bovine leukocytes, leukocytes, platelets, etc., more specifically, damage more than the cell walls of live cells. It is preferable that it is highly permeable to cell walls of cells or dead cells, or somatic cells such as bovine leukocytes, and cell membranes such as leukocytes and platelets.
Examples of the cross-linking agent include ethidium monoazide, ethidium diazide, psolaren, 4,5 ′, 8-trimethyl psoralen (4,5 ′, 8-trimethyl psolaren), And 8-methoxypsoralen (8-methoxy
psolaren), propidium monoazide and the like. A crosslinking agent may be used individually by 1 type, and may use 2 or more types together.
The conditions for the treatment with the crosslinking agent can be set as appropriate, and for example, the conditions disclosed in International Publication No. 2011/010740 can be adopted.

前記薬剤として架橋剤を用いる場合は、架橋剤を添加した被検試料に350nm〜700nmの波長の光照射処理を行う。
350nm〜700nmの波長の光とは、少なくとも350nm〜700nmの波長の
光を含んでいればよく、単波長光であってもよく、複合光であってもよい。また、すべての成分が350nm〜700nmの範囲内にあってもよく、350nmよりも短波長の光、及び/又は700nm以上の長波長の光を含んでいてもよいが、強度分布におけるピークが350nm〜700nmの範囲内にあることが好ましい。尚、光照射のみによって微生物の染色体DNAを切断する程の短波長の成分は含まないことが好ましい。
尚、架橋剤を用いる場合は、露光による薬剤の変性を防ぐため、試料への光照射を除けば、暗室中などの遮光下におくことが好ましい。
When a cross-linking agent is used as the drug, a test sample to which the cross-linking agent is added is subjected to light irradiation treatment with a wavelength of 350 nm to 700 nm.
The light having a wavelength of 350 nm to 700 nm may be light having a wavelength of at least 350 nm to 700 nm, and may be single wavelength light or composite light. Further, all components may be in the range of 350 nm to 700 nm, and may include light having a shorter wavelength than 350 nm and / or light having a longer wavelength of 700 nm or more, but the peak in the intensity distribution is 350 nm. It is preferable to be within a range of ˜700 nm. It should be noted that it is preferable not to include a component having a short wavelength enough to cleave the chromosomal DNA of a microorganism only by light irradiation.
When a cross-linking agent is used, it is preferable to keep it under light shielding in a dark room, etc., except for light irradiation to the sample, in order to prevent chemical modification due to exposure.

また、前記白金族元素の錯体としては、白金錯体、パラジウム錯体、及びイリジウム錯体が挙げられる(PCT/JP2013/070662、PCT/JP2013/070663、特願2014-010257)。   Examples of the platinum group element complex include platinum complexes, palladium complexes, and iridium complexes (PCT / JP2013 / 070662, PCT / JP2013 / 070663, Japanese Patent Application 2014-010257).

白金錯体としては、NH3、RNH2、ハロゲン元素、カルボキシレート基、ピリジン基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2 -、R2S、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、及びR-(ただし、「R」は
いずれも飽和又は不飽和有機基を表す)からなる群から選ばれる配位子を含む錯体が挙げられる。
白金錯体として具体的には、シスプラチン、カルボプラチン、cis-ジアンミン(ピリジン)クロロ白金(II)クロリド、ジクロロ(エチレンジアミン)白金(II)、cis-ビス(ベンゾニトリル)ジクロロ白金(II)、テトラキス(トリフェニルホスフィン)白金(II)、二硝酸(エチレンジアミン)ヨウ化白金(II)ダイマー、オキサリプラチン、ネダプラチン、およびトランスプラチンが挙げられる。
Platinum complexes include NH 3 , RNH 2 , halogen elements, carboxylate groups, pyridine groups, H 2 O, CO 3 2− , OH , NO 3 , ROH, N 2 H 4 , PO 4 3− , R 2 O, RO -, ROPO 3 2-, (RO) 2 PO 2 -, R 2 S, R 3 P, RS -, CN -, RSH, RNC, (RS) 2 PO 2 -, (RO) 2 P (O) A complex containing a ligand selected from the group consisting of S , SCN , CO, H , and R (wherein “R” represents a saturated or unsaturated organic group). .
Specific examples of platinum complexes include cisplatin, carboplatin, cis-diammine (pyridine) chloroplatinum (II) chloride, dichloro (ethylenediamine) platinum (II), cis-bis (benzonitrile) dichloroplatinum (II), tetrakis (tri Phenylphosphine) platinum (II), dinitrate (ethylenediamine) platinum iodide (II) dimer, oxaliplatin, nedaplatin, and transplatin.

また、白金錯体は、白金化合物を、配位子として白金に結合し得る有機溶媒、又は配位子として白金に結合し得る物質を含む溶液に溶解することにより生成する白金錯体であってもよい。前記白金化合物としては、塩化白金、臭化白金、フッ化白金、ヨウ化白金、水酸化白金、硝酸白金、炭酸白金、酢酸白金、ジメトキシ白金、メトキシリン酸白金、リン酸白金、塩化白金酸、ジスルフメチル白金、ジシアノ白金、ジチオシアネート白金、二水素化白金、及びジメチル白金が挙げられる。溶媒としては、ジメチルスルホキシドが挙げられる。   Further, the platinum complex may be a platinum complex formed by dissolving a platinum compound in an organic solvent capable of binding to platinum as a ligand or a solution containing a substance capable of binding to platinum as a ligand. . Examples of the platinum compound include platinum chloride, platinum bromide, platinum fluoride, platinum iodide, platinum hydroxide, platinum nitrate, platinum carbonate, platinum acetate, dimethoxyplatinum, platinum methoxyphosphate, platinum phosphate, chloroplatinic acid, Examples include disulfumethylplatinum, dicyanoplatinum, dithiocyanateplatinum, platinum dihydride, and dimethylplatinum. Examples of the solvent include dimethyl sulfoxide.

パラジウム錯体としては、NH3、RNH2、ハロゲン元素、カルボキシレート基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2 -、R2S、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、R-(ただし、「R」はいずれも飽
和又は不飽和有機基を表す)、NO2 -、Ar-NH2、Ar-CN(Arは不飽和有機基)、N2、SO3 2-、イミダゾール環、不飽和環状有機基、及びN3 -から選ばれる配位子を含む錯体が挙げられ
る。
パラジウム錯体として具体的には、ジクロロ(η-シクロオクタ-1,5-ジエン)パラジウム (II)、ビス(ベンゾニトリル)ジクロロパラジウム (II)、ジアンミンジクロロパラジウム (II)、ジクロロ(エチレンジアミン)パラジウム (II)、及び、ビス(トリフェニルホスフィン)パラジウム (II) ジアセテートが挙げられる。
Examples of the palladium complex include NH 3 , RNH 2 , halogen element, carboxylate group, H 2 O, CO 3 2− , OH , NO 3 , ROH, N 2 H 4 , PO 4 3− , R 2 O, RO -, ROPO 3 2-, ( RO) 2 PO 2 -, R 2 S, R 3 P, RS -, CN -, RSH, RNC, (RS) 2 PO 2 -, (RO) 2 P (O) S , SCN , CO, H , R (where “R” represents a saturated or unsaturated organic group), NO 2 , Ar—NH 2 , Ar—CN (Ar is an unsaturated organic group) Group), N 2 , SO 3 2− , an imidazole ring, an unsaturated cyclic organic group, and a complex containing a ligand selected from N 3 .
Specific examples of palladium complexes include dichloro (η-cycloocta-1,5-diene) palladium (II), bis (benzonitrile) dichloropalladium (II), diamminedichloropalladium (II), dichloro (ethylenediamine) palladium (II ) And bis (triphenylphosphine) palladium (II) diacetate.

また、パラジウム錯体は、パラジウム化合物を、配位子としてパラジウムに結合し得る有機溶媒、又は配位子としてパラジウムに結合し得る物質を含む溶液に溶解することにより生成するパラジウム錯体であってもよい。前記パラジウム化合物としては、塩化パラジウム、フッ化パラジウム、臭化パラジウム、ヨウ化パラジウム、水酸化パラジウム、二硝酸パラジウム(II)、四硝酸パラジウム(IV)、酢酸パラジウム、リン酸パラジウム、ジメトキシパラジウム、メトキシリン酸パラジウム、亜硫酸パラジウム、ジニトロパラジウム、及びパラジウムジアジドが挙げられる。溶媒としては、ジメチルスルホキシドが挙げられる。   The palladium complex may be a palladium complex formed by dissolving a palladium compound in an organic solvent capable of binding to palladium as a ligand or a solution containing a substance capable of binding to palladium as a ligand. . Examples of the palladium compound include palladium chloride, palladium fluoride, palladium bromide, palladium iodide, palladium hydroxide, palladium (II) dinitrate, palladium (IV) tetranitrate, palladium acetate, palladium phosphate, dimethoxypalladium, methoxy Examples include palladium phosphate, palladium sulfite, dinitropalladium, and palladium diazide. Examples of the solvent include dimethyl sulfoxide.

また、イリジウム錯体としては、NH3、RNH2、ハロゲン元素(Cl、F、Br、I、At)、カ
ルボキシレート(-CO-O-)基、ピリジン基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-
、R2O、RO-、ROPO3 2-、(RO)2PO2-、NO2 -、N2、N3 -、R2S、R2P-、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、およびR-(ただし、「R」はいずれも飽和又は不飽和有機基を表す)からなる群から選ばれる配位子を含む錯体が挙げられる。
イリジウム錯体として具体的には、ジ-μ-クロロビス[(η-シクロオクタ-1,5-ジエン)
イリジウム(I)]、及び、2-ヒドロキシ-N-ピリジン(ペンタメチルシクロペンタジエニル)
イリジウム(III)ジクロリドが挙げられる。
Examples of iridium complexes include NH 3 , RNH 2 , halogen elements (Cl, F, Br, I, At), carboxylate (—CO—O—) groups, pyridine groups, H 2 O, CO 3 2− , OH -, NO 3 -, ROH , N 2 H 4, PO 4 3-
, R 2 O, RO -, ROPO 3 2-, (RO) 2 PO 2-, NO 2 -, N 2, N 3 -, R 2 S, R 2 P -, R 3 P, RS -, CN - , RSH, RNC, (RS) 2 PO 2 -, (RO) 2 P (O) S -, SCN -, CO, H -, and R - (wherein "R" are both saturated or unsaturated organic group And a complex containing a ligand selected from the group consisting of:
Specific examples of iridium complexes include di-μ-chlorobis [(η-cycloocta-1,5-diene).
Iridium (I)] and 2-hydroxy-N-pyridine (pentamethylcyclopentadienyl)
Examples include iridium (III) dichloride.

また、イリジウム錯体は、イリジウム化合物を、配位子としてイリジウムに結合し得る有機溶媒、又は配位子としてイリジウムに結合し得る物質を含む溶液に溶解することにより生成するイリジウム錯体であってもよい。前記イリジウム化合物としては、塩化イリジウム、臭化イリジウム、フッ化イリジウム、ヨウ化イリジウム、水酸化イリジウム、硝酸イリジウム、炭酸イリジウム、酢酸イリジウム、ジメトキシイリジウム、メトキシリン酸イリジウム、リン酸イリジウム、塩化イリジウム酸、ジスルフメチルイリジウム、ジシアノイリジウム、ジチオシアネートイリジウム、二水素化イリジウム、メチルイリジウム、酸化イリジウム、五塩化イリジウム(IV)ジアンモニウム(ヘキサクロロイリジウム(IV)酸二アンモニウム)等が挙げられる。溶媒としては、ジメチルスルホキシドが挙げられる。   Further, the iridium complex may be an iridium complex produced by dissolving an iridium compound in an organic solvent capable of binding to iridium as a ligand or a solution containing a substance capable of binding to iridium as a ligand. . Examples of the iridium compound include iridium chloride, iridium bromide, iridium fluoride, iridium iodide, iridium hydroxide, iridium nitrate, iridium carbonate, iridium acetate, dimethoxyiridium, iridium methoxyphosphate, iridium phosphate, iridium chloride, Examples thereof include disulfmethyl iridium, dicyano iridium, dithiocyanate iridium, iridium dihydride, methyl iridium, iridium oxide, iridium pentachloride (IV) diammonium (hexachloroiridium (IV) diammonium acid), and the like. Examples of the solvent include dimethyl sulfoxide.

薬剤による処理の条件は、適宜設定することが可能であり、例えば、検出対象の微生物の生細胞及び死細胞もしくは損傷細胞のけん濁液に、種々の濃度の薬剤を加えて、種々の時間放置した後、遠心分離等によって菌体を分離し、核酸増幅法で分析することによって、生細胞と死細胞もしくは損傷細胞を区別しやすい条件を決定することができる。さらに、検出対象の微生物の生細胞、及びウシ白血球等の体細胞又は血小板等のけん濁液に、種々の濃度の薬剤を加えて、所定時間放置した後、遠心分離等によって菌体及び前記各種細胞を分離し、核酸増幅法で分析することによって、生細胞と各種細胞を区別しやすい条件を決定することができる。   Conditions for treatment with a drug can be set as appropriate. For example, various concentrations of a drug are added to a suspension of living and dead cells or damaged cells of a microorganism to be detected and left for various times. After that, the cells are separated by centrifugation or the like, and analyzed by the nucleic acid amplification method, whereby the conditions for easily distinguishing live cells from dead cells or damaged cells can be determined. Furthermore, after adding various concentrations of drugs to living cells of microorganisms to be detected and somatic cells such as bovine leukocytes or suspensions of platelets, and leaving them to stand for a predetermined time, the cells and the above-mentioned various kinds are obtained by centrifugation or the like. By separating the cells and analyzing them by the nucleic acid amplification method, it is possible to determine conditions that make it easy to distinguish between living cells and various cells.

白金錯体の場合は、シスプラチンでは終濃度10〜3000μM、好ましくは25〜3000μM、4〜43℃、5分〜2時間が例示される。トランスプラチンでは終濃度10〜3000μM、4〜43℃、5分〜2時間が例示される。
カルボプラチンでは終濃度10〜3000μM、好ましくは250〜3000μM、4〜43℃、5分〜2時間が例示される。オキサリプラチン又はネダプラチンでは終濃度10〜3000μM、4〜43℃、5分〜2時間が例示される。
In the case of a platinum complex, the final concentration of cisplatin is 10 to 3000 μM, preferably 25 to 3000 μM, 4 to 43 ° C., 5 minutes to 2 hours. With transplatin, a final concentration of 10 to 3000 μM, 4 to 43 ° C., 5 minutes to 2 hours are exemplified.
In carboplatin, the final concentration is 10 to 3000 μM, preferably 250 to 3000 μM, 4 to 43 ° C., 5 minutes to 2 hours. For oxaliplatin or nedaplatin, the final concentration is 10 to 3000 μM, 4 to 43 ° C., 5 minutes to 2 hours.

cis−ジアンミン(ピリジン)クロロ白金(II)クロリドでは終濃度10〜3000μ
M、好ましくは25〜3000μM、4〜43℃、5分〜2時間が例示される。ジクロロ(エチレンジアミン)白金(II)では終濃度10〜3000μM、4〜43℃、5分〜2時間が例示される。cis−ビス(ベンゾニトリル)ジクロロ白金(II)では終濃度10〜
3000μM、好ましくは100〜3000μM、4〜43℃、5分〜2時間が例示される。テトラキス(トリフェニルホスフィン)白金(II)では終濃度10〜3000μM、好ましくは25〜3000μM、4〜43℃、5分〜2時間が例示される。二硝酸(エチレンジアミン)ヨウ化白金(II)ダイマーでは終濃度10〜3000μM、好ましくは400〜3000μM、4〜43℃、5分〜2時間が例示される。
In cis-diammine (pyridine) chloroplatinum (II) chloride, the final concentration is 10 to 3000 μm.
M, preferably 25 to 3000 μM, 4 to 43 ° C., 5 minutes to 2 hours. For dichloro (ethylenediamine) platinum (II), a final concentration of 10 to 3000 μM, 4 to 43 ° C., and 5 minutes to 2 hours are exemplified. For cis-bis (benzonitrile) dichloroplatinum (II), a final concentration of 10
Examples thereof include 3000 μM, preferably 100 to 3000 μM, 4 to 43 ° C., and 5 minutes to 2 hours. For tetrakis (triphenylphosphine) platinum (II), the final concentration is 10 to 3000 μM, preferably 25 to 3000 μM, 4 to 43 ° C., 5 minutes to 2 hours. In dinitric acid (ethylenediamine) platinum iodide (II) dimer, the final concentration is 10 to 3000 μM, preferably 400 to 3000 μM, 4 to 43 ° C., 5 minutes to 2 hours.

また、塩化白金(II)、塩化白金(IV)、又は塩化白金酸(もしくは塩化白金酸 六水
和物)をDMSOに溶解して得られる錯体では、塩化白金(II)、塩化白金(IV)、又は塩化白金酸の量として終濃度10〜3000μM、好ましくは10〜100μM、4〜43℃、5分〜2時間が例示される。
In complexes obtained by dissolving platinum chloride (II), platinum chloride (IV), or chloroplatinic acid (or chloroplatinic acid hexahydrate) in DMSO, platinum (II) chloride, platinum (IV) The final concentration of chloroplatinic acid is 10 to 3000 μM, preferably 10 to 100 μM, 4 to 43 ° C., 5 minutes to 2 hours.

パラジウム錯体の場合は、ジクロロ(η-シクロオクタ-1,5-ジエン)パラジウム (II)
では終濃度10〜3000μM、好ましくは10〜100μM、4〜43℃、5分〜2時間が例示される。ビス(ベンゾニトリル)ジクロロパラジウム (II)では終濃度10〜3
000μM、好ましくは10〜100μM、4〜43℃、5分〜2時間が例示される。ジアンミンジクロロパラジウム (II)では終濃度10〜3000μM、好ましくは10〜1
00μM、4〜43℃、5分〜2時間が例示される。ジクロロ(エチレンジアミン)パラジウム (II)では終濃度10〜3000μM、好ましくは10〜250μM、4〜43℃
、5分〜2時間が例示される。ビス(トリフェニルホスフィン)パラジウム(II)ジアセートでは終濃度10〜3000μM、好ましくは10〜100μM、4〜43℃、5分〜2時間が例示される。
In the case of palladium complex, dichloro (η-cycloocta-1,5-diene) palladium (II)
Then, the final concentration is 10 to 3000 μM, preferably 10 to 100 μM, 4 to 43 ° C., and 5 minutes to 2 hours. Bis (benzonitrile) dichloropalladium (II) has a final concentration of 10-3.
000 μM, preferably 10 to 100 μM, 4 to 43 ° C., 5 minutes to 2 hours are exemplified. In diamminedichloropalladium (II), the final concentration is 10 to 3000 μM, preferably 10 to 1
Examples are 00 μM, 4 to 43 ° C., and 5 minutes to 2 hours. In dichloro (ethylenediamine) palladium (II), the final concentration is 10 to 3000 μM, preferably 10 to 250 μM, 4 to 43 ° C.
Examples are 5 minutes to 2 hours. In the case of bis (triphenylphosphine) palladium (II) diacetate, the final concentration is 10 to 3000 μM, preferably 10 to 100 μM, 4 to 43 ° C., and 5 minutes to 2 hours.

また、塩化パラジウム(II)をDMSOに溶解して得られる錯体では、塩化パラジウム(II)の量として終濃度10〜3000μM、好ましくは10〜100μM、4〜43℃、5分〜2時間が例示される。酢酸パラジウム(II)をDMSOに溶解して得られる錯体では、酢酸パラジウム(II)の量として終濃度1〜300μM、好ましくは1〜10μM、4〜43分、5分〜2時間が例示される。   Further, in the complex obtained by dissolving palladium (II) chloride in DMSO, the final concentration is 10 to 3000 μM, preferably 10 to 100 μM, 4 to 43 ° C., 5 minutes to 2 hours as the amount of palladium (II). Is done. In the complex obtained by dissolving palladium (II) acetate in DMSO, the final concentration is 1 to 300 μM, preferably 1 to 10 μM, 4 to 43 minutes, 5 minutes to 2 hours as the amount of palladium (II). .

イリジウム錯体の場合は、Di-μ-chlorobis[(η-cycloocta-1,5-diene)iridium(I)]で
は終濃度20〜3000μM、好ましくは25〜300μM、4〜43℃、5分〜2時間が例示される。2-Hydroxy-N-pyridine(pentamethylcyclopentadienyl)iridium(III)dichlorideでは終濃度20〜3000μM、好ましくは50〜300μM、4〜43℃、5分
〜2時間が例示される。
In the case of an iridium complex, in Di-μ-chlorobis [(η-cycloocta-1,5-diene) iridium (I)], the final concentration is 20 to 3000 μM, preferably 25 to 300 μM, 4 to 43 ° C., 5 minutes to 2 Time is illustrated. In 2-Hydroxy-N-pyridine (pentamethylcyclopentadienyl) iridium (III) dichloride, the final concentration is 20 to 3000 μM, preferably 50 to 300 μM, 4 to 43 ° C., and 5 minutes to 2 hours.

被検試料への薬剤の添加は、上記のように被検試料のけん濁液に薬剤を添加することによって行ってもよいが、薬剤の溶液に被検試料を添加することによって行ってもよい。   The addition of the drug to the test sample may be performed by adding the drug to the suspension of the test sample as described above, or may be performed by adding the test sample to the drug solution. .

尚、白金族金属錯体を用いる場合は、光照射及び遮光の必要はない。   In addition, when a platinum group metal complex is used, light irradiation and light shielding are not necessary.

上記薬剤は1種類を単独で用いてもよいし、2種又はそれ以上を併用してもよい。   One of these drugs may be used alone, or two or more may be used in combination.

上記のような薬剤は、生細胞の細胞壁よりも、死細胞及び損傷細胞の細胞壁の方が透過しやすい。したがって、適当な作用時間内であれば微生物の生細胞の細胞壁・細胞膜は実質的に透過せず、微生物の損傷細胞もしくは死細胞または死細胞になっている体細胞の細胞膜は透過すると考えられる。その結果、薬剤は、体細胞の死細胞及び微生物の死細胞並びに損傷細胞の細胞内に進入し、続いて、核酸(染色体DNA又はRNA)と直接的又は間接的に結合し、その結果、薬剤が結合した核酸は、核酸増幅反応の鋳型とはならなくなると推定される。   Such drugs are more permeable to the cell walls of dead and damaged cells than the cell walls of living cells. Accordingly, it is considered that the cell wall / cell membrane of living cells of microorganisms does not substantially permeate within an appropriate action time, and the membrane of damaged cells, dead cells, or somatic cells that are dead cells permeate. As a result, the drug enters the dead cells of somatic cells and dead cells of microorganisms and cells of damaged cells and subsequently binds directly or indirectly to nucleic acids (chromosomal DNA or RNA), resulting in drugs It is presumed that the nucleic acid bound with is no longer a template for the nucleic acid amplification reaction.

生細胞よりも損傷細胞や死細胞に優先的に薬剤が透過すると、生細胞では核酸(染色体DNA又はRNA)のターゲット領域が核酸増幅法により増幅されるのに対し、損傷細胞や死細胞では核酸(染色体DNA又はRNA)に直接的又は間接的に薬剤が結合し、核酸増幅反応が阻害されるため、生細胞を損傷細胞や死細胞に比べて選択的に検出することができる。   When the drug permeates preferentially to damaged or dead cells over live cells, the target region of nucleic acid (chromosomal DNA or RNA) is amplified by the nucleic acid amplification method in live cells, whereas in damaged or dead cells, nucleic acid is amplified. Since the drug binds directly or indirectly to (chromosomal DNA or RNA) and the nucleic acid amplification reaction is inhibited, live cells can be selectively detected compared to damaged cells or dead cells.

上記工程a)、及び必要に応じて行われる光照射処理は、2サイクル、又はそれ以上のサイクルを繰り返して行ってもよい。その場合、薬剤の濃度は、一回目の工程a)では、2回目以降よりも高くし、二回目以降の工程a)では、一回目よりも低くすることが好ましい。
また、一回目の薬剤処理では、二回目以降の薬剤処理よりも処理時間を短くすることが
好ましい。
The step a) and the light irradiation treatment performed as necessary may be performed by repeating two cycles or more. In that case, the concentration of the drug is preferably higher in the first step a) than in the second and subsequent steps, and lower in the second and subsequent steps a) than in the first.
In the first drug treatment, it is preferable to shorten the treatment time compared to the second and subsequent drug treatments.

先の薬剤処理と、それ以降の薬剤の間で、未反応の薬剤を除去する工程を追加してもよい。薬剤を除去する方法としては、被検試料を遠心分離して、微生物を含む沈殿と薬剤を含む上清とを分離し、上清を除去する方法が挙げられる。この場合、薬剤を除去した後、適宜、洗浄剤で微生物を洗浄する工程を追加することも可能である。   A step of removing the unreacted drug may be added between the previous drug processing and the subsequent drugs. Examples of the method for removing the drug include a method of centrifuging a test sample, separating a precipitate containing a microorganism and a supernatant containing a drug, and removing the supernatant. In this case, it is possible to add a step of washing the microorganism with a cleaning agent as appropriate after removing the drug.

尚、工程a)と下記工程b)の間には、薬剤を除去する工程を行うことが好ましい。これは、工程b)によって細胞壁及び/又は細胞膜の透過性が高まった生細胞に、残存する薬剤が侵入することを防ぐためである。   In addition, it is preferable to perform the process of removing a chemical | medical agent between the process a) and the following process b). This is to prevent the remaining drug from entering the living cells whose cell wall and / or cell membrane permeability has been increased by step b).

(2)工程b)
この工程では、微生物の細胞の透過性を高める処理を行う。この処理は、細胞からの核酸の抽出を行わずに、生細胞に選択的な核酸増幅を可能にするためのものである。後述するように、工程c)では、被検試料中の微生物の核酸のターゲット領域は、細胞からの核酸の抽出を行わずに、鎖置換型核酸伸長酵素を用いた等温核酸増幅法により増幅される。
(2) Step b)
In this step, a treatment for increasing the permeability of the cells of the microorganism is performed. This treatment is for enabling nucleic acid amplification selective to living cells without extracting nucleic acids from the cells. As will be described later, in step c), the target region of the nucleic acid of the microorganism in the test sample is amplified by isothermal nucleic acid amplification using a strand displacement type nucleic acid elongation enzyme without extracting the nucleic acid from the cell. The

死細胞の核酸増幅を選択的に阻害する薬剤(生死判定剤)を用いた生細胞の検出法では、従来、細胞から抽出した核酸を鋳型として核酸増幅反応を行うが、ダイレクト法では細胞からの核酸の抽出を行わずに、微生物細胞懸濁液、又は蛋白質分解酵素、脂質分解酵素、又は糖分解酵素等で処理した微生物細胞の懸濁液を鋳型として用いる。
ダイレクト法における核酸増幅法としてPCR法を用いた場合(以下、「ダイレクトPCR」と記載することがある)は、このような微生物細胞の懸濁液を鋳型として核酸増幅が起こるのに対し、後記実施例1に示すように、微生物細胞の懸濁液を鋳型としてLAMP法による等温核酸増幅反応を行った場合は、核酸増幅が観察されなかった。
In the detection method of living cells using a drug that selectively inhibits nucleic acid amplification of dead cells (life-determining agent), a nucleic acid amplification reaction is conventionally performed using a nucleic acid extracted from the cells as a template. A microbial cell suspension or a suspension of microbial cells treated with a proteolytic enzyme, lipolytic enzyme, glycolytic enzyme or the like is used as a template without nucleic acid extraction.
When the PCR method is used as the nucleic acid amplification method in the direct method (hereinafter sometimes referred to as “direct PCR”), nucleic acid amplification occurs using such a suspension of microbial cells as a template. As shown in Example 1, no nucleic acid amplification was observed when an isothermal nucleic acid amplification reaction was performed by the LAMP method using a suspension of microbial cells as a template.

そこで、本発明者は、PCR法と等温核酸増幅の違いに着目し、ダイレクトPCR法では、核酸の熱変性のために行われる高温処理の繰り返しにより細胞の透過性が高まり、PCR試薬が細胞内に透過し、細胞内でターゲット領域の増幅が起こると推察した。そして、細胞を熱処理すると、微生物細胞の懸濁液を鋳型としてLAMP法による核酸増幅反応が起こることを見出した。   Therefore, the present inventor paid attention to the difference between the PCR method and isothermal nucleic acid amplification, and in the direct PCR method, the permeability of the cells is increased by repeated high-temperature treatment performed for the thermal denaturation of the nucleic acid, and the PCR reagent becomes intracellular. The target region was amplified in the cell. It was found that when the cells were heat-treated, a nucleic acid amplification reaction by the LAMP method occurred using a suspension of microbial cells as a template.

以上のことから、工程b)は、好ましくは細胞の形態を保ちつつ、等温核酸増幅反応に必要な試薬を微生物の細胞内に透過させるための工程と言い換えることができる。すなわち、「細胞の透過性」(transparency of cell)、)とは、等温核酸増幅反応に必要な試薬が生物の細胞内に透過する性質(permeability)を意味する。微生物の細胞の透過性を高める処理は、微生物の細胞壁及び/又は細胞膜を穿孔する処理、又は、細胞壁及び/又は細胞膜の構造を緩める処理であってもよい。   From the above, step b) can be rephrased as a step for permeating the reagent necessary for the isothermal nucleic acid amplification reaction into the cells of the microorganism, preferably while maintaining the cell morphology. That is, “transparency of cell” means a property that allows a reagent necessary for isothermal nucleic acid amplification reaction to permeate cells of an organism. The treatment for increasing the permeability of the cells of the microorganism may be a treatment for perforating the cell wall and / or cell membrane of the microorganism or a treatment for loosening the structure of the cell wall and / or cell membrane.

微生物の細胞の透過性を高める処理としては、加熱処理、電子線照射、電圧印加、酵素処理、浸透圧ショック等が挙げられる。このような処理としては、微生物の種類に応じた形質転換法を参考にすることができる。   Examples of the treatment for increasing the cell permeability of microorganisms include heat treatment, electron beam irradiation, voltage application, enzyme treatment, and osmotic pressure shock. For such treatment, a transformation method according to the type of microorganism can be referred to.

透過性を高める処理に好適な条件は、工程a)の処理を施した微生物細胞を、種々の条件で微生物の細胞の透過性を高める処理を種々の条件で行い、続いて等温核酸増幅を行い、増幅反応を観察することによって、設定することができる。例えば、加熱処理の場合は、加熱温度としては、通常65〜100℃、好ましくは70〜96℃、より好ましくは90〜96℃が挙げられる。処理時間としては、通常0.5〜30分、好ましくは1〜10分、より好ましくは1〜3分が挙げられる。   The conditions suitable for the treatment for increasing the permeability are the microbial cells subjected to the treatment in the step a) under various conditions, the treatment for increasing the permeability of the microbial cells under various conditions, followed by isothermal nucleic acid amplification. It can be set by observing the amplification reaction. For example, in the case of heat treatment, the heating temperature is usually 65 to 100 ° C, preferably 70 to 96 ° C, more preferably 90 to 96 ° C. As processing time, it is 0.5-30 minutes normally, Preferably it is 1-10 minutes, More preferably, 1-3 minutes are mentioned.

尚、工程b)は工程a)の後に行われることが好ましいが、等温核酸増幅反応に必要な試薬を微生物の細胞内に透過させることができ、かつ、死細胞の核酸増幅を選択的に阻害する薬剤が死細胞よりも生細胞の細胞内に侵入しにくければ、工程b)は工程a)の前に行われてもよい。   The step b) is preferably performed after the step a). However, the reagent necessary for the isothermal nucleic acid amplification reaction can permeate into the cells of the microorganism and selectively inhibits the nucleic acid amplification of dead cells. Step b) may be performed before step a) if the drug to be entered is less likely to enter the cells of living cells than dead cells.

工程c)
続いて、被検試料中の微生物の核酸のターゲット領域を、細胞からの核酸の抽出を行わずに、鎖置換型核酸伸長酵素を用いた等温核酸増幅法により増幅する。
Step c)
Subsequently, the target region of the nucleic acid of the microorganism in the test sample is amplified by an isothermal nucleic acid amplification method using a strand displacement type nucleic acid elongation enzyme without extracting the nucleic acid from the cell.

具体的には、工程b)の処理を施した被検試料と、等温核酸増幅反応に必要な試薬を混合して、増幅反応を行う。尚、等温核酸増幅反応に必要な試薬のうち、加熱処理等により失活又は変性しないものは、工程b)における細胞懸濁液に予め含まれていてもよい。   Specifically, an amplification reaction is performed by mixing a test sample subjected to the process of step b) and a reagent necessary for an isothermal nucleic acid amplification reaction. Of the reagents necessary for the isothermal nucleic acid amplification reaction, those that are not inactivated or denatured by heat treatment or the like may be contained in advance in the cell suspension in step b).

等温核酸増幅法は、熱変性による二本鎖DNAの解離を必要とせず、鎖置換型DNAポリメラーゼを用いて一定温度で伸長反応を行うことにより鋳型核酸を増幅することができるものであれば特に制限されず、例えば、LAMP法(国際公開第00/28082、国際公開第2002/024902)、ICAN法(国際公開第00/56877)、SDA法(米国特許第5,455,166号)、LCR法(Barany, F., Proc. Natl. Acad. Sci. USA, 88:189-193, 1991)、TMA法(国際公開第91/01384)、及びSMAP法(Mitani, Y., Seibutsu Butsuri Kagaku, 52(4):183-187, 2008)等が挙げられる。これらの方法では、増幅産物はDNAである。ターゲットは通常DNAであるが、RNAであっても、逆転写によりコンプリメンタリDNA(cDNA)を合成することによって、鋳型とすることができる。   The isothermal nucleic acid amplification method is not particularly limited as long as it does not require dissociation of double-stranded DNA by heat denaturation and can amplify a template nucleic acid by performing an extension reaction at a constant temperature using a strand displacement type DNA polymerase. For example, LAMP method (International Publication No. 00/28082, International Publication No. 2002/024902), ICAN Method (International Publication No. 00/56877), SDA Method (US Pat. No. 5,455,166), LCR Method (Barany, F., Proc. Natl. Acad. Sci. USA, 88: 189-193, 1991), TMA method (WO 91/01384), and SMAP method (Mitani, Y., Seibutsu Butsuri Kagaku, 52 (4) : 183-187, 2008). In these methods, the amplification product is DNA. The target is usually DNA, but even RNA can be used as a template by synthesizing complementary DNA (cDNA) by reverse transcription.

また、等温核酸増幅法のうちRNAをターゲットとする方法としては、逆転写酵素によりコンプリメンタリDNA(cDNA)を合成し、さらに逆転写酵素のDNAポリメラーゼ活性により二本鎖DNAを合成し、最終的にRNAポリメラーゼにより、RNAの特異的領域のみを増産するTRC法(Nakaguchi, Y. et al., J. Clin. Microbiol., 42(9):4284-4292, 2004)が例示される。TRC法では、増幅産物はRNAである。   In the isothermal nucleic acid amplification method, RNA is targeted by synthesizing complementary DNA (cDNA) by reverse transcriptase, and further by synthesizing double-stranded DNA by the DNA polymerase activity of reverse transcriptase. The TRC method (Nakaguchi, Y. et al., J. Clin. Microbiol., 42 (9): 4284-4292, 2004) in which only a specific region of RNA is increased by RNA polymerase is exemplified. In the TRC method, the amplification product is RNA.

等温核酸増幅反応に必要な試薬としては、鎖置換型核酸伸長酵素、dNTP(dATP、dCTP、dGTP、dTTP)、及び、プライマーが挙げられる。鎖置換型核酸伸長酵素としては、Bstポ
リメラーゼ(Geobacillus stearothermophilus由来のDNAポリメラーゼ又はそのラージフラグメント、販売元:和光純薬工業(株)、製造元:(株)ニッポンジーン、コードNo.:311-07481)、及び、Csaポリメラーゼ(例えば、販売元:和光純薬工業(株)、製造
元:(株)ニッポンジーン、コードNo.:319-07281)が挙げられる。
Examples of reagents necessary for the isothermal nucleic acid amplification reaction include a strand displacement type nucleic acid elongation enzyme, dNTP (dATP, dCTP, dGTP, dTTP), and primers. As the strand displacement type nucleic acid elongation enzyme, Bst polymerase (Geobacillus stearothermophilus-derived DNA polymerase or a large fragment thereof, distributor: Wako Pure Chemical Industries, Ltd., manufacturer: Nippon Gene, code No .: 311-07481), And Csa polymerase (for example, distributor: Wako Pure Chemical Industries, Ltd., manufacturer: Nippon Gene, code No .: 319-07281).

鎖置換型核酸伸長酵素は1種を単独で使用してもく、2種以上を併用してもよい。鎖置換型核酸伸長酵素の反応液中の濃度は、好ましくは0.2〜0.6U/μl、より好ましくは0.35
〜0.45U/μlである。各dNTPの濃度は、好ましくは1mM〜1.5mM、より好ましくは1.1〜1.4 mMである。プライマーについては後述する。鎖置換型核酸伸長酵素は市販されており、それらを使用することができる。
One of the strand displacement type nucleic acid elongation enzymes may be used alone, or two or more thereof may be used in combination. The concentration of the strand displacement type nucleic acid elongation enzyme in the reaction solution is preferably 0.2 to 0.6 U / μl, more preferably 0.35.
~ 0.45 U / μl. The concentration of each dNTP is preferably 1 mM to 1.5 mM, more preferably 1.1 to 1.4 mM. The primer will be described later. Strand displacement type nucleic acid elongation enzymes are commercially available and can be used.

等温核酸増幅法を行う反応液は、緩衝剤、塩、界面活性剤、及び、ベタインを含むことが好ましい。   The reaction solution for performing the isothermal nucleic acid amplification method preferably contains a buffer, a salt, a surfactant, and betaine.

緩衝剤としては、Tris-HCl、K2HPO4等が挙げられる。反応液のpHは通常7〜9、好ましくは7〜8.9、より好ましくは7.6〜8.8である。緩衝剤としてTris-HClを用いる場合、濃度は10mM〜25mMが好ましく、16〜22mMがより好ましい。 Examples of the buffer include Tris-HCl, K 2 HPO 4 and the like. The pH of the reaction solution is usually 7 to 9, preferably 7 to 8.9, more preferably 7.6 to 8.8. When Tris-HCl is used as a buffer, the concentration is preferably 10 mM to 25 mM, more preferably 16 to 22 mM.

塩としては、KCl、MgSO4、MgCl2、(NH4)2SO4等が挙げられ、反応液はKCl及びMgSO4の両
方を含むことが好ましい。KClの濃度は、5mM〜15mが好ましく、8〜12mMがより好ましい。MgSO4は濃度は、10mM〜40mMが好ましく、15mM〜25mMがより好ましい。MgCl2の濃度は、0.1mM〜1mMが好ましく、0.3mM〜0.8mMがより好ましい。(NH4)2SO4の濃度は、10mM〜30mMが
好ましく、15mM〜25mMがより好ましい。
Examples of the salt include KCl, MgSO 4 , MgCl 2 , (NH 4 ) 2 SO 4 , and the reaction solution preferably contains both KCl and MgSO 4 . The concentration of KCl is preferably 5 mM to 15 m, and more preferably 8 to 12 mM. The concentration of MgSO 4 is preferably 10 mM to 40 mM, more preferably 15 mM to 25 mM. The concentration of MgCl 2 is preferably 0.1 mM to 1 mM, more preferably 0.3 mM to 0.8 mM. The concentration of (NH 4 ) 2 SO 4 is preferably 10 mM to 30 mM, more preferably 15 mM to 25 mM.

界面活性剤としては、Triton(ユニオンカーバイド社の登録商標)、Nonidet(シェル
社)、Tween(ICI社の登録商標)、Brij(ICI社の登録商標)等の非イオン系界面活性剤
、SDS(ドデシル硫酸ナトリウム)等の陰イオン系界面活性剤、塩化ステアリルジメチル
ベンジルアンモニウム等の陽イオン系界面活性剤が挙げられる。
TritonとしてはTriton X-100(ポリエチレングリコール tert−オクチルフェニルエー
テル)等が,NonidetとしてはNonidet P-40(オクチルフェニル−ポリエチレングリコー
ル)等が、TweenとしてはTween 20(ポリエチレングリコールソルビタンモノラウラート
)、Tween 40(ポリエチレングリコールソルビタンモノパルミタート)、Tween 60(ポリエチレングリコールソルビタンモノステアラート)、Tween 80(ポリエチレングリコールソルビタンモノオレアート)等が、BrijとしてはBrij 56(ポリオキシエチレン(10) セチルエーテル)、Brij58(ポリオキシエチレン(20) セチルエーテル)等が挙げられる。Tween20(ポリエチレングリコールソルビタンモノラウラート)を用いる場合は、濃度は、0.1%〜0.4%が好ましく、0.15%〜0.25%がより好ましい。他の界面活性剤も、前記濃度に準じて、鎖置換型核酸伸長酵素の活性を阻害しない濃度を設定すればよい。
Surfactants include nonionic surfactants such as Triton (registered trademark of Union Carbide), Nonidet (shell), Tween (registered trademark of ICI), Brij (registered trademark of ICI), SDS ( Anionic surfactants such as sodium dodecyl sulfate) and cationic surfactants such as stearyldimethylbenzylammonium chloride.
Triton X-100 (polyethylene glycol tert-octylphenyl ether) as Triton, Nonidet P-40 (octylphenyl-polyethylene glycol) etc. as Nonidet, Tween 20 (polyethylene glycol sorbitan monolaurate) as Tween, Tween 40 (polyethylene glycol sorbitan monopalmitate), Tween 60 (polyethylene glycol sorbitan monostearate), Tween 80 (polyethylene glycol sorbitan monooleate), etc. Brij is Brij 56 (polyoxyethylene (10) cetyl ether) , Brij58 (polyoxyethylene (20) cetyl ether) and the like. When Tween 20 (polyethylene glycol sorbitan monolaurate) is used, the concentration is preferably 0.1% to 0.4%, more preferably 0.15% to 0.25%. Other surfactants may be set at a concentration that does not inhibit the activity of the strand displacement type nucleic acid elongation enzyme according to the above concentration.

核酸増幅反応液中の界面活性剤の種類及び濃度は、鎖置換型核酸伸長酵素の反応を阻害しない限り特に制限されない。例えば、陰イオン系界面活性剤が用いられる場合は0.0005〜0.01%の範囲が好ましく、陽イオン系界面活性剤が用いられる場合は0.0005〜0.01%の範囲が好ましい。
具体的には、SDSの場合の濃度は、通常0.0005〜0.01%、好ましくは0.0
01〜0.01%、より好ましくは0.001〜0.005%、より好ましくは0.001〜0.002%である。
The type and concentration of the surfactant in the nucleic acid amplification reaction solution are not particularly limited as long as the reaction of the strand displacement type nucleic acid elongation enzyme is not inhibited. For example, when an anionic surfactant is used, a range of 0.0005 to 0.01% is preferable, and when a cationic surfactant is used, a range of 0.0005 to 0.01% is preferable.
Specifically, the concentration in the case of SDS is usually 0.0005 to 0.01%, preferably 0.0.
It is 01 to 0.01%, more preferably 0.001 to 0.005%, and more preferably 0.001 to 0.002%.

他の界面活性剤の場合、例えば、非イオン系界面活性剤が用いられる場合の濃度は、0.001〜1.5%の範囲が好ましい。
具体的には、Nonidet P-40の場合の濃度は、通常、0.001〜1.5%の範囲であれば良く、0.002〜1.2%が好ましく、0.9〜1.1%がより好ましい。
Tween 20、Tween 40、Tween 60、又はTween 80の場合の濃度は、0.1〜0.4%が好ましく、0.15〜0.25%がより好ましい。
Brij56又はBrij58の場合の濃度は、通常0.1〜1.5%の範囲であれば良く、0.4〜1.2%が好ましく、0.7〜1.1%がより好ましい。
核酸増幅反応に用いる酵素溶液に界面活性剤が含まれている場合は、同酵素溶液由来の界面活性剤のみでもよいし、さらに同種又は異なる界面活性剤を追加してもよい。
In the case of other surfactants, for example, the concentration when a nonionic surfactant is used is preferably in the range of 0.001 to 1.5%.
Specifically, the concentration in the case of Nonidet P-40 is usually in the range of 0.001 to 1.5%, preferably 0.002 to 1.2%, and 0.9 to 1.1. % Is more preferable.
The concentration in the case of Tween 20, Tween 40, Tween 60, or Tween 80 is preferably 0.1 to 0.4%, more preferably 0.15 to 0.25%.
The concentration in the case of Brij56 or Brij58 is usually in the range of 0.1 to 1.5%, preferably 0.4 to 1.2%, more preferably 0.7 to 1.1%.
When the enzyme solution used for the nucleic acid amplification reaction contains a surfactant, only the surfactant derived from the enzyme solution may be used, or the same or different surfactant may be added.

ベタインとしては、トリメチルグリシン、カルニチン等が挙げられる。トリメチルグリシンを用いる場合は、濃度としては、通常0.5M〜1M、好ましく0.6M〜0.8Mが挙げられる。   Examples of betaine include trimethylglycine and carnitine. When using trimethylglycine, the concentration is usually 0.5M to 1M, preferably 0.6M to 0.8M.

典型的な反応液組成は以下のとおりである。
Tris-HCl (pH7〜9) 10mM〜25mM
KCl 5mM〜15mM
MgSO4 5mM〜40mM
界面活性剤 0.1%〜0.4%
ベタイン 0.5M〜1M
dNTPs 各1mM〜1.5mM
鎖置換型核酸伸長酵素 0.2〜0.6U/μl
尚、この反応液組成は、核酸増幅反応が阻害されない限り、他の任意の成分が含まれることを妨げるものではない。
A typical reaction solution composition is as follows.
Tris-HCl (pH7 ~ 9) 10mM ~ 25mM
KCl 5mM ~ 15mM
MgSO 4 5mM~40mM
Surfactant 0.1% -0.4%
Betaine 0.5M-1M
dNTPs 1mM to 1.5mM each
Strand displacement type nucleic acid elongation enzyme 0.2-0.6 U / μl
In addition, this reaction liquid composition does not prevent that other arbitrary components are included unless a nucleic acid amplification reaction is inhibited.

本発明において「ターゲット領域」とは、染色体DNA、又はRNAのうち、等温核酸増幅法により増幅され得る領域であり、検出対象の微生物を検出することができるものであれば特に制限されず、目的に応じて適宜設定することができる。例えば、被検試料に検出対象の微生物と異なる種類の細胞が含まれる場合には、ターゲット領域は、検出対象の微生物に特異的な配列を有することが好ましい。また、目的によっては、複数種の微生物に共通する配列を有するものであってもよい。
さらに、ターゲット領域は単一であっても、複数であってもよい。検出対象の微生物に特異的なターゲット領域に対応するプライマーセットと、広汎な微生物の核酸に対応するプライマーセットを用いると、検出対象の微生物の生細胞量と、多数種の微生物の生細胞量を、同時に測定することができる。ターゲット領域の長さとしては、通常50〜5000塩基が挙げられる。
In the present invention, the “target region” is a region that can be amplified by isothermal nucleic acid amplification method among chromosomal DNA or RNA, and is not particularly limited as long as it can detect a microorganism to be detected. It can be set appropriately depending on the situation. For example, when the test sample includes cells of a different type from the microorganism to be detected, the target region preferably has a sequence specific to the microorganism to be detected. Further, depending on the purpose, it may have a sequence common to a plurality of types of microorganisms.
Furthermore, the target area may be single or plural. Using a primer set corresponding to the target region specific to the detection target microorganism and a primer set corresponding to the nucleic acid of a wide range of microorganisms, the amount of living cells of the detection target microorganism and the number of living cells of many types of microorganisms can be calculated. Can be measured simultaneously. The length of the target region usually includes 50 to 5000 bases.

核酸の増幅に用いるプライマーは、各種核酸増幅法の原理に基づいて、適宜設定することが可能であって、上記ターゲット領域を特異的に増幅することができるものであれば特に制限されない。   Primers used for nucleic acid amplification can be appropriately set based on the principles of various nucleic acid amplification methods, and are not particularly limited as long as they can specifically amplify the target region.

好ましいターゲット領域の例は、5S rRNA遺伝子、16S rRNA遺伝子、23S rRNA遺伝子、tRNA遺伝子、及び病原遺伝子等の各種特異遺伝子である。これ
らの遺伝子の一つ又はその一部をターゲットとしてもよく、2又はそれ以上の遺伝子にまたがる領域をターゲットとしてもよい。微生物種に特異的なターゲット領域に対応した等温核酸増幅法用キットが市販されており、それらに含まれるプライマーを用いてもよい。
Examples of preferred target regions are various specific genes such as 5S rRNA gene, 16S rRNA gene, 23S rRNA gene, tRNA gene, and pathogenic gene. One or a part of these genes may be targeted, and a region spanning two or more genes may be targeted. Isothermal nucleic acid amplification method kits corresponding to target regions specific to microbial species are commercially available, and primers contained therein may be used.

複数種の微生物に共通するプライマーを用いると、被検試料中の複数種の微生物の生細胞を検出することができる。また、特定の細菌に特異的なプライマーを用いると、被検試料中の特定の菌種の生細胞を検出することができる。例えば、後記実施例4に記載されたプライマー(表15〜17中、F3、B3、FIP、BIP、LoopF、LoopB)を用いると、グラム陽性細菌及びグラム陰性細菌の生細胞を一斉検出することができる。具体的には、配列番号1、2、3、4、9、及び10の配列を有するプライマーのセット、配列番号10、11、12、13、14、及び17の配列を有するプライマーのセット、並びに配列番号18、19、20、及び21の配列を有するプライマーのセットが挙げられる。   When primers common to a plurality of types of microorganisms are used, viable cells of a plurality of types of microorganisms in a test sample can be detected. In addition, when a primer specific to a specific bacterium is used, a living cell of a specific bacterial species in a test sample can be detected. For example, when the primers described in Example 4 below (F3, B3, FIP, BIP, LoopF, LoopB in Tables 15 to 17) are used, living cells of Gram-positive bacteria and Gram-negative bacteria can be detected simultaneously. it can. Specifically, a set of primers having the sequences of SEQ ID NOs: 1, 2, 3, 4, 9, and 10, a set of primers having the sequences of SEQ ID NOs: 10, 11, 12, 13, 14, and 17, and Examples include a set of primers having the sequences of SEQ ID NOs: 18, 19, 20, and 21.

又、エンベロープを有するインフルエンザウイルスの場合、ヘマグルチニン(Hタンパク質)遺伝子やノイラミニダーゼ(Nタンパク質)遺伝子、ノロウイルスに代表されるカリシウイルス科ウイルスのRNAポリメラーゼ遺伝子、各種カプシドタンパクをコードしている遺伝子領域等が挙げられる。食中毒ウイルスとしてノロウイルスの他、ロタウイルス、アデノウイルスもあり、対象遺伝子はノロウイルス同様、RNAポリメラーゼ遺伝子、カプシドタンパクをコードしている遺伝子領域が標的領域となる。   In the case of an influenza virus having an envelope, hemagglutinin (H protein) gene, neuraminidase (N protein) gene, RNA polymerase gene of caliciviridae virus represented by norovirus, gene regions encoding various capsid proteins, etc. Can be mentioned. In addition to noroviruses, rotaviruses and adenoviruses are available as food poisoning viruses. The target genes are gene regions encoding RNA polymerase genes and capsid proteins as in the case of noroviruses.

前記したように、検出対象がRNAの場合は、RNAから逆転写及びDNAポリメラーゼ反応によって二本鎖を形成させることによって、鋳型とすることができる。その場合は、工程c)の前に、逆転写酵素、プライマー、及び必要に応じて核酸伸長酵素を被検試料に添加し、RNAから二本鎖DNAを生成させる。   As described above, when the detection target is RNA, it can be used as a template by forming a double strand from RNA by reverse transcription and DNA polymerase reaction. In that case, before step c), reverse transcriptase, a primer and, if necessary, a nucleic acid elongation enzyme are added to the test sample to generate double-stranded DNA from RNA.

プライマーの濃度は特に制限されないが、好ましくは0.01μM〜3μM、より好ましくは0.02μM〜1.8μMである。   The concentration of the primer is not particularly limited, but is preferably 0.01 μM to 3 μM, more preferably 0.02 μM to 1.8 μM.

核酸増幅反応液にカルセインを添加しておくと、リアルタイムな核酸増幅の検出が可能
となる。その場合は、反応液はキレート剤を含まないことが好ましい。ダイレクトPCR法の好ましい形態では反応液に有機酸塩が含まれるが、有機酸はキレート剤として働くため、LAMP法でカルセインを用いると、マンガンに結合して消光していたカルセインからマンガンが奪われ、その結果増幅の有無にかかわらず蛍光を発するためである。
If calcein is added to the nucleic acid amplification reaction solution, real-time nucleic acid amplification can be detected. In that case, the reaction solution preferably does not contain a chelating agent. In the preferred form of the direct PCR method, an organic acid salt is contained in the reaction solution. However, since organic acid works as a chelating agent, when calcein is used in the LAMP method, manganese is deprived from calcein that has been quenched by binding to manganese. As a result, it emits fluorescence regardless of the presence or absence of amplification.

本発明においては、等温核酸増幅反応の条件に特に制限はなく、通常の等温核酸増幅反応の条件を採用することができる。   In the present invention, the conditions for the isothermal nucleic acid amplification reaction are not particularly limited, and the normal conditions for the isothermal nucleic acid amplification reaction can be employed.

(4)工程d)
等温核酸増幅法により増幅した増幅産物を解析する。増幅産物の解析は、工程c)に続いて行われるか、又は、工程c)と同時に行われる。例えば、リアルタイムな増幅反応検出を行う場合は、工程d)は工程c)と同時に行われ得る。
(4) Step d)
Analyze amplification products amplified by isothermal nucleic acid amplification. Analysis of the amplification product is performed following step c) or simultaneously with step c). For example, when detecting amplification reaction in real time, step d) can be performed simultaneously with step c).

解析法は、増幅産物の検出又は定量が可能なものであれば特に制限されず、電気泳動法等が例示される。また、増幅産物の有無は、増幅産物の融解温度(TM)パターンを解析することによっても行うことができる。また、増幅産物は、増幅反応の進行により間接的に解析することができる。例えばLAMP法では、増幅効率が高いため、増幅反応に伴って生成するピロリン酸マグネシウムによる白濁によって増幅反応を検出することができる。この白濁は濁度計によって測定することができるが、目視によっても観察することができる。また、上記したように、カルセインを用いて増幅反応を検出することができる。
カルセインが蛍光を発するための最適励起波長は495nm、最大蛍光波長は515nmである。通常は240〜260nm、350〜370nmの紫外線が励起光として用いられているが、488nm前後の
可視光でも励起光として使用することができる。
カルセインの濃度は特に制限されないが、通常2〜5%、好ましくは3〜4%である。
The analysis method is not particularly limited as long as the amplification product can be detected or quantified, and examples thereof include electrophoresis. The presence or absence of an amplification product can also be determined by analyzing the melting temperature (TM) pattern of the amplification product. In addition, the amplification product can be indirectly analyzed by the progress of the amplification reaction. For example, since the amplification efficiency is high in the LAMP method, the amplification reaction can be detected by white turbidity due to magnesium pyrophosphate generated in association with the amplification reaction. This cloudiness can be measured with a turbidimeter, but can also be observed visually. Further, as described above, the amplification reaction can be detected using calcein.
The optimum excitation wavelength for calcein to emit fluorescence is 495 nm, and the maximum fluorescence wavelength is 515 nm. Usually, ultraviolet rays of 240 to 260 nm and 350 to 370 nm are used as excitation light, but visible light around 488 nm can also be used as excitation light.
The concentration of calcein is not particularly limited, but is usually 2 to 5%, preferably 3 to 4%.

上記の検出方法は、本発明の方法における諸条件の最適化に際しても使用することができる。   The above detection method can also be used for optimization of various conditions in the method of the present invention.

本発明の方法によって生細胞を検出する場合、増幅産物の解析は、同定されている微生物の標準試料を用いて作成された微生物量及び増幅産物との関連を示す標準曲線を用いると、生細胞の有無又は定量の精度を高めることができる。標準曲線は予め作成しておいたものを用いることができるが、被検試料と同時に標準試料について本発明の各工程を行って作成した標準曲線を用いることが好ましい。また、予め微生物量とDNA量又はRNA量との相関を調べておけば、その微生物から単離されたDNA又はRNAを標準試料として用いることもできる。   When detecting live cells by the method of the present invention, the analysis of the amplification product is performed by using a standard curve indicating the relationship between the amount of microorganisms prepared using the standard sample of the identified microorganism and the amplification product. Presence or absence or the accuracy of quantification can be increased. A standard curve prepared in advance can be used, but it is preferable to use a standard curve prepared by performing each step of the present invention on the standard sample simultaneously with the test sample. If the correlation between the amount of microorganism and the amount of DNA or RNA is examined in advance, DNA or RNA isolated from the microorganism can also be used as a standard sample.

<2>本発明のキット
本は発明のキットは、鎖置換型核酸伸長酵素を用いた等温核酸増幅法により、被検試料中の微生物の生細胞を、死細胞又は損傷細胞と識別して検出するためのキットであって、下記の要素を含む。
1)微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤、
2)下記組成の反応液を調製するための試薬、
Tris-HCl(pH7〜9) 10mM〜25mM
KCl 5mM〜15mM
MgSO4 5mM〜40mM
界面活性剤 0.1%〜0.4%
ベタイン 0.5M〜1M
dNTPs 各1mM〜1.5mM
鎖置換型核酸伸長酵素 0.2〜0.6U/μl
3)検出対象の微生物の核酸のターゲット領域を等温核酸増幅法により増幅するためのプ
ライマー。
<2> Kit of the Present Invention The kit of the present invention detects the living cells of microorganisms in a test sample by distinguishing them from dead cells or damaged cells by an isothermal nucleic acid amplification method using a strand displacement type nucleic acid elongation enzyme. A kit for performing the following steps.
1) a drug that selectively inhibits dead cells from amplifying microorganism nucleic acids by a nucleic acid amplification method;
2) a reagent for preparing a reaction solution having the following composition;
Tris-HCl (pH 7 ~ 9) 10mM ~ 25mM
KCl 5mM ~ 15mM
MgSO 4 5mM~40mM
Surfactant 0.1% -0.4%
Betaine 0.5M-1M
dNTPs 1mM to 1.5mM each
Strand displacement type nucleic acid elongation enzyme 0.2-0.6 U / μl
3) A primer for amplifying the target region of the nucleic acid of the microorganism to be detected by an isothermal nucleic acid amplification method.

好ましい界面活性剤、ベタイン、及び、鎖置換型核酸伸長酵素は、前記したとおりである。   Preferred surfactants, betaines, and strand displacement nucleic acid extenders are as described above.

各試薬は、上記組成の反応液を調製し得るものであれば特に制限されず、例えば、濃縮液として各々別個の容器に収容され、使用時に上記の濃度となるように適宜混合、希釈されてもよく、2又はそれ以上の試薬が混合されて同じ容器に収容されていてもよい。鎖置換型核酸伸長酵素は、他の試薬と別の容器に収容されていることが好ましい。   Each reagent is not particularly limited as long as it can prepare a reaction solution having the above composition. For example, each reagent is contained in a separate container as a concentrated solution, and is appropriately mixed and diluted so as to have the above concentration at the time of use. Alternatively, two or more reagents may be mixed and accommodated in the same container. It is preferable that the strand displacement type nucleic acid extending enzyme is accommodated in a container separate from other reagents.

また、本発明のキットは、カルセインを含んでいてもよい。   The kit of the present invention may contain calcein.

また、本発明のキットには、被検試料中に存在する微生物以外の細胞、タンパク質コロイド粒子、脂肪、又は糖質を分解する活性を有する酵素を追加することが可能である。   In addition, an enzyme having an activity of degrading cells other than microorganisms, protein colloid particles, fat, or carbohydrates present in a test sample can be added to the kit of the present invention.

酵素としては、被検試料中に存在する微生物以外の細胞、タンパク質コロイド粒子、脂肪及び糖質等の夾雑物を分解することができ、かつ、検出対象の微生物の生細胞を損傷しないものであれば特に制限されないが、例えば、脂質分解酵素、タンパク質分解酵素、及び糖質分解酵素が挙げられる。前記酵素は、1種類の酵素を単独で用いてもよいし、2種又はそれ以上の酵素を併用してもよいが、脂質分解酵素及びタンパク質分解酵素の両方、又は脂質分解酵素、タンパク質分解酵素、及び糖質分解酵素の全てを用いることが好ましい。
脂質分解酵素としては、リパーゼ、フォスファターゼ等が、タンパク質分解酵素としてはセリンプロテアーゼ、システインプロテアーゼ、プロテイナーゼK、プロナーゼ等が、糖質分解酵素としてはアミラーゼ、セルラーゼ等が挙げられる。
The enzyme should be capable of degrading cells other than microorganisms, protein colloid particles, fats and carbohydrates, etc. present in the test sample and not damaging the living cells of the microorganism to be detected. Examples thereof include, but are not limited to, lipolytic enzymes, proteolytic enzymes, and carbohydrases. As the enzyme, one kind of enzyme may be used alone, or two or more kinds of enzymes may be used in combination, but both lipolytic enzyme and proteolytic enzyme, or lipolytic enzyme, proteolytic enzyme It is preferable to use all of saccharide-degrading enzymes.
Examples of the lipolytic enzyme include lipase and phosphatase, examples of the proteolytic enzyme include serine protease, cysteine protease, proteinase K, and pronase, and examples of the carbohydrase include amylase and cellulase.

本発明のキットは、さらに、希釈液、等温核酸増幅用の酵素、本発明の方法を記載した説明書等を含めることもできる。   The kit of the present invention may further contain a diluent, an enzyme for isothermal nucleic acid amplification, instructions describing the method of the present invention, and the like.

<3>死滅しやすい微生物の生死判定
生理食塩水や滅菌水にけん濁させたときに死滅しやすい微生物や、カタラーゼを保有していない微生物等は、生死判定剤が生細胞にも透過し、生死判定がし難い場合がある。そのような微生物であっても、生死判定剤処理を、D-MEM (Dullbecco's Modified Eagle Media)、RPMI 1640、Ham's F-12、D-MEM/F-12 (1:1)、イーグルMEM (Eagle's Minimum Essential Media)、アルファMEM (Alpha modification of Eagle's MEM)、イーグル基礎培地 (Basal Medium Eagle)、マッコイ5A改変培地 (McCoy's 5A Modified Medium)、M-199培地、イスコフMDM培地 (Iscove's Modified DMEM) 等の基礎培地から塩、抗生物質、色素等
を除いた栄養成分の少なくとも1種を含む細胞懸濁液中で行うことによって、生死判定をし易くすることができる。このような栄養成分としては、蛋白質、糖類、脂質からなる群から選択されるいずれか1種又は複数種が好ましく、酵母エキスを用いることが特に好ましい。
上記栄養成分の濃度は、好ましくは0.5%〜10%、より好ましくは1%〜5%である。この濃度は、栄養成分を複数種用いる場合は、合計量での濃度である。
<3> Life / death judgment of microorganisms that are easily killed Microorganisms that are easily killed when suspended in physiological saline or sterilized water, microorganisms that do not have catalase, etc., have a life / death judgment agent that penetrates into living cells. It may be difficult to make a life / death determination. Even for such microorganisms, treatment with a life-and-death determination agent is performed using D-MEM (Dullbecco's Modified Eagle Media), RPMI 1640, Ham's F-12, D-MEM / F-12 (1: 1), Eagle MEM (Eagle's Minimum Essential Media), Alpha MEM (Alpha modification of Eagle's MEM), Eagle Basal Medium Eagle, McCoy's 5A Modified Medium, M-199 medium, Iscove's Modified DMEM, etc. By performing in a cell suspension containing at least one nutritional component excluding salts, antibiotics, pigments, etc. from the basal medium, it is possible to make life / death determination easier. As such a nutrient component, any one or more selected from the group consisting of proteins, saccharides and lipids are preferable, and yeast extract is particularly preferable.
The concentration of the nutrient component is preferably 0.5% to 10%, more preferably 1% to 5%. This density | concentration is a density | concentration in a total amount, when using multiple types of nutrient components.

すなわち、本発明は、被検試料中の微生物の生細胞を、死細胞又は損傷細胞と識別して検出する方法であって、以下の工程:
a)前記被検試料に、微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤を添加する工程、
c)被検試料中の微生物の核酸のターゲット領域を核酸増幅法により増幅する工程、及びd)増幅産物を解析する工程、
を含む方法において、工程a)を酵母エキスを1%〜5%含む細胞懸濁液中で行うことを特徴とする方法を提供する。
That is, the present invention is a method for detecting a living cell of a microorganism in a test sample by distinguishing it from a dead cell or a damaged cell, which comprises the following steps:
a) a step of adding, to the test sample, an agent that selectively inhibits the dead cells from amplifying microorganism nucleic acids by a nucleic acid amplification method;
c) a step of amplifying a target region of a nucleic acid of a microorganism in a test sample by a nucleic acid amplification method, and d) a step of analyzing an amplification product,
A method is provided wherein step a) is performed in a cell suspension containing 1% to 5% yeast extract.

上記のような微生物としては、生理食塩水中で死滅し易いレジオネラ属細菌、微好気性細菌である、カンピロバクター・ジェジュニ、カンピロバクター・コリなどのカンピロバクター属細菌、生理食塩水では塩濃度が低すぎるため自然死し易い腸炎ビブリオ菌などのビブリオ属細菌、試験室温度では損傷し易い細菌である好冷菌(やリステリア属)、偏性嫌気性菌(ボツリヌス菌やウエルシュ菌などのクロストリジウム属細菌、ヘリコバクター・ピロリ菌などのヘリコバクター属細菌)、人工での培養が困難な細菌群(偏性細胞内寄生細菌群、例えばライ菌等のマイコバクテリウム属細菌、クラミジア科細菌、リケッチア属細菌)、リン菌等のナイゼリア属細菌等が挙げられる。   The above microorganisms include Legionella genus bacteria that are likely to be killed in physiological saline, Campylobacter bacteria such as Campylobacter jejuni and Campylobacter coli, which are microaerobic bacteria, and natural saline because the salt concentration is too low. Vibrio bacteria such as Vibrio parahaemolyticus that are likely to die, psychrophilic bacteria (and Listeria spp.) That are easily damaged at laboratory temperatures, obligate anaerobes (Clostridial bacteria such as Clostridium botulinum and Clostridium perfringens, Helicobacter Helicobacter bacteria such as Helicobacter pylori), bacteria that are difficult to cultivate artificially (obligate intracellular parasitic bacteria such as Mycobacterium, Chlamydiaceae, Rickettsia, etc.) And Neiseria bacteria.

また、上記のような微生物には、別の生物の細胞内でのみ増殖可能であり、それ自身が単独では増殖できないような偏性細胞内寄生性微生物が含まれ、ヌクレオカプシドのみを有するウイルス(例えばノロウイルス)やエンベロープを有するウイルス(インフルエンザウイルス)等のウイルス全般が含まれる。具体的には、ポックスウイルス科、ヘルペスウイルス科、アデノウイルス科、パピローマウイルス科・ポリオーマウイルス科、パルボウイルス科、ピコルナウイルス科、カリシウイルス科・アストロウイルス科・コロナウイルス科、トガウイルス科・フラビウイルス科、オルトミクソウイルス科、パラミクソウイルス科、ラブドウイルス科・フィロウイルス科・ボルナウイルス科、アレナウイルス科・ブニヤウイルス科、レオウイルス科、レトロウイルス科、肝炎ウイルスなどのウイルスが挙げられる。   In addition, microorganisms such as those mentioned above include obligate intracellular parasitic microorganisms that can only grow in cells of another organism and cannot grow on their own, such as viruses having only nucleocapsids (for example, Norovirus) and viruses with an envelope (influenza virus) and the like in general. Specifically, Poxviridae, Herpesviridae, Adenoviridae, Papillomaviridae / Polyomaviridae, Parvoviridae, Picornaviridae, Caliciviridae / Astroviridae / Coronaviridae, Togaviridae -Viruses such as Flaviviridae, Orthomyxoviridae, Paramyxoviridae, Rhabdoviridae / Firoviridae / Bornaviviridae, Arenaviridae / Bunijaviridae, Reoviridae, Retroviridae, Hepatitis Virus, etc. .

上記方法における生死判定剤としては、前記した、350nm〜700nmの波長の光照射により核酸に共有結合する薬剤、及び白金族元素の錯体が挙げられる。生死判定剤が350nm〜700nmの波長の光照射により核酸に共有結合する薬剤を用いる場合は、同薬剤を添加した被検試料に350nm〜700nmの波長の光照射処理を行う。   Examples of the life / death determining agent in the above-described method include the aforementioned agent that is covalently bonded to a nucleic acid upon irradiation with light having a wavelength of 350 nm to 700 nm, and a platinum group element complex. In the case where a drug that is covalently bonded to a nucleic acid by irradiation with light having a wavelength of 350 nm to 700 nm is used as a life / death determination agent, a light irradiation treatment with a wavelength of 350 nm to 700 nm is performed on a test sample to which the drug is added.

核酸増幅反応は、PCRのような、変性、アニーリング、及び伸長反応からなるサイクルを繰り返す方法であってもよく、等温核酸増幅法であってもよい。また、増幅産物の解析は、核酸増幅法に応じて適宜選択することができる。   The nucleic acid amplification reaction may be a method of repeating a cycle consisting of denaturation, annealing, and extension reaction, such as PCR, or may be an isothermal nucleic acid amplification method. The analysis of the amplification product can be appropriately selected according to the nucleic acid amplification method.

以下に、実施例を用いて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

〔実施例1〕ダイレクトLAMP法用マスターミックスの検討(1)
LAMP法による核酸増幅を細胞からの核酸の抽出を行わずに行うための反応液(ダイレクトLAMP法用マスターミックス)の組成等を検討した。
[Example 1] Examination of master mix for direct LAMP method (1)
The composition of the reaction solution (master mix for direct LAMP method) for performing nucleic acid amplification by LAMP method without extracting nucleic acid from cells was examined.

1−1)試験方法
レジオネラ・ニューモフィラ(Legionella pneumophila) ATCC33153株をBCYEα培地にて37℃、2日培養したコロニーを釣菌し、生理食塩水にけん濁させ、2.1±0.32 log cfu/mlの生細胞けん濁液を調製した。ATCC菌株は、アメリカン・タイプ・カルチャー・コレク
ション(住所 12301 Parklawn Drive, Rockville, Maryland 20852, United States of America)から入手することができる。
1-1) Test method Legionella pneumophila ATCC33153 strain was cultured in BCYEα medium at 37 ° C for 2 days, colonies were picked, suspended in physiological saline, and 2.1 ± 0.32 log cfu / ml A live cell suspension was prepared. The ATCC strain can be obtained from the American Type Culture Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852, United States of America).

上記生細胞けん濁液を冷却遠心(4℃、10分、3,000×G)し、上清を完全除去し、1 ml
の滅菌水にて洗浄後、同様の冷却遠心処理にて上清を完全除去した。沈澱(ペレット)に30 μlの滅菌水を加えて懸濁させ、定量的にその懸濁液を新しいPCRチューブに移した。
そのPCRチューブを96℃、3分処理後4℃に急冷したサンプルと未加熱サンプルをそれぞれ
準備した。
Centrifuge the live cell suspension above (4 ° C, 10 minutes, 3,000 x G), remove the supernatant completely, and add 1 ml
After washing with sterile water, the supernatant was completely removed by the same cooling centrifugation treatment. The precipitate (pellet) was suspended by adding 30 μl of sterile water, and the suspension was quantitatively transferred to a new PCR tube.
The PCR tube was treated at 96 ° C. for 3 minutes and then rapidly cooled to 4 ° C. and an unheated sample were prepared.

また、遺伝子増幅に用いるマスターミックスとして、表1に示す組成のLAMP法用マスターミックス1と、表2に示すLAMP法用マスターミックス2をそれぞれ調製した。
LAMP法用マスターミックス1は、栄研化学 Loopampレジオネラ検出試薬キットEの基本組成に、増幅遺伝子検出用に蛍光色素カルセイン(Calcein、栄研 Fluorescent Detection Reagentを使用)を追加したものである。
LAMP法用マスターミックス2は、LAMP法用マスターミックス1に、細胞からの核酸の抽出を行わずにPCRを効率よく行うために必要な、核酸増幅阻害物質の働きを抑制する薬剤の混合物の濃縮液(表3。この濃縮液を、濃縮ダイレクトバッファーコンポーネント、「cDBC」と記載する。国際公開第2011/010740参照)を添加したものである。
表1、2の「RM leg」(レジオネラ用reaction mixture)には、レジオネラの16S rRNA遺伝子を増幅するためのプライマー(FIP、BIP、Loop-F、Loop-B、F3、及びB3)が含まれている。
Further, as a master mix used for gene amplification, a LAMP master mix 1 having the composition shown in Table 1 and a LAMP master mix 2 shown in Table 2 were prepared.
Master mix 1 for the LAMP method is obtained by adding a fluorescent dye calcein (Calcein, using Eiken Fluorescent Detection Reagent) to the basic composition of Eiken Chemical Loopamp Legionella detection reagent kit E.
The master mix 2 for LAMP method is the same as the master mix 1 for LAMP method, but it is the concentration of a mixture of drugs that suppress the action of nucleic acid amplification inhibitors necessary for efficient PCR without extracting nucleic acids from cells. (Table 3. This concentrated solution is described as a concentrated direct buffer component, “cDBC”. See International Publication No. 2011/010740).
The “RM leg” (reaction mixture for Legionella) in Tables 1 and 2 includes primers (FIP, BIP, Loop-F, Loop-B, F3, and B3) for amplifying Legionella 16S rRNA gene. ing.

cDBCは、ウシ血清アルブミン(BSA; Sigma A7906)、クエン酸三ナトリウム2水和物(TSC: Tri-Sodium Citrate Dihydrate; 関東化学、東京)、塩化マグネシウム6水和物(31404-15 ナカライテスク、京都)、卵白リゾチーム(126-02671 Lysozyme from egg white;
和光純薬、大阪)、Brij58(P5884-100G; Sigma)の各ストック溶液を、表3に示す濃度となるように混合したものである。
マスターミックス2には、栄研化学 レジオネラ検出試薬キットEの基本組成メーカー
マニュアルに従うと、終濃度として8 mM相当のMgSO4が元来含まれていると推察されるた
め、合計のMg2+は11 mM相当と推測された。Brij 58、MgCl2、及びTSCは滅菌水にて溶解後、オートクレーブ(121℃、20分)し、水冷後室温に戻し、ストック溶液として使用した
。BSA、Lysozymeは滅菌水にてストック溶液を調製し、0.22μmフィルターにて濾過滅菌し、ストック溶液とした。
cDBC is bovine serum albumin (BSA; Sigma A7906), trisodium citrate dihydrate (TSC: Tri-Sodium Citrate Dihydrate; Kanto Chemical, Tokyo), magnesium chloride hexahydrate (31404-15 Nacalai Tesque, Kyoto) ), Egg white lysozyme (126-02671 Lysozyme from egg white;
Each stock solution of Wako Pure Chemical (Osaka) and Brij58 (P5884-100G; Sigma) was mixed to the concentration shown in Table 3.
According to the basic composition manufacturer manual of Eiken Chemical Legionella Detection Reagent Reagent Kit E, Master Mix 2 is presumed to contain MgSO 4 equivalent to 8 mM as the final concentration, so the total Mg 2+ is It was estimated to be equivalent to 11 mM. Brij 58, MgCl 2 , and TSC were dissolved in sterilized water, autoclaved (121 ° C., 20 minutes), cooled to room temperature, and used as a stock solution. For BSA and Lysozyme, a stock solution was prepared with sterilized water, and sterilized by filtration through a 0.22 μm filter to obtain a stock solution.

前記で得られた加熱及び未加熱のレジオネラ生細胞けん濁液を、冷却遠心処理(4℃、10分、3,000×G)して上清をほぼ除去し、ペレット(2.5 μl相当)に表1及び表2に示す各マスターミックスを加え、LAMP増幅(65℃、100分;80℃、2分;4 ℃、2分)(2回)を
行った。LAMP増幅において、65℃による遺伝子増幅工程における1分を1サイクルと定義した。ターゲット遺伝子増幅の程度はカルセインの総蛍光量として把握し、蛍光境界値を20,000とし、それを最初に超える遺伝子増幅時間(分又はサイクル数)をCt値とした。
The heated and unheated Legionella live cell suspension obtained above was cooled and centrifuged (4 ° C., 10 minutes, 3,000 × G), and the supernatant was almost removed. Each master mix shown in Table 2 was added, and LAMP amplification (65 ° C., 100 minutes; 80 ° C., 2 minutes; 4 ° C., 2 minutes) (twice) was performed. In LAMP amplification, one minute in the gene amplification step at 65 ° C. was defined as one cycle. The degree of target gene amplification was grasped as the total amount of fluorescence of calcein, the fluorescence boundary value was set to 20,000, and the gene amplification time (minute or number of cycles) exceeding the first was set as the Ct value.

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

1−2)試験結果及び考察
試験結果を表4に示す。
1-2) Test results and discussion Table 4 shows the test results.

Figure 2015139434
Figure 2015139434

表4に示されるように、LAMP法による核酸増幅を行う前に加熱処理(96℃、3分)を行
い、かつ、マスターミックス1を使用した場合のみ、ターゲット遺伝子の増幅が検出された。
マスターミックス2で増幅が検出されなかったのは、cDBCに含まれるBSAやリゾチーム
のようなPCR法には有効な成分が、鎖置換型ポリメラーゼ反応を阻害したためである可能
性がある。また、cDBC中のTSC(クエン酸三ナトリウム2水和物)は金属キレート剤であり、それがカルセインを消光していたマンガンと反応することによって、増幅反応に伴う蛍光の増加が観察されなかった可能性が高い。
As shown in Table 4, amplification of the target gene was detected only when heat treatment (96 ° C., 3 minutes) was performed before nucleic acid amplification by the LAMP method and Master Mix 1 was used.
The reason why amplification was not detected in Master Mix 2 may be that components effective for PCR such as BSA and lysozyme contained in cDBC inhibited the strand displacement polymerase reaction. In addition, TSC (trisodium citrate dihydrate) in cDBC is a metal chelator, and when it reacts with manganese that has quenched calcein, no increase in fluorescence associated with the amplification reaction was observed. Probability is high.

マスターミックス1を使用した場合でも、予め細胞懸濁液の加熱処理を行わないと増幅が観察されなかった。PCRでは、通常、反応サイクルの前に長目の変性処理(加熱処理)
が行われる。ダイレクトPCRでは、核酸増幅反応は主として細胞内で起きていると推定さ
れている。具体的には、核酸増幅反応における細胞の高温処理等によって、細胞の形態は維持され、染色体DNAは細胞内に残されつつも、微生物の細胞膜又は細胞壁にピンホールもしくは空隙が形成され、プライマー及び核酸増幅に必要な酵素等は細胞内に流入し、細胞内で増幅反応が起きると考えられている。そして、増幅産物の遺伝子長によって、一部分が細胞内にとどまる又は細胞外に流出するものと推定されている(以上、国際公開第2011/010740)。ダイレクトLAMP法において、細胞懸濁液を予め加熱処理した場合のみに
増幅反応が観察されたことは、上記の推定が正しいことを示唆している。
Even when Master Mix 1 was used, amplification was not observed unless the cell suspension was previously heat-treated. In PCR, a long denaturation treatment (heat treatment) is usually performed before the reaction cycle.
Is done. In direct PCR, it is presumed that the nucleic acid amplification reaction mainly occurs in cells. Specifically, the cell morphology is maintained by high-temperature treatment of the cell in the nucleic acid amplification reaction, and chromosomal DNA is left in the cell, but pinholes or voids are formed in the cell membrane or cell wall of the microorganism, the primer and It is considered that an enzyme necessary for nucleic acid amplification flows into the cell and an amplification reaction occurs in the cell. It is estimated that a part of the amplified product remains in the cell or flows out of the cell depending on the gene length of the amplified product (International Publication No. 2011/010740). In the direct LAMP method, the amplification reaction was observed only when the cell suspension was previously heat-treated, suggesting that the above estimation was correct.

〔実施例2〕ダイレクトLAMP法用マスターミックス組成の検討(2)
2−1)試験方法
レジオネラ・ニューモフィラ(Legionella pneumophila) ATCC33153株をBCYEα培地にて37℃、2日培養したコロニーを釣菌し、生理食塩水にけん濁させ、2.5±0.21 log cfu/mlの生細胞けん濁液を調製した。
[Example 2] Study of master mix composition for direct LAMP method (2)
2-1) Test method Legionella pneumophila ATCC33153 strain was cultured in BCYEα medium at 37 ° C for 2 days, colonies were picked, suspended in physiological saline, and 2.5 ± 0.21 log cfu / ml A live cell suspension was prepared.

次に、上記生細胞けん濁液1 mlを検体とし、終濃度5 μg/mlのEMAにて計3回の多段階EMA処理(1回目EMA処理:遮光下氷上5 μg/ml 5分、2回目EMA処理:5 μg/ml 5分、3回
目EMA処理:5 μg/ml 5分)を行った。各EMA処理後に、5分可視光照射した。尚、各EMA処理間の洗浄は行わなかった(特記しない限り、他の実施例でも同様)。また、それぞれの検体に対し未処理群も用意した。
Next, 1 ml of the above live cell suspension is used as a specimen, and a multi-stage EMA treatment is performed 3 times in a final concentration of 5 μg / ml EMA (the first EMA treatment: 5 μg / ml for 5 minutes on ice, protected from light) The third EMA treatment: 5 μg / ml for 5 minutes, the third EMA treatment: 5 μg / ml for 5 minutes). Visible light was irradiated for 5 minutes after each EMA treatment. In addition, the cleaning between each EMA treatment was not performed (the same applies to other examples unless otherwise specified). An untreated group was also prepared for each specimen.

多段階EMA処理群と未処理群を冷却遠心処理(4℃、10分、3,000× G)し、上清を完全
除去し、1 mlの滅菌水にて洗浄後、同様の冷却遠心処理にて上清を完全除去し、ペレットに対して30 μlの滅菌水を加えて懸濁させ、定量的にその懸濁液を新しいPCRチューブに
移した。そのPCRチューブを96℃、3分処理後4℃に急冷し、ダイレクトLAMP用のマスター
ミックス中の酵素等の各コンポーネントが細菌細胞を効果的に透過するようにした。
Cool and centrifuge the multi-stage EMA treatment group and untreated group (4 ° C, 10 minutes, 3,000 x G), completely remove the supernatant, wash with 1 ml of sterilized water, and then perform the same cooling centrifuge treatment The supernatant was completely removed, 30 μl of sterile water was added to the pellet to suspend it, and the suspension was quantitatively transferred to a new PCR tube. The PCR tube was treated at 96 ° C. for 3 minutes and then rapidly cooled to 4 ° C. so that components such as enzymes in the master mix for direct LAMP could permeate bacterial cells effectively.

次に、冷却遠心処理(4℃、10分、3,000× G)して上清をほぼ除去し、ペレット(2.5 μl相当)に対してダイレクトLAMP用のマスターミックス11〜17 μlを加え、65℃、100分;80℃、2分;4 ℃、2分のLAMP増幅を行った。ダイレクトLAMP用のマスターミックスは、栄研化学 Loopampレジオネラ検出試薬キットEの基本組成に、増幅遺伝子検出用に蛍光色素カルセイン(Calcein、栄研 Fluorescent Detection Reagentを使用)を添加し、さらに等温型DNA伸長酵素Csaポリメラーゼ(ニッポンジーン社)を追加したものである。65℃による遺伝子増幅工程において1分の反応を1サイクルと設定し、LAMP法によるターゲット遺伝子増幅の程度は、カルセインの総蛍光量として把握した。その際、蛍光境界値を20,000とし、それを最初に超える遺伝子増幅時間(分(min)又はサイクル数)をCt値と定義
した。以下に、その詳細を示す。
Next, cool and centrifuge (4 ° C, 10 minutes, 3,000 x G) to remove the supernatant. Add 11-17 µl of direct LAMP master mix to the pellet (equivalent to 2.5 µl) and add 65 ° C. 100 minutes; 80 ° C., 2 minutes; LAMP amplification for 2 minutes at 4 ° C. The master mix for direct LAMP is added to the basic composition of Eiken Chemical Loopamp Legionella Detection Reagent Kit E with a fluorescent dye calcein (Calcein, using Eiken Fluorescent Detection Reagent) for detection of amplified genes, and isothermal DNA extension. The enzyme Csa polymerase (Nippon Gene) is added. In the gene amplification process at 65 ° C., a 1 minute reaction was set as one cycle, and the degree of target gene amplification by the LAMP method was grasped as the total fluorescence of calcein. At that time, the fluorescence boundary value was set to 20,000, and the gene amplification time (minute (min) or cycle number) exceeding the first was defined as the Ct value. Details are shown below.

まず、対照群(コントロール)となる基本マスターミックス組成を表5に示す。この基本マスターミックスは、栄研化学 レジオネラ検出試薬キットEの基本組成に、このキッ
トの添付文書に従いカルセインを添加したものであるが、反応容量を1/2にスケールダウ
ンさせ、11 μlのマスターミックスに2.5 μl相当のDNA溶液を鋳型とした添加した反応系である。
First, the basic master mix composition used as a control group (control) is shown in Table 5. This basic master mix is the basic composition of Eiken Chemical Legionella Detection Reagent Kit E with calcein added according to the package insert of this kit. In the reaction system, a DNA solution equivalent to 2.5 μl was added as a template.

次に、コントロールとなる基本マスターミックスに、Csa ポリメラーゼ(8U/μl) 1μl
、及び、表6に示す添加剤1μlを添加したマスターミックスを調製した。表6中、「+」
はCsa ポリメラーゼ、又は添加剤を加えたことを示す。添加剤としては、(NH4)2SO4(関
東化学、東京)、Tween20 (Bio-Rad、Richmond、CA、USA)、KCl (関東化学、東京)、ベタイン (トリメチルグリシン、Acros、New Jersey、USA)、dNTPs (タカラバイオ、滋賀)を
使用し、dNTPs以外は表6に示される濃度にてミリQ水にて溶解後、オートクレーブ(121℃、15分)処理した。
Next, add 1 μl of Csa polymerase (8 U / μl) to the basic master mix for control.
And a master mix to which 1 μl of the additives shown in Table 6 was added was prepared. In Table 6, “+”
Indicates that Csa polymerase or an additive was added. Additives include (NH 4 ) 2 SO 4 (Kanto Chemical, Tokyo), Tween20 (Bio-Rad, Richmond, CA, USA), KCl (Kanto Chemical, Tokyo), betaine (trimethylglycine, Acros, New Jersey, USA) and dNTPs (Takara Bio, Shiga) were used, and except for dNTPs, they were dissolved in milli-Q water at the concentrations shown in Table 6 and then autoclaved (121 ° C., 15 minutes).

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

2−2)試験結果及び考察
試験結果を表7に示す。
2-2) Test results and discussion Table 7 shows the test results.

Figure 2015139434
Figure 2015139434

表7に示されるように、レジオネラ生細胞の未処理群に関しては、組成2及び6を除き、基本マスターミックスである組成1のCt値と大きな差はなかった。一方、レジオネラ生細胞を生理食塩水中にてEMA処理した生細胞に関するCt値は、組成1のCt値が35.3と最も
高く、生細胞に一部透過した可能性のあるEMAにより、最も顕著なターゲット遺伝子増幅
抑制が観察された。
好適なマスターミックスの性能として、未処理、EMA処理に関わらず、組成1と比較し
て生細胞のCt値は低い値を呈するマスターミックス組成が最善である。以上により、ダイレクトLAMP法のためには、組成4が本実施例においては適当であると考えられる。
As shown in Table 7, with respect to the untreated group of Legionella live cells, except for Compositions 2 and 6, there was no significant difference from the Ct value of Composition 1, which is the basic master mix. On the other hand, the Ct value for living cells obtained by EMA treatment of living Legionella cells in physiological saline is the highest, with the Ct value of composition 1 being the highest at 35.3, and the most prominent target due to EMA that may have partially penetrated living cells Gene amplification suppression was observed.
As a suitable master mix performance, a master mix composition that exhibits a low Ct value of living cells compared to composition 1 is the best regardless of whether it is untreated or EMA treated. From the above, it is considered that composition 4 is appropriate in the present example for the direct LAMP method.

〔実施例3〕ダイレクトLAMP法マスターミックス組成の検討(2)
実施例2においてダイレクトLAMP法用マスターミックス組成として、従来の典型的な基
本マスターミックスに、等温型DNA伸長酵素Csaポリメラーゼ、(NH4)2SO4、及びTween20を強化した組成が適当であることがわかった。本実施例では、各添加剤の好適濃度を検討した。
[Example 3] Examination of direct LAMP method master mix composition (2)
As a master mix composition for the direct LAMP method in Example 2, a composition in which isothermal DNA elongation enzyme Csa polymerase, (NH 4 ) 2 SO 4 , and Tween 20 are reinforced is suitable for the conventional typical basic master mix. I understood. In this example, suitable concentrations of each additive were examined.

3−1)試験方法
Legionella pneumophila ATCC33153株をBCYEα培地にて37℃、2日培養したコロニーを
釣菌し、生理食塩水にけん濁させ、2.7±0.18 log cfu/mlの生細胞けん濁液を調製した。この生細胞けん濁液について、実施例2と同様にして、多段階EMA処理、及び、LAMP増幅
を行い、Ct値を測定した。但し、ダイレクトLAMP用マスターミックスには、表8に示す組成のマスターミックス(14μl)を使用した。基本マスターミックスは、表5に示したも
のである。表8中、「+」はCsa ポリメラーゼ、又は添加剤を加えたことを示す。
3-1) Test method
A colony obtained by culturing Legionella pneumophila ATCC33153 strain in BCYEα medium at 37 ° C. for 2 days was picked and suspended in physiological saline to prepare a 2.7 ± 0.18 log cfu / ml live cell suspension. This live cell suspension was subjected to multistage EMA treatment and LAMP amplification in the same manner as in Example 2, and the Ct value was measured. However, a master mix (14 μl) having the composition shown in Table 8 was used for the direct LAMP master mix. The basic master mix is shown in Table 5. In Table 8, “+” indicates that Csa polymerase or an additive was added.

尚、ターゲット遺伝子増幅時間(65℃、100分)は、前記キットの推奨時間60分を大幅
に超えているが、これは、ダイレクトLAMP法マスターミックスは前記キット以外の酵素、試薬も含んでおり、DNA等のケミカルコンタミネーションによる非特異増幅反応等が生じ
る可能性も考えられたためである(実施例2でも同様)。
The target gene amplification time (65 ° C, 100 minutes) greatly exceeds the recommended time of 60 minutes for the kit, but this indicates that the direct LAMP method master mix includes enzymes and reagents other than the kit. This is because the possibility of non-specific amplification reaction due to chemical contamination of DNA and the like was also considered (the same applies to Example 2).

Figure 2015139434
Figure 2015139434

3−2)試験結果及び考察
試験結果を表9に示す。
3-2) Test results and discussion Table 9 shows the test results.

Figure 2015139434
Figure 2015139434

表9によれば、EMA未処理群、処理群に関わらず、組成1と比較してCt値が低い傾向に
あるのが組成6と判断された。しかし、組成6により陰性コントロールをLAMP増幅(75〜100分)した結果、非特異反応と推察される遺伝子増幅が観察されたことから、組成6の
内、Csaポリメラーゼ(8U/μl)の添加量を1 μl(8U)から0.4 μl (3.2U)に低減し、代わりに0.6 μlの滅菌水を加え、(NH4)2SO4とTween20の添加含量は組成6と同様にしたマ
スターミックスを好適マスターミックスとした。その組成を表10に示す。
According to Table 9, composition 6 was judged to have a lower Ct value than composition 1 regardless of the EMA untreated group or the treated group. However, as a result of LAMP amplification (75 to 100 minutes) of the negative control with composition 6, gene amplification presumed to be a non-specific reaction was observed, so the amount of Csa polymerase (8 U / μl) added in composition 6 1 μl (8U) is reduced to 0.4 μl (3.2U), and 0.6 μl of sterilized water is added instead. (NH 4 ) 2 SO 4 and Tween 20 are added in the same composition as in composition 6. Master mix. The composition is shown in Table 10.

Figure 2015139434
Figure 2015139434

上記組成を濃度に換算すると、表11の通りである。   Table 11 shows the above composition converted to concentration.

Figure 2015139434
Figure 2015139434

〔実施例4〕白金錯体を用いたダイレクトLAMP法によるグラム陰性細菌及びグラム陽性細菌の検出
前述の実施例2の表7及び実施例3の表9に示されるように、マスターミックス組成を好適化することにより、ダイレクトLAMP法によりレジオネラ菌の生細胞をリアルタイムに検出できることが判明した。
本実施例では、微生物の生細胞をと死細胞又は損傷細胞とを区別可能な試薬として、テトラキス(トリフェニルホスフィン)白金(II)(etrakis(triphenylphosphine)platinum(II))を用いたダイレクトLAMP法による、レジオネラ菌以外のグラム陰性細菌及びグラ
ム陽性細菌の生細胞・死細胞の判定を行った。
[Example 4] Detection of Gram-negative bacteria and Gram-positive bacteria by direct LAMP method using platinum complex As shown in Table 7 of Example 2 and Table 9 of Example 3, the master mix composition is optimized. By doing so, it was found that live cells of Legionella can be detected in real time by the direct LAMP method.
In this example, a direct LAMP method using tetrakis (triphenylphosphine) platinum (II) (etrakis (triphenylphosphine) platinum (II)) as a reagent capable of distinguishing living cells of microorganisms from dead cells or damaged cells. Based on the above, live / dead cells of Gram-negative bacteria and Gram-positive bacteria other than Legionella were determined.

4−1)試験方法
グラム陰性細菌シトロバクター・フロインディイ(Citrobacter freundii)NBRC12681
、エシェリヒア・コリ(E. coli)JM109、クレブシエラ・ニューモニア(Klebsiella pneumoniae)NBRC3321、クロノバクター・サカザキ(Cronobacter sakazakii)(旧名、エンテロバクター・サカザキ(Enterobacter sakazakii))ATCC51329、エンテロバクター・
クロアカエ(Enterobacter cloacae)IFO13535、E. coli O157 VT1 IS001、及びE. coli DH5αは、BHIブロスにて37℃、18時間培養後、菌体を滅菌水にて洗浄し、滅菌水にけん濁して、生細胞けん濁液とした。
4-1) Test method Citrobacter freundii NBRC12681
E. coli JM109, Klebsiella pneumoniae NBRC3321, Cronobacter sakazakii (former name: Enterobacter sakazakii) ATCC51329, Enterobacter
Enterobacter cloacae IFO13535, E. coli O157 VT1 IS001, and E. coli DH5α were cultured in BHI broth at 37 ° C. for 18 hours, and the cells were washed with sterilized water, suspended in sterilized water, A live cell suspension was obtained.

グラム陰性細菌ビブリオ・バルニフィカス(Vibrio vulnificus)L-1 opacityは、3%食塩加 トリプトソイブロスにて18時間培養後、菌体を生理食塩水にて洗浄し、滅菌水にけ
ん濁して、生細胞けん濁液とした。この菌株は、滅菌水中では死滅し易いが、白金錯体は生理食塩水環境下では死細胞の核酸と配位結合しにくくなるので、滅菌水を用い、白金錯体への暴露は速やかに行った。この生細胞けん濁液の一部を沸騰水に3分浸漬し、死細胞けん濁液を調製した。この死細胞けん濁液には損傷細胞及び死細胞が含まれるが、以下、これらを包括して「死細胞」と表記する。
Gram-negative bacterium Vibrio vulnificus L-1 opacity is cultured in tryptosoy broth with 3% salt solution for 18 hours, and then the cells are washed with physiological saline, suspended in sterile water, and living cells A suspension was obtained. Although this strain is likely to die in sterilized water, the platinum complex becomes difficult to coordinate with nucleic acids of dead cells in a physiological saline environment, and therefore, sterilized water was used and exposure to the platinum complex was promptly performed. A part of this live cell suspension was immersed in boiling water for 3 minutes to prepare a dead cell suspension. The dead cell suspension contains damaged cells and dead cells, and these are collectively referred to as “dead cells” hereinafter.

グラム陽性細菌である、メチシリン耐性黄色ブドウ球菌(MRSA)、ミクロコッカス・ルテウス(Micrococcus luteus)ATCC9341、及びバチルス・セレウス(Bacillus cereus)JCM2152は、BHIブロスにて37℃、2日間培養後、菌体を滅菌水にて洗浄し、滅菌水にけん濁した。Bacillus cereusは、主に栄養型細胞を試験に供した。これらの生細胞けん濁液の
一部を沸騰水に3分浸漬し、死細胞けん濁液を調製した。
上記グラム陰性細菌は、生細胞けん濁液10 μlに滅菌水90 μlを加え、およそ8 log cfu/mlオーダーの生細胞けん濁液を調製した。同様にして、8 log cells/mlオーダーのグラム陰性細菌・死細胞けん濁液を調製した。これらの生細胞けん濁液及び死細胞けん濁液の90 μlを、後述の白金錯体の暴露に供した。
グラム陽性細菌は、生細胞けん濁液又は死細胞けん濁液90 μl(およそ8 log cfu/mlオーダー)を、そのまま下記の白金錯体の暴露に供した。
Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA), Micrococcus luteus ATCC9341, and Bacillus cereus JCM2152 are cultured in BHI broth at 37 ° C for 2 days. Was washed with sterile water and suspended in sterile water. Bacillus cereus mainly used vegetative cells for testing. A part of these live cell suspensions was immersed in boiling water for 3 minutes to prepare a dead cell suspension.
For the gram-negative bacteria, 90 μl of sterilized water was added to 10 μl of the live cell suspension to prepare a live cell suspension of about 8 log cfu / ml. In the same manner, a suspension of Gram-negative bacteria and dead cells in the order of 8 log cells / ml was prepared. 90 μl of these live cell suspensions and dead cell suspensions were subjected to the platinum complex exposure described below.
For Gram-positive bacteria, 90 μl (approximately 8 log cfu / ml order) of a live cell suspension or a dead cell suspension was directly exposed to the following platinum complex.

tetrakis(triphenylphosphine)platinum(II)(Sigma)7.21 mg (5.11 μmol)を正確に秤
量し、1275.9 μlのDMSOに溶解して4 mMの白金錯体溶液を調製した。その後、生理食塩水にて40倍希釈して、100 μMの白金錯体水溶液を調製した。
Tetrakis (triphenylphosphine) platinum (II) (Sigma) 7.21 mg (5.11 μmol) was accurately weighed and dissolved in 1275.9 μl of DMSO to prepare a 4 mM platinum complex solution. Thereafter, it was diluted 40-fold with physiological saline to prepare a 100 μM platinum complex aqueous solution.

100 μM白金錯体水溶液10 μlを、前記各グラム陰性細菌及び陽性細菌の生細胞けん濁
液(8 log cfu/mlオーダーレベル)又は死細胞けん濁液(8 log cells/mlオーダーレベル)90 μlに添加し、白金錯体作用濃度を前記実施例におけるEMAと類似濃度の10 μMにし
、恒温水槽(PERSONAL-11、TAITEC、Tokyo、Japan)にて37℃、15分間保持した。その後
、冷却遠心(4℃、10,000× G、5分)により上清を除去し、そのペレットを150 μlの滅
菌水にけん濁させ、よく攪拌した後、同様の冷却遠心分離を行い、上清を除去し、ペレットに30 μlの滅菌水を加えて懸濁させ、定量的にその懸濁液を新しいLAMP増幅反応チューブ(定量PCRチューブ)に移した。
Add 10 μl of 100 μM platinum complex aqueous solution to 90 μl of the above-mentioned gram-negative and positive bacteria live cell suspension (8 log cfu / ml order level) or dead cell suspension (8 log cells / ml order level). The platinum complex action concentration was adjusted to 10 μM, which was similar to that of EMA in the above Example, and maintained at 37 ° C. for 15 minutes in a constant temperature water bath (PERSONAL-11, TAITEC, Tokyo, Japan). Thereafter, the supernatant is removed by cooling centrifugation (4 ° C., 10,000 × G, 5 minutes), the pellet is suspended in 150 μl of sterilized water, stirred well, and then the same cooling centrifugation is performed. The pellet was suspended by adding 30 μl of sterilized water, and the suspension was quantitatively transferred to a new LAMP amplification reaction tube (quantitative PCR tube).

それらのチューブを96℃で、3分(グラム陽性細菌生細胞検出の場合、96℃、10分)処
理後、4℃に急冷し、その後のダイレクトLAMP用のマスターミックス中の酵素等の各コン
ポーネントが細菌細胞を効果的に透過するようにした。
次に、冷却遠心処理(4℃、10分、3,000× G)して上清をほぼ除去し、ペレット(2.5 μl相当)に対してダイレクトLAMP用のマスターミックス10.5 μlを加え、63℃、90分 (
プライマーとしてGN_GP_ID_4を用いた場合のみ90分では非特異反応が生じるため50分に設定);80℃、2分;4 ℃、2分のLAMP増幅を行った。尚、LAMP法のダイレクトLAMP用のマス
ターミックスの組成を表12〜14に示す。表12〜14中、Loopamp DNA増幅試薬キッ
ト添付 2×RMは、表10のRM legに相当するが、この「2× RM」にはレジオネラ検出用LAMPプライマーは含まれていない。しかし、これらの組成に従えば、プライマーを除き表10の組成と有意な差はない。
These tubes are treated at 96 ° C for 3 minutes (96 ° C, 10 minutes for detecting Gram-positive bacteria), then rapidly cooled to 4 ° C, and then the components such as enzymes in the master mix for direct LAMP. Effectively penetrated the bacterial cells.
Next, cool and centrifuge (4 ° C, 10 minutes, 3,000 x G) to remove the supernatant. Add 10.5 µl of the master mix for direct LAMP to the pellet (equivalent to 2.5 µl), and add 63 ° C, 90 ° C. Minutes (
Only when GN_GP_ID_4 was used as a primer, a non-specific reaction occurred in 90 minutes, so it was set to 50 minutes); 80 ° C., 2 minutes; 4 ° C., 2 minutes of LAMP amplification. In addition, the composition of the master mix for direct LAMP of LAMP method is shown in Tables 12-14. In Tables 12 to 14, 2 × RM attached to the Loopamp DNA amplification reagent kit corresponds to the RM leg in Table 10, but this “2 × RM” does not include the LAMP primer for detecting Legionella. However, according to these compositions, there is no significant difference from the composition of Table 10 except for the primer.

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

LAMP用のプライマーは以下のようにして設計した。GenBankデータベース(http://www.ebi.ac.uk/genbank/)から、下記の微生物に関する16S rRNA遺伝子情報を取得した。カッコ
内にアクセションナンバーと配列長を示す。
Bacillus cereus Se07(JN700112; 1,438_bp)
シトロバクター・コーセリ(Citrobacter koseri)NBRC 105690(AB682264; 1,467_bp)
シトロバクター・フロインディ(Citrobacter freundii)5N09 (JQ271810; 1,430_bp)
エンテロコッカス・フェシウム(Enterococcus faecium)JCM8905 (AB690254; 1,449_bp)クレブシエラ・ニューモニエ(Klebsiella.pneumoniae)(X80684; 1,459_bp)
リステリア・モノサイトゲネス(Listeria monocytogenes)isolate 44(AJ535697; 1,404_bp)、
マイコバクテリウム・アビウム サブスピーシーズ パラツベルクローシス(Mycobacterium avium subsp. paratuberculosis) ATCC19698 (EF521896; 1,442_bp)
サルモネラ・エンテリティディス(Salmonella enteritidis) strain E1(EU118100; 1,546_bp)
ラクトバチル・アシドフィルス(Lactobacillus acidophilus)ATCC4356 (AB008203; 1,553_bp)
スタフィロコッカス・アウレウス(Staphylococcus aureus)ATCC12600(X68417; 1,555_bp)
Primers for LAMP were designed as follows. 16S rRNA gene information on the following microorganisms was obtained from the GenBank database (http://www.ebi.ac.uk/genbank/). The accession number and sequence length are shown in parentheses.
Bacillus cereus Se07 (JN700112; 1,438_bp)
Citrobacter koseri NBRC 105690 (AB682264; 1,467_bp)
Citrobacter freundii 5N09 (JQ271810; 1,430_bp)
Enterococcus faecium JCM8905 (AB690254; 1,449_bp) Klebsiella pneumoniae (X80684; 1,459_bp)
Listeria monocytogenes isolate 44 (AJ535697; 1,404_bp),
Mycobacterium avium subsp. Paratuberculosis ATCC19698 (EF521896; 1,442_bp)
Salmonella enteritidis strain E1 (EU118100; 1,546_bp)
Lactobacillus acidophilus ATCC4356 (AB008203; 1,553_bp)
Staphylococcus aureus ATCC12600 (X68417; 1,555_bp)

前記全ての遺伝子情報を一列に並べ、ClustalWにより各遺伝子領域を解析し、前記全ての属で一致した塩基、及び、一つのでも完全一致性が保たれなかった塩基を同定し、各微生物の16S rRNA遺伝子領域中の保存領域とバリアント領域を解析した。   All the gene information is arranged in a row, each gene region is analyzed by ClustalW, the bases that match in all the genera, and the bases that did not maintain even the perfect match, are identified, 16S of each microorganism The conserved region and variant region in the rRNA gene region were analyzed.

Staphylococcus aureus ATCC12600 の16S rRNA遺伝子塩基配列を代表例とし、具体的方法を以下に示す。解析ソフト(PrimerExplorer Ver.3、栄研化学;富士通)に Staphylococcus aureus ATCC12600 の16S rRNA遺伝子の塩基配列、及び、その配列中に前記全ての
属に関して保存されている領域とバリアント領域をマニュアルにて登録した。後述するFIPプライマーを構成するF2及びF1c部、BIPプライマーを構成するB2及びB1c部、F3及びB3プライマーに関して以下の制限を設けた。F2部、F3プライマー、B2部、B3プライマーに関しては全て、オリゴヌクレオチドの5’末端側、及びインナー(中間部)部は、鋳型DNAと相補性が保たれていなくてもよく、オリゴヌクレオチド3’末端側は鋳型DNAと完全に相補性が保たれているように設定した。また、F1c部とB1c部に関しては、オリゴヌクレオチドの3’末端は鋳型DNAと相補性が保たれていなくてもよく、5’末端は鋳型DNAと完全に相補性が保たれるように設定した。
The specific method is shown below, using the 16S rRNA gene base sequence of Staphylococcus aureus ATCC12600 as a representative example. Manually register the 16S rRNA gene base sequence of Staphylococcus aureus ATCC12600, and the regions and variant regions stored for all the genera in the analysis software (PrimerExplorer Ver.3, Eiken Chemical; Fujitsu) did. The following restrictions were placed on the F2 and F1c parts constituting the FIP primer described later, the B2 and B1c parts constituting the BIP primer, and the F3 and B3 primers. As for the F2, F3, B2, and B3 primers, the 5 ′ end of the oligonucleotide and the inner (intermediate) part may not be kept complementary to the template DNA. The terminal side was set so as to be completely complementary to the template DNA. In addition, regarding the F1c part and B1c part, the 3 ′ end of the oligonucleotide does not have to be kept complementary to the template DNA, and the 5 ′ end is set to be completely complementary to the template DNA. .

その他、F2とB2の距離(実質上FIPとBIPに挟まれる塩基数)を120〜300_bp、F1cとF2の距離は40〜60_bp、F2とF3の距離は0〜450_bp、F1cとB1cの距離は0〜260_bpというように
、デファオルト設定から科学的・理論的に許容される範囲内で設定を変更した。その他のパラメーターはデフォルト設定を優先した。
In addition, the distance between F2 and B2 (the number of bases sandwiched between FIP and BIP) is 120 to 300_bp, the distance between F1c and F2 is 40 to 60_bp, the distance between F2 and F3 is 0 to 450_bp, and the distance between F1c and B1c is The setting was changed within the range that is scientifically and theoretically acceptable from 0 to 260_bp. The other parameters have default settings.

Loopプライマー(後述のLoopFとLoopBプライマー)に関しては、FIP、F3、BIP、B3の各プライマーが確定されてから、PrimerExplorer Ver.3のループプライマー作成マニュアルに従って作成した。これらの設定により、前記全ての微生物から、大別して2種類のLAMP増幅断片(最小ユニット:断片の一方の末端にFlc部と他方の末端にBlc部の塩基が追加されている。)が得られることが理論的に導けた。
この最小ユニットとは、後述のFIP及びBIPにより両末端にダンベル構造を有するLAMP増幅断片の最小サイズを意味し、具体的には前記Genbankに登録されているS. aureus 16S rRNA遺伝子の5’末端から690番目〜889番目の塩基配列に相当する塩基配列を含む最小ユニットと、S. aureus 16S rRNA遺伝子の5’末端から1050番目〜1203番目の塩基配列を含む
最小ユニットが主に産生されると考えられる。
Loop primers (LoopF and LoopB primers described later) were prepared according to the primer primer creation manual of PrimerExplorer Ver.3 after the FIP, F3, BIP, and B3 primers were determined. According to these settings, two types of LAMP amplified fragments (minimum unit: a base of Flc portion added to one end of the fragment and a base of Blc portion added to the other end) are obtained from all the microorganisms. It was theoretically possible.
This minimum unit means the minimum size of a LAMP amplified fragment having a dumbbell structure at both ends by FIP and BIP described later, specifically, the 5 ′ end of the S. aureus 16S rRNA gene registered in the above Genbank. When the smallest unit containing the base sequence corresponding to the 690th to 889th base sequence from the first and the smallest unit containing the 1050th to 1203rd base sequence from the 5 ′ end of the S. aureus 16S rRNA gene are mainly produced Conceivable.

前者の最小ユニットの場合、S. aureus 16S rRNA遺伝子の5’末端から709番目〜870番
目に相当する塩基配列は必ず含んでいると推察され、後者の最小ユニットの場合でも、S.
aureus 16S rRNA遺伝子の5’末端から1068番目〜1185番目に相当する塩基配列は必ず含
んでいると推察される。それら最小ユニットの2n倍の長さのLAMP増幅断片が、反応(n)
の進行につれて得られる。
すなわち、全ての微生物(特に細菌の場合)をLAMP法により一斉に検出するためには、大別して前記2種類の最小ユニットしか得られないことが分かったので、以下の実験にて実際に増幅反応が進行するかを検討することにした。
In the case of the former minimum unit, it is inferred that the nucleotide sequence corresponding to positions 709 to 870 from the 5 ′ end of the S. aureus 16S rRNA gene is necessarily included.
It is presumed that the base sequence corresponding to the 1068th to 1185th positions from the 5 ′ end of the aureus 16S rRNA gene is necessarily included. LAMP amplified fragments 2 n times longer than those smallest units are
Obtained as the process progresses.
That is, in order to detect all the microorganisms (especially in the case of bacteria) all at once by the LAMP method, it was found that only the above-mentioned two types of minimum units could be obtained. Decided to consider what would go on.

グラム陰性細菌及びグラム陽性細菌一斉検出用LAMPプライマーセット(GN_GM_ID_3、GN_GM_ID_4、GN_GM_ID_9)の各プライマーの塩基配列(詳細情報)を、各々表15〜17に示す。   Tables 15 to 17 show the base sequences (detailed information) of the primers of the LAMP primer set (GN_GM_ID_3, GN_GM_ID_4, GN_GM_ID_9) for simultaneous detection of Gram negative bacteria and Gram positive bacteria, respectively.

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

表15〜17に記載した項目は以下のとおりである。
a) FIP、BIP、F3、及びB3の4種類による各プライマーダイマーに関して、その中で最も生成する可能性が高いプライマーダイマーの、その反応におけるギプス自由エネルギー変化量(dG)が-4より小さくなるとダイマー生成の可能性が高くなりLAMP増幅を阻害する可能
性が高くなる。本系においては、dG = -2.27で-4より高いため、プライマーダイマーの生成は無視できるレベルである。
b) FIPは5’-F1c-F2-3’の配列にて連結したプライマーを意味する。BIPは5’-B1c-B2-3
’の配列にて連結したプライマーを意味する。FIP、BIPの配列は、j)のSequenceを参照。LoopF及びLoopBは、FIP及びBIPが自己伸長のオリゴヌクレオチドにそれぞれアニールし、ループを形成し易いように補助するプライマーでありループプライマーとも定義される。c) GenBank database (http://www.ebi.ac.uk/genbank/)のアセッションナンバーS. aureus ATCC12600 (X68417)の16S rRNA遺伝子塩基配列(1555_bp)の5’末端を基準とする位置
。16S rRNA遺伝子においてアニールする各プライマー5’側末端の位置を示す。
d) GenBank database (http://www.ebi.ac.uk/genbank/)のアセッションナンバーS. aureus ATCC12600 (X68417)の16S rRNA遺伝子塩基配列5’末端を基準とする位置。16S rRNA遺伝子においてアニール(接着)する各プライマー3’側末端の位置を示す。
e) 各プライマーの長さ。
f) 各プライマーのTm(融解温度)。
g) 各プライマーの5’末端が鋳型DNAにアニールする度合いを示すもので、そのアニーリ
ング反応におけるギプスの自由エネルギー変化量を示す。-4未満の値であれば、良好なアニーリング反応が起こる。
h) 各プライマーの3’末端が鋳型DNAにアニールする度合いを示すもので、そのアニーリ
ング反応におけるギプスの自由エネルギー変化量を示す。-4未満の値であれば、良好なアニーリング反応が起こる。
i) 各プライマーのGC含量。
j) 各プライマーの塩基配列情報。太字斜体は、種々のグラム陰性細菌及びグラム陽性細
菌において、当該プライマーが16S rRNA遺伝子領域にアニールした際、必ずしも相補性が保たれているとは限らないプライマー領域であり、トータルバクテリアを検出するためにプライマーの塩基配列にバリエーションを持たせた領域である。太字斜体以外の領域は、全てのトータルバクテリアに対して当該プライマーの相補性が完全に保たれている領域。
The items described in Tables 15 to 17 are as follows.
a) For each primer dimer of four types FIP, BIP, F3, and B3, when the amount of change in the gypsum free energy (dG) of the primer dimer most likely to be generated is less than -4 The possibility of dimer generation increases and the possibility of inhibiting LAMP amplification increases. In this system, since dG = -2.27, which is higher than -4, the generation of primer dimer is negligible.
b) FIP means a primer linked by the sequence 5'-F1c-F2-3 '. BIP is 5'-B1c-B2-3
It means a primer linked by 'sequence. Refer to Sequence in j) for FIP and BIP sequences. LoopF and LoopB are primers that assist FIP and BIP to anneal to self-extending oligonucleotides, respectively, and to form a loop, and are also defined as loop primers. c) A position based on the 5 ′ end of the 16S rRNA gene base sequence (1555_bp) of the accession number S. aureus ATCC12600 (X68417) of the GenBank database (http://www.ebi.ac.uk/genbank/). The position of the 5 ′ end of each primer that anneals in the 16S rRNA gene is shown.
d) A position based on the 5 'end of the 16S rRNA gene base sequence of the accession number S. aureus ATCC12600 (X68417) of the GenBank database (http://www.ebi.ac.uk/genbank/). The position of the 3 ′ end of each primer that anneals (adheres) in the 16S rRNA gene is shown.
e) The length of each primer.
f) Tm (melting temperature) of each primer.
g) Indicates the degree of annealing of the 5 ′ end of each primer to the template DNA, and indicates the amount of change in the free energy of the cast during the annealing reaction. If the value is less than -4, a good annealing reaction occurs.
h) Indicates the degree of annealing of the 3 ′ end of each primer to the template DNA, and indicates the amount of change in the free energy of the cast during the annealing reaction. If the value is less than -4, a good annealing reaction occurs.
i) GC content of each primer.
j) Base sequence information of each primer. Bold italics are primer regions that do not necessarily maintain complementarity when the primer anneals to the 16S rRNA gene region in various gram-negative and gram-positive bacteria to detect total bacteria This is a region where the base sequence of the primer is varied. The region other than the bold italic is the region where the complementarity of the primer is completely maintained for all total bacteria.

また、グラム陽性細菌は外膜はないものの、グラム陰性細菌と比較して有意に層の厚いペプチドグリカン層があるため、ダイレクトLAMP法を実施するに当たり、Bst ポリメラーゼやCsa ポリメラーゼの酵素を始めとするダイレクトLAMPマスターミックスの各試薬が微生物細胞内に浸透するか不明であった。特にグラム陽性細菌の場合、最終的なダイレクトLAMP法で陰性を呈した時、LAMP法各試薬の生細胞への浸透が不十分であったのか、又はプライマーの設計が不適切であったのか不明であることが推察されたので、細菌から抽出したDNAを鋳型とするLAMP増幅も行った。
具体的には、各グラム陰性細菌及びグラム陽性細菌の培養液1 mlからNucleoSpin Tissue XS (MACHEREY-NAGEL GmbH & Co. KG、Duren、Germany製造;TaKaRa-Bio販売)を用いて
作業マニュアルに従いDNAを抽出し、最終的に滅菌水にDNAを溶解させた。抽出し精製されたDNA水溶液の光学的濃度を測定し、DNAのみ高効率にて抽出されていることを確認した。
In addition, although Gram-positive bacteria do not have an outer membrane, there is a peptidoglycan layer that is significantly thicker than Gram-negative bacteria, so when performing the direct LAMP method, direct enzymes such as Bst polymerase and Csa polymerase are used. It was unclear whether each reagent of the LAMP master mix penetrated into microbial cells. Especially in the case of Gram-positive bacteria, when the final direct LAMP method was negative, it was unclear whether the penetration of each reagent of the LAMP method into living cells was insufficient or the primer design was inappropriate Therefore, LAMP amplification using DNA extracted from bacteria as a template was also performed.
Specifically, from 1 ml of each Gram-negative bacteria and Gram-positive bacteria culture solution, DNA was prepared according to the operation manual using NucleoSpin Tissue XS (manufactured by MACHEREY-NAGEL GmbH & Co. KG, Duren, Germany; TaKaRa-Bio). The DNA was extracted and finally dissolved in sterilized water. The optical concentration of the extracted and purified DNA aqueous solution was measured, and it was confirmed that only DNA was extracted with high efficiency.

次に、各精製DNA水溶液を滅菌水にて5 ng/μlに濃度を合わせ、その2 μlを前記ダイレクトLAMPマスターミックス組成1、2、及び3に加えて、LAMP増幅反応をダイレクトLAMPと同様にして実施した。すなわち、1LAMP増幅チューブ当たり10 ngのDNAが含まれ、これ
は細菌細胞では2× 106 セルに相当した。
Next, adjust the concentration of each purified DNA aqueous solution to 5 ng / μl with sterilized water, add 2 μl to the direct LAMP master mix composition 1, 2, and 3, and perform the LAMP amplification reaction in the same way as for direct LAMP. Carried out. That is, 10 ng of DNA was contained per LAMP amplification tube, which corresponded to 2 × 10 6 cells in bacterial cells.

4−2)試験結果及び考察
結果を表18〜21に示す。表中、「ND」はターゲット遺伝子増幅が検出されないことを、「ND×2」は2回の操作で同じ結果であったことを示す。以下、同様。
4-2) Test results and discussion The results are shown in Tables 18-21. In the table, “ND” indicates that target gene amplification is not detected, and “ND × 2” indicates that the same result was obtained in two operations. The same applies hereinafter.

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

表18〜20によれば、前述の実施例4にて好適化したダイレクトLAMPマスターミックス(表12〜表14を参照)により、グラム陰性細菌とグラム陽性細菌を一斉に検出できた。また、表21に示されるように、直接DNAを鋳型とするダイレクトLAMP法により、全
ての細菌種からターゲット遺伝子の増幅が可能であった。
表18〜20の実験では、各細菌生細胞の回収率100%と見なすと、およそ9× 106 cfu / チューブにてLAMP増幅反応が行われていることになり、回収率が遠心処理などにより一部低下するとしても6 log cfu / チューブレベルは当該反応に供されている。
一方、表21の実験では、10 ngのDNAは通常2× 106 cfuの細菌細胞数に相当するため
、表18〜20における細胞数と有意な差は考えられない。
According to Tables 18 to 20, Gram-negative bacteria and Gram-positive bacteria could be detected simultaneously by the direct LAMP master mix optimized in Example 4 (see Tables 12 to 14). Further, as shown in Table 21, it was possible to amplify target genes from all bacterial species by the direct LAMP method using direct DNA as a template.
In the experiments shown in Tables 18 to 20, assuming that the recovery rate of each bacterial cell is 100%, the LAMP amplification reaction is performed in approximately 9 × 10 6 cfu / tube, and the recovery rate is increased by centrifugation or the like. Even though it is partially reduced, 6 log cfu / tube level is available for the reaction.
On the other hand, in the experiment of Table 21, since 10 ng of DNA usually corresponds to the number of bacterial cells of 2 × 10 6 cfu, a significant difference from the number of cells in Tables 18 to 20 cannot be considered.

表18〜20の各生細胞のCt値は、表21の該当するCt値と比較しても、基本的には有意なCt値の遅れは観測されず、ダイレクトLAMP法では、増幅反応の障害となる要素は特にはないと考えられた。   Even if the Ct value of each living cell in Tables 18 to 20 is compared with the corresponding Ct value in Table 21, no significant delay in the Ct value is basically observed. It was thought that there was no particular element.

生細胞と死細胞をダイレクトLAMP法により識別する場合、10 μMのTetrakis(triphenyl
phosphine)platinum(II)では僅か1回処理で各種のグラム陰性細菌死細胞及びグラム陽性
細菌死細胞のLAMP増幅を完全に抑制した。EMAでは、以後に示す実施例において、11.9 μM(5 μg/ml)の連続3回処理を実施しても、6.2 log cells/mlのレジオネラ死細胞のLAMP増幅を完全には抑制できなかったことと比較すると、ダイレクトLAMP法には白金錯体が好ましい可能性がある。
When distinguishing live and dead cells by the direct LAMP method, 10 μM Tetrakis (triphenyl
In phosphine) platinum (II), LAMP amplification of various gram-negative and gram-positive bacterial dead cells was completely suppressed by a single treatment. In the examples shown below, EMA did not completely suppress LAMP amplification of 6.2 log cells / ml Legionella dead cells even after three consecutive treatments of 11.9 μM (5 μg / ml). Compared to, platinum complexes may be preferred for the direct LAMP method.

以上により、好適なダイレクトLAMPマスターミックスは、広範囲なグラム陰性細菌及びグラム陽性細菌の一斉増幅も可能であると考えられる。   From the above, it is considered that a suitable direct LAMP master mix is capable of simultaneous amplification of a wide range of gram-negative and gram-positive bacteria.

〔実施例5〕生細胞・死細胞判定試薬に暴露された場合のDNA損傷(不活性化)度合いの
評価
白金錯体を用いたダイレクトLAMP法とダイレクト・リアルタイムPCR法によるE. coliの生細胞と死細胞の識別を比較した。
[Example 5] Evaluation of the degree of DNA damage (inactivation) when exposed to a reagent for determining living cells / dead cells. Live cells of E. coli by direct LAMP method and direct real-time PCR method using platinum complex The identification of dead cells was compared.

5−1)試験方法
E. coli JCM109株をBHIブロスにて37℃、18時間培養後、滅菌水にて洗浄し、滅菌水に
懸濁させて、生細胞けん濁液(1.1× 106 cfu/ml; 6.0 log cfu/ml)を調製した。この
生細胞けん濁液の一部を沸騰水に3分浸漬し、死細胞けん濁液(1.1× 106 cells/ml)を
調製した。これらのそれぞれ1 mlを下記白金錯体の暴露に供した。
5-1) Test method
E. coli JCM109 strain was cultured in BHI broth at 37 ° C for 18 hours, washed with sterilized water, suspended in sterilized water, and live cell suspension (1.1 x 10 6 cfu / ml; 6.0 log cfu / ml) was prepared. A part of this live cell suspension was immersed in boiling water for 3 minutes to prepare a dead cell suspension (1.1 × 10 6 cells / ml). Each 1 ml of these was subjected to the following platinum complex exposure.

tetrakis(triphenylphosphine)platinum(II)(Sigma、分子量1244.22)6.04 mg(4.85
μmols)を精確に秤量し、1213.6 μlのDMSOに溶解して4 mM溶液を調製した。この溶液をDMSOで2倍希釈して、2000 μMの白金錯体溶液を調製した。
tetrakis (triphenylphosphine) platinum (II) (Sigma, molecular weight 1244.22) 6.04 mg (4.85
μmols) was accurately weighed and dissolved in 1213.6 μl DMSO to prepare a 4 mM solution. This solution was diluted 2-fold with DMSO to prepare a 2000 μM platinum complex solution.

前記2000 μM白金錯体溶液5 μlを、上記生細胞けん濁液1 ml又は死細胞けん濁液1 ml
が入っているマイクロチューブの蓋に添加し、添加終了後、丁寧に蓋を閉め一斉に試験サンプルを攪拌後、恒温水槽にて37℃で12.5分間保持した。その後、冷却遠心処理(4℃、8,000× G、5分)し、上清を除去しそのペレットを1 mlの滅菌水にて洗浄した。
洗浄後のペレットに滅菌水60 μlを加えよく攪拌後、30 μlを新しいLAMP増幅反応用チューブ(定量PCRチューブ)に移し、そのチューブを96℃、3分処理後4℃に急冷し、その
後のダイレクトLAMP用のマスターミックス中の酵素等の各コンポーネントが細菌細胞を効果的に透過するようにした。
Add 5 μl of the above 2000 μM platinum complex solution to 1 ml of the above live cell suspension or 1 ml of dead cell suspension.
After the addition, the lid was carefully closed and the test sample was stirred all at once, and then held at 37 ° C. for 12.5 minutes. Thereafter, the mixture was cooled and centrifuged (4 ° C., 8,000 × G, 5 minutes), the supernatant was removed, and the pellet was washed with 1 ml of sterile water.
Add 60 μl of sterilized water to the washed pellet, stir well, transfer 30 μl to a new LAMP amplification reaction tube (quantitative PCR tube), treat the tube at 96 ° C for 3 minutes, and then rapidly cool to 4 ° C. Each component such as an enzyme in the direct LAMP master mix effectively permeated bacterial cells.

次に、冷却遠心処理(4℃、10分、3,000× G)して上清をほぼ除去し、ペレット(2.0 μl相当)に対して表13:組成2(GN_GM_ID_4)のダイレクトLAMP用マスターミックス
を加えて全量を12.5 μlに調製し、65℃、100分;80℃、2分;4 ℃、2分)のLAMP増幅を行った。
Next, the supernatant was almost removed by cooling and centrifuging (4 ° C, 10 minutes, 3,000 x G), and the master mix for direct LAMP of Table 13: Composition 2 (GN_GM_ID_4) was applied to the pellet (equivalent to 2.0 µl). In addition, the total amount was adjusted to 12.5 μl, and LAMP amplification was performed at 65 ° C., 100 minutes; 80 ° C., 2 minutes; 4 ° C., 2 minutes).

一方、リアルタイムPCRは以下のようにして行った。前記の白金錯体暴露後の生細胞け
ん濁液、及び、死細胞けん濁液30 μlを定量PCRチューブに移し、冷却遠心処理(4℃、10分、3,000× G)後、上清を除去し、下記表22に示すダイレクト・リアルタイムPCRマスターミックスを添加し、全量を25 μlに調製した。尚、Taq DNA Polymerase with Standard Taq Buffer (New England Biolabs Japan Inc.; M0273S)(「NEB 10× buffer」と記
載)をqPCRバッファー(定量PCRバッファー)として用いた。
On the other hand, real-time PCR was performed as follows. Transfer 30 μl of the live cell suspension and dead cell suspension after exposure to the platinum complex to a quantitative PCR tube, cool and centrifuge (4 ° C, 10 minutes, 3,000 x G), and remove the supernatant. The direct real-time PCR master mix shown in Table 22 below was added to prepare a total volume of 25 μl. Taq DNA Polymerase with Standard Taq Buffer (New England Biolabs Japan Inc .; M0273S) (described as “NEB 10 × buffer”) was used as a qPCR buffer (quantitative PCR buffer).

また、表22に示すように、Taqポリメラーゼを通常使用の×4倍量加え、さらにcDBC(10× DBC)(表3参照)を所定量添加して調製したダイレクト・リアルタイムPCR(DqPCR)マスターミックス(特願2013-542301)を用いて、DqPCR増幅(45 cycles)を2回実施した。「NEB」は、New England Biolabs製品を示す。   In addition, as shown in Table 22, direct real-time PCR (DqPCR) master mix prepared by adding Taq polymerase x4 times the usual amount and further adding a predetermined amount of cDBC (10 x DBC) (see Table 3). DqPCR amplification (45 cycles) was performed twice using (Japanese Patent Application 2013-542301). “NEB” refers to the New England Biolabs product.

Figure 2015139434
Figure 2015139434

PCR増幅には、Primer ENT-16S forward: 腸内細菌科菌群(Enterobacteriaceae)特異
的16S rRNA遺伝子検出用フォワードプライマー(5'-GTTGTAAAGCACTTTCAGTGGTGAGGAAGG -3':配列番号26)、及び、Primer ENT-16S reverse: 腸内細菌科菌群(Enterobacteriaceae)特異的16S rRNA遺伝子検出用リバースプライマー(5'-GCCTCAAGGGCACAACCTCCAAG-3':配列番号27)をPCRプライマーとして使用した(両プライマーはニッポンジーン社に製造委託した)。増幅されるrRNA遺伝子の断片長は424 bpである。
腸内細菌科菌群(Enterobacteriaceae)ENT-16S TaqMan probeとしては、(5'-/56-FAM/AACTGCATC/ZEN/TGATACTGGCAGGCT/3lABkFQ/ -3':配列番号28)の配列を有するオリゴ
ヌクレオチドを用いた。このプローブは、オリゴヌクレオチドの5’末端に蛍光物質56-FAM、中央部にZEN、3’末端に31ABkFQという消光色素(クエンチャー)を配置した仕様であり、Integrated DNA Technologies社にて委託製造した。尚、腸内細菌科菌群検出用プ
ライマーに関する塩基配列情報は、Nakano, S. et al., J. Food Prot. 66:1798-1804, 2003から入手し、ENA-16S TaqMan probeに関する塩基配列情報は、GenBank database(http://www.ebi.ac.uk/genbank/)より腸内細菌科菌群内の16S rRNA遺伝子の相補的領域を選択することにより得た。
For PCR amplification, Primer ENT-16S forward: Enterobacteriaceae-specific 16S rRNA gene detection forward primer (5'-GTTGTAAAGCACTTTCAGTGGTGAGGAAGG-3 ': SEQ ID NO: 26) and Primer ENT-16S reverse : Enterobacteriaceae specific 16S rRNA gene detection reverse primer (5′-GCCTCAAGGGCACAACCTCCAAG-3 ′: SEQ ID NO: 27) was used as a PCR primer (both primers were outsourced to Nippon Gene). The fragment length of the amplified rRNA gene is 424 bp.
Enterobacteriaceae ENT-16S TaqMan probe uses an oligonucleotide having a sequence of (5 '-/ 56-FAM / AACTGCATC / ZEN / TGATACTGGCAGGCT / 3lABkFQ / -3': SEQ ID NO: 28) It was. This probe has a specification in which a fluorescent substance 56-FAM is placed at the 5 'end of the oligonucleotide, a quencher dye called ZEN at the center and 3ABkFQ is placed at the 3' end, and is commissioned by Integrated DNA Technologies. . In addition, the base sequence information regarding the primer for detecting Enterobacteriaceae group is obtained from Nakano, S. et al., J. Food Prot. 66: 1798-1804, 2003, and the base sequence information regarding ENA-16S TaqMan probe. Was obtained by selecting the complementary region of the 16S rRNA gene in the Enterobacteriaceae family from the GenBank database (http://www.ebi.ac.uk/genbank/).

リアルタイムPCR装置(StepOnePlus Real-Time PCR System; Applied Biosystems)を用いて、下記のPCRサーマルサイクル条件により、リアルタイムPCRを2回実施した。
1) 95℃, 20秒(1サイクル)
2) 95℃, 5秒; 60℃, 1分(45サイクル)
尚、陰性コントロールとして、滅菌水5μlを鋳型として使用した。
Real-time PCR was performed twice using the real-time PCR apparatus (StepOnePlus Real-Time PCR System; Applied Biosystems) under the following PCR thermal cycle conditions.
1) 95 ℃, 20 seconds (1 cycle)
2) 95 ℃, 5 seconds; 60 ℃, 1 minute (45 cycles)
As a negative control, 5 μl of sterilized water was used as a template.

5−2)試験結果及び考察
ダイレクトLAMP法、及びダイレクトPCR法の結果を表23に示す。また、この結果から
作成したスタンダードカーブを図1(ダイレクトLAMP法)、図2(ダイレクトPCR法)に
示す。
5-2) Test results and discussion Table 23 shows the results of the direct LAMP method and the direct PCR method. Moreover, the standard curve created from this result is shown in FIG. 1 (direct LAMP method) and FIG. 2 (direct PCR method).

Figure 2015139434
Figure 2015139434

本試験結果によれば、6 log cfu/mlのE. coli生細胞において本白金錯体を作用させた
時、ダイレクトLAMP法では該当する未処理生細胞のCtと比較して、既に3.3程度の増加(
増幅の遅れ)が生じていたが、ダイクレト・リアルタイムPCRにおいては、本白金暴露生
細胞のCtは該当する未処理生死細胞Ctと比較して、1程度の増加(遅れ)に留まっていた

同様に、5.0〜1.0 log cfu/mlの生細胞のダイレクトLAMP法とダイレクト・リアルタイ
ムPCR法を比較すると、僅かに生細胞を透過した本白金錯体を、ダイレクトLAMP法の方が
鋭敏に検知していることが分かった。
According to the results of this test, when the platinum complex was allowed to act on 6 log cfu / ml of E. coli live cells, the direct LAMP method already increased by about 3.3 compared to the corresponding untreated live Ct. (
However, in direct / real-time PCR, Ct of this platinum-exposed live cell remained at an increase (delay) of about 1 compared to the corresponding untreated live / dead cell Ct.
Similarly, comparing the direct LAMP method and the direct real-time PCR method for live cells of 5.0 to 1.0 log cfu / ml, the direct LAMP method detected the platinum complex that slightly penetrated the live cells more sensitively. I found out.

ダイレクトLAMP法のCt値とダイレクト・リアルタイムPCR法のCt値との比較においては
、各法における未処理群のスタンダードカーブ(図1、2)と、白金錯体に暴露されたE.
coli生細胞のCt値とを比較することにより、白金錯体の暴露によるインタクトな染色体
を有する生細胞数の低減度合いを指標とすれば、ダイレクトLAMP法とダイレクト・リアルタイムPCR法のどちらが、本白金錯体暴露生細胞を鋭敏に検知しているかが分かる。
In comparison between the Ct value of the direct LAMP method and the Ct value of the direct real-time PCR method, the standard curve of the untreated group in each method (Figs. 1 and 2) and E. exposed to the platinum complex.
By comparing the Ct value of living cells in Escherichia coli and using the degree of reduction in the number of living cells with intact chromosomes as a result of exposure to the platinum complex as an index, either the direct LAMP method or the direct real-time PCR method can be used. It can be seen whether exposed live cells are detected sensitively.

ダイレクトLAMP法では、例えば、5.0 log cfu/mlの生細胞が本白金錯体に暴露された場合、Ct値は25.3程度であるが、それは未処理生細胞のスタンダードのCt値において1.0 log cfu/mlのCt値より有意に高く、すなわち、本白金錯体により5.0 log cfu/mlの生細胞数が1.0 log cfu/ml未満まで低下したと考えられる。
一方、ダイレクト・リアルタイムPCRでは、5.0 log cfu/ml生細胞が本白金錯体に暴露
された場合のCt値28.9は、未処理生細胞のスタンダードCt値を用いて、インタクトDNAを
保持する生細胞数がどの程度に低減しているかを評価した場合、未処理生細胞4 log cfu/mlのCt値に近い。そのため、たとえ本白金錯体に暴露されても、5.0 log cfu/mlの生細胞数は4 log cfu/mlの生細胞数に低減するものの、その低減の度合いは1 log cells ユニットオーダーレベルに留まった。
In the direct LAMP method, for example, when 5.0 log cfu / ml of live cells are exposed to the platinum complex, the Ct value is about 25.3, which is 1.0 log cfu / ml at the standard Ct value of untreated live cells. It is considered that the viable cell number of 5.0 log cfu / ml was lowered to less than 1.0 log cfu / ml by the platinum complex.
On the other hand, in direct real-time PCR, Ct value 28.9 when 5.0 log cfu / ml live cells are exposed to this platinum complex is the number of live cells that retain intact DNA using standard Ct values of untreated live cells. When the degree of reduction is evaluated, it is close to the Ct value of 4 log cfu / ml of untreated living cells. Therefore, even if exposed to this platinum complex, the viable cell count of 5.0 log cfu / ml is reduced to 4 log cfu / ml viable cell count, but the reduction is only 1 log cells unit order level. .

すなわち、ダイレクトLAMP法の方が生細胞に対する本白金錯体の暴露を鋭敏に捉えており、僅かな生細胞へのDNAの損傷を高感度にて検知してしまう可能性がある。一方、同じ
白金錯体を用い死細胞由来の遺伝子増幅抑制度合いを評価した場合も、ダイレクトLAMP法の方がダイレクト・リアルタイムPCR法より、より激しい増幅抑制をしていると考えられ
る。
That is, the direct LAMP method is more sensitive to exposure of the present platinum complex to living cells, and may detect a small amount of DNA damage to living cells with high sensitivity. On the other hand, even when the degree of gene amplification suppression from dead cells was evaluated using the same platinum complex, the direct LAMP method is considered to suppress the amplification more intensely than the direct real-time PCR method.

以上の結果から、ダイレクトLAMP法を利用するとダイレクト・リアルタイムPCR法と比
較して大幅に生細胞からの遺伝子増幅が抑制された。また、死細胞に関しても同様に、ダ
イレクトLAMP法の方がより死細胞由来の遺伝子増幅を抑制できることが明かとなった。
From the above results, gene amplification from living cells was significantly suppressed when the direct LAMP method was used compared to the direct real-time PCR method. Similarly, regarding the dead cells, it was revealed that the direct LAMP method can suppress the gene amplification derived from the dead cells.

ダイレクト・リアルタイムPCR法では、95℃と60℃の温度変化が連続的且つ交互に行わ
れるので、鋳型DNAの二本鎖から一本鎖への解離工程を40〜50回繰り返される。したがっ
て、生細胞・染色体のターゲット遺伝子領域に不完全に配位結合した白金元素は、染色体から脱離するが、生細胞を透過しても全く染色体と配位結合しなかった白金元素は、生細胞染色体のターゲット遺伝子に全く配位結合していないことが考えられる。それ故に、生細胞由来のインタクト(未修飾)なターゲット遺伝子領域は一定割合存在すると考えられ、それが生細胞由来のターゲット遺伝子増幅に寄与していると考えられる。
しかしながら、ダイレクトLAMP法の場合、最初に1回のみ96℃にて3分程度加熱を行う
ので、生細胞の鋳型DNAの二本鎖から一本鎖へ解離工程は1回のみ行われ、それ以降は、鎖置換型DNAポリメラーゼにより60〜65℃にて遺伝子伸長が行われる。したがって、生細胞
・染色体のターゲット遺伝子領域に不完全に配位結合した白金元素は、染色体から脱離する可能性がダイレクト・リアルタイムPCRよりも有意に低減し、それ故、生細胞由来のイ
ンタクト(未修飾)なターゲット遺伝子領域は有意に低減していると推察される。
さらに、鎖置換型DNAポリメラーゼにより60〜65℃にて鋳型DNA二本鎖を解離させながら、解離した各一本鎖DNAを基に遺伝子伸長を行うことになるものの、その過程において、
予めその鋳型DNA二本鎖に配位結合によりクロスリンクしていた白金元素によって、同酵
素による鋳型DNA二本鎖の一本鎖への解離が阻害されるために、その後の遺伝子伸長が進
行しないと推測される。よって、生細胞由来のターゲット遺伝子増幅が有意に抑制されていると考えられる。
以上のとおり、LAMP法を利用すると大幅に生細胞からの遺伝子増幅が抑制されると考えられる。死細胞に関しても同様に、ダイレクトLAMP法の方がより死細胞由来の遺伝子増幅を抑制できる可能性が高い。
In the direct real-time PCR method, the temperature change at 95 ° C. and 60 ° C. is performed continuously and alternately, so that the dissociation process from the double strand to the single strand of the template DNA is repeated 40 to 50 times. Therefore, platinum elements that are incompletely coordinated to the target gene region of a living cell / chromosome are detached from the chromosome, but platinum elements that have not coordinated to the chromosome at all through the living cell are It is considered that there is no coordinate bond to the target gene of the cell chromosome. Therefore, it is considered that there is a certain proportion of intact (unmodified) target gene regions derived from living cells, which are thought to contribute to amplification of target genes derived from living cells.
However, in the direct LAMP method, heating is performed only once at 96 ° C for about 3 minutes, so the dissociation step from the double strand to the single strand of the living cell template DNA is performed only once, and thereafter The gene is extended at 60 to 65 ° C. by a strand displacement type DNA polymerase. Therefore, platinum elements that are incompletely coordinated to the target gene region of living cells / chromosomes are significantly less likely to detach from the chromosome than direct real-time PCR, and therefore, intact ( It is speculated that the unmodified target gene region is significantly reduced.
Furthermore, while the template DNA double strand is dissociated at 60 to 65 ° C. with a strand displacement type DNA polymerase, gene elongation will be performed based on each dissociated single-stranded DNA,
Since the platinum element that has been cross-linked to the template DNA duplex in advance by coordination bond inhibits dissociation of the template DNA duplex into a single strand by the enzyme, subsequent gene extension does not proceed. It is guessed. Therefore, it is considered that amplification of target genes derived from living cells is significantly suppressed.
As described above, it is considered that gene amplification from living cells is significantly suppressed when the LAMP method is used. Similarly, with respect to dead cells, the direct LAMP method is more likely to suppress gene amplification derived from dead cells.

更に、上記図1に示す通り、単なるダイレクトLAMP法では1〜6 log cfu/mlの濃度範囲
にて定量性があると考えられ、白金錯体処理-ダイレクトLAMP法では3〜6 log cfu/mlの濃度範囲にて定量性があると考えられる。
同様に、ダイレクト・リアルタイムPCRでは1〜6 log cfu/mlの濃度範囲にて定量性があると考えられ、白金錯体処理-ダイレクト・リアルタイムPCR法では2〜6 log cfu/mlの濃
度範囲にて定量性があると考えられる。
Furthermore, as shown in FIG. 1, the direct LAMP method is considered to be quantitative in the concentration range of 1 to 6 log cfu / ml, and the platinum complex treatment-direct LAMP method is 3 to 6 log cfu / ml. It is considered to be quantitative in the concentration range.
Similarly, direct real-time PCR is considered to be quantitative in the concentration range of 1-6 log cfu / ml, and platinum complex treatment-direct real-time PCR method in the concentration range of 2-6 log cfu / ml. It is considered to be quantitative.

以上のことから、生細胞・死細胞に関わらず、一端透過した核酸不活性化剤(配位結合や光反応性核酸共有結合により)の影響を、鋭敏に検知するには、LAMP法の方がPCR法よ
り原理的、且つ、試験的に優れていると考えられる。
Based on the above, the LAMP method can be used to detect sensitively the effects of permeated nucleic acid inactivating agents (coordinating bonds or photoreactive nucleic acid covalent bonds) regardless of whether the cells are live or dead. Is considered to be superior to the PCR method in principle and in test.

〔実施例6〕ダイレクトLAMP法によるレジオネラ菌生細胞・死細胞の識別
レジオネラ菌は、通常の試験環境や典型的に汎用される生理食塩水中で死に易い微生物の代表例である。本実施例では、レジオネラ菌生細胞・死細胞の識別がダイレクトLAMP法により可能か検証した。
[Example 6] Identification of live and dead cells of Legionella by direct LAMP method Legionella is a representative example of microorganisms that are likely to die in a normal test environment and typically used in physiological saline. In this example, it was verified whether the Legionella live cells or dead cells could be identified by the direct LAMP method.

6−1)試験方法
レジオネラ生細胞へのEMAの透過を抑制し、死細胞への透過は維持されることを補助す
る成分の検討を行った。
6-1) Test method The component which suppresses the transmission | permeation of EMA to a Legionella live cell and assists the permeation | transmission to a dead cell was examined.

レジオネラ菌の好適な人工培地として、GVPC選択培地が知られている。同培地の組成は、レジオネラCYE寒天基礎培地(CM0655;関東化学、東京;活性炭、酵母エキス、寒天を
含む)、レジオネラBCYEα発育サプリメント(レジオネラ必須栄養素でACES/水酸化カリ
ウムバッファー、ピロリン酸第二鉄、L-システイン塩酸塩、α-ケトグルタル酸)、レジ
オネラGVPC選択サプリメント(レジオネラ属以外の他の細菌を死滅させる各種抗生物質群
であり、グリシン(アンモニア不含)、バンコマイシン塩酸塩、硫酸ポリミキシンB、シ
クロヘキシミド)の3部構成になっている。
レジオネラ菌はカタラーゼを有しないため、本菌が産生する過酸化水素を分解できず、その結果、ヒドロキシルラジカルによりDNA損傷を受けて死滅するため、過酸化水素吸着
用活性炭が基礎培地として含まれているが、EMAも活性炭に吸着される。また、レジオネ
ラGVPC選択サプリメントの各種抗生物質群は、レジオネラ以外の雑菌の増殖を抑制するため培地に添加されるものであり、レジオネラ菌生細胞にとっては必須ではない。
As a suitable artificial medium for Legionella, GVPC selective medium is known. The composition of the medium is Legionella CYE agar basal medium (CM0655; Kanto Chemical, Tokyo; including activated carbon, yeast extract, agar), Legionella BCYEα growth supplement (Regionella essential nutrients ACES / potassium hydroxide buffer, ferric pyrophosphate , L-cysteine hydrochloride, α-ketoglutaric acid), Legionella GVPC selective supplement (a group of various antibiotics that kills bacteria other than Legionella, including glycine (ammonia free), vancomycin hydrochloride, polymyxin B sulfate, Cycloheximide).
Since Legionella does not have catalase, it cannot decompose hydrogen peroxide produced by this bacterium, and as a result, it is killed by DNA damage caused by hydroxyl radicals. However, EMA is also adsorbed on activated carbon. Moreover, the various antibiotic groups of Legionella GVPC selection supplement are added to a culture medium in order to suppress the proliferation of miscellaneous bacteria other than Legionella, and are not essential for Legionella viable cells.

したがって、EMAの生細胞への透過を抑制し、死細胞への透過は維持されることを助け
る成分として、酵母エキス及びレジオネラBCYEα発育サプリメントを候補として、レジオネラ菌をEMA処理するけん濁液に添加し、それらの効果を評価した。
Therefore, yeast extract and Legionella BCYEα growth supplement are candidates for adding EMA-treated suspension to suppress EMA penetration into living cells and help maintain the penetration of dead cells. And evaluated their effects.

Legionella pneumophila ATCC33153株をBCYEα培地にて37℃、2日培養したコロニーを
釣菌し、菌体を滅菌した1% Bacto Yeast Extract水溶液(以下、「Y-SW」と記載する)、Y-SWに更にレジオネラBCYEα発育サプリメントを添加した水溶液(以下、「YS-SW」と記
載する)、又は生理食塩水にけん濁させ、9.4±0.12 log cfu/mlの各生細胞けん濁液を調製した。
この9.4 log cfu/ml生細胞けん濁液を上記各種水溶液にて102〜107倍希釈して、各種濃度の生細胞けん濁液を調製した。また、上記9.4 log cfu/ml生細胞けん濁液を10分煮沸した後、各種水溶液にて102倍希釈して、死細胞けん濁液を調製した。各種上記生細胞懸濁
液(102〜107倍希釈液)、及び死細胞けん濁液(102倍希釈液)1 mlを試験検体とした。
Legionella pneumophila ATCC33153 strain was cultivated in BCYEα medium at 37 ° C for 2 days. The colony was picked and sterilized with 1% Bacto Yeast Extract aqueous solution (hereinafter referred to as "Y-SW"), Y-SW Furthermore, it was made to suspend in the aqueous solution (henceforth "YS-SW") which added Legionella BCYE alpha growth supplement, or physiological saline, and each 9.4 +/- 0.12 log cfu / ml live cell suspension was prepared.
This 9.4 log cfu / ml live cell suspension was diluted 10 2 to 10 7 times with the above various aqueous solutions to prepare live cell suspensions of various concentrations. Further, the above 9.4 log cfu / ml live cell suspension was boiled for 10 minutes, and then diluted 10 2 times with various aqueous solutions to prepare dead cell suspensions. A variety of the above-mentioned live cell suspensions (10 2 to 10 7 times diluted solution) and dead cell suspension (10 2 times diluted solution) 1 ml were used as test specimens.

以下に、Y-SW及びYS-SWの調製方法の詳細を示す。
Y-SWに関しては、BactoTM Yeast Extract (BD、Sparks、MD、USA) 1 gをMilliQ水99 mlに溶解後、オートクレーブ処理した。YS-SWは、BactoTM Yeast Extract 1 gをMilliQ水89
mlにて溶解後、オートクレーブ処理し、55℃に冷却後、レジオネラBCYEα発育サプリメ
ント(SR110;関東化学、東京;ACES/水酸化カリウムバッファー1.0 g、ピロリン酸第二
鉄0.025 g、L-システイン塩酸塩0.04 g、及びα-ケトグルタル酸0.1 gを1バイアル(100 ml調製用)に含む)1バイアルを10 mlの加温滅菌水にて溶解させた水溶液を添加することにより調製した。
Details of the method for preparing Y-SW and YS-SW are shown below.
For Y-SW, 1 g of Bacto Yeast Extract (BD, Sparks, MD, USA) was dissolved in 99 ml of MilliQ water and then autoclaved. YS-SW is a Bacto TM Yeast Extract 1 g MilliQ water 89
After dissolving in ml, autoclaved, cooled to 55 ° C, Legionella BCYEα growth supplement (SR110; Kanto Chemical, Tokyo; ACES / potassium hydroxide buffer 1.0 g, ferric pyrophosphate 0.025 g, L-cysteine hydrochloride 0.04 g and 0.1 g of α-ketoglutaric acid in 1 vial (for preparation of 100 ml) were prepared by adding an aqueous solution in which 1 vial was dissolved in 10 ml of warm sterilized water.

次に、EMAの濃度を前記実施例より上げ、EMA 25〜35 μg/mlの終濃度にて計3回の多段
階EMA処理(1回目EMA処理 遮光下氷上35 μg/ml 16分、2回目EMA処理30 μg/ml 16分、3回目EMA処理 25 μg/ml 16分)を行った。各EMA処理後の可視光照射は10分とした。ま
た、それぞれの検体に対し未処理群も用意した。
Next, the concentration of EMA is increased from the above example, and a total of three multi-stage EMA treatments at a final concentration of EMA 25-35 μg / ml (first EMA treatment, 35 μg / ml on dark ice for 16 minutes, second time EMA treatment 30 μg / ml 16 minutes, 3rd EMA treatment 25 μg / ml 16 minutes). Visible light irradiation after each EMA treatment was 10 minutes. An untreated group was also prepared for each specimen.

多段階EMA処理群と未処理群を冷却遠心処理(4℃、10分、13,000× G)し、上清を完全除去し、ペレットに対して30 μlの滅菌水を加えて懸濁させ、定量的にその懸濁液をPCR
チューブに移した。そのPCRチューブを96℃、3分処理後4℃に急冷し、ダイレクトLAMP用
のマスターミックス中の酵素等の各コンポーネントが細菌細胞を効果的に透過するようにした。
その後、冷却遠心処理(4℃、10分、3,000× G)して上清をほぼ除去し、ペレット(2.5 μl相当)に対して表10のダイレクトLAMP用のマスターミックス14 μlを加え、65℃
、100分;80℃、2分;4 ℃、2分)のLAMP増幅を行った。
Cool and centrifuge the multi-stage EMA treatment group and the untreated group (4 ° C, 10 minutes, 13,000 x G), completely remove the supernatant, add 30 μl of sterile water to the pellet, suspend and quantitate The suspension
Transfer to tube. The PCR tube was treated at 96 ° C. for 3 minutes and then rapidly cooled to 4 ° C. so that components such as enzymes in the master mix for direct LAMP could permeate bacterial cells effectively.
Thereafter, the supernatant was almost removed by cooling and centrifugation (4 ° C., 10 minutes, 3,000 × G), and 14 μl of the master mix for direct LAMP shown in Table 10 was added to the pellet (equivalent to 2.5 μl).
, 100 minutes; 80 ° C., 2 minutes; 4 ° C., 2 minutes).

6−2)結果及び考察
結果を表24に示す。
6-2) Results and discussion Table 24 shows the results.

Figure 2015139434
Figure 2015139434

表24中、記号は以下のとおりである。
a) Bacto Yeast Extract (1%)
b) Bacto Yeast Extract (1%) + SR110
c)Y-SWやYS-SWの替わりにレジオネラ生細胞もしくは死細胞を生理食塩水にけん濁させた
試験サンプル
d) L. pneumophila ATCC33153 (9.4±0.12 log cells/ml)の102倍希釈の死細胞けん濁液
及び生細胞けん濁液(けん濁液は、Y-SW、YS-SW、又は生理食塩水)
e) LAMP増幅は2回実施し、Ct値をMean±SDにて表示した
f) 2回の結果がLAMP未増幅(陰性)を示す。
In Table 24, the symbols are as follows.
a) Bacto Yeast Extract (1%)
b) Bacto Yeast Extract (1%) + SR110
c) Test sample in which Legionella live or dead cells are suspended in physiological saline instead of Y-SW or YS-SW
d) L. pneumophila ATCC33153 (9.4 ± 0.12 log cells / ml) in 10 double dead cells-suspension liquid dilution and live cells Ken Nigoeki (Ken Nigoeki is, Y-SW, YS-SW , or saline )
e) LAMP amplification was performed twice and the Ct value was displayed in Mean ± SD
f) Two results indicate LAMP unamplified (negative).

表24によれば、対象群に相当する生理食塩水にけん濁させたレジオネラ生細胞は、細胞濃度2.4 log cfu/ml(107希釈)、及び、3.4 log cfu/ml(106希釈)では、陰性と判定される結果となったが、7.4 log cfu/ml(102倍希釈)では、EMA処理後でも陽性と判定された。したがって、細胞濃度が高ければ、生理食塩水懸濁液でEMA処理した場合でも、生
細胞・死細胞の識別が可能であることが示された。
According to Table 24, the live Legionella cells suspended in the physiological saline corresponding to the subject group had cell concentrations of 2.4 log cfu / ml (10 7 dilution) and 3.4 log cfu / ml (10 6 dilution). The result was determined to be negative, but it was determined to be positive even after EMA treatment at 7.4 log cfu / ml (10 2 fold dilution). Therefore, it was shown that if the cell concentration is high, it is possible to distinguish between live and dead cells even when EMA treatment is performed with a physiological saline suspension.

また、YS-SWにけん濁させたレジオネラ生細胞及び死細胞に関しては、7.4 log cfu/ml
でEMA処理された死細胞のCt値が未処理のCtと比較して12(サイクル、又は分)程度しか
遅れず、多段階EMA処理を行ったにも拘わらず、死細胞の遺伝子増幅が確認されたため、EMA処理する際のけん濁液として不適と考えられた。
For Legionella live and dead cells suspended in YS-SW, 7.4 log cfu / ml
Ct value of dead cells treated with EMA was delayed by about 12 (cycles or minutes) compared to untreated Ct, and gene amplification of dead cells was confirmed despite multi-step EMA treatment Therefore, it was considered unsuitable as a suspension for EMA treatment.

一方、Y-SWの場合、7.4 log cfu/mlでEMA処理された死細胞は陰性と判定され、未処理
群のCt値は9.9であり、LAMP法による良好な遺伝子増幅が確認された。更に、同細胞生細
胞2.4〜7.4 log cfu/mlの濃度領域において未処理群と比較すると、Ct値が大きいものの36.4分以内の遺伝子増幅時間によりターゲット遺伝子増幅が確認され陽性と判定された。
総合的に評価すると、1% BactoTM Yeast Extract水溶液にレジオネラ菌をけん濁させた上で、多段階EMA処理することで、生細胞と死細胞のより明瞭な判定を可能とすることが
分かった。
On the other hand, in the case of Y-SW, dead cells treated with EMA at 7.4 log cfu / ml were determined to be negative, the Ct value of the untreated group was 9.9, and good gene amplification by the LAMP method was confirmed. Furthermore, when compared with the untreated group in the same cell viable cell concentration range of 2.4 to 7.4 log cfu / ml, the target gene amplification was confirmed by the gene amplification time within 36.4 minutes although the Ct value was large.
Comprehensive evaluation showed that the suspension of Legionella in 1% Bacto TM Yeast Extract aqueous solution and multistage EMA treatment enables clearer determination of live and dead cells. .

尚、Y-SWとYS-SWの死細胞の各結果を比較することにより、SR110というACES/水酸化カ
リウムバッファー、ピロリン酸第二鉄、L-システイン塩酸塩、α-ケトグルタル酸という
本来レジオネラ生細胞の発育にとって必須の成分が、EMAのレジオネラ死細胞への透過を
阻害するか、又はそれらの成分がプラスチャージを帯びているEMAと結合しEMAを不活性化させた可能性が示唆される。
By comparing the results of Y-SW and YS-SW dead cells, SR110 ACES / potassium hydroxide buffer, ferric pyrophosphate, L-cysteine hydrochloride, α-ketoglutaric acid originally produced Legionella It is suggested that components essential for cell growth may inhibit the penetration of EMA into Legionella dead cells or bind these components to positively charged EMA and inactivate EMA .

〔実施例7〕多段階EMA処理−ダイレクトLAMP法と、多段階EMA処理−アルカリDNA抽出LAMP法によるレジオネラ生細胞・死細胞の識別における酵母エキスの効果
前述の実施例6の表24のとおり、レジオネラ菌のEMA処理を、酵母エキスを含む細胞
懸濁液で行うことで、死細胞濃度が高くても、生細胞・死細胞の明瞭な識別が可能であることが示された。本実施例では、更に酵母エキスのアルカリDNA抽出−LAMP法における効
果を検証した。
[Example 7] Effect of yeast extract in distinguishing live and dead Legionella cells by multi-stage EMA treatment-direct LAMP method and multi-stage EMA treatment-alkali DNA extraction LAMP method As shown in Table 24 of Example 6 above, It was shown that by performing EMA treatment of Legionella with a cell suspension containing yeast extract, it is possible to clearly distinguish between live and dead cells even at high dead cell concentrations. In this example, the effect of the yeast extract in the alkaline DNA extraction-LAMP method was further verified.

7−1)試験方法
Legionella pneumophila ATCC33153株をBCYEα培地にて37℃、2日培養したコロニーを
釣菌し、滅菌した1% Bacto Yeast Extract水溶液(Y-SW)にけん濁させ、8.9 log cfu/mlの生細胞けん濁液を調製した。その後、Y-SWにて102倍希釈けん濁液を調製し、10分煮沸して死細胞けん濁液を調製した。また、前記8.9 log cfu/mlの生細胞けん濁液の102〜108倍希釈けん濁液をY-SWにより調製した。
上記の各生細胞及び死細胞けん濁液1 mlを試験検体とし、EMA 25〜35 μg/mlの終濃度
にて計3回の多段階EMA処理(1回目EMA処理 遮光下氷上35 μg/ml 15分、2回目EMA処理30 μg/ml 15分、3回目EMA処理 25 μg/ml 10分)を行った。各EMA処理後の可視光照射は10分とした。また、それぞれの検体に対し未処理群も用意した。
7-1) Test method
Legionella pneumophila ATCC33153 strain was cultured in BCYEα medium at 37 ° C for 2 days, colonies were picked, suspended in sterile 1% Bacto Yeast Extract aqueous solution (Y-SW), and 8.9 log cfu / ml live cell suspension A liquid was prepared. Thereafter, a suspension diluted 10 2 times with Y-SW was prepared and boiled for 10 minutes to prepare a dead cell suspension. In addition, a 10 2 to 10 8 times diluted suspension of the 8.9 log cfu / ml live cell suspension was prepared by Y-SW.
Using 1 ml of each of the above live and dead cell suspensions as a test sample, a total of 3 multi-stage EMA treatments (final concentration of EMA 25-35 μg / ml) (first EMA treatment 35 μg / ml on ice protected from light) 15 minutes, second EMA treatment 30 μg / ml 15 minutes, third EMA treatment 25 μg / ml 10 minutes). Visible light irradiation after each EMA treatment was 10 minutes. An untreated group was also prepared for each specimen.

多段階EMA処理群と未処理群を冷却遠心処理(4℃、10分、13,000× G)し、上清を完全除去し、ペレットに対して30 μlの滅菌水を加えて懸濁させ、定量的にその懸濁液をPCR
チューブに移した。そのPCRチューブを96℃、3分の加温を行い、ダイレクトLAMP用のマスターミックス中の酵素等の各コンポーネントが細菌細胞を効果的に透過するようにした。
その後、冷却遠心処理(4℃、10分、3,000× G)して上清をほぼ除去し、ペレット(2.5 μl相当)に対して表10のダイレクトLAMP用のマスターミックス14 μlを加え、65℃
、100分;80℃、2分;4 ℃、2分)のLAMP増幅を行った。
Cool and centrifuge the multi-stage EMA treatment group and the untreated group (4 ° C, 10 minutes, 13,000 x G), completely remove the supernatant, add 30 μl of sterile water to the pellet, suspend and quantitate The suspension
Transfer to tube. The PCR tube was heated at 96 ° C. for 3 minutes so that each component such as an enzyme in the direct LAMP master mix effectively permeated the bacterial cells.
Thereafter, the supernatant was almost removed by cooling and centrifugation (4 ° C., 10 minutes, 3,000 × G), and 14 μl of the master mix for direct LAMP shown in Table 10 was added to the pellet (equivalent to 2.5 μl).
, 100 minutes; 80 ° C., 2 minutes; 4 ° C., 2 minutes).

一方、多段階EMA処理−アルカリDNA抽出−LAMP法は、以下のようにして行った。
多段階EMA処理後の各検体を冷却遠心(4℃、10分、13,000× G)により20 μlに濃縮し、その後25 μl Extraction Solution for Legionella (EX Leg)、及び4 μlの1M Tris-HCl (pH7.0)を加え、遠心上清の2.5 μlをLAMP法マスターミックス(表5参照)に添加し
た。すなわち、アルカリDNA抽出はレジオネラ検出試薬キットEに添付されたマニュアルに従った。
On the other hand, the multistage EMA treatment-alkali DNA extraction-LAMP method was performed as follows.
Each sample after multi-stage EMA treatment was concentrated to 20 μl by cooling centrifugation (4 ° C., 10 minutes, 13,000 × G), then 25 μl Extraction Solution for Legionella (EX Leg), and 4 μl of 1M Tris-HCl ( pH 7.0) was added, and 2.5 μl of the centrifugal supernatant was added to the LAMP method master mix (see Table 5). That is, alkaline DNA extraction followed the manual attached to Legionella detection reagent kit E.

更に、対照群として、生理食塩水に上記と同様に生細胞と死細胞をけん濁させ、多段階EMA処理−ダイレクトLAMP法、及び多段階EMA処理−アルカリDNA抽出−LAMP法を実施した
Further, as a control group, living cells and dead cells were suspended in physiological saline in the same manner as described above, and multistage EMA treatment-direct LAMP method and multistage EMA treatment-alkaline DNA extraction-LAMP method were performed.

7−2)結果及び考察
表25及び表26に試験結果を示す。
7-2) Results and Discussion Tables 25 and 26 show the test results.

Figure 2015139434
Figure 2015139434

Figure 2015139434
Figure 2015139434

表25及び表26における記号は以下のとおりである。
a) L. pneumophila ATCC33153のY-SW、又は生理食塩水けん濁液(8.9 ±0.31 log cells/ml)
b) L. pneumophila ATCC33153の±死細胞懸濁液(6.9 ±0.31 log cells/ml)、又は、8.9 log cells/mlの生細胞けん濁液をY-SW、もしくは、生理食塩水により102倍希釈し生細
胞けん濁液。
c) LAMP増幅は2回実施し、Ct値(サイクル数、又はmin)をMean±SD (n = 2)として記載する。
d) 2回の結果がLAMP未増幅(陰性)を示す。
The symbols in Table 25 and Table 26 are as follows.
a) Y.SW of L. pneumophila ATCC33153 or saline suspension (8.9 ± 0.31 log cells / ml)
b) ± dead cell suspension of L. pneumophila ATCC33153 (6.9 ± 0.31 log cells / ml) or 8.9 log cells / ml of live cell suspension 10 2 times with Y-SW or physiological saline Dilute live cell suspension.
c) Perform LAMP amplification twice and describe the Ct value (number of cycles or min) as Mean ± SD (n = 2).
d) Two results indicate LAMP unamplified (negative).

表25のとおり、レジオネラ生細胞及び死細胞をけん濁させる水溶液として酵母エキス水溶液を用いると、表26による生理食塩水を用いた場合に比べて、より低い細胞濃度でも生細胞と死細胞の識別が可能であることが示された。   As shown in Table 25, when an aqueous yeast extract solution is used as an aqueous solution for suspending Legionella live cells and dead cells, discrimination between live cells and dead cells can be achieved even at a lower cell concentration than when using physiological saline according to Table 26. Was shown to be possible.

また、多段階EMA処理−ダイレクトLAMP法を採用した検査手法が、高濃度のレジオネラ
死細胞(6.9 log cells/ml)で陰性であり、1.9 log cfu/mlの低濃度レジオネラ生細胞が検出可能であったので、検査法としてよりふさわしい方法と考えられる。
In addition, the test method using the multi-step EMA treatment-direct LAMP method is negative for high-concentration Legionella dead cells (6.9 log cells / ml), and low-concentration Legionella live cells of 1.9 log cfu / ml can be detected. Therefore, it is considered to be a more appropriate method for inspection.

〔実施例8〕多段階EMA処理−ダイレクトLAMP法によるレジオネラ生細胞の一斉検出
本実施例では、ダイレクトLAMP法による様々なレジオネラ菌の生細胞の検出限界を検討tした。
[Example 8] Simultaneous detection of live Legionella cells by multi-stage EMA treatment-direct LAMP method In this example, the detection limit of live cells of various Legionella bacteria by the direct LAMP method was examined.

8−1)試験方法
Legionella pneumophila ATCC33153、ATCC33154、ATCC33215、JLP1008、及びJLP1024株をBCYEα培地にて37℃、2日培養したコロニーを釣菌し、滅菌した1% Bacto Yeast Extract水溶液(Y-SW)にけん濁し、8.2〜9.0 log cfu/mlの生細胞けん濁液を調製した。JLP菌株は、九州大学大学院医学研究院細菌学分野(〒812-8582 福岡県福岡市東区馬出3-1-1)から入手することができる。
8-1) Test method
Legionella pneumophila ATCC33153, ATCC33154, ATCC33215, JLP1008, and JLP1024 strains were cultured in BCYEα medium at 37 ° C. for 2 days. A 9.0 log cfu / ml live cell suspension was prepared. The JLP strain can be obtained from the Department of Bacteriology, Kyushu University Graduate School of Medicine (3-1-1 Ude, Higashi-ku, Fukuoka, 812-8582, Japan).

その後、Y-SWにて102倍希釈けん濁液を調製し、10分煮沸して死細胞けん濁液を調製し
た。また、前記8.2〜9.0 log cfu/mlの生細胞けん濁液の106〜108倍希釈けん濁液をY-SW
により調製した。
上記の各生細胞及び死細胞けん濁液1 mlを試験検体とし、EMA 27.5〜30 μg/mlの終濃
度にて計3回の多段階EMA処理(1回目EMA処理 遮光下氷上30 μg/ml 16.5分、2回目EMA
処理27.5 μg/ml 15分、3回目EMA処理 27.5 μg/ml 15分)を行った。各EMA処理後の可
視光照射は10分とした。
Thereafter, a suspension diluted 10 2 times with Y-SW was prepared and boiled for 10 minutes to prepare a dead cell suspension. In addition, the suspension obtained by diluting 10 6 to 10 8 times the 8.2 to 9.0 log cfu / ml live cell suspension
It was prepared by.
Using 1 ml of each of the above live and dead cell suspensions as a test sample, a total of 3 multi-stage EMA treatments (final EMA 27.5-30 μg / ml) (first EMA treatment 30 μg / ml on light protected from light) 16.5 minutes, second EMA
Treatment 27.5 μg / ml for 15 minutes, 3rd EMA treatment 27.5 μg / ml for 15 minutes). Visible light irradiation after each EMA treatment was 10 minutes.

多段階EMA処理後に冷却遠心処理(4℃、10分、13,000× G)し、上清を完全除去し、ペレットに対して30 μlの滅菌水を加えて懸濁させ、定量的にその懸濁液をPCRチューブに
移した。そのPCRチューブを96℃、3分の加温を行い、ダイレクトLAMP用のマスターミックス中の酵素等の各コンポーネントが細菌細胞を効果的に透過するようにした。
その後、冷却遠心処理(4℃、10分、3,000× G)して上清をほぼ除去し、ペレット(2.5 μl相当)に対して表10のダイレクトLAMP用のマスターミックス14 μlを加え、65℃
、75分; 80℃、2分; 4 ℃、2分)のLAMP増幅を行った。
After multi-stage EMA treatment, cool and centrifuge (4 ° C, 10 minutes, 13,000 x G), completely remove the supernatant, add 30 μl of sterile water to the pellet, suspend, and quantitatively suspend the suspension. The solution was transferred to a PCR tube. The PCR tube was heated at 96 ° C. for 3 minutes so that each component such as an enzyme in the direct LAMP master mix effectively permeated the bacterial cells.
Thereafter, the supernatant was almost removed by cooling and centrifugation (4 ° C., 10 minutes, 3,000 × G), and 14 μl of the master mix for direct LAMP shown in Table 10 was added to the pellet (equivalent to 2.5 μl).
75 minutes; 80 ° C., 2 minutes; 4 ° C., 2 minutes).

8−2)結果及び考察
表27に試験結果を示す。
8-2) Results and discussion Table 27 shows the test results.

Figure 2015139434
Figure 2015139434

表27中の記号は以下のとおりである。
a) 試験開始時のL. pneumophila ATCC33153 株懸濁液濃度。
b) 死菌懸濁液:L. pneumophila 懸濁液(8.8 ± 0.29 log cells/ml)を102倍希釈し(6.8 ± 0.29 log cells/ml)、その後10分煮沸して調製した。生菌懸濁液:L. pneumophila 懸濁液(8.8 ± 0.29 log cells/ml)の106倍希釈(2.8 ± 0.29 log cells/ml)し
て調製した。
c) 未増幅(未検出)回数が5又は2であることを示す。
d) 測定条件(65℃,75分、80℃,2分、及び4℃,2分)を2又は5回測定したときの、境界値を初めに超える反応時間:Ct値(分):mean ± SD(n = 5 or 2)を示す。
e) 4回は未増幅(未検出)、1回はCt値 66.2 をそれぞれ示す。
f) 2回測定のそれぞれのCt実測値を示す。
g) 検出限界(Detection limit)
h) 2回の各測定値(67.2 、未増幅)
i) 2回の各測定値(32.3 、未増幅)
The symbols in Table 27 are as follows.
a) Concentration of L. pneumophila ATCC33153 suspension at the start of the study.
b) Dead cell suspension: L. pneumophila suspension (8.8 ± 0.29 log cells / ml) was diluted 10 2 times (6.8 ± 0.29 log cells / ml) and then boiled for 10 minutes. Live cell suspension:. L pneumophila suspension 10 6 fold dilution of (8.8 ± 0.29 log cells / ml ) (2.8 ± 0.29 log cells / ml) were prepared.
c) Indicates that the number of unamplified (undetected) is 5 or 2.
d) When measuring conditions (65 ° C, 75 minutes, 80 ° C, 2 minutes, and 4 ° C, 2 minutes) 2 or 5 times, reaction time exceeding the boundary value at the beginning: Ct value (minutes): mean ± SD (n = 5 or 2) is shown.
e) 4 times indicate unamplified (not detected), 1 time indicate Ct value 66.2.
f) Shows the measured Ct values for each of the two measurements.
g) Detection limit
h) 2 measurements each (67.2, unamplified)
i) Two measurements (32.3, unamplified)

表27によれば、多段階EMA−ダイレクトLAMP法において、レジオネラ死細胞は、6.2〜7.0 log cells/mlの濃度においてLAMP増幅が認められなかったために陰性と判定された。また、レジオネラ生細胞は、0.2〜2.8 log cfu/mlの濃度にてLAMP増幅が確認され、いず
れも陽性と判定された。
According to Table 27, in the multi-stage EMA-direct LAMP method, Legionella dead cells were determined to be negative because LAMP amplification was not observed at a concentration of 6.2 to 7.0 log cells / ml. Moreover, LAMP amplification was confirmed by the density | concentration of 0.2-2.8 log cfu / ml, and all the live Legionella cells were determined to be positive.

PCRによるレジオネラ検査などにより、温泉水中のレジオネラ死細胞濃度は6〜7 log cells/100 mlといわれているが、前記の結果から、本発明によりレジオネラ死細胞由来のLAMP増幅が6 log cells/mlで抑制されているので、本発明による多段階EMA−ダイレクトLAMP法は温泉中のレジオネラ死細胞のLAMP増幅を完全に抑制できると推測される。   It is said that the Legionella dead cell concentration in the hot spring water is 6-7 log cells / 100 ml by the Legionella test by PCR, etc. From the above results, the LAMP amplification derived from Legionella dead cells according to the present invention is 6 log cells / ml. Therefore, it is speculated that the multistage EMA-direct LAMP method according to the present invention can completely suppress LAMP amplification of Legionella dead cells in hot springs.

また、JLP1008株では0.2 log cfu/ml以上の濃度にて検出可能であり、ATCC33153株では2.8 log cfu/ml以上の濃度にて検出可能であり、それ以外の残り3株においても2.0 log cfu/ml以上の濃度にて検出可能であるので、いずれのレジオネラ生細胞についても本発明
により検出可能であることが確認された。
このように、本発明の多段階EMA処理−LAMP法を実施すれば、検体の前培養を必要とせ
ず、直接検体から温泉水中のレジオネラ生細胞のみを特異的に検出することが可能である。
なお、ATCC33153株では、生細胞の世代時間が1 hであることを考慮すれば、レジオネラ好適培地にて検水中のレジオネラ生細胞を3時間程度培養し、その後多段階EMA処理−LAMP法を行えば、当該ATCC33153株についても、レジオネラ生細胞のみを特異的に検出可能で
ある。
In addition, the JLP1008 strain can be detected at a concentration of 0.2 log cfu / ml or more, the ATCC33153 strain can be detected at a concentration of 2.8 log cfu / ml or more, and the remaining 3 strains can also be detected at 2.0 log cfu / ml. Since detection was possible at a concentration of ml or more, it was confirmed that any Legionella viable cell could be detected by the present invention.
As described above, when the multi-stage EMA treatment-LAMP method of the present invention is carried out, it is possible to specifically detect only living Legionella cells in hot spring water directly from the specimen without requiring pre-culture of the specimen.
In the case of ATCC33153, considering that the generation time of living cells is 1 h, the Legionella viable cells in the test water are cultured for about 3 hours in Legionella's preferred medium, and then the multistage EMA treatment-LAMP method is performed. For example, only the live Legionella cells can be specifically detected for the ATCC33153 strain.

〔参考例1〕Di-μ-chlorobis[(η-cycloocta-1,5-diene)iridium(I)]による大腸菌(Esherichia coliの生細胞・死細胞の識別
イリジウム錯体を用いたE. coliの生細胞及び死細胞の識別を行った。イリジウム錯体
としては、イリジウム錯体二量体(1錯体に2個のイリジウム元素を有するダイマー)であるDi-μ-chlorobis[(η-cycloocta-1,5-diene)iridium(I)]を用いた。
[Reference Example 1] Identification of live and dead cells of Esherichia coli by Di-μ-chlorobis [(η-cycloocta-1,5-diene) iridium (I)] Live of E. coli using iridium complexes As an iridium complex, Di-μ-chlorobis [(η-cycloocta-1,5-) is an iridium complex dimer (a dimer having two iridium elements in one complex). diene) iridium (I)] was used.

1.試験材料及び方法
1−1)細胞けん濁液の調製
滅菌水を用いてE. coli JCM1649株の生細胞けん濁液(1.2 × 107 CFU/ml)を調製した。この生細胞けん濁液の一部を沸騰水中に3分浸漬し、損傷細胞/死細胞けん濁液(1.2×107 cells/ml。以下、損傷細胞と死細胞を包括して死細胞と表記する)を調製した。これらの生細胞けん濁液、又は死細胞けん濁液のそれぞれ90 μlを下記試験に供した。
1. Test Materials and Methods 1-1) Preparation of cell suspension A sterile cell suspension (1.2 × 10 7 CFU / ml) of E. coli JCM1649 was prepared. A portion of this live cell suspension is immersed in boiling water for 3 minutes to give a damaged / dead cell suspension (1.2 × 10 7 cells / ml. Hereinafter, the damaged and dead cells are collectively referred to as dead cells). Prepared). 90 μl of each of these live cell suspensions and dead cell suspensions was subjected to the following test.

1−2)イリジウム錯体溶液の調製
Di-μ-chlorobis[(η-cycloocta-1,5-diene)iridium(I)](Wako)3.92 mg(5.84 μmols)を精確に秤量し、116.7 μlのジメチルスルフォキシド(DMSO、D8418-50ML, Sigma)
に溶解して50 mM溶液を調製した。この溶液を生理食塩水で希釈して100μM、250μM、1000μMのイリジウム錯体溶液を準備した。
1-2) Preparation of iridium complex solution
Di-μ-chlorobis [(η-cycloocta-1,5-diene) iridium (I)] (Wako) 3.92 mg (5.84 μmols) was accurately weighed and 116.7 μl of dimethyl sulfoxide (DMSO, D8418-50ML , Sigma)
To prepare a 50 mM solution. This solution was diluted with physiological saline to prepare 100 μM, 250 μM and 1000 μM iridium complex solutions.

1−3)イリジウム錯体による被検試料の処理
前記の各イリジウム錯体溶液10μlを、上記生細胞けん濁液90μl又は死細胞けん濁液90μlに添加し、恒温水槽にて37℃で30分間保持した。その後、冷却遠心処理(4℃、15,000×G、5分)し、上清を除去した。沈殿物(ペレット)を1mlの滅菌水にて洗浄した。洗浄
後のペレット(細胞けん濁液5μlに相当)をPCR増幅用試料とした。
1-3) Treatment of test sample with iridium complex 10 μl of each of the above iridium complex solutions was added to 90 μl of the live cell suspension or 90 μl of the dead cell suspension and kept at 37 ° C. for 30 minutes in a constant temperature water bath. . Thereafter, the mixture was cooled and centrifuged (4 ° C., 15,000 × G, 5 minutes), and the supernatant was removed. The precipitate (pellet) was washed with 1 ml of sterilized water. The washed pellet (corresponding to 5 μl of cell suspension) was used as a PCR amplification sample.

1−4)PCR増幅
次に、前述の表3に示されるcDBC(10×DBC)を使用して、細胞からの核酸の抽出を行
わずにリアルタイムPCR(細胞からの核酸の抽出せずに行うリアルタイムPCRを、以降「ダイレクト・リアルタイムPCR」と記載する。)を行うためのマスターミックス(ダイレクト・リアルタイムPCR用マスターミックス)を調製した。
具体的には、前記Taq DNA Polymerase with Standard Taq BufferをqPCRバッファーと
して用い、これにTaqを通常使用の4倍量を加え、同バッファーにcDBC(10 × DBC、表3を参照)を所定量添加したダイレクト・リアルタイムPCR(DqPCR)マスターミックス
を調製した。
先に調製したPCR増幅用試料にダイレクト・リアルタイムPCR用マスターミックスを添加して、リアルタイムPCR増幅(40 cycles)を2回実施した。尚、以下、New England Biolabs製品はNEBと記載する。
1-4) PCR amplification Next, using cDBC (10 × DBC) shown in Table 3 above, real-time PCR (without extraction of nucleic acids from cells) is performed without extraction of nucleic acids from cells. A master mix for performing real-time PCR (hereinafter referred to as “direct real-time PCR”) (master mix for direct real-time PCR) was prepared.
Specifically, using the Taq DNA Polymerase with Standard Taq Buffer as a qPCR buffer, add 4 times the amount of Taq normally used to this, and add a predetermined amount of cDBC (10 × DBC, see Table 3) to the same buffer. A direct real-time PCR (DqPCR) master mix was prepared.
The master mix for direct real-time PCR was added to the previously prepared PCR amplification sample, and real-time PCR amplification (40 cycles) was performed twice. Hereinafter, the New England Biolabs product is referred to as NEB.

プライマーには、前述の実施例5に記載の配列番号26〜28のプライマーを用いた。   As the primer, the primer of SEQ ID NO: 26 to 28 described in Example 5 was used.

Figure 2015139434
Figure 2015139434

リアルタイムPCR装置(StepOnePlus Real-Time PCR System; Applied Biosystems)を用いて、下記のPCRサーマルサイクル条件により、リアルタイムPCRを2回実施した。
1) 95℃, 20秒(1サイクル)
2) 95℃, 5秒; 60℃, 1分(40サイクル)
尚、陰性コントロールとして、滅菌水5μlを鋳型として使用した。
Real-time PCR was performed twice using the real-time PCR apparatus (StepOnePlus Real-Time PCR System; Applied Biosystems) under the following PCR thermal cycle conditions.
1) 95 ℃, 20 seconds (1 cycle)
2) 95 ℃, 5 seconds; 60 ℃, 1 minute (40 cycles)
As a negative control, 5 μl of sterilized water was used as a template.

2.結果及び考察
リアルタイムPCRの結果を表29に示す。なお、「No Agent」はイリジウム錯体が未添
加を表す。
2. Results and Discussion Table 29 shows the results of real-time PCR. “No Agent” indicates that no iridium complex is added.

Figure 2015139434
Figure 2015139434

表29によれば、Di-μ-chlorobis[(η-cycloocta-1,5-diene)iridium(I)]をE. coliの生細胞及び死細胞に作用させたとき、死細胞のCt値は薬剤濃度依存的に大きくなり、当該イリジウム錯体100 μMの濃度にて死細胞由来のPCR増幅が完全に抑制された。
一方、生細胞に関しては、濃度が高くなるにつれ若干薬剤の透過現象が観察されるが、前記死細胞由来のPCRを完全に抑制した薬剤濃度では、未処理生細胞のCt値と比較して3.6程度の上昇(増幅の遅れ)に留まり、当該イリジウム錯体100 μMにて明瞭な生細胞と死
細胞の識別が可能であった。
According to Table 29, when Di-μ-chlorobis [(η-cycloocta-1,5-diene) iridium (I)] was allowed to act on E. coli live cells and dead cells, the Ct value of dead cells was PCR amplification derived from dead cells was completely suppressed at a concentration of 100 μM of the iridium complex.
On the other hand, with respect to living cells, a slight drug permeation phenomenon is observed as the concentration increases. However, the drug concentration at which the PCR from dead cells is completely suppressed is 3.6% compared with the Ct value of untreated living cells. Only an increase (delay in amplification) was observed, and it was possible to clearly distinguish between live cells and dead cells with the 100 μM iridium complex.

Claims (31)

被検試料中の微生物の生細胞を、死細胞又は損傷細胞と識別して検出する方法であって、以下の工程:
a)前記被検試料に、微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤を添加する工程、
b)微生物の細胞の透過性を高める処理を行う工程、
c)被検試料中の微生物の核酸のターゲット領域を、細胞からの核酸の抽出を行わずに、鎖置換型核酸伸長酵素を用いた等温核酸増幅法により増幅する工程、及び
d)増幅産物を解析する工程、
を含み、前記微生物の細胞の透過性を高める処理は、それによって細胞からの核酸の抽出を行わずに、生細胞に選択的な核酸増幅を可能にする処理である、方法。
A method for detecting living cells of microorganisms in a test sample by distinguishing them from dead cells or damaged cells, comprising the following steps:
a) a step of adding, to the test sample, an agent that selectively inhibits the dead cells from amplifying microorganism nucleic acids by a nucleic acid amplification method;
b) performing a treatment for increasing the permeability of cells of microorganisms;
c) a step of amplifying a target region of a nucleic acid of a microorganism in a test sample by an isothermal nucleic acid amplification method using a strand displacement type nucleic acid elongation enzyme without extracting the nucleic acid from the cell, and d) an amplification product Process to analyze,
Wherein the treatment of increasing the permeability of the cells of the microorganism is a treatment thereby enabling nucleic acid amplification selective to living cells without extraction of nucleic acids from the cells.
前記薬剤が、350nm〜700nmの波長の光照射により核酸に共有結合する薬剤、及び白金族元素の錯体から選ばれ、薬剤が350nm〜700nmの波長の光照射により核酸に共有結合する薬剤である場合には、同薬剤が添加された被検試料に350nm〜700nmの波長の光照射処理を行う工程を含む、請求項1に記載の方法。   When the drug is selected from a drug that is covalently bonded to a nucleic acid by light irradiation with a wavelength of 350 nm to 700 nm and a platinum group element complex, and the drug is a drug that is covalently bonded to a nucleic acid by light irradiation with a wavelength of 350 nm to 700 nm. The method according to claim 1, further comprising a step of performing a light irradiation treatment with a wavelength of 350 nm to 700 nm on the test sample to which the drug is added. 前記薬剤が、350nm〜700nmの波長の光照射により核酸に共有結合する薬剤であり、エチジウムモノアザイド、エチジウムジアザイド、プロピジウムモノアザイド、プソラーレン、4,5',8−トリメチルプソラーレン、及び8−メトキシプソラーレンか
ら選択される請求項2に記載の方法。
The drug is a drug that is covalently bonded to a nucleic acid by irradiation with light having a wavelength of 350 nm to 700 nm, ethidium monoazide, ethidium diazide, propidium monoazide, psoralen, 4,5 ′, 8-trimethylpsoralen, and 3. A process according to claim 2 selected from 8-methoxypsoralen.
前記薬剤が白金族元素の錯体であり、白金錯体、パラジウム錯体、及びイリジウム錯体から選ばれる、請求項2に記載の方法。   The method according to claim 2, wherein the agent is a complex of a platinum group element and is selected from a platinum complex, a palladium complex, and an iridium complex. 前記白金族元素の錯体が白金錯体であり、NH3、RNH2、ハロゲン元素、カルボキシレー
ト基、ピリジン基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2 -、R2S、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、及
びR-(ただし、「R」はいずれも飽和又は不飽和有機基を表す)からなる群から選ばれる
配位子を含む、請求項4に記載の方法。
The platinum group element complex is a platinum complex, NH 3 , RNH 2 , halogen element, carboxylate group, pyridine group, H 2 O, CO 3 2− , OH , NO 3 , ROH, N 2 H 4 , PO 4 3-, R 2 O , RO -, ROPO 3 2-, (RO) 2 PO 2 -, R 2 S, R 3 P, RS -, CN -, RSH, RNC, (RS) 2 PO 2 -, (RO) 2 P ( O) S -, SCN -, CO, H -, and R - (where "R" is either represents a saturated or unsaturated organic group) configuration selected from the group consisting of The method of claim 4, comprising a child.
前記白金族元素の錯体がパラジウム錯体であり、NH3、RNH2、ハロゲン元素、カルボキ
シレート基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2 -、R2S、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、R-(ただ
し、「R」はいずれも飽和又は不飽和有機基を表す)、NO2 -、Ar-NH2、Ar-CN(Arは不飽和有機基)、N2、SO3 2-、イミダゾール環、不飽和環状有機基、及びN3 -から選ばれる配位子を含む、請求項4に記載の方法。
The platinum group element complex is a palladium complex, NH 3 , RNH 2 , halogen element, carboxylate group, H 2 O, CO 3 2− , OH , NO 3 , ROH, N 2 H 4 , PO 4 3-, R 2 O, RO - , ROPO 3 2-, (RO) 2 PO 2 -, R 2 S, R 3 P, RS -, CN -, RSH, RNC, (RS) 2 PO 2 -, ( RO) 2 P (O) S , SCN , CO, H , R (where “R” represents a saturated or unsaturated organic group), NO 2 , Ar—NH 2 , Ar— The method according to claim 4, comprising a ligand selected from CN (Ar is an unsaturated organic group), N 2 , SO 3 2− , an imidazole ring, an unsaturated cyclic organic group, and N 3 .
前記白金族元素の錯体がイリジウム錯体であり、NH3、RNH2、ハロゲン元素(Cl、F、Br、I、At)、カルボキシレート(-CO-O-)基、ピリジン基、H2O、CO3 2-、OH-、NO3 -、ROH
、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2-、NO2 -、N2、N3 -、R2S、R2P-、R3P、RS-
、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、およびR-(ただし、「R」はいずれも飽和又は不飽和有機基を表す)からなる群から選ばれる配位子を含む、請求項4に記載の方法。
The complex of the platinum group element is an iridium complex, NH 3 , RNH 2 , halogen element (Cl, F, Br, I, At), carboxylate (—CO—O—) group, pyridine group, H 2 O, CO 3 2-, OH -, NO 3 -, ROH
, N 2 H 4, PO 4 3-, R 2 O, RO -, ROPO 3 2-, (RO) 2 PO 2-, NO 2 -, N 2, N 3 -, R 2 S, R 2 P - , R 3 P, RS -
, CN -, RSH, RNC, (RS) 2 PO 2 -, (RO) 2 P (O) S -, SCN -, CO, H -, and R - (provided that both "R" is a saturated or unsaturated The method according to claim 4, comprising a ligand selected from the group consisting of: a saturated organic group.
前記微生物の細胞の透過性を高める処理が、加熱処理、電子線照射、電圧印加、酵素処理、及び浸透圧ショックから選ばれる、請求項1〜7のいずれか一項に記載の方法。   The method according to any one of claims 1 to 7, wherein the treatment for increasing cell permeability of the microorganism is selected from heat treatment, electron beam irradiation, voltage application, enzyme treatment, and osmotic shock. 前記処理が加熱処理であり、処理条件が65〜100℃、0.5〜30分である、請求
項8に記載の方法。
The method according to claim 8, wherein the treatment is a heat treatment, and the treatment conditions are 65 to 100 ° C. and 0.5 to 30 minutes.
鎖置換型核酸伸長酵素を用いた等温核酸増幅法が、LAMP法、ICAN法、SDA法、LCR法、TMA法、SMAP法、及びTRC法から選ばれる、請求項1〜9のいずれか一項に記載の方法。   The isothermal nucleic acid amplification method using a strand displacement type nucleic acid elongation enzyme is selected from the LAMP method, the ICAN method, the SDA method, the LCR method, the TMA method, the SMAP method, and the TRC method. The method described in 1. 前記工程c)を、下記組成の溶液中で行う、請求項1〜10のいずれか一項に記載の方法:
Tris-HCl(pH7〜9) 10mM〜25mM
KCl 5mM〜15mM
MgSO4 5mM〜40mM
界面活性剤 0.1%〜0.4%
ベタイン 0.5M〜1M
dNTPs 各1mM〜1.5mM
鎖置換型核酸伸長酵素 0.2〜0.6U/μl
The method according to claim 1, wherein the step c) is performed in a solution having the following composition:
Tris-HCl (pH 7 ~ 9) 10mM ~ 25mM
KCl 5mM ~ 15mM
MgSO 4 5mM~40mM
Surfactant 0.1% -0.4%
Betaine 0.5M-1M
dNTPs 1mM to 1.5mM each
Strand displacement type nucleic acid elongation enzyme 0.2-0.6 U / μl
界面活性剤がポリエチレングリコールソルビタンモノラウラートである、請求項11に記載の方法。   12. The method of claim 11, wherein the surfactant is polyethylene glycol sorbitan monolaurate. 鎖置換型核酸伸長酵素が、Bstポリメラーゼ及び/又はCsaポリメラーゼである、請求項11又は12に記載の方法。   The method according to claim 11 or 12, wherein the strand displacement type nucleic acid elongation enzyme is Bst polymerase and / or Csa polymerase. 前記ターゲット領域が50〜5000塩基のターゲット領域である請求項1〜13のいずれか一項に記載の方法。   The method according to claim 1, wherein the target region is a target region of 50 to 5000 bases. 前記ターゲット領域が、被検試料の核酸の5S rRNA遺伝子、16S rRNA遺伝子、23S rRNA遺伝子、及びtRNA遺伝子から選択される遺伝子に対応するター
ゲット領域である請求項14に記載の方法。
The method according to claim 14, wherein the target region is a target region corresponding to a gene selected from a 5S rRNA gene, a 16S rRNA gene, a 23S rRNA gene, and a tRNA gene of a nucleic acid of a test sample.
前記ターゲット領域の増幅をカルセイン存在下で行い、増幅産物をカルセインの蛍光によりリアルタイムに検出する、請求項1〜15のいずれか一項に記載の方法。   The method according to any one of claims 1 to 15, wherein the amplification of the target region is performed in the presence of calcein, and the amplification product is detected in real time by fluorescence of calcein. 等温核酸増幅を、配列番号1、2、3、4、9、及び10の配列を有するプライマーのセット、配列番号10、11、12、13、14、及び17の配列を有するプライマーのセット、並びに配列番号18、19、20、及び21の配列を有するプライマーのセットから選ばれるプライマーのセットを用いて行う、請求項1〜16のいずれか一項に記載の方法。   Isothermal nucleic acid amplification, a set of primers having the sequences of SEQ ID NO: 1, 2, 3, 4, 9, and 10; a set of primers having the sequences of SEQ ID NOs: 10, 11, 12, 13, 14, and 17; and The method according to any one of claims 1 to 16, which is carried out using a set of primers selected from a set of primers having the sequences of SEQ ID NOs: 18, 19, 20, and 21. 鎖置換型核酸伸長酵素を用いた等温核酸増幅法により、被検試料中の微生物の生細胞を、死細胞又は損傷細胞と識別して検出するためのキットであって、下記の要素を含むキット:
1)微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤、
2)下記組成の反応液を調製するための試薬、
Tris-HCl(pH7〜9) 10mM〜25mM
KCl 5mM〜15mM
MgSO4 5mM〜40mM
界面活性剤 0.1%〜0.4%
ベタイン 0.5M〜1M
dNTPs 各1mM〜1.5mM
3)検出対象の微生物の核酸のターゲット領域を等温核酸増幅法により増幅するためのプ
ライマー。
A kit for detecting a living cell of a microorganism in a test sample by distinguishing it from a dead cell or a damaged cell by an isothermal nucleic acid amplification method using a strand displacement type nucleic acid elongation enzyme, comprising the following elements: :
1) a drug that selectively inhibits dead cells from amplifying microorganism nucleic acids by a nucleic acid amplification method;
2) a reagent for preparing a reaction solution having the following composition;
Tris-HCl (pH 7 ~ 9) 10mM ~ 25mM
KCl 5mM ~ 15mM
MgSO 4 5mM~40mM
Surfactant 0.1% -0.4%
Betaine 0.5M-1M
dNTPs 1mM to 1.5mM each
3) A primer for amplifying the target region of the nucleic acid of the microorganism to be detected by an isothermal nucleic acid amplification method.
さらに、鎖置換型核酸伸長酵素を含む、請求項18に記載のキット。   Furthermore, the kit of Claim 18 containing a strand displacement type | mold nucleic acid extension enzyme. 鎖置換型核酸伸長酵素が、Bstポリメラーゼ及び/又はCsaポリメラーゼである、請求項19に記載のキット。   The kit according to claim 19, wherein the strand displacement type nucleic acid elongation enzyme is Bst polymerase and / or Csa polymerase. 微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤が、350nm〜700nmの波長の光照射により核酸に共有結合する薬剤、及び白金族元素の錯体から選ばれる、請求項18〜20のいずれか一項に記載のキット。   The agent that selectively inhibits dead cells from amplifying microorganism nucleic acids by a nucleic acid amplification method is selected from agents that covalently bind to nucleic acids by irradiation with light having a wavelength of 350 nm to 700 nm, and platinum group element complexes. The kit according to any one of 18 to 20. 前記薬剤が、350nm〜700nmの波長の光照射により核酸に共有結合する薬剤であり、エチジウムモノアザイド、エチジウムジアザイド、プロピジウムモノアザイド、プソラーレン、4,5',8−トリメチルプソラーレン、及び8−メトキシプソラーレンか
ら選択される請求項21に記載のキット。
The drug is a drug that is covalently bonded to a nucleic acid by irradiation with light having a wavelength of 350 nm to 700 nm, ethidium monoazide, ethidium diazide, propidium monoazide, psoralen, 4,5 ′, 8-trimethylpsoralen, and The kit according to claim 21, wherein the kit is selected from 8-methoxypsoralen.
前記薬剤が白金族元素の錯体であり、白金錯体、パラジウム錯体、及びイリジウム錯体から選ばれる、請求項21に記載のキット。   The kit according to claim 21, wherein the agent is a complex of a platinum group element and is selected from a platinum complex, a palladium complex, and an iridium complex. 前記白金族元素の錯体が白金錯体であり、NH3、RNH2、ハロゲン元素、カルボキシレー
ト基、ピリジン基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2 -、R2S、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、及
びR-(ただし、「R」はいずれも飽和又は不飽和有機基を表す)からなる群から選ばれる
配位子を含む、請求項23に記載のキット。
The platinum group element complex is a platinum complex, NH 3 , RNH 2 , halogen element, carboxylate group, pyridine group, H 2 O, CO 3 2− , OH , NO 3 , ROH, N 2 H 4 , PO 4 3-, R 2 O , RO -, ROPO 3 2-, (RO) 2 PO 2 -, R 2 S, R 3 P, RS -, CN -, RSH, RNC, (RS) 2 PO 2 -, (RO) 2 P ( O) S -, SCN -, CO, H -, and R - (where "R" is either represents a saturated or unsaturated organic group) configuration selected from the group consisting of 24. The kit according to claim 23, comprising a child.
前記白金族元素の錯体がパラジウム錯体であり、NH3、RNH2、ハロゲン元素、カルボキ
シレート基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2 -、R2S、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、R-(ただ
し、「R」はいずれも飽和又は不飽和有機基を表す)、NO2 -、Ar-NH2、Ar-CN(Arは不飽和有機基)、N2、SO3 2-、イミダゾール環、不飽和環状有機基、及びN3 -から選ばれる配位子を含む、請求項23に記載のキット。
The platinum group element complex is a palladium complex, NH 3 , RNH 2 , halogen element, carboxylate group, H 2 O, CO 3 2− , OH , NO 3 , ROH, N 2 H 4 , PO 4 3-, R 2 O, RO - , ROPO 3 2-, (RO) 2 PO 2 -, R 2 S, R 3 P, RS -, CN -, RSH, RNC, (RS) 2 PO 2 -, ( RO) 2 P (O) S , SCN , CO, H , R (where “R” represents a saturated or unsaturated organic group), NO 2 , Ar—NH 2 , Ar— The kit according to claim 23, comprising a ligand selected from CN (Ar is an unsaturated organic group), N 2 , SO 3 2− , an imidazole ring, an unsaturated cyclic organic group, and N 3 .
前記白金族元素の錯体がイリジウム錯体であり、NH3、RNH2、ハロゲン元素、カルボキ
シレート基、ピリジン基、H2O、CO3 2-、OH-、NO3 -、ROH、N2H4、PO4 3-、R2O、RO-、ROPO3 2-、(RO)2PO2-、NO2 -、N2、N3 -、R2S、R2P-、R3P、RS-、CN-、RSH、RNC、(RS)2PO2 -、(RO)2P(O)S-、SCN-、CO、H-、およびR-(ただし、「R」はいずれも飽和又は不飽和有機基を
表す)からなる群から選ばれる配位子を含む、請求項23に記載のキット。
The platinum group element complex is an iridium complex, NH 3 , RNH 2 , halogen element, carboxylate group, pyridine group, H 2 O, CO 3 2− , OH , NO 3 , ROH, N 2 H 4 , PO 4 3-, R 2 O , RO -, ROPO 3 2-, (RO) 2 PO 2-, NO 2 -, N 2, N 3 -, R 2 S, R 2 P -, R 3 P, RS -, CN -, RSH, RNC, (RS) 2 PO 2 -, (RO) 2 P (O) S -, SCN -, CO, H -, and R - (provided that both "R" saturated 24. The kit according to claim 23, comprising a ligand selected from the group consisting of: or an unsaturated organic group.
界面活性剤がポリエチレングリコールソルビタンモノラウラートである、請求項18〜26のいずれか一項に記載のキット。   The kit according to any one of claims 18 to 26, wherein the surfactant is polyethylene glycol sorbitan monolaurate. さらにカルセインを含む、請求項18〜27のいずれか一項に記載のキット。   The kit according to any one of claims 18 to 27, further comprising calcein. プライマーが、配列番号1、2、3、4、9、及び10の配列を有するプライマーのセット、配列番号10、11、12、13、14、及び17の配列を有するプライマーのセット、並びに配列番号18、19、20、及び21の配列を有するプライマーのセットから選ばれる、請求項18〜26のいずれか一項に記載のキット。   A set of primers having the sequences of SEQ ID NOs: 1, 2, 3, 4, 9, and 10; a set of primers having the sequences of SEQ ID NOs: 10, 11, 12, 13, 14, and 17; and 27. A kit according to any one of claims 18 to 26, selected from a set of primers having the sequences 18, 19, 20, and 21. 被検試料中の微生物の生細胞を、死細胞又は損傷細胞と識別して検出する方法であって、以下の工程:
a)前記被検試料に、微生物の核酸の核酸増幅法による増幅を、死細胞に選択的に阻害する薬剤を添加する工程、
c)被検試料中の微生物の核酸のターゲット領域を核酸増幅法により増幅する工程、及びd)増幅産物を解析する工程、
を含む方法において、工程a)を蛋白質、糖類、脂質、及び酵母エキスからなる群から選択される成分を0.5〜10%含む細胞懸濁液中で行うことを特徴とする方法。
A method for detecting living cells of microorganisms in a test sample by distinguishing them from dead cells or damaged cells, comprising the following steps:
a) a step of adding, to the test sample, an agent that selectively inhibits the dead cells from amplifying microorganism nucleic acids by a nucleic acid amplification method;
c) a step of amplifying a target region of a nucleic acid of a microorganism in a test sample by a nucleic acid amplification method, and d) a step of analyzing an amplification product,
A step comprising performing step a) in a cell suspension containing 0.5 to 10% of a component selected from the group consisting of proteins, sugars, lipids, and yeast extracts.
検出対象の微生物が、レジオネラ属細菌、カンピロバクター属細菌、ビブリオ属細菌、リステリア属細菌、クロストリジウム属細菌、ヘリコバクター属細菌、マイコバクテリウム属細菌、クラミジア科細菌、リケッチア属細菌、及び、ナイゼリア属細菌である、請求項30に記載の方法。   The microorganisms to be detected are Legionella, Campylobacter, Vibrio, Listeria, Clostridium, Helicobacter, Mycobacterium, Chlamydiaceae, Rickettsia, and Niseria. 32. The method of claim 30, wherein:
JP2014015768A 2014-01-30 2014-01-30 Microorganism detection method and microorganism detection kit Active JP6139425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015768A JP6139425B2 (en) 2014-01-30 2014-01-30 Microorganism detection method and microorganism detection kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015768A JP6139425B2 (en) 2014-01-30 2014-01-30 Microorganism detection method and microorganism detection kit

Publications (3)

Publication Number Publication Date
JP2015139434A true JP2015139434A (en) 2015-08-03
JP2015139434A5 JP2015139434A5 (en) 2016-02-18
JP6139425B2 JP6139425B2 (en) 2017-05-31

Family

ID=53770242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015768A Active JP6139425B2 (en) 2014-01-30 2014-01-30 Microorganism detection method and microorganism detection kit

Country Status (1)

Country Link
JP (1) JP6139425B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010001A1 (en) * 2015-07-16 2017-01-19 森永乳業株式会社 Microorganism detection method and microorganism detection kit
WO2017009999A1 (en) * 2015-07-16 2017-01-19 森永乳業株式会社 Microorganism detection method and microorganism detection kit
US10876153B2 (en) 2016-03-18 2020-12-29 Kabushiki Kaisha Toshiba Nucleic acid detection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010740A1 (en) * 2009-07-24 2011-01-27 森永乳業株式会社 Method and kit for detecting microorganisms

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010740A1 (en) * 2009-07-24 2011-01-27 森永乳業株式会社 Method and kit for detecting microorganisms

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
APPL. ENVIRON. MICROBIOL., 2011, 77(12), PP.4008-4016, JPN6016038929, ISSN: 0003417316 *
FOOD CONTROL, 2011, 22(3-4), PP.438-444, JPN6016038937, ISSN: 0003417320 *
INT. J. FOOD SCI. TECH., 2012, 47(11), PP.2460-2467, JPN6016038928, ISSN: 0003417315 *
J. MICROBIOL. BIOTECHNOL., 2013, 23(12), PP.1708-1716, JPN6016038926, ISSN: 0003417314 *
J. MICROBIOL. METHODS, 2012, 90(3), PP.280-284, JPN6016038933, ISSN: 0003417318 *
J. MICROBIOL. METHODS, 2013, 93(1), PP.20-24, JPN6016038935, ISSN: 0003417319 *
J. VET. MED. SCI., 2011, 73(9), PP.1225-1227, JPN6016038931, ISSN: 0003417317 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010001A1 (en) * 2015-07-16 2017-01-19 森永乳業株式会社 Microorganism detection method and microorganism detection kit
WO2017009999A1 (en) * 2015-07-16 2017-01-19 森永乳業株式会社 Microorganism detection method and microorganism detection kit
US10876153B2 (en) 2016-03-18 2020-12-29 Kabushiki Kaisha Toshiba Nucleic acid detection method

Also Published As

Publication number Publication date
JP6139425B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP4825313B2 (en) Microorganism detection method and microorganism detection kit
JP4127847B2 (en) Microorganism detection method and microorganism detection kit
JP4378537B2 (en) Microorganism detection method and microorganism detection kit
JP5433821B1 (en) Microorganism detection method and microorganism detection kit
WO2017010001A1 (en) Microorganism detection method and microorganism detection kit
Soejima et al. Innovative use of platinum compounds to selectively detect live microorganisms by polymerase chain reaction
JP6139425B2 (en) Microorganism detection method and microorganism detection kit
Soejima et al. Innovative use of palladium compounds to selectively detect live Enterobacteriaceae in milk by PCR
Yang et al. Single primer isothermal amplification coupled with SYBR Green II: Real-time and rapid visual method for detection of Listeria monocytogenes in raw chicken
JP5433820B1 (en) Microorganism detection method and microorganism detection kit
Suwanampai et al. Evaluation of loop-mediated isothermal amplification method for detecting enterotoxin A gene of Staphylococcus aureus in pork
JP6035257B2 (en) Microorganism detection method and microorganism detection kit
Connolly Use of Viability qPCR for Quantification of Salmonella Typhimurium and Listeria Monocytogenes in Food Safety Challenge Studies
JP4217795B2 (en) Microorganism detection method and microorganism detection kit
JP2008173132A (en) Method and kit for detection of microorganism
WO2017009999A1 (en) Microorganism detection method and microorganism detection kit
Waturangi et al. Development of Molecular Rapid Detection for Vibrio cholerae and Escherichia coli
JP2017006053A (en) Oligonucleotide and primer pair used for detecting fungus belonging to genus byssochlamys, and detection kit and detection method of fungus belonging to genus byssochlamys
JP2008079617A (en) Method of detecting microorganism and microorganism detection kit
NZ564847A (en) Method for detection of microorganism and kit for detection of microorganism

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170427

R150 Certificate of patent or registration of utility model

Ref document number: 6139425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531