JP2015138897A - Method for cleaning or inspection of vapor-phase growth apparatus - Google Patents

Method for cleaning or inspection of vapor-phase growth apparatus Download PDF

Info

Publication number
JP2015138897A
JP2015138897A JP2014010037A JP2014010037A JP2015138897A JP 2015138897 A JP2015138897 A JP 2015138897A JP 2014010037 A JP2014010037 A JP 2014010037A JP 2014010037 A JP2014010037 A JP 2014010037A JP 2015138897 A JP2015138897 A JP 2015138897A
Authority
JP
Japan
Prior art keywords
phase growth
reaction vessel
growth apparatus
cleaning
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014010037A
Other languages
Japanese (ja)
Other versions
JP6090183B2 (en
Inventor
亮輔 岩本
Ryosuke Iwamoto
亮輔 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2014010037A priority Critical patent/JP6090183B2/en
Publication of JP2015138897A publication Critical patent/JP2015138897A/en
Application granted granted Critical
Publication of JP6090183B2 publication Critical patent/JP6090183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for cleaning or inspection of a vapor-phase growth apparatus by which heavy metal contamination caused by the maintenance of a vapor-phase growth apparatus can be reduced.SOLUTION: A method for cleaning or inspection of a vapor-phase growth apparatus 1 comprises the step of reducing an oxygen density in a reaction chamber 3 to under an oxygen density in atmospheric air in cleaning or inspection which involves the opening of the reaction chamber 3 of the vapor-phase growth apparatus 1 put in an airtight condition, whereby the increase in heavy metal contamination caused by the maintenance of the vapor-phase growth apparatus 1 can be suppressed. Especially, the oxygen density in the reaction chamber 3 is made 100 ppm or below, whereby the heavy metal contamination can be prevented more effectively.

Description

本発明は、気相成長装置の清掃又は点検方法に関する。   The present invention relates to a method for cleaning or checking a vapor phase growth apparatus.

シリコンウェーハ等の半導体基板の製造工程に用いられる基板処理装置として、CVD(Chemical Vapour Deposition)装置(気相成長装置)が知られ、シリコンウェーハのエピタキシャル処理の一例としてシリコンウェーハの表面に単結晶シリコンからなるエピタキシャル膜を気相エピタキシャル成長させる製造方法が開発されている。   As a substrate processing apparatus used in the manufacturing process of a semiconductor substrate such as a silicon wafer, a CVD (Chemical Vapor Deposition) apparatus (vapor phase growth apparatus) is known. As an example of epitaxial processing of a silicon wafer, single crystal silicon is formed on the surface of the silicon wafer. A production method for vapor phase epitaxial growth of an epitaxial film made of is developed.

その製造方法として、気相成長装置のエピタキシャル成長用チャンバー(反応容器)内に収納されたサセプタに、シリコンウェーハを水平配置し、その後、垂直な回転軸を中心にしてサセプタを回転させながらシリコンウェーハをハロゲンランプ等の熱源で高温加熱(1000〜1200℃)し、プロセスガスを流す。これによりウェーハ表面に反応ガスの熱分解、還元により生成されたシリコンが析出し、ウェーハ表面に単結晶シリコンからなるエピタキシャル膜が成長する。   As a manufacturing method thereof, a silicon wafer is horizontally arranged on a susceptor housed in an epitaxial growth chamber (reaction vessel) of a vapor phase growth apparatus, and then the silicon wafer is rotated while rotating the susceptor around a vertical rotation axis. Heating is performed at a high temperature (1000 to 1200 ° C.) with a heat source such as a halogen lamp, and a process gas is supplied. As a result, silicon produced by thermal decomposition and reduction of the reaction gas is deposited on the wafer surface, and an epitaxial film made of single crystal silicon grows on the wafer surface.

このように気相成長装置により操業を続けているうちにプロセスガス(シラン系ガスや塩酸ガス)による反応副生成物等の汚れが反応容器内に堆積するため、気相成長装置の保守、安全管理の観点から定期的に反応容器を大気開放して反応容器内や反応容器に接続される配管の清掃(洗浄)、点検等のメンテナンス作業が実施される。   In this way, contamination of reaction by-products, etc. due to process gas (silane-based gas or hydrochloric acid gas) accumulates in the reaction vessel while continuing operation with the vapor phase growth apparatus. From the viewpoint of management, maintenance work such as cleaning (cleaning) and inspection of the pipes connected to the reaction container and the reaction container is periodically performed by opening the reaction container to the atmosphere.

しかし、一般に反応容器の大気開放を伴う清掃、点検作業直後に製造されたエピタキシャルウェーハ中の金属不純物(重金属汚染)のレベルは、気相成長装置のメンテナンス時に付着した金属不純物、反応容器を構成する素材に含まれる金属不純物、気相成長装置及びその配管系に通常用いられるステンレス成分等を汚染源とするため、清掃、点検作業直前に製造されたエピタキシャルウェーハよりも重金属汚染が増加する。   However, generally, the level of metal impurities (heavy metal contamination) in an epitaxial wafer manufactured immediately after cleaning and inspection work that involves opening the reaction vessel to the atmosphere constitutes the reaction vessel that is a metal impurity adhering to the vapor phase growth apparatus during maintenance. Since the metal impurities contained in the material, the vapor phase growth apparatus, and the stainless steel components normally used in the piping system thereof are used as the contamination source, heavy metal contamination is increased as compared with the epitaxial wafer manufactured immediately before the cleaning and inspection work.

一方で、近年、CCD(Charge Coupled Device)やCIS(CMOS Image Sensor)等の撮像素子用基板として、シリコンウェーハ上にシリコン膜を気相成長させたシリコンエピタキシャルウェーハが使用され、このような撮像素子用のエピタキシャルウェーハでは、ウェーハ内に金属不純物が存在すると白キズ(白点)と呼ばれる不良が発生するため、ウェーハ中の金属不純物(重金属汚染)のレベルを低くすることが重要となっている。   On the other hand, in recent years, a silicon epitaxial wafer obtained by vapor-depositing a silicon film on a silicon wafer has been used as an image sensor substrate such as a CCD (Charge Coupled Device) or CIS (CMOS Image Sensor). In such an epitaxial wafer, when metal impurities are present in the wafer, defects called white scratches (white spots) are generated. Therefore, it is important to reduce the level of metal impurities (heavy metal contamination) in the wafer.

そこで、エピタキシャルウェーハ中の不純物(金属不純物)を低減する対策として、反応容器の構成材料を変更することが考えられるが、大規模な改修が必要となることや従来材料に代わる材料の探索が困難なことから実施が難しい。   Therefore, as a measure to reduce impurities (metal impurities) in the epitaxial wafer, it is conceivable to change the constituent material of the reaction vessel. However, it is necessary to make a large-scale renovation or to find a material that can replace the conventional material. This is difficult to implement.

また、別の観点からエピタキシャルウェーハ中の不純物を抑制する方法が特許文献1〜3に開示される。例えば、特許文献1には薄膜中に取り込まれる酸素量を低減させるため、酸素濃度を10−21Pa以下に制御した雰囲気下で基板上に薄膜を堆積する方法が提案される。特許文献2、3にはロードロック室内の酸素濃度を所定の値に制御し、ロードロック室中でウェーハ表面に不適正な自然酸化膜が形成され、ウェーハが汚染されるのを防止する方法が提案される。 Further, Patent Documents 1 to 3 disclose methods for suppressing impurities in an epitaxial wafer from another viewpoint. For example, Patent Document 1 proposes a method of depositing a thin film on a substrate in an atmosphere in which the oxygen concentration is controlled to 10 −21 Pa or less in order to reduce the amount of oxygen taken into the thin film. Patent Documents 2 and 3 disclose a method for controlling the oxygen concentration in the load lock chamber to a predetermined value and preventing the wafer surface from being contaminated by an inappropriate natural oxide film formed on the wafer surface in the load lock chamber. Proposed.

特開2009−200158号公報JP 2009-2000158 A 特開平9−45597号公報Japanese Unexamined Patent Publication No. 9-45597 特開2000−58619号公報JP 2000-58619 A

しかしながら、特許文献1〜3の方法は、通常の操業時にウェーハへの水分汚染、酸素汚染、自然酸化膜汚染の低減を図る方法であり、気相成長装置の清掃又は点検(以下、メンテナンスという)に起因した重金属汚染の低減を図る方法ではない。   However, the methods of Patent Documents 1 to 3 are methods for reducing moisture contamination, oxygen contamination, and natural oxide film contamination on a wafer during normal operation, and cleaning or inspection of a vapor phase growth apparatus (hereinafter referred to as maintenance). It is not a method for reducing heavy metal contamination caused by the above.

本発明の課題は、気相成長装置のメンテナンスを起因とする重金属汚染を低減できる気相成長装置の清掃又は点検方法を提供することにある。   The subject of this invention is providing the cleaning or inspection method of the vapor phase growth apparatus which can reduce heavy metal contamination resulting from the maintenance of a vapor phase growth apparatus.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明の気相成長装置の第一の清掃又は点検方法は、
気密にされた気相成長装置の反応容器の開放をともなう清掃又は点検時に、反応容器内の酸素濃度を大気雰囲気よりも低減することを特徴とする。
The first cleaning or inspection method of the vapor phase growth apparatus of the present invention is:
It is characterized in that the oxygen concentration in the reaction vessel is reduced from that in the air atmosphere at the time of cleaning or inspection accompanied by opening of the reaction vessel of the gas phase growth apparatus which is made airtight.

また、本発明の気相成長装置の第二の清掃又は点検方法は、
エピタキシャルウェーハを製造する気相成長装置の反応容器内を清掃又は点検する準備のために反応容器の蓋状部材を取り外して反応容器を開放する準備工程を有する気相成長装置の清掃又は点検方法において、
取り外される前の蓋状部材を覆うとともに蓋状部材が二重蓋となるように蓋状部材の上から更に反応容器を閉じるように位置し、内側と外側の雰囲気を隔離可能、かつ、内側の雰囲気を調整可能なパージボックスを反応容器に取り付ける取付工程と、
反応容器に取り付けられたパージボックスの内側の酸素濃度を外側の大気雰囲気の酸素濃度より低減させる調整工程と、を備え、
調整工程後に準備工程を実施することを特徴とする。
In addition, the second cleaning or inspection method of the vapor phase growth apparatus of the present invention,
In a method for cleaning or inspecting a vapor phase growth apparatus, comprising a preparation step of removing the lid-like member of the reaction vessel and opening the reaction vessel in preparation for cleaning or inspecting the inside of the reaction vessel of the vapor phase growth apparatus for producing an epitaxial wafer ,
Covers the lid-like member before being removed and is positioned so that the reaction vessel is further closed from the top of the lid-like member so that the lid-like member becomes a double lid, and the atmosphere inside and outside can be isolated, and the atmosphere inside An attachment process for attaching an adjustable purge box to the reaction vessel;
Adjusting the oxygen concentration inside the purge box attached to the reaction vessel to be lower than the oxygen concentration in the outside air atmosphere, and
A preparatory step is performed after the adjustment step.

本発明者はメンテナンスに起因する気相成長装置の汚染について、メンテナンス時に反応容器を大気開放する点に着眼し、鋭意検討を重ねる中で、反応容器内に酸素が混入するとエピタキシャルウェーハ中の重金属汚染が増加することを見出し、この知見に基づきメンテナンス時に大気開放された反応容器を精査した結果、大気開放された反応容器内の酸素濃度が大気中の酸素濃度と同程度の200000ppm程度まで上昇することを確認した。   The present inventor focused on the point of opening the reaction vessel to the atmosphere at the time of maintenance for contamination of the vapor phase growth apparatus caused by maintenance, and in the intensive study, when oxygen enters the reaction vessel, heavy metal contamination in the epitaxial wafer As a result of investigating the reaction vessel opened to the atmosphere during maintenance based on this knowledge, the oxygen concentration in the reaction vessel opened to the atmosphere rises to about 200000 ppm, which is the same as the oxygen concentration in the atmosphere. It was confirmed.

その結果、メンテナンスに起因する気相成長装置の重金属の汚染増加は、反応容器を構成する素材等を汚染源とする以外にも、反応容器の大気開放により反応容器内に混入した酸素の反応によっても重金属の汚染が増加するとの結論に至った。   As a result, the increase in heavy metal contamination of the vapor phase growth apparatus due to maintenance is caused not only by using the materials constituting the reaction vessel as a contamination source, but also by the reaction of oxygen mixed in the reaction vessel by opening the reaction vessel to the atmosphere. The conclusion was reached that heavy metal contamination would increase.

そこで、気密にされた気相成長装置の反応容器内の開放をともなう清掃又は点検時に、反応容器内の酸素濃度を大気雰囲気よりも低減することで、気相成長装置のメンテナンスに起因する重金属汚染の増加を抑制できる。このとき、反応容器内の酸素濃度を100ppm以下にすることで重金属汚染をより効果的に防止することができる。本発明の実施態様では、清掃又は点検の準備のために予めパージボックスを反応容器に取り付け、パージボックス内の酸素濃度を外側(大気雰囲気)の酸素濃度より低く調整し、気相成長装置のメンテナンスに起因する重金属汚染の増加を抑制できる。また、本発明は、特にメンテナンス作業直後に製造されたエピタキシャルウェーハにおける金属不純物の増加の抑制に対して効果的である。   Therefore, heavy metal contamination caused by maintenance of the vapor phase growth apparatus is reduced by reducing the oxygen concentration in the reaction vessel from the air atmosphere during cleaning or inspection involving opening the inside of the reaction vessel of the gas phase growth apparatus that has been made airtight. Can be suppressed. At this time, heavy metal contamination can be more effectively prevented by setting the oxygen concentration in the reaction vessel to 100 ppm or less. In the embodiment of the present invention, a purge box is attached to the reaction vessel in advance for preparation for cleaning or inspection, the oxygen concentration in the purge box is adjusted to be lower than the oxygen concentration in the outside (atmospheric atmosphere), and maintenance of the vapor phase growth apparatus is performed. The increase in heavy metal contamination caused by can be suppressed. In addition, the present invention is particularly effective for suppressing an increase in metal impurities in an epitaxial wafer manufactured immediately after maintenance work.

なお、パージボックスはグローブボックス構造とすることで、反応容器内の清掃又は点検作業が容易となる。   The purge box has a glove box structure, which facilitates cleaning or inspection work inside the reaction vessel.

本発明の清掃又は点検方法に用いる、パージボックスを取り付けた気相成長装置の一例を示す模式側面断面図。The schematic side surface sectional view which shows an example of the vapor phase growth apparatus which attached the purge box used for the cleaning or inspection method of this invention. 比較例において用いた、気相成長装置の一例を示す模式側面断面図。The schematic side surface sectional view which shows an example of the vapor phase growth apparatus used in the comparative example. 比較例における反応容器のメンテナンス汚染度の評価方法の概要を示すフローチャート。The flowchart which shows the outline | summary of the evaluation method of the maintenance contamination degree of the reaction container in a comparative example. 実施例における反応容器のメンテナンス汚染度の評価方法の概要を示すフローチャート。The flowchart which shows the outline | summary of the evaluation method of the maintenance contamination degree of the reaction container in an Example. 実施例と比較例においてメンテナンス前後に作製したウェーハのMo濃度比を示したグラフ。The graph which showed Mo concentration ratio of the wafer produced before and after the maintenance in an Example and a comparative example. メンテナンス前後に作製したウェーハのMo濃度比とメンテナンス時の反応容器内の酸素濃度の関係を示したグラフ。The graph which showed the relationship between Mo concentration ratio of the wafer produced before and after the maintenance, and the oxygen concentration in the reaction container at the time of maintenance.

図1は本発明で使用される一例の枚葉式の気相成長装置1と内部が気相成長装置1の清掃又は点検するための作業領域となり、その作業領域内の酸素濃度を調整できるパージボックス2を示す。気相成長装置1は、シリコン単結晶基板の主表面上にシリコン単結晶膜(エピタキシャル層)を気相成長させて、例えば、CCDやCIS等の撮像素子用基板に用いられるシリコンエピタキシャルウェーハを製造する装置である。   FIG. 1 shows an example of a single-wafer type vapor phase growth apparatus 1 used in the present invention and a purge area in which the inside is a work area for cleaning or checking the vapor phase growth apparatus 1 and the oxygen concentration in the work area can be adjusted. Box 2 is shown. The vapor phase growth apparatus 1 produces a silicon epitaxial wafer used for an image sensor substrate such as a CCD or CIS by vapor-phase growing a silicon single crystal film (epitaxial layer) on the main surface of the silicon single crystal substrate. It is a device to do.

気相成長装置1は、透明石英部材やステンレス等の金属部材等から構成された気相成長炉である反応容器3を備える。反応容器3(チャンバー、反応炉)は、ステンレス(SUS)からなるベースリング4と、ベースリング4の下側に連なるように位置し、反応容器3の底部を構成するように逆さドーム状に形成されたロワードーム5と、ベースリング4の上側に位置し、ロワードーム5とともにベースリング4を挟むようにして反応容器3の天井を構成する天井部材6を備え、ロワードーム5及び天井部材6はそれぞれ透明石英部材から構成される。   The vapor phase growth apparatus 1 includes a reaction vessel 3 that is a vapor phase growth furnace composed of a transparent quartz member, a metal member such as stainless steel, or the like. The reaction vessel 3 (chamber, reaction furnace) is located in a base ring 4 made of stainless steel (SUS) and connected to the lower side of the base ring 4, and is formed in an inverted dome shape so as to constitute the bottom of the reaction vessel 3. And a ceiling member 6 that is positioned above the base ring 4 and that forms the ceiling of the reaction vessel 3 so as to sandwich the base ring 4 together with the rowardome 5, and each of the lowomeme 5 and the ceiling member 6 is made of a transparent quartz member. Composed.

反応容器3は外部から反応容器3内に不純物が混入しないように気密に構成(大気から隔離)され、大気雰囲気から隔離された反応容器3の内部には、ベースリング4をカバーするように位置する石英部材(図示省略)と、シリコンエピタキシャルウェーハの基材基板であるシリコン単結晶基板(以下、単にウェーハWという)を水平に支持するサセプタ7(例えば黒鉛製)と、サセプタ7を支持する支持部8と、支持部8を介してサセプタ7を中心軸O回りに回転させる回転駆動部9と、酸素濃度計測部(図示省略)を備える。   The reaction vessel 3 is configured to be airtight (isolated from the atmosphere) so that impurities are not mixed into the reaction vessel 3 from the outside, and the reaction vessel 3 is isolated from the atmospheric air so as to cover the base ring 4. A quartz member (not shown), a susceptor 7 (for example, made of graphite) that horizontally supports a silicon single crystal substrate (hereinafter simply referred to as wafer W) that is a base substrate of a silicon epitaxial wafer, and a support that supports the susceptor 7 A rotation drive unit 9 that rotates the susceptor 7 around the central axis O via the support unit 8 and the support unit 8; and an oxygen concentration measurement unit (not shown).

反応容器3の一端側には、反応容器3内に原料ガス(例えばトリクロロシラン)、原料ガスを希釈するキャリアガス(例えば水素)及びエピタキシャル層に導電型を付与するドーパントガスを含む気相成長ガスGを、サセプタ7の上側の領域に導入するとともに、サセプタ7上のウェーハWの主表面上に供給するガス導入管10が接続される。また、ガス導入管10の反対側に反応容器3内のガスを排出するガス排出管11が接続される。   At one end of the reaction vessel 3, a vapor phase growth gas containing a source gas (for example, trichlorosilane) in the reaction vessel 3, a carrier gas (for example, hydrogen) for diluting the source gas, and a dopant gas for imparting conductivity to the epitaxial layer. G is introduced into the upper region of the susceptor 7, and a gas introduction pipe 10 that supplies the main surface of the wafer W on the susceptor 7 is connected. A gas discharge pipe 11 for discharging the gas in the reaction vessel 3 is connected to the opposite side of the gas introduction pipe 10.

図示省略するが、反応容器3の周囲(例えば、反応容器3の上下)には、気相成長時にウェーハWをエピタキシャル成長温度(例えば、900〜1200℃)に加熱するハロゲンランプなどのランプが設けられる。   Although not shown, around the reaction vessel 3 (for example, above and below the reaction vessel 3), a lamp such as a halogen lamp for heating the wafer W to an epitaxial growth temperature (for example, 900 to 1200 ° C.) at the time of vapor phase growth is provided. .

一方、図1に示すように気相成長装置1に取り付けられるパージボックス2は、天井部材6を覆うとともに天井部材6が二重蓋となるように天井部材6の上から更に反応容器3を閉じるように反応容器3の外側に突出して位置し、天井部材6の外面等とパージボックス2の内面により空間(内部)が区画され、その内部が反応容器3の清掃又は点検するための作業領域となる。反応容器3内での作業を容易にするために、パージボックス2はグローブボックス状に構成される。   On the other hand, as shown in FIG. 1, the purge box 2 attached to the vapor phase growth apparatus 1 covers the ceiling member 6 and further closes the reaction vessel 3 from above the ceiling member 6 so that the ceiling member 6 becomes a double lid. Projecting outside the reaction vessel 3, a space (inside) is defined by the outer surface of the ceiling member 6 and the inner surface of the purge box 2, and the inside serves as a work area for cleaning or inspecting the reaction vessel 3. In order to facilitate the work in the reaction vessel 3, the purge box 2 is configured in a glove box shape.

また、パージボックス2には、パージボックス2内の雰囲気を窒素等の不活性ガスPの導入により置換するパージガス導入管2aと、導入される大気量を調整できる大気導入バルブ2b´を有してパージボックス2内に大気Aを導入可能な大気導入管2bと、パージボックス2内の酸素濃度を検出する酸素濃度計2cと、ガスパージ時にパージボックス2内の酸素等をパージボックス2(気相成長装置1)外に排出するパージ用排気管(図示省略)が備わり、パージボックス2の内部と外部の雰囲気を隔離でき、外部から内部に不純物が混入しないように気密に構成され、かつ、内部の雰囲気も調整できる。具体的には、酸素濃度計2cで確認し、パージガス導入管2aにより導入される窒素ガス等の不活性ガスPの導入量と大気導入管2bにより導入される大気ガスの導入量を調整することで、パージボックス2内の雰囲気の酸素濃度を例えば1ppmから200000ppmの範囲の間で制御することができる。   Further, the purge box 2 has a purge gas introduction pipe 2a that replaces the atmosphere in the purge box 2 by introducing an inert gas P such as nitrogen, and an air introduction valve 2b 'that can adjust the amount of air introduced. An atmosphere introduction pipe 2b capable of introducing the atmosphere A into the purge box 2, an oxygen concentration meter 2c for detecting the oxygen concentration in the purge box 2, and the purge box 2 (vapor phase growth) The apparatus 1) is provided with a purge exhaust pipe (not shown) for discharging outside, can isolate the atmosphere inside the purge box 2 from the outside, is airtight so that impurities are not mixed into the inside from the outside, The atmosphere can also be adjusted. Specifically, it is confirmed by the oxygen concentration meter 2c, and the introduction amount of the inert gas P such as nitrogen gas introduced by the purge gas introduction tube 2a and the introduction amount of the atmospheric gas introduced by the atmosphere introduction tube 2b are adjusted. Thus, the oxygen concentration of the atmosphere in the purge box 2 can be controlled within a range of 1 ppm to 200000 ppm, for example.

以上の構成を有した気相成長装置1(パージボックス2は除く)によりシリコンエピタキシャルウェーハが製造される。操業中はガス導入管10から気相成長ガスGが導入され、サセプタ7上を通過してガス排出管11から気相成長ガスGが排出され、ウェーハWを反応容器3内に搬送する以外は完全に大気から隔離された環境となる。また、ウェーハWを搬送する際に反応容器3を開放する場合でもウェーハWは大気環境から直接搬送されず、窒素でガス置換された環境下で搬送される。   A silicon epitaxial wafer is manufactured by the vapor phase growth apparatus 1 (excluding the purge box 2) having the above configuration. During operation, the vapor growth gas G is introduced from the gas introduction pipe 10, passes through the susceptor 7, is discharged from the gas discharge pipe 11, and transports the wafer W into the reaction vessel 3. The environment is completely isolated from the atmosphere. Further, even when the reaction container 3 is opened when the wafer W is transferred, the wafer W is not transferred directly from the atmospheric environment but is transferred in an environment where the gas is replaced with nitrogen.

気相成長装置1により気相成長を繰り返していくと反応容器3内には次第にシリコンエピタキシャルウェーハを構成するシリコンの副生成物等が反応容器3の内側のベースリング4及びロワードーム5等に堆積し、その副生成物等がエピタキシャルウェーハの品質に悪影響を及ぼす。そのため、定期的に反応容器3から天井部材6を取り外し、反応容器3内を大気に開放した状態でサセプタ7及び支持部8を交換するとともに、反応容器3内のベースリング4及びロワードーム5並びにガス導入管10及びガス排出管11等に対し、堆積した副生成物を除去する清掃を行う。また、反応容器3の保守点検として反応容器3内を大気に開放した状態で反応容器3の内部の点検を実施する。   When the vapor phase growth is repeated by the vapor phase growth apparatus 1, silicon by-products and the like constituting the silicon epitaxial wafer gradually accumulate in the reaction vessel 3 on the base ring 4 and the rowardome 5 inside the reaction vessel 3. The by-products and the like adversely affect the quality of the epitaxial wafer. Therefore, the ceiling member 6 is periodically removed from the reaction vessel 3 and the susceptor 7 and the support 8 are exchanged with the inside of the reaction vessel 3 open to the atmosphere, and the base ring 4, the rowardome 5 and the gas in the reaction vessel 3 are exchanged. The introduction pipe 10 and the gas discharge pipe 11 are cleaned to remove accumulated by-products. In addition, as a maintenance check of the reaction vessel 3, the inside of the reaction vessel 3 is checked with the inside of the reaction vessel 3 open to the atmosphere.

このような清掃、点検時に天井部材6を取り外し、反応容器3内を大気に開放した状態にすると大気中の酸素が反応容器3内に混入し、反応容器3を構成する部材の腐食を促進し、反応容器3内の金属汚染を増加させる。そのため、清掃、点検のために天井部材6を取り外し、反応容器3を開放した際に反応容器3内に混入する酸素濃度を大気中の酸素濃度よりも低減させることで、反応容器3内の金属汚染を低減できる。   When the ceiling member 6 is removed during such cleaning and inspection and the reaction vessel 3 is opened to the atmosphere, oxygen in the atmosphere is mixed into the reaction vessel 3 and promotes corrosion of the members constituting the reaction vessel 3. Increase the metal contamination in the reaction vessel 3. Therefore, the metal in the reaction vessel 3 is reduced by removing the ceiling member 6 for cleaning and inspection and reducing the oxygen concentration mixed in the reaction vessel 3 when the reaction vessel 3 is opened, compared to the oxygen concentration in the atmosphere. Contamination can be reduced.

そこで、次に、図1の気相成長装置1及びパージボックス2を用いて、気相成長装置1を清掃又は点検する方法の詳細を説明する。先ず、気相成長装置1の清掃又は点検に先立ち、天井部材6を覆うとともに天井部材6が二重蓋になるように天井部材6の上から更に反応容器3を閉じるようにパージボックス2を気相成長装置1に取り付ける(取付工程)。取り付けられたパージボックス2は、パージボックス2内が大気から隔離され、パージボックス2内に外部から不純物が混入しないように気密にされた状態で気相成長装置1に取り付けられる。   Then, next, the detail of the method of cleaning or inspecting the vapor phase growth apparatus 1 using the vapor phase growth apparatus 1 and the purge box 2 of FIG. 1 is demonstrated. First, prior to cleaning or inspection of the vapor phase growth apparatus 1, the purge box 2 is vapor phase grown so as to cover the ceiling member 6 and further close the reaction vessel 3 from above the ceiling member 6 so that the ceiling member 6 becomes a double lid. It attaches to the apparatus 1 (attachment process). The attached purge box 2 is attached to the vapor phase growth apparatus 1 in a state where the inside of the purge box 2 is isolated from the atmosphere and hermetically sealed so that impurities are not mixed into the purge box 2 from the outside.

次に、取り付けられたパージボックス2の内側の酸素濃度をパージボックス2の外側の大気雰囲気の酸素濃度よりも低減させる(調整工程)。具体的には、大気導入バルブ2b´を閉鎖し、パージボックス2内の酸素等を窒素の不活性ガスPでパージし、酸素濃度計2cによりパージボックス2内の酸素濃度が100ppm以下になるまで、パージを実施する。   Next, the oxygen concentration inside the attached purge box 2 is reduced below the oxygen concentration in the air atmosphere outside the purge box 2 (adjustment step). Specifically, the air introduction valve 2b ′ is closed, oxygen or the like in the purge box 2 is purged with an inert gas P of nitrogen, and the oxygen concentration in the purge box 2 is reduced to 100 ppm or less by the oxygen concentration meter 2c. , Purging.

パージボックス2内の酸素濃度が100ppm以下に調整されると反応容器3内は清掃又は点検する作業に適した作業雰囲気に調整され、反応容器3内の清掃又は点検する準備のためにパージボックス2内で天井部材6を取り外して反応容器3を開放する(準備工程)。天井部材6が取り外されるとパージボックス2と反応容器3が連通して一体となり、新たな容器状の空間が形成される。なお、パージボックス2はグローブボックス構造であるため、作業雰囲気内で天井部材6を容易に取り外すことができる。   When the oxygen concentration in the purge box 2 is adjusted to 100 ppm or less, the inside of the reaction vessel 3 is adjusted to a working atmosphere suitable for the work for cleaning or checking, and the purge box 2 is prepared for cleaning or checking in the reaction vessel 3. The reaction chamber 3 is opened by removing the ceiling member 6 (preparation step). When the ceiling member 6 is removed, the purge box 2 and the reaction vessel 3 communicate with each other to form a new vessel-shaped space. Since the purge box 2 has a glove box structure, the ceiling member 6 can be easily removed in the working atmosphere.

反応容器3を開放した後、予めパージボックス2内に準備した交換用のサセプタ及び支持部と、反応容器3内のサセプタ7及び支持部8を交換し、反応容器3内のベースリング4及びロワードーム5並びにガス導入管10及びガス排出管11に堆積した副生成物等の清掃を実施し、清掃の実施後に天井部材6を再度、取り付けた後、パージボックス2を取り外すことで気相成長装置1の清掃及び点検が終了する。   After the reaction container 3 is opened, the replacement susceptor and support part prepared in the purge box 2 in advance, and the susceptor 7 and support part 8 in the reaction container 3 are exchanged, and the base ring 4 and the rowardome in the reaction container 3 are exchanged. 5 and the gas introduction pipe 10 and the gas discharge pipe 11 are cleaned of by-products and the like. After the cleaning, the ceiling member 6 is attached again, and then the purge box 2 is removed to remove the purge box 1. Cleaning and inspection are complete.

このように本実施形態では、パージボックス2内の酸素濃度を調整し、反応容器3内を清掃又は点検するのに適した作業雰囲気(パージボックス2と反応容器3が連通して一体となった容器状の空間内)で反応容器3を清掃又は点検作業をすることで、反応容器3を開放しても反応容器3内に混入する酸素濃度を抑えることができる。その結果、下記実施例に示すようにエピタキシャルウェーハに取り込まれる金属汚染を大幅に低減させることができる。   As described above, in this embodiment, the working atmosphere suitable for cleaning or checking the inside of the reaction vessel 3 by adjusting the oxygen concentration in the purge box 2 (the purge box 2 and the reaction vessel 3 are integrated and integrated). By cleaning or inspecting the reaction vessel 3 in a container-like space), the oxygen concentration mixed in the reaction vessel 3 can be suppressed even when the reaction vessel 3 is opened. As a result, as shown in the following examples, metal contamination taken into the epitaxial wafer can be greatly reduced.

以下、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、これらは本発明を限定するものではない。先ず、清掃又は点検(メンテナンス)前の金属汚染が同程度である図1の気相成長装置1と、気相成長装置1と同様の気相成長装置100(図2参照)を用意し、気相成長装置1では実施例として本発明の清掃又は点検方法を実施し、気相成長装置100では比較例として従来の手法で清掃又は点検を実施した。なお、図2で気相成長装置1と同様の構成については同じ符号を付して説明を省略する。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, these do not limit this invention. First, the vapor phase growth apparatus 1 of FIG. 1 and the vapor phase growth apparatus 100 similar to the vapor phase growth apparatus 1 (see FIG. 2) having the same level of metal contamination before cleaning or inspection (maintenance) are prepared. In the phase growth apparatus 1, the cleaning or inspection method of the present invention was implemented as an example, and in the vapor phase growth apparatus 100, cleaning or inspection was performed by a conventional method as a comparative example. In FIG. 2, the same components as those in the vapor phase growth apparatus 1 are denoted by the same reference numerals and description thereof is omitted.

また、気相成長装置1、100の反応容器3の金属汚染を評価する方法として、メンテナンスの前後にサンプルとしてエピタキシャルウェーハを作製し、その作製したウェーハをICP(Inductively Coupled Plasma)−MS(Mass Spectrometry)(誘導結合プラズマ質量分析法)によって金属定量値を比較し、その値をメンテナンスによる汚染度とした。具体的には、メンテナンス後のMo(モリブデン)濃度をメンテナンス前のMo濃度で除法した除法値(濃度増加比)をメンテナンス汚染度として定義する。これにより、簡便かつ高感度に異なるメンテナンス環境における反応容器3のメンテナンス汚染度に関する相関を得ることができる。   In addition, as a method for evaluating metal contamination of the reaction vessel 3 of the vapor phase growth apparatus 1 or 100, an epitaxial wafer is manufactured as a sample before and after maintenance, and the manufactured wafer is used as an ICP (Inductively Coupled Plasma) -MS (Mass Spectrometry). ) (Inductively coupled plasma mass spectrometry) was used to compare the metal quantitative values, and the value was taken as the degree of contamination due to maintenance. Specifically, a division value (concentration increase ratio) obtained by dividing the Mo (molybdenum) concentration after maintenance by the Mo concentration before maintenance is defined as the maintenance contamination degree. Thereby, the correlation regarding the maintenance contamination degree of the reaction container 3 in the maintenance environment which differs simply and highly sensitively can be obtained.

(比較例)
図3に示すようにメンテナンスを実施する前にサンプルとして直径200mmのシリコンエピタキシャルウェーハを作製し、メンテナンス前のウェーハからICP−MSによりMoの金属定量値を得た(S1)。次に従来のように天井部材6を取り外し、反応容器3を大気開放状態にした後(S2)、反応容器3内のサセプタ7及び支持部8を交換し、反応容器3内のベースリング4及びロワードーム5に堆積した副生成物等の清掃を実施した(S3)。この時の反応容器3内の酸素濃度を酸素濃度計測部で測定したところ、100000ppm以上であった。
(Comparative example)
As shown in FIG. 3, a silicon epitaxial wafer having a diameter of 200 mm was prepared as a sample before maintenance, and a Mo metal quantitative value was obtained by ICP-MS from the wafer before maintenance (S1). Next, after removing the ceiling member 6 and opening the reaction vessel 3 to the atmosphere as in the prior art (S2), the susceptor 7 and the support 8 in the reaction vessel 3 are replaced, and the base ring 4 in the reaction vessel 3 and Cleaning of by-products and the like accumulated in Rowardome 5 was performed (S3). At this time, the oxygen concentration in the reaction vessel 3 was measured by an oxygen concentration measurement unit, and was 100000 ppm or more.

清掃作業後に、再度、天井部材6を取り付け、メンテナンス後のサンプルとしてシリコンエピタキシャルウェーハを作製し、メンテナンス後のウェーハからICP−MSによりMoの金属定量値を得て、反応容器3のメンテナンス汚染度を評価したところ、メンテナンス前後のMo濃度比は6.3と金属汚染が増加した(図5参照)。これは、ベースリング4、回転駆動部9、ガス導入管10及びガス排出管11等は一般的にステンレス部材で作製されており、ステンレスに含有されるMoと大気中の酸素が反応したためと考えられる。   After the cleaning operation, the ceiling member 6 is attached again, a silicon epitaxial wafer is produced as a sample after maintenance, a Mo metal quantitative value is obtained from the wafer after maintenance by ICP-MS, and the maintenance contamination degree of the reaction vessel 3 is determined. As a result of the evaluation, the Mo concentration ratio before and after maintenance was 6.3, and metal contamination increased (see FIG. 5). This is probably because the base ring 4, the rotation drive unit 9, the gas introduction pipe 10, the gas discharge pipe 11 and the like are generally made of a stainless steel member, and Mo contained in the stainless steel reacts with oxygen in the atmosphere. It is done.

(実施例)
次に実施例について説明する。図4に示すように比較例と同様にメンテナンスを実施する前にサンプルとして直径200mmのシリコンエピタキシャルウェーハを作製し、メンテナンス前のウェーハからICP−MSによりMoの金属定量値を得た(S101)。そして、比較例と異なり、天井部材6を取り外す前に、メンテナンスをする作業領域となり、その作業領域内が大気雰囲気と隔離され、メンテナンス作業に適した作業雰囲気(酸素濃度)に調整できるパージボックス2を気相成長装置1に取り付けた(S102)。
(Example)
Next, examples will be described. As shown in FIG. 4, a silicon epitaxial wafer having a diameter of 200 mm was prepared as a sample before performing maintenance in the same manner as in the comparative example, and a Mo metal quantitative value was obtained from the wafer before maintenance by ICP-MS (S101). Unlike the comparative example, the purge box 2 becomes a work area where maintenance is performed before the ceiling member 6 is removed, and the work area is isolated from the air atmosphere and can be adjusted to a work atmosphere (oxygen concentration) suitable for the maintenance work. Was attached to the vapor phase growth apparatus 1 (S102).

次にパージボックス2内の雰囲気を置換するために大気導入バルブ2b´を完全に閉鎖し(S103)、パージガス導入管2aから窒素ガスを導入してパージを実施し、酸素濃度計2cによりパージボックス2内の酸素濃度が100ppm以下になるまでパージを実施した。   Next, in order to replace the atmosphere in the purge box 2, the air introduction valve 2 b ′ is completely closed (S 103), nitrogen gas is introduced from the purge gas introduction pipe 2 a, purge is performed, and the oxygen concentration meter 2 c is used to purge the purge box. Purge was performed until the oxygen concentration in 2 became 100 ppm or less.

パージボックス2内の酸素濃度が100ppm以下になったら、天井部材6を取り外して(S104)、反応容器3を開放状態にする。反応容器3を開放した後、反応容器3内のサセプタ7及び支持部8を交換し、反応容器3内のベースリング4及びロワードーム5に堆積した副生成物等の清掃を実施する(S105)。この際、清掃作業中の反応容器3内の酸素濃度を酸素濃度計測部で常時モニタリングしたところ、反応容器3内の酸素濃度が100ppmを超えることはなかった。   When the oxygen concentration in the purge box 2 becomes 100 ppm or less, the ceiling member 6 is removed (S104), and the reaction vessel 3 is opened. After the reaction vessel 3 is opened, the susceptor 7 and the support portion 8 in the reaction vessel 3 are exchanged, and cleaning of by-products and the like deposited on the base ring 4 and the rowardome 5 in the reaction vessel 3 is performed (S105). At this time, when the oxygen concentration in the reaction vessel 3 during the cleaning operation was constantly monitored by the oxygen concentration measuring unit, the oxygen concentration in the reaction vessel 3 did not exceed 100 ppm.

清掃作業後、再度、天井部材6を取り付け、メンテナンス後のサンプルとしてウェーハを作製してICP−MSによりMoの金属定量値を得て、反応容器3のメンテナンス汚染度の評価をしたところ、メンテナンス前後のMo濃度比は0.96と金属汚染の増加はなかった(図5参照)。このことから反応容器3の開放作業中の酸素濃度を100ppm以下の環境で作業を実施することで、特にMo汚染の増加が抑制できることが示された。   After the cleaning operation, the ceiling member 6 is attached again, a wafer is prepared as a sample after maintenance, the Mo metal quantitative value is obtained by ICP-MS, and the maintenance contamination degree of the reaction vessel 3 is evaluated. The Mo concentration ratio was 0.96, indicating no increase in metal contamination (see FIG. 5). From this, it was shown that by increasing the oxygen concentration during the opening operation of the reaction vessel 3 in an environment of 100 ppm or less, the increase in Mo contamination can be suppressed.

上記実施例では大気導入バルブ2b´を閉鎖して酸素濃度を100ppm以下でメンテナンスを実施した。別途、大気導入バルブ2b´を開放し、パージボックス2内(メンテナンスを実施するための作業雰囲気)の酸素濃度を1ppmから200000ppmの範囲で制御し、実施例と同様にメンテナンス作業を実施して反応容器3のメンテナンス汚染度を評価した。図6に示すようにメンテナンス時の反応容器3内の酸素濃度が低いほどMo濃度比が小さくなり、特に、酸素濃度が100ppm以下でMo濃度比は1程度となり、メンテナンス汚染度の増加が抑制されることが示された。   In the above embodiment, the air introduction valve 2b ′ was closed, and maintenance was performed with an oxygen concentration of 100 ppm or less. Separately, the air introduction valve 2b ′ is opened, the oxygen concentration in the purge box 2 (working atmosphere for performing maintenance) is controlled in the range of 1 ppm to 200,000 ppm, and the maintenance work is performed and reacted in the same manner as in the example. The maintenance contamination degree of the container 3 was evaluated. As shown in FIG. 6, the lower the oxygen concentration in the reaction vessel 3 during maintenance, the smaller the Mo concentration ratio. In particular, when the oxygen concentration is 100 ppm or less, the Mo concentration ratio is about 1, and the increase in maintenance contamination is suppressed. Rukoto has been shown.

なお、本発明は上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

例えば、気相成長装置は枚様式に限らず、縦型(パンケーキ型)、バレル型(シリンダー型)など各種気相成長装置のメンテナンスの場合にも本発明は適用できる。また、反応容器3の大気開放作業には、ガス導入管10及びガス排出管11も含まれる。更に、本実施例ではパージボックス2を用いてパージボックス2の内部(作業雰囲気)と外部(大気雰囲気)の隔離、及び、パージボックス2の内部の酸素濃度の低減を行っているが、同様の効果が得られれば、パージボックス2を用いなくてもよい。   For example, the vapor phase growth apparatus is not limited to a sheet format, and the present invention can be applied to maintenance of various vapor phase growth apparatuses such as a vertical type (pancake type) and a barrel type (cylinder type). Further, the atmosphere opening operation of the reaction vessel 3 includes a gas introduction pipe 10 and a gas discharge pipe 11. Further, in this embodiment, the purge box 2 is used to isolate the inside (working atmosphere) and the outside (atmospheric atmosphere) of the purge box 2 and reduce the oxygen concentration inside the purge box 2. If the effect is obtained, the purge box 2 may not be used.

1 気相成長装置 2 パージボックス
2a パージガス導入管 2b 大気導入管
2c 酸素濃度計 3 反応容器
4 ベースリング 5 ロワードーム
6 天井部材(蓋状部材) 7 サセプタ
8 支持部 9 回転駆動部
10 ガス導入管 11 ガス排出管
O 中心軸 G 気相成長ガス
A 大気 P 不活性ガス
DESCRIPTION OF SYMBOLS 1 Vapor growth apparatus 2 Purge box 2a Purge gas introduction pipe 2b Atmospheric introduction pipe 2c Oxygen concentration meter 3 Reaction container 4 Base ring 5 Rowardome 6 Ceiling member (lid member) 7 Susceptor 8 Support part 9 Rotation drive part 10 Gas introduction pipe 11 Gas exhaust pipe O Central axis G Vapor growth gas A Atmosphere P Inert gas

Claims (5)

気密にされた気相成長装置の反応容器の開放をともなう清掃又は点検時に、前記反応容器内の酸素濃度を大気雰囲気よりも低減することを特徴とする気相成長装置の清掃又は点検方法。   A method for cleaning or inspecting a vapor phase growth apparatus, characterized in that the oxygen concentration in the reaction vessel is reduced from the atmospheric atmosphere at the time of cleaning or inspection involving opening of the reaction vessel of an airtight vapor phase growth apparatus. 前記酸素濃度が100ppm以下である請求項1に記載の気相成長装置の清掃又は点検方法。   The method for cleaning or checking a vapor phase growth apparatus according to claim 1, wherein the oxygen concentration is 100 ppm or less. エピタキシャルウェーハを製造する気相成長装置の反応容器内を清掃又は点検する準備のために前記反応容器の蓋状部材を取り外して前記反応容器を開放する準備工程を有する気相成長装置の清掃又は点検方法において、
取り外される前の前記蓋状部材を覆うとともに前記蓋状部材が二重蓋となるように前記蓋状部材の上から更に前記反応容器を閉じるように位置し、内側と外側の雰囲気を隔離可能、かつ、内側の雰囲気を調整可能なパージボックスを前記反応容器に取り付ける取付工程と、
前記反応容器に取り付けられた前記パージボックスの内側の酸素濃度を外側の大気雰囲気の酸素濃度より低減させる調整工程と、を備え、
前記調整工程後に前記準備工程を実施することを特徴とする気相成長装置の清掃又は点検方法。
Cleaning or inspection of a vapor phase growth apparatus including a preparation step of removing the lid member of the reaction container and opening the reaction container in preparation for cleaning or checking the inside of the reaction container of the vapor phase growth apparatus for manufacturing an epitaxial wafer In the method
Covers the lid-like member before being removed and is positioned so as to further close the reaction vessel from the top of the lid-like member so that the lid-like member becomes a double lid, and the atmosphere inside and outside can be isolated, and An attachment step of attaching a purge box capable of adjusting the inner atmosphere to the reaction vessel;
Adjusting the oxygen concentration inside the purge box attached to the reaction vessel to be lower than the oxygen concentration in the outside air atmosphere, and
A method of cleaning or checking a vapor phase growth apparatus, wherein the preparation step is performed after the adjustment step.
前記調整工程は前記パージボックスの内側の酸素濃度を100ppm以下にする請求項3に記載の気相成長装置の清掃又は点検方法。   The method for cleaning or checking a vapor phase growth apparatus according to claim 3, wherein the adjusting step sets the oxygen concentration inside the purge box to 100 ppm or less. 前記パージボックスはグローブボックス構造である請求項3又は4に記載の気相成長装置の清掃又は点検方法。   The method for cleaning or checking a vapor phase growth apparatus according to claim 3 or 4, wherein the purge box has a glove box structure.
JP2014010037A 2014-01-23 2014-01-23 Method for cleaning or checking vapor phase growth apparatus and method for manufacturing epitaxial wafer Active JP6090183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010037A JP6090183B2 (en) 2014-01-23 2014-01-23 Method for cleaning or checking vapor phase growth apparatus and method for manufacturing epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014010037A JP6090183B2 (en) 2014-01-23 2014-01-23 Method for cleaning or checking vapor phase growth apparatus and method for manufacturing epitaxial wafer

Publications (2)

Publication Number Publication Date
JP2015138897A true JP2015138897A (en) 2015-07-30
JP6090183B2 JP6090183B2 (en) 2017-03-08

Family

ID=53769696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010037A Active JP6090183B2 (en) 2014-01-23 2014-01-23 Method for cleaning or checking vapor phase growth apparatus and method for manufacturing epitaxial wafer

Country Status (1)

Country Link
JP (1) JP6090183B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029002A (en) * 2013-07-30 2015-02-12 信越半導体株式会社 Contamination evaluation method of vapor phase epitaxial growth system and method of manufacturing epitaxial wafer
JP6477844B1 (en) * 2017-11-29 2019-03-06 株式会社Sumco Epitaxial wafer manufacturing method and vapor phase growth apparatus management method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351432U (en) * 1986-09-24 1988-04-07
JPH0736440U (en) * 1993-12-20 1995-07-04 神鋼電機株式会社 Nitrogen gas purge type vertical semiconductor manufacturing equipment
JPH07283139A (en) * 1994-04-04 1995-10-27 Nissin Electric Co Ltd Thin film vapor-phase growth device
JP2002105644A (en) * 2000-10-03 2002-04-10 Dowa Mining Co Ltd Method and apparatus for thin film growth
JP2005236093A (en) * 2004-02-20 2005-09-02 Taiyo Nippon Sanso Corp Vapor phase growth equipment
JP2007208096A (en) * 2006-02-03 2007-08-16 Taiyo Nippon Sanso Corp Vapor phase growth apparatus
JP2009181972A (en) * 2008-01-29 2009-08-13 Samco Inc Thin film deposition system
JP2013115189A (en) * 2011-11-28 2013-06-10 Hitachi Kokusai Electric Inc Substrate processing system
US20130263895A1 (en) * 2012-04-06 2013-10-10 Jae Chull Lee Cvd reactor cleaning methods and systems

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351432U (en) * 1986-09-24 1988-04-07
JPH0736440U (en) * 1993-12-20 1995-07-04 神鋼電機株式会社 Nitrogen gas purge type vertical semiconductor manufacturing equipment
JPH07283139A (en) * 1994-04-04 1995-10-27 Nissin Electric Co Ltd Thin film vapor-phase growth device
JP2002105644A (en) * 2000-10-03 2002-04-10 Dowa Mining Co Ltd Method and apparatus for thin film growth
JP2005236093A (en) * 2004-02-20 2005-09-02 Taiyo Nippon Sanso Corp Vapor phase growth equipment
JP2007208096A (en) * 2006-02-03 2007-08-16 Taiyo Nippon Sanso Corp Vapor phase growth apparatus
JP2009181972A (en) * 2008-01-29 2009-08-13 Samco Inc Thin film deposition system
JP2013115189A (en) * 2011-11-28 2013-06-10 Hitachi Kokusai Electric Inc Substrate processing system
US20130263895A1 (en) * 2012-04-06 2013-10-10 Jae Chull Lee Cvd reactor cleaning methods and systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015029002A (en) * 2013-07-30 2015-02-12 信越半導体株式会社 Contamination evaluation method of vapor phase epitaxial growth system and method of manufacturing epitaxial wafer
JP6477844B1 (en) * 2017-11-29 2019-03-06 株式会社Sumco Epitaxial wafer manufacturing method and vapor phase growth apparatus management method
JP2019102541A (en) * 2017-11-29 2019-06-24 株式会社Sumco Method for manufacturing epitaxial wafer and method for managing vapor growth device

Also Published As

Publication number Publication date
JP6090183B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5884705B2 (en) Method for measuring contamination amount of vapor phase growth apparatus and method for manufacturing epitaxial wafer
WO2009085561A4 (en) Methods for in-situ chamber cleaning process for high volume manufacture of semiconductor materials
JP5839343B2 (en) Contamination detection method for vapor phase growth apparatus and epitaxial wafer manufacturing method
JPWO2011033752A1 (en) Epitaxial wafer manufacturing method and manufacturing apparatus
CN109072427A (en) Chamber liner for high-temperature process
JP2011233583A (en) Vapor-phase growth device and method of manufacturing silicon epitaxial wafer
JP5880974B2 (en) Method for detecting contamination of epitaxial growth apparatus and method for manufacturing epitaxial wafer
JP6090183B2 (en) Method for cleaning or checking vapor phase growth apparatus and method for manufacturing epitaxial wafer
JP6098997B2 (en) Method for evaluating contamination of epitaxial growth apparatus and method for manufacturing epitaxial wafer
JP5228857B2 (en) Manufacturing method of silicon epitaxial wafer
TWI713946B (en) Contamination management method of vapor-phase-growth equipment
JP2008262967A (en) Vapor phase deposition method, and apparatus using the same
US10379094B2 (en) Contamination control method of vapor deposition apparatus and method of producing epitaxial silicon wafer
JP5936007B2 (en) Contamination evaluation method for vapor phase epitaxial growth apparatus and epitaxial wafer manufacturing method
JP5459257B2 (en) Manufacturing method of silicon epitaxial wafer
JP6489198B1 (en) Method for evaluating contamination of epitaxial wafer and method for manufacturing epitaxial wafer using the method
JP5799845B2 (en) Evaluation method for metal contamination of gas
JP6565658B2 (en) Epitaxial wafer manufacturing method and epitaxial growth apparatus
JP2015035460A (en) Method of manufacturing epitaxial wafer
JP5337902B2 (en) Vapor phase growth apparatus and method
JP6475609B2 (en) Epitaxial wafer manufacturing method
JP2010168616A (en) Cvd apparatus
TW201347032A (en) Method of quantitatively characterizing adulterants of silanes and coated susceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6090183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250