JP2015138230A - Carrier for electrophotography - Google Patents

Carrier for electrophotography Download PDF

Info

Publication number
JP2015138230A
JP2015138230A JP2014011147A JP2014011147A JP2015138230A JP 2015138230 A JP2015138230 A JP 2015138230A JP 2014011147 A JP2014011147 A JP 2014011147A JP 2014011147 A JP2014011147 A JP 2014011147A JP 2015138230 A JP2015138230 A JP 2015138230A
Authority
JP
Japan
Prior art keywords
resin
weight
silicone
acrylic resin
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014011147A
Other languages
Japanese (ja)
Other versions
JP2015138230A5 (en
JP6193138B2 (en
Inventor
幸成 小熊
Yukinari Oguma
幸成 小熊
亮 岡本
Akira Okamoto
亮 岡本
林 政友
Masatomo Hayashi
政友 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP2014011147A priority Critical patent/JP6193138B2/en
Publication of JP2015138230A publication Critical patent/JP2015138230A/en
Publication of JP2015138230A5 publication Critical patent/JP2015138230A5/ja
Application granted granted Critical
Publication of JP6193138B2 publication Critical patent/JP6193138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carrier for electrophotography that has high charge applying capacity to toner, is excellent in spent resistance, has stable chargeability even during continuous printing of a number of images, is excellent in initial charge start-up property and charge holding power, and has good adhesion to a core material and coating property; and a two-component developer for electrophotography using the carrier.SOLUTION: There is provided a carrier for electrophotography having a core material and a resin coating layer that coats the surface of the core material, where the resin coating layer contains an acrylic resin, a silicone resin, and a silicone modified acrylic resin; and when the total amount of the acrylic resin, a silicone resin, and a silicone modified acrylic resin is 100 weight%, the ratios of the acrylic resin, silicone resin, and silicone modified acrylic resin in the resin coating layer are 40 to 85 weight%, 10 to 30 weight%, and 5 to 30 weight%, respectively.

Description

本発明は、電子写真用キャリア、並びに該電子写真用キャリアを用いた電子写真用二成分現像剤に関する。本発明のキャリアは、静電潜像現像剤用キャリアである。   The present invention relates to an electrophotographic carrier and an electrophotographic two-component developer using the electrophotographic carrier. The carrier of the present invention is a carrier for an electrostatic latent image developer.

電子写真方式に使用される電子写真用二成分現像剤は、トナーとキャリアで構成されており、キャリアは現像槽内でトナーと混合撹拌され摩擦帯電し、トナーに所望の電荷を与え、電荷を帯びたトナーを感光体上の静電潜像に運び、トナー像を形成させる機能を有する。そしてキャリアはマグネットロール上から再び現像槽内に戻り、新たに補給されるトナーと再び混合撹拌され繰り返し使用される。
従って、キャリアとしては、使用期間中、トナーに対しあらゆる環境下で絶えずキャリアとして所望される特性を発揮し、特に安定した帯電特性を与えることが要求される。
The electrophotographic two-component developer used in the electrophotographic system is composed of a toner and a carrier, and the carrier is mixed and stirred with the toner in the developing tank and frictionally charged to give the toner a desired charge and charge. It has a function of carrying the toner on the electrostatic latent image on the photosensitive member to form a toner image. The carrier returns to the developing tank again from the top of the magnet roll, and is again mixed and agitated with newly replenished toner and used repeatedly.
Accordingly, the carrier is required to continuously exhibit desired characteristics as a carrier in any environment during the period of use, and to give particularly stable charging characteristics.

しかし、従来の電子写真用二成分現像剤は、撹拌によるキャリア同士の衝突や現像槽とキャリア間の摩擦等のストレスによりキャリア表面にトナーが融着するスペント現象が起きる。このようなキャリアのスペント現象による劣化を防止するために、従来からコア材表面に種々の樹脂を被覆することが行われてきた。コア材表面を樹脂で被覆すると、キャリアの表面が平滑になり、トナーがキャリアに付着し難くなるのでスペント現象も発生しにくくなる。したがって、現像剤の寿命を伸ばすことができる。更に、樹脂を選択することにより、キャリアの帯電特性、電気抵抗等を制御することが可能となる。
また、樹脂被覆により、コア材は直接には環境の影響を受けることがなくなるので、耐環境性、例えば温度変化、湿度変化等に対してキャリアの物性が変化し難くなる。
このように、キャリアのコア材の表面を樹脂で被覆すると、実用特性が大幅に改善される。
However, the conventional two-component developer for electrophotography causes a spent phenomenon in which toner is fused to the surface of the carrier due to stress such as collision between carriers caused by stirring or friction between the developing tank and the carrier. In order to prevent such deterioration due to the spent phenomenon of the carrier, the surface of the core material has been conventionally coated with various resins. When the surface of the core material is coated with a resin, the surface of the carrier becomes smooth and the toner hardly adheres to the carrier, so that the spent phenomenon is less likely to occur. Therefore, the lifetime of the developer can be extended. Furthermore, by selecting a resin, it is possible to control the charging characteristics, electrical resistance, etc. of the carrier.
In addition, since the core material is not directly affected by the environment due to the resin coating, the physical properties of the carrier hardly change with respect to environmental resistance, for example, temperature change, humidity change and the like.
Thus, when the surface of the core material of the carrier is coated with resin, the practical characteristics are greatly improved.

被覆樹脂として使用される代表的なものとしてアクリル樹脂とシリコーン樹脂があげられ、アクリル樹脂被覆キャリアは、コア材との密着性が高く剥がれが発生しにくく、トナーに対する帯電付与能力、特に負荷電性トナーに対する帯電付与能力に優れているが、耐スペント性と帯電保持力に劣る欠点がある。
一方、シリコーン樹脂被覆キャリアは、表面エネルギーが低く、摩擦係数も低く、耐スペント性に優れているものの帯電付与能力に劣り、トナーを補給した際にカブリが発生し易いなどの欠点がある。
Typical examples of the coating resin include acrylic resin and silicone resin, and the acrylic resin-coated carrier is highly adhesive to the core material and hardly peels off. Although it is excellent in the ability to impart charge to the toner, it has the disadvantage of poor spent resistance and charge retention.
On the other hand, silicone resin-coated carriers have low surface energy, low coefficient of friction, and excellent spent resistance, but are poor in charge imparting ability, and are susceptible to fogging when toner is replenished.

そこでアクリル樹脂被覆キャリアとシリコーン樹脂被覆キャリアの特性を併せ持つことを目的とし、アクリル樹脂とシリコーン樹脂を併用したキャリアも提案されており、例えば、特許文献1や特許文献2においてはアクリル樹脂とシリコーン樹脂を含有し、その樹脂比率を特徴とするものが提案されている。また特許文献3のようなアクリル樹脂にシリコーン樹脂をグラフトさせる提案や特許文献4のようなシラノール含有アクリルモノマーの共重合物を作製し塗膜を得るといった提案も成されている。   Therefore, for the purpose of combining the characteristics of an acrylic resin-coated carrier and a silicone resin-coated carrier, a carrier using both an acrylic resin and a silicone resin has been proposed. For example, in Patent Document 1 and Patent Document 2, an acrylic resin and a silicone resin are proposed. Has been proposed that is characterized by its resin ratio. There are also proposals for grafting a silicone resin to an acrylic resin as in Patent Document 3 and proposals for producing a coating film by producing a copolymer of silanol-containing acrylic monomers as in Patent Document 4.

特開平11−202561号公報JP-A-11-202561 特開2003−167389号公報JP 2003-167389 A 特開2013−003428号公報JP2013-003428A 特開2010−244026号公報JP 2010-244026 A

しかしながら、本来アクリル樹脂とシリコーン樹脂の相溶性は悪く、シリコーン樹脂の低表面エネルギーを維持した均質な塗膜を得ることは難しい。また、特許文献3、4のようなに、モノマーからシリコーン成分を含有することでアクリル樹脂の特性を失ってしまうことが懸念される。   However, the compatibility between the acrylic resin and the silicone resin is originally poor, and it is difficult to obtain a uniform coating film that maintains the low surface energy of the silicone resin. In addition, as in Patent Documents 3 and 4, there is a concern that the characteristics of the acrylic resin may be lost by including a silicone component from the monomer.

本発明の目的は、トナーに対する帯電付与能力が高く、耐スペント性に優れ、かつ多数枚連続プリントにおいても帯電性が安定しており、初期の帯電立ち上がり性、帯電保持力にも優れ、コア材との密着性や塗膜性が良い電子写真用キャリア及び該キャリアを用いた電子写真用二成分現像剤を提供することにある。   The object of the present invention is to provide a toner with high charge-imparting ability, excellent spent resistance, stable charging even in continuous printing of a large number of sheets, excellent initial charge start-up property and charge holding power, and core material. It is to provide a carrier for electrophotography having good adhesion and coating properties with the toner and a two-component developer for electrophotography using the carrier.

本発明は、下記の技術的構成により、前記課題を解決できたものである。   The present invention has solved the above problems by the following technical configuration.

(1)コア材と、該コア材の表面を被覆する樹脂被覆層とを有する電子写真用キャリアであって、
前記樹脂被覆層が、アクリル樹脂、シリコーン樹脂及びシリコーン変性アクリル樹脂を含み、
前記樹脂被覆層におけるアクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の割合が、アクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の合計量を100重量%としたとき、アクリル樹脂が40〜85重量%、シリコーン樹脂が10〜30重量%、シリコーン変性アクリル樹脂が5〜30重量%である、ことを特徴とする電子写真用キャリア。
(1) An electrophotographic carrier having a core material and a resin coating layer covering the surface of the core material,
The resin coating layer includes an acrylic resin, a silicone resin, and a silicone-modified acrylic resin,
The ratio of the acrylic resin, silicone resin, and silicone-modified acrylic resin in the resin coating layer is 40 to 85% by weight of acrylic resin when the total amount of acrylic resin, silicone resin, and silicone-modified acrylic resin is 100% by weight. A carrier for electrophotography, wherein the silicone resin is 10 to 30% by weight and the silicone-modified acrylic resin is 5 to 30% by weight.

(2)前記アクリル樹脂のガラス転移温度Tgが80℃以上であることを特徴とする前記(1)に記載の電子写真用キャリア。 (2) The electrophotographic carrier as described in (1) above, wherein the glass transition temperature Tg of the acrylic resin is 80 ° C. or higher.

(3)前記アクリル樹脂の酸価が3以下であることを特徴とする前記(1)又は(2)に記載の電子写真用キャリア。 (3) The electrophotographic carrier as described in (1) or (2) above, wherein the acrylic resin has an acid value of 3 or less.

(4)前記樹脂被覆層が、カーボンブラックとマグネタイトを含むことを特徴とする前記(1)〜(3)の何れかに記載の電子写真用キャリア。 (4) The electrophotographic carrier according to any one of (1) to (3), wherein the resin coating layer contains carbon black and magnetite.

(5)前記カーボンブラックの含有量が、前記樹脂被覆層中の樹脂の固形分100重量部に対して、1〜15重量部であり、マグネタイトの含有量が、前記樹脂被覆層中の樹脂の固形分100重量部に対して、10〜150重量部であることを特徴とする前記(4)に記載の電子写真用キャリア。 (5) The content of the carbon black is 1 to 15 parts by weight with respect to 100 parts by weight of the solid content of the resin in the resin coating layer, and the content of the magnetite is that of the resin in the resin coating layer. The electrophotographic carrier as described in (4) above, which is 10 to 150 parts by weight with respect to 100 parts by weight of the solid content.

(6)前記樹脂被覆層が有機金属触媒を含み、樹脂被覆層中の樹脂の固形分100重量部に対する有機金属触媒の含有量X(重量部)と、樹脂被覆層中の樹脂の固形分100重量部に対するシリコーン樹脂の含有量Y(重量部)とが、(Y/5)≦X≦(Y/2)の関係式を満たすことを特徴とする前記(1)〜(5)の何れかに記載の電子写真用キャリア。 (6) The resin coating layer contains an organometallic catalyst, the organometallic catalyst content X (parts by weight) with respect to 100 parts by weight of the resin solids in the resin coating layer, and the resin solids 100 in the resin coating layer Any of (1) to (5) above, wherein the content Y (parts by weight) of the silicone resin with respect to parts by weight satisfies the relational expression (Y / 5) ≦ X ≦ (Y / 2) An electrophotographic carrier as described in 1.

(7)前記樹脂被覆層が更にスチレン−アクリル樹脂を含み、スチレン−アクリル樹脂の割合が、アクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の合計100重量部に対して、0超〜30重量部であることを特徴とする前記(1)〜(6)の何れかに記載の電子写真用キャリア。 (7) The resin coating layer further includes a styrene-acrylic resin, and the ratio of the styrene-acrylic resin is more than 0 to 30 parts by weight with respect to 100 parts by weight in total of the acrylic resin, the silicone resin, and the silicone-modified acrylic resin. The carrier for electrophotography according to any one of (1) to (6), wherein

(8)前記シリコーン変性アクリル樹脂が、メタクリル酸メチルと3−メタクリロキシプロピルトリメトキシシランをモノマー成分として含み構成されることを特徴とする前記(1)〜(7)の何れかに記載の電子写真用キャリア。 (8) The electron according to any one of (1) to (7), wherein the silicone-modified acrylic resin comprises methyl methacrylate and 3-methacryloxypropyltrimethoxysilane as monomer components. Photo carrier.

(9)前記シリコーン樹脂が、熱硬化性シリコーン樹脂であることを特徴とする前記(1)〜(8)の何れかに記載の電子写真用キャリア。 (9) The electrophotographic carrier according to any one of (1) to (8), wherein the silicone resin is a thermosetting silicone resin.

(10)絶縁破壊電圧が0.5〜3.5kVであることを特徴とする前記(1)〜(9)の何れかに記載の電子写真用キャリア。 (10) The electrophotographic carrier according to any one of (1) to (9), wherein the dielectric breakdown voltage is 0.5 to 3.5 kV.

(11)前記(1)〜(10)の何れかの電子写真用キャリアと、トナーとを含むことを特徴とする電子写真用二成分現像剤。 (11) An electrophotographic two-component developer comprising the electrophotographic carrier according to any one of (1) to (10) and a toner.

本発明の電子写真用キャリアは、アクリル樹脂とシリコーン樹脂とシリコーン変性アクリル樹脂とを特定条件で組み合わせた樹脂からなる樹脂被覆層を有することにより、トナーに対する帯電付与能力が高く、耐スペント性に優れ、かつ多数枚連続プリントにおいても帯電性が安定しており、初期の帯電立ち上がり性、ライフでの帯電保持力にも優れ、コア材との密着性や塗膜性が良い電子写真用キャリアを得ることができる。
特に、アクリル樹脂とシリコーン樹脂を用いた被覆樹脂に、更にシリコーン変性アクリル樹脂を組み合わせることにより、アクリル樹脂とシリコーン樹脂の相溶性及び接着性を高めつつ、両樹脂の特性を最大限に活かした電子写真用キャリアを創出することができる。
The electrophotographic carrier of the present invention has a resin coating layer made of a resin in which an acrylic resin, a silicone resin, and a silicone-modified acrylic resin are combined under specific conditions. In addition, the charging property is stable even in continuous printing of a large number of sheets, and an electrophotographic carrier having excellent initial charge rising property, excellent charge holding power in life, and good adhesion to the core material and coating property is obtained. be able to.
In particular, by combining a coating resin using an acrylic resin and a silicone resin with a silicone-modified acrylic resin, the compatibility and adhesion between the acrylic resin and the silicone resin is improved, and an electronic that takes full advantage of the characteristics of both resins. A photographic carrier can be created.

絶縁破壊電圧測定器の回路図(側面方向からみた図)である。It is a circuit diagram (figure seen from the side surface direction) of a dielectric breakdown voltage measuring device.

以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態に限定されるものではなく、本発明の目的の範囲内で、適宜変更を加えて実施できる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の要旨を限定するものではない。   Hereinafter, although embodiment of this invention is described in detail, this invention is not limited to the following embodiment, In the range of the objective of this invention, it can implement by adding a change suitably. In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the summary of invention is not limited.

本発明の電子写真用キャリアは、コア材と、該コア材の表面を被覆する樹脂被覆層とを有してなり、更に必要に応じてその他の構成を有してなる。   The electrophotographic carrier of the present invention has a core material and a resin coating layer that covers the surface of the core material, and further has other configurations as necessary.

〔コア材〕
本発明におけるコア材としては磁性粒子が用いられる。磁性粒子としては、特に制限はなく、鉄粉、マグネタイト、Mnフェライト、Mn-Znフェライト、Mn-Mgフェライト、Mn-Mg-Srフェライト、Mgフェライト、その他アルカリ金属、アルカリ土類、軽金属類を含有した上記フェライト群の中から目的に応じて使用可能であり、必要に応じて酸化処理等を施したものから好適に使用できる。中でもフェライト系コア材が好ましく、更にMnやMgを含有するフェライト系コア材が好ましい。
[Core material]
Magnetic particles are used as the core material in the present invention. The magnetic particles are not particularly limited, and include iron powder, magnetite, Mn ferrite, Mn-Zn ferrite, Mn-Mg ferrite, Mn-Mg-Sr ferrite, Mg ferrite, other alkali metals, alkaline earths, and light metals. The above ferrite group can be used according to the purpose, and can be suitably used from those subjected to oxidation treatment or the like as necessary. Among these, a ferrite core material is preferable, and a ferrite core material containing Mn and Mg is more preferable.

コア材の平均粒子径については特に限定はされないが、10〜120μmが好ましく、20〜90μmがより好ましく、30〜80μmが更に好ましい。平均粒子径が120μm以下であれば印字濃度の階調性が良好となり、10μm以上であればキャリア付着を低減できる。なお、コア材及び後述するキャリア(当該コア材表面に樹脂被覆層を設けたキャリア)の平均粒子径は、レーザー回折式粒度分布装置(HELOS(SYMPATEC社製))に乾式分散装置(RODOS(SYMPATEC社製))を用いて測定できる。コア材及びキャリアについての平均粒子径は、体積平均粒子径である。   Although it does not specifically limit about the average particle diameter of a core material, 10-120 micrometers is preferable, 20-90 micrometers is more preferable, 30-80 micrometers is still more preferable. If the average particle size is 120 μm or less, the gradation of the print density is good, and if it is 10 μm or more, carrier adhesion can be reduced. In addition, the average particle diameter of the core material and the carrier described later (carrier having a resin coating layer on the surface of the core material) is measured by a dry dispersion device (RODOS (SYMPATEC)) in a laser diffraction particle size distribution device (HELOS (SYMPATEC)). ))). The average particle size for the core material and the carrier is the volume average particle size.

コア材の飽和磁化は、特に限定されないが、20〜90Am2/kgが好ましく、30〜80Am2/kgがより好ましく、35〜70Am2/kgが更に好ましい。飽和磁化が90Am2/kgより大きいと、文字欠けが生じ易くなり、20Am2/kgより小さいと、カブリが多く発生する傾向となる。このような範囲の飽和磁化を有するコア材を、電子写真用キャリアとすることで、これを使用した電子写真用二成分現像剤は、低印字率で連続して印刷を行うような厳しい耐刷条件下でも、所望の画像濃度を得ることができる。本発明における飽和磁化は、理研電子(株)製の振動型試料型磁力計BHV−35Hを用いて、サンプルを測定用カプセル(0.0565cc)に充填し、磁場1.1(MA/m)で測定できる。なお、キャリア(当該コア材表面に樹脂被覆層を設けたキャリア)の飽和磁化も20〜90Am2/kgが好ましく、30〜80Am2/kgがより好ましく、35〜70Am2/kgが更に好ましい。 Saturation magnetization of the core material is not particularly limited, but is preferably 20~90Am 2 / kg, more preferably 30~80Am 2 / kg, more preferably 35~70Am 2 / kg. If the saturation magnetization is greater than 90 Am 2 / kg, missing characters tend to occur, and if it is less than 20 Am 2 / kg, fog tends to occur. By using a core material having saturation magnetization in such a range as an electrophotographic carrier, an electrophotographic two-component developer using the core material has a severe printing durability that allows continuous printing at a low printing rate. Even under conditions, a desired image density can be obtained. The saturation magnetization in the present invention is obtained by using a vibrating sample magnetometer BHV-35H manufactured by Riken Denshi Co., Ltd., filling the sample into a measurement capsule (0.0565 cc), and applying a magnetic field of 1.1 (MA / m). Can be measured. Incidentally, the saturation magnetization is also 20~90Am 2 / kg are preferred carrier (carrier having a resin coating layer on the core material surface), more preferably 30~80Am 2 / kg, more preferably 35~70Am 2 / kg.

〔樹脂被覆層〕
本発明の電子写真用キャリアは、コア材の表面を被覆する樹脂被覆層を有し、樹脂被覆層は、アクリル樹脂とシリコーン樹脂とシリコーン変性アクリル樹脂とを特定の割合で組み合わせた樹脂を含む。
(Resin coating layer)
The electrophotographic carrier of the present invention has a resin coating layer that covers the surface of the core material, and the resin coating layer contains a resin in which an acrylic resin, a silicone resin, and a silicone-modified acrylic resin are combined at a specific ratio.

コア材を被覆するアクリル樹脂は、メタクリル酸エステル、メタクリル酸、アクリル酸エステル、アクリル酸、及びアクリルアミドから選ばれる1種以上のモノマーの重合体であり、耐スペント性や帯電性の維持の観点から、メタクリル酸メチル、メタクリル酸、及びアクリル酸から選ばれる1種以上のモノマーの重合体が好ましい。また、アクリル樹脂は、ガラス転移点Tgが80℃以上であることが好ましく、より好ましくは90℃以上、更に好ましくは100℃以上、より更に好ましくは105℃以上である。また、アクリル樹脂の酸価は、環境特性や歩留まりの観点から3以下、更に2以下であることが好ましい。   The acrylic resin that coats the core material is a polymer of one or more monomers selected from methacrylic acid ester, methacrylic acid, acrylic acid ester, acrylic acid, and acrylamide, from the viewpoint of maintaining spent resistance and chargeability. A polymer of at least one monomer selected from methyl methacrylate, methacrylic acid, and acrylic acid is preferred. The acrylic resin preferably has a glass transition point Tg of 80 ° C. or higher, more preferably 90 ° C. or higher, still more preferably 100 ° C. or higher, and still more preferably 105 ° C. or higher. The acid value of the acrylic resin is preferably 3 or less, and more preferably 2 or less from the viewpoints of environmental characteristics and yield.

市販のアクリル樹脂としては、ダイヤナールBR−52、BR−80、BR−100、LR−269、LR−1065(以上三菱レイヨン社製)やアクリット0404EA−P、0403Ka、0502TI(以上大成ファインケミカル社製)等が挙げられる。   Commercially available acrylic resins include Dianal BR-52, BR-80, BR-100, LR-269, LR-1065 (more from Mitsubishi Rayon Co., Ltd.) and Acryt 0404EA-P, 0403Ka, 0502TI (more from Taisei Fine Chemical Co., Ltd.) ) And the like.

コア材を被覆するシリコーン樹脂は、熱硬化性のシリコーン樹脂が好ましい。市販のシリコーン樹脂としては、KR−212、KR−272、KR−251、KR−255(以上信越化学社製)、SR2400、SR2410、SR2440、SR2441(以上東レダウコーニング社製)、TSR−127B、TSR−144、TSR−160(以上モメンティブパフォーマンスマテリアル社製)等が挙げられる。   The silicone resin that coats the core material is preferably a thermosetting silicone resin. As commercially available silicone resins, KR-212, KR-272, KR-251, KR-255 (manufactured by Shin-Etsu Chemical Co., Ltd.), SR2400, SR2410, SR2440, SR2441 (manufactured by Toray Dow Corning), TSR-127B, Examples include TSR-144, TSR-160 (manufactured by Momentive Performance Materials).

コア材を被覆するシリコーン変性アクリル樹脂は、アクリル酸系モノマーからなるアクリル酸系ポリマーを主骨格とするシリコーン変性アクリル樹脂であり、シリコーン部位を有する点で、前記のアクリル樹脂とは区別される。シリコーン変性アクリル樹脂において、アクリル酸系モノマーと、シリコーン含有モノマーもしくはシリコーン樹脂成分との組み合わせは特に制限はないが、アクリル酸系単量体としては、メタクリル酸エステル、メタクリル酸、アクリル酸エステル、アクリル酸、及びアクリルアミドから選ばれる1種以上のモノマーが好ましい。また、シリコーン含有モノマーとしては、メタクリル基を含有するシランカップリング剤及びそのオリゴマーから選ばれる化合物が好ましい。またシリコーン樹脂成分としては、変性用シリコーン樹脂等が使用できる。市販のシリコーン成分を有する構成材料としてはKBM−502、KBM−503、KBE−502、KBE−503、KBM−5103、X−40−2655A等(以上信越化学社製)が挙げられる。シリコーン変性アクリル樹脂は、メタクリル酸メチルと3−メタクリロキシプロピルトリメトキシシランをモノマー成分として含み構成されるものが好ましい。   The silicone-modified acrylic resin that coats the core material is a silicone-modified acrylic resin having an acrylic acid-based polymer composed of an acrylic acid-based monomer as a main skeleton, and is distinguished from the above-mentioned acrylic resin in that it has a silicone moiety. In the silicone-modified acrylic resin, the combination of the acrylic monomer and the silicone-containing monomer or the silicone resin component is not particularly limited. As the acrylic monomer, methacrylic acid ester, methacrylic acid, acrylic ester, acrylic One or more monomers selected from acids and acrylamides are preferred. Moreover, as a silicone containing monomer, the compound chosen from the silane coupling agent containing a methacryl group, and its oligomer is preferable. As the silicone resin component, a modifying silicone resin or the like can be used. Examples of the constituent material having a commercially available silicone component include KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103, X-40-2655A (manufactured by Shin-Etsu Chemical Co., Ltd.). The silicone-modified acrylic resin preferably includes methyl methacrylate and 3-methacryloxypropyltrimethoxysilane as monomer components.

本発明では、樹脂被覆層におけるアクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の割合が、アクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の合計量を100重量%としたとき、アクリル樹脂が40〜85重量%、好ましくは60〜80重量%、シリコーン樹脂が10〜30重量%、好ましくは10〜20重量%、シリコーン変性アクリル樹脂が5〜30重量%、10〜20重量%である。アクリル樹脂の割合が85重量%より大きいと、高帯電による画像劣化が発生し、40重量%より小さいと初期の帯電付与性が悪くなる。また、シリコーン樹脂の割合が30重量%より大きいとカブリの発生が顕著であり、10重量%より小さいと耐スペントが悪化する。また、シリコーン変性アクリル樹脂の割合が30重量%より大きいと帯電安定性が悪く、5重量%より小さいと塗膜性が悪化しキャリア付着の原因となる。なお、この割合は、樹脂の固形分換算の重量に基づく重量%である。   In the present invention, when the ratio of the acrylic resin, the silicone resin, and the silicone-modified acrylic resin in the resin coating layer is 100% by weight of the total amount of the acrylic resin, the silicone resin, and the silicone-modified acrylic resin, the acrylic resin is 40 to 40%. 85% by weight, preferably 60-80% by weight, silicone resin is 10-30% by weight, preferably 10-20% by weight, and silicone-modified acrylic resin is 5-30% by weight, 10-20% by weight. If the proportion of the acrylic resin is greater than 85% by weight, image deterioration due to high charge occurs, and if it is less than 40% by weight, the initial charge imparting property deteriorates. Further, when the proportion of the silicone resin is larger than 30% by weight, fogging is remarkable, and when it is smaller than 10% by weight, the spent resistance is deteriorated. On the other hand, when the proportion of the silicone-modified acrylic resin is larger than 30% by weight, the charging stability is poor, and when it is smaller than 5% by weight, the coating property is deteriorated and causes carrier adhesion. In addition, this ratio is weight% based on the weight of resin solid content conversion.

本発明では、樹脂被覆層が更にスチレン−アクリル樹脂を含むことが好ましい。スチレン−アクリル樹脂は、モノマー成分としてスチレンを含む点で、前記のアクリル樹脂とは区別される。コア材を被覆するスチレン−アクリル樹脂としては、スチレンと、メタクリル酸メチル、メタクリル酸及びアクリル酸から選ばれるアクリルモノマーとの共重合物が挙げられる。市販のスチレン−アクリル樹脂としては、SBM−73、SBM−100、SBM−600(以上三洋化成社製)等が挙げられる。樹脂被覆層がスチレン−アクリル樹脂を含む場合、スチレン−アクリル樹脂の割合は、アクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の合計100重量部に対して、0超〜30重量部、更に0超〜20重量部、更に0超〜15重量部、更に5〜15重量部であることが好ましい。なお、この重量比は、樹脂の固形分換算の重量に基づく重量比である。   In the present invention, the resin coating layer preferably further contains a styrene-acrylic resin. Styrene-acrylic resins are distinguished from the above acrylic resins in that they contain styrene as a monomer component. Examples of the styrene-acrylic resin that covers the core material include a copolymer of styrene and an acrylic monomer selected from methyl methacrylate, methacrylic acid, and acrylic acid. Examples of commercially available styrene-acrylic resins include SBM-73, SBM-100, and SBM-600 (manufactured by Sanyo Chemical Co., Ltd.). When the resin coating layer contains styrene-acrylic resin, the ratio of styrene-acrylic resin is more than 0 to 30 parts by weight and more than 0 to 100 parts by weight in total of acrylic resin, silicone resin, and silicone-modified acrylic resin. -20 parts by weight, more than 0 to 15 parts by weight, more preferably 5 to 15 parts by weight. In addition, this weight ratio is a weight ratio based on the weight of resin solid content conversion.

樹脂被覆層におけるアクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の重量%が本発明の範囲にある限りは、樹脂被覆層は、更にポリオレフィン樹脂(ポリオレフィン樹脂及びその誘導体並びに変性樹脂。以下の各種樹脂も同様。)、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、アミノ樹脂等、その他の樹脂を含有することが可能である。本発明では、樹脂被覆層がアクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂から構成される、又は、アクリル樹脂、シリコーン樹脂、シリコーン変性アクリル樹脂、及びスチレン−アクリル樹脂から構成されることが好ましい。すなわち、樹脂被覆層中の樹脂が、アクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂である、又はアクリル樹脂、シリコーン樹脂、シリコーン変性アクリル樹脂、及びスチレン−アクリル樹脂であることが好ましい。本発明では、樹脂被覆層中の樹脂のうち、アクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の割合が90重量%以上、更に95重量%以上であることが好ましく、100重量%であってもよい。また、樹脂被覆層がスチレン−アクリル樹脂を含有する場合は、樹脂被覆層中の樹脂のうち、アクリル樹脂、シリコーン樹脂、シリコーン変性アクリル樹脂、及びスチレン−アクリル樹脂の割合が90重量%以上、更に95重量%以上であることが好ましく、100重量%であってもよい。   As long as the weight percent of the acrylic resin, silicone resin, and silicone-modified acrylic resin in the resin coating layer is within the scope of the present invention, the resin coating layer further comprises a polyolefin resin (polyolefin resin and its derivatives and modified resins. This also applies to other resins such as epoxy resins, polyester resins, polyurethane resins, amino resins, and the like. In the present invention, the resin coating layer is preferably composed of an acrylic resin, a silicone resin, and a silicone-modified acrylic resin, or is preferably composed of an acrylic resin, a silicone resin, a silicone-modified acrylic resin, and a styrene-acrylic resin. That is, the resin in the resin coating layer is preferably an acrylic resin, a silicone resin, and a silicone-modified acrylic resin, or an acrylic resin, a silicone resin, a silicone-modified acrylic resin, and a styrene-acrylic resin. In the present invention, the proportion of acrylic resin, silicone resin, and silicone-modified acrylic resin in the resin coating layer is preferably 90% by weight or more, more preferably 95% by weight or more, even if it is 100% by weight. Good. Moreover, when the resin coating layer contains a styrene-acrylic resin, the ratio of the acrylic resin, the silicone resin, the silicone-modified acrylic resin, and the styrene-acrylic resin in the resin coating layer is 90% by weight or more. It is preferably 95% by weight or more, and may be 100% by weight.

本発明では、キャリアの帯電性を調整する目的で、樹脂被覆層に電荷制御剤を配合したり、樹脂被覆層の最外層を正帯電性又は負帯電性の官能基を有するシランカップリング剤により処理したりすることができる。電荷制御剤の種類は、本発明の目的を阻害しない範囲で特に限定されず、従来からキャリアのコート層に配合されている電荷制御剤から適宜選択できる。電荷制御剤としては、例えば、4級アンモニウム塩、有機金属錯体、正帯電又は負帯電性の官能基をもつ樹脂系帯電制御剤が挙げられる。また、シランカップリング剤の種類は、本発明の目的を阻害しない範囲で特に限定されず、従来からキャリアのコート層の処理に使用されているシランカップリング剤から適宜選択できる。シランカップリング剤としては、例えば、アミノシランカップリング剤、フッ素系シランカップリング剤、エポキシシランカップリング剤等が挙げられる。   In the present invention, for the purpose of adjusting the chargeability of the carrier, a charge control agent is blended in the resin coating layer, or the outermost layer of the resin coating layer is coated with a silane coupling agent having a positively or negatively charged functional group. Can be processed. The type of the charge control agent is not particularly limited as long as it does not impair the object of the present invention, and can be appropriately selected from charge control agents that have been conventionally blended in a carrier coat layer. Examples of the charge control agent include a quaternary ammonium salt, an organometallic complex, and a resin charge control agent having a positively or negatively chargeable functional group. Moreover, the kind of silane coupling agent is not specifically limited in the range which does not inhibit the objective of this invention, It can select suitably from the silane coupling agent conventionally used for the process of the coat layer of a carrier. Examples of the silane coupling agent include aminosilane coupling agents, fluorine-based silane coupling agents, and epoxy silane coupling agents.

本発明では、樹脂被覆層が導電性微粒子を含むことが好ましい。導電性微粒子としては、カーボンブラック、マグネタイトが挙げられ、カーボンブラックとマグネタイトの両方を含むことが好ましい。   In the present invention, the resin coating layer preferably contains conductive fine particles. Examples of the conductive fine particles include carbon black and magnetite, and it is preferable to include both carbon black and magnetite.

導電性微粒子としては、ケッチェンブラック、ファーネスブラック、アセチレンブラック、チャネルブラック等のカーボンブラックや、TiO2、ZnO、Fe34、SnO2等の金属酸化物等が用いられる。導電性微粒子としては、カーボンブラックの一種以上と金属酸化物、更にマグネタイトの一種以上とを併用することが好ましい。更に好ましくはカーボンブラックとマグネタイトとを併用することである。具体的なカーボンブラックとしては、VULCAN XC72R、REGAL330R、BLACK PEARLS 2000、MONARCH 120(以上、キャボット社製)、MA100、MA7(以上、三菱化学社製)等が上げられ、マグネタイトとしては、BL−100、BL−500、ABL−205(以上、チタン工業社製)、KBC−100、KBC−100−60S、KBC−100SNW(以上、関東電化工業社製)等を使用できる。カーボンブラックの含有量は、樹脂被覆層中の樹脂の固形分100重量部に対して、1〜15重量部が好ましい。カーボンブラックの含有量が1重量部以上であれば、エッジ効果が適度になり、15重量部以下であれば、カブリが少なくなる。また、マグネタイトの含有量は、樹脂被覆層中の樹脂の固形分100重量部に対して、10〜150重量部が好ましい。マグネタイトの含有量が10重量部以上であれば、画像濃度が十分となり、150重量部以下であれば、キャリア付着が少なくなる。 As the conductive fine particles, carbon black such as ketjen black, furnace black, acetylene black and channel black, metal oxide such as TiO 2 , ZnO, Fe 3 O 4 and SnO 2 are used. As the conductive fine particles, it is preferable to use one or more kinds of carbon black and one or more kinds of metal oxides and further one or more kinds of magnetite. More preferably, carbon black and magnetite are used in combination. Specific carbon blacks include VULCAN XC72R, REGAL330R, BLACK PEARLS 2000, MONARCH 120 (above, manufactured by Cabot Corporation), MA100, MA7 (above, manufactured by Mitsubishi Chemical Corporation), etc., and as magnetite, BL-100 BL-500, ABL-205 (above, manufactured by Titanium Industry Co., Ltd.), KBC-100, KBC-100-60S, KBC-100 SNW (above, manufactured by Kanto Denka Kogyo Co., Ltd.) and the like can be used. The content of carbon black is preferably 1 to 15 parts by weight with respect to 100 parts by weight of the solid content of the resin in the resin coating layer. If the carbon black content is 1 part by weight or more, the edge effect is moderate, and if it is 15 parts by weight or less, fogging is reduced. The magnetite content is preferably 10 to 150 parts by weight with respect to 100 parts by weight of the solid content of the resin in the resin coating layer. When the content of magnetite is 10 parts by weight or more, the image density is sufficient, and when it is 150 parts by weight or less, carrier adhesion decreases.

本発明では、樹脂被覆層が有機金属触媒を含むことが好ましい。有機金属触媒は、シリコーン樹脂の硬化促進効果がある有機金属触媒が好ましい。有機金属触媒としては、Sn、Ti、Al、Fe、Zrから選ばれる金属を含有する有機化合物、例えば前記金属を含有するアルコキシド、キレート化合物、金属石鹸等を使用できる。Sn、Ti、Zrから選ばれる金属を含有する有機金属触媒が硬化性の面から好ましく、安全性や環境影響等からTi、Zrから選ばれる金属を含有する有機金属触媒がより好ましい。さらに好ましくはアルコキシ基の炭素数が4以下であることが好ましい。市販の有機金属触媒としては、ネオスタンU−200、U−100、U−810、U−820(以上日東化成社製Sn触媒)やオルガチックスTC−100、TC−400、TC−401、TC−750(以上マツモトファインケミカル社製Ti触媒)、オルガチックスZC−580、ZC−700(以上マツモトファインケミカル社製Zr触媒)が挙げられる。樹脂被覆層が有機金属触媒を含む場合、樹脂被覆層中の樹脂の固形分100重量部に対する有機金属触媒の含有量X(重量部)と、樹脂被覆層中の樹脂の固形分100重量部に対するシリコーン樹脂の含有量Y(重量部)とが、(Y/5)≦X≦(Y/2)の関係式を満たすことが好ましい。XがY/2以下であれば塗膜性が良好となり、また、XがY/5以上であれば、良好な硬化状態を得ることができる。   In the present invention, the resin coating layer preferably contains an organometallic catalyst. The organometallic catalyst is preferably an organometallic catalyst that has an effect of accelerating the curing of the silicone resin. As the organic metal catalyst, an organic compound containing a metal selected from Sn, Ti, Al, Fe, and Zr, for example, an alkoxide containing the metal, a chelate compound, a metal soap, and the like can be used. An organometallic catalyst containing a metal selected from Sn, Ti, and Zr is preferred from the viewpoint of curability, and an organometallic catalyst containing a metal selected from Ti and Zr is more preferred from the viewpoint of safety and environmental impact. More preferably, the alkoxy group has 4 or less carbon atoms. Commercially available organometallic catalysts include Neostan U-200, U-100, U-810, U-820 (Nitto Kasei Co., Ltd. Sn catalyst), ORGATICS TC-100, TC-400, TC-401, TC- 750 (above Ti catalyst manufactured by Matsumoto Fine Chemical Co., Ltd.), Orugachix ZC-580, ZC-700 (above Zr catalyst produced by Matsumoto Fine Chemical Co., Ltd.). When the resin coating layer contains an organometallic catalyst, the content X (parts by weight) of the organometallic catalyst with respect to 100 parts by weight of the solid content of the resin in the resin coating layer and the solid content of 100 parts by weight of the resin in the resin coating layer It is preferable that the content Y (parts by weight) of the silicone resin satisfy the relational expression of (Y / 5) ≦ X ≦ (Y / 2). When X is Y / 2 or less, the coating properties are good, and when X is Y / 5 or more, a good cured state can be obtained.

コア材の表面に樹脂被覆層を形成するための手段としては、特に制限されず、浸漬法、流動層を用いたスプレーコート法等が好適に使用できる。また被覆後に過熱処理を行う工程を加えてもよく、コーティングと同時に被覆処理装置内で加熱処理を施してもよい。被覆後に熱処理を行う場合は、流動式電気炉や、マイクロウェーブ式の加熱炉等を使用しても良い。   The means for forming the resin coating layer on the surface of the core material is not particularly limited, and an immersion method, a spray coating method using a fluidized bed, and the like can be suitably used. In addition, a step of performing a heat treatment after coating may be added, and heat treatment may be performed in the coating processing apparatus simultaneously with coating. When heat treatment is performed after coating, a fluid electric furnace, a microwave heating furnace, or the like may be used.

樹脂被覆量は、樹脂の種類、キャリアに要求される帯電特性及び電気抵抗特性によって異なるが、前記樹脂被覆層中の樹脂量が、コア材100重量部に対して0.3〜3.5重量部であることが好ましく、0.5〜3.0重量部であることがより好ましい。前記被覆量が0.3重量部以上であれば、被覆樹脂でコア材表面を均一に覆うことが容易となり、耐スペント性も良好となる。また、前記被覆量が3.5重量部以下であれば、初期の帯電立ち上がり性が良好となり、また、粒子の会合が増える等の問題の発生を抑制できる。この樹脂量は、固形分換算での樹脂量である。   The resin coating amount varies depending on the type of resin, the charging characteristics required for the carrier, and the electrical resistance characteristics, but the resin amount in the resin coating layer is 0.3 to 3.5 weights with respect to 100 parts by weight of the core material. Part is preferable, and 0.5 to 3.0 parts by weight is more preferable. When the coating amount is 0.3 parts by weight or more, it is easy to uniformly cover the core material surface with the coating resin, and the spent resistance is also improved. Further, when the coating amount is 3.5 parts by weight or less, the initial charge rising property is improved, and the occurrence of problems such as an increase in particle association can be suppressed. This resin amount is a resin amount in terms of solid content.

本発明により、
コア材に樹脂被覆剤組成物を接触させる工程を有する、電子写真用キャリアの製造方法であって、
前記樹脂被覆剤組成物が、アクリル樹脂、シリコーン樹脂、シリコーン変性アクリル樹脂、及び液体媒体を含有し、
前記樹脂被覆剤組成物におけるアクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の割合が、アクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の合計量を100重量%としたとき、アクリル樹脂が40〜85重量%、シリコーン樹脂が10〜30重量%、シリコーン変性アクリル樹脂が5〜30重量%である、
電子写真用キャリアの製造方法が提供される。この製造方法は、本発明の電子写真用キャリアを製造する方法として好適である。
According to the present invention,
A method for producing an electrophotographic carrier, comprising a step of bringing a resin coating composition into contact with a core material,
The resin coating composition contains an acrylic resin, a silicone resin, a silicone-modified acrylic resin, and a liquid medium,
When the ratio of the acrylic resin, silicone resin, and silicone-modified acrylic resin in the resin coating composition is 100% by weight of the total amount of acrylic resin, silicone resin, and silicone-modified acrylic resin, the acrylic resin is 40 to 85. % By weight, 10-30% by weight of silicone resin, 5-30% by weight of silicone-modified acrylic resin,
A method for producing an electrophotographic carrier is provided. This production method is suitable as a method for producing the electrophotographic carrier of the present invention.

この製造方法では、コア材に樹脂被覆剤組成物を接触させる工程は、コア材の表面に樹脂被覆層を形成するための手段として前述した方法で行うことができる。また、樹脂被覆剤組成物が含有する成分や好ましい態様は、樹脂被覆層で説明したものから適宜選択して適用できる。樹脂被覆剤組成物は、導電性微粒子を含むことが好ましく、導電性微粒子としてカーボンブラック及びマグネタイトを含むことがより好ましい。また、樹脂被覆剤組成物は、有機金属触媒を含み、樹脂被覆剤組成物中の樹脂の固形分100重量部に対する有機金属触媒の含有量X(重量部)と、樹脂被覆層中の樹脂の固形分100重量部に対するシリコーン樹脂の含有量Y(重量部)とが、(Y/5)≦X≦(Y/2)の関係式を満たすことが好ましい。樹脂被覆剤組成物は、樹脂を固形分換算で3〜60重量%含有することが好ましい。また、樹脂被覆剤組成物は、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、テトラヒドロフラン、ジエチルエーテル、アセトン、N-メチルピロリドン等の液体媒体を使用して調製することができる。樹脂被覆剤組成物は、実施例で示したように、このような溶媒を含有する樹脂溶液として用いることができる。この製造方法は、コア材に樹脂被覆剤組成物を接触させて該コア材の表面を被覆する樹脂被覆層を形成する工程を含んでよい。この製造方法では、樹脂被覆剤組成物中の樹脂が、コア材100重量部に対して、0.3〜3.5重量部、更に0.5〜3.0重量部となるように、樹脂被覆剤組成物を用いることが好ましい。   In this production method, the step of bringing the resin coating composition into contact with the core material can be performed by the method described above as a means for forming the resin coating layer on the surface of the core material. Moreover, the component and preferable aspect which a resin coating composition contains can be suitably selected and applied from what was demonstrated by the resin coating layer. The resin coating composition preferably contains conductive fine particles, and more preferably contains carbon black and magnetite as the conductive fine particles. The resin coating composition contains an organometallic catalyst, and the content X (parts by weight) of the organometallic catalyst with respect to 100 parts by weight of the solid content of the resin in the resin coating composition, and the resin in the resin coating layer It is preferable that the content Y (parts by weight) of the silicone resin with respect to 100 parts by weight of the solid content satisfies the relational expression (Y / 5) ≦ X ≦ (Y / 2). The resin coating composition preferably contains 3 to 60% by weight of resin in terms of solid content. The resin coating composition can be prepared using a liquid medium such as toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, tetrahydrofuran, diethyl ether, acetone, N-methylpyrrolidone and the like. As shown in the Examples, the resin coating composition can be used as a resin solution containing such a solvent. This manufacturing method may include a step of forming a resin coating layer that covers the surface of the core material by bringing the resin coating composition into contact with the core material. In this production method, the resin in the resin coating composition is 0.3 to 3.5 parts by weight, more preferably 0.5 to 3.0 parts by weight with respect to 100 parts by weight of the core material. It is preferable to use a coating composition.

本発明の電子写真用キャリアは、絶縁破壊電圧が0.5〜3.5kVであることが好ましく、1.0〜3.0kVであることがより好ましい。絶縁破壊電圧が0.5kV以上であれば、キャリア付着が低減でき、3.5kV以下であれば、エッジ効果が適度となり、画像の劣化を抑制できる。なお、絶縁破壊電圧は、後述の実施例の方法により測定することができる。   The electrophotographic carrier of the present invention preferably has a dielectric breakdown voltage of 0.5 to 3.5 kV, more preferably 1.0 to 3.0 kV. If the dielectric breakdown voltage is 0.5 kV or higher, carrier adhesion can be reduced, and if it is 3.5 kV or lower, the edge effect becomes moderate and image degradation can be suppressed. The dielectric breakdown voltage can be measured by the method of the example described later.

本発明の電子写真用キャリアは、平均粒子径が20〜90μmであることが好ましく、30〜80μmであることがより好ましい。平均粒子径が20μm以上であれば、キャリア付着が発生し難くなり、90μm以下であれば、トナー搬送量の向上により、画質が良好となる。   The electrophotographic carrier of the present invention preferably has an average particle size of 20 to 90 μm, and more preferably 30 to 80 μm. If the average particle diameter is 20 μm or more, carrier adhesion is less likely to occur, and if it is 90 μm or less, the toner conveyance amount is improved and the image quality is improved.

本発明は、上記本発明の電子写真用キャリアと、トナーとを含む電子写真用二成分現像剤に関する。トナーとしては、粉砕法によって製造されるトナー、重合法によって製造されるトナーなど、いずれのものでも使用することができる。画像形成装置に応じて、正帯電トナー、負帯電トナーを選択して現像剤を構成するが、本発明の電子写真用キャリア向け正帯電トナーにおいては、荷電制御剤としてニグロシン染料や4級アンモニウム塩などを用いて製造したトナーが好ましく、本発明の電子写真用キャリア向け負帯電トナーとしては、モノアゾ染料などを用いて製造したトナーが好ましい。   The present invention relates to a two-component developer for electrophotography containing the electrophotographic carrier of the present invention and a toner. As the toner, any toner such as a toner manufactured by a pulverization method and a toner manufactured by a polymerization method can be used. Depending on the image forming apparatus, a positively charged toner or a negatively charged toner is selected to constitute a developer. In the positively charged toner for an electrophotographic carrier of the present invention, a nigrosine dye or a quaternary ammonium salt is used as a charge control agent. A toner manufactured using a monoazo dye or the like is preferable as the negatively charged toner for an electrophotographic carrier of the present invention.

本発明に使用されるトナーは、結着樹脂中に着色剤、帯電制御剤等を分散させたものを好適に使用できる。結着樹脂として特に制限は無くポリスチレン樹脂、スチレン−アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂等が挙げられる。着色剤及び荷電制御剤としては、従来公知のものを適宜選択することができる。また必要に応じて、ワックスや外添剤等も使用される。現像剤についての「二成分」とは、現像剤がキャリアとトナーの2つの成分を主体として構成されることを便宜的に表現したものであり、他の成分を含有することを排除したものではない。   As the toner used in the present invention, a toner in which a colorant, a charge control agent and the like are dispersed in a binder resin can be suitably used. There is no restriction | limiting in particular as binder resin, A polystyrene resin, a styrene-acryl resin, a polyester resin, an epoxy resin, a polyurethane resin etc. are mentioned. A conventionally well-known thing can be suitably selected as a coloring agent and a charge control agent. If necessary, wax, external additives and the like are also used. The term “two components” for a developer expresses for convenience that the developer is mainly composed of two components, a carrier and a toner, and does not exclude the inclusion of other components. Absent.

以下、実施例に基づき本発明をより詳しく説明する。なお、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to these.

<製造例>
(シリコーン変性アクリル樹脂aの製造)
攪拌機をつけた2L三口フラスコを用い窒素置換後、メチルイソブチルケトン(MIBK)300重量部、ジメチル−2,2−アゾビス(2−メチルプロピオネート)1.5重量部を仕込み、撹拌しながら90℃に昇温した。次にメタクリル酸メチル320重量部、3−メタクリロキシプロピルトリメトキシシラン(信越化学社製KBM503)30重量部の均一混合液をフラスコ内溶液中に3.5時間かけて均一に添加し、更に4時間反応させて重合を完了させ、シリコーン変性アクリル樹脂aを含有するシリコーン変性アクリル樹脂溶液を得た。得られたシリコーン変性アクリル樹脂溶液の固形分濃度は39.8重量%であった。
<Production example>
(Production of silicone-modified acrylic resin a)
After substituting with nitrogen using a 2 L three-necked flask equipped with a stirrer, 300 parts by weight of methyl isobutyl ketone (MIBK) and 1.5 parts by weight of dimethyl-2,2-azobis (2-methylpropionate) were charged and stirred while stirring. The temperature was raised to ° C. Next, 320 parts by weight of methyl methacrylate and 30 parts by weight of 3-methacryloxypropyltrimethoxysilane (KBM503 manufactured by Shin-Etsu Chemical Co., Ltd.) were uniformly added to the solution in the flask over 3.5 hours. The polymerization was completed by reacting for a period of time to obtain a silicone-modified acrylic resin solution containing the silicone-modified acrylic resin a. The resulting silicone-modified acrylic resin solution had a solid content concentration of 39.8% by weight.

(シリコーン変性アクリル樹脂bの製造)
攪拌機をつけた2L三口フラスコを用い窒素置換後、MIBK300重量部、ジメチル−2,2−アゾビス(2−メチルプロピオネート)1.5重量部を仕込み、撹拌しながら90℃に昇温した。次にメタクリル酸メチル320重量部、3−メタクリロキシプロピルメチルジメトキシシラン(信越化学社製KBM502)30重量部の均一混合液をフラスコ内溶液中に3.5時間かけて均一に添加し、更に4時間反応させて重合を完了させ、シリコーン変性アクリル樹脂bを含有するシリコーン変性アクリル樹脂溶液を得た。得られたシリコーン変性アクリル樹脂溶液の固形分濃度は40.2重量%であった。
(Production of silicone-modified acrylic resin b)
After nitrogen substitution using a 2 L three-necked flask equipped with a stirrer, 300 parts by weight of MIBK and 1.5 parts by weight of dimethyl-2,2-azobis (2-methylpropionate) were charged, and the temperature was raised to 90 ° C. while stirring. Next, 320 parts by weight of methyl methacrylate and 30 parts by weight of 3-methacryloxypropylmethyldimethoxysilane (KBM502 manufactured by Shin-Etsu Chemical Co., Ltd.) were uniformly added to the solution in the flask over 3.5 hours. The polymerization was completed by reacting for a time to obtain a silicone-modified acrylic resin solution containing the silicone-modified acrylic resin b. The resulting silicone-modified acrylic resin solution had a solid content concentration of 40.2% by weight.

[実施例1]
アクリル樹脂a(三菱レイヨン社製ダイヤナールLR−1065、ガラス転移温度Tg105℃、酸価が2以下)とシリコーン樹脂a(東レダウコーニング社製SR2410)と上記の方法で製造したシリコーン変性アクリル樹脂aを、重量比がA:B:C=70:20:10になるように混合して被覆樹脂の混合物を得た。ここで、アクリル樹脂、シリコーン樹脂及びシリコーン変性アクリル樹脂の合計を100重量%としたときのアクリル樹脂の重量%をA、シリコーン樹脂の重量%をB、シリコーン変性アクリル樹脂の重量%をCとした(以下、樹脂が三成分以下の例において同様)。
次にシリコーン樹脂の硬化触媒として、有機Ti触媒(マツモトファインケミカル社製オルガチックスTC−750、表中、「Ti系」と表示)を被覆樹脂固形分100重量部に対して7重量部添加しトルエンで稀釈した。次にカーボンブラック(キャボット社製 VULCAN XC72R)を被覆樹脂固形分100重量部に対して5重量部、マグネタイト微粒子(関東電化工業社製KBC−100−60S 平均粒子径0.3μm)を被覆樹脂固形分100重量部に対して20重量部となるように樹脂溶液に添加して、ミキサーで攪拌して被覆樹脂溶液を得た。
得られた被覆樹脂溶液をコア材(MnMgフェライト、平均粒子径40μm、飽和磁化63Am2/kg)100重量部に対し、樹脂固形分が1.5重量部となるように調整し流動床式コーティング装置を用いてスプレーコートし溶媒乾燥後、熱循環式オーブンにて120℃で2時間熱処理を行い更に目開き75μm篩にて粗大粒子を取り除き、平均粒子径40μmの本発明のキャリアを得た(表1を参照)。
[Example 1]
Acrylic resin a (Dainar LR-1065 manufactured by Mitsubishi Rayon Co., Ltd., glass transition temperature Tg 105 ° C., acid value of 2 or less), silicone resin a (SR 2410 manufactured by Toray Dow Corning Co., Ltd.), and silicone-modified acrylic resin a manufactured by the above method Were mixed so that the weight ratio was A: B: C = 70: 20: 10 to obtain a mixture of coating resins. Here, when the total of the acrylic resin, the silicone resin and the silicone-modified acrylic resin is 100% by weight, the weight% of the acrylic resin is A, the weight% of the silicone resin is B, and the weight% of the silicone-modified acrylic resin is C. (Hereinafter, the same applies to the case where the resin has three or less components).
Next, 7 parts by weight of an organic Ti catalyst (Origatix TC-750 manufactured by Matsumoto Fine Chemical Co., Ltd., indicated as “Ti-based” in the table) is added as a silicone resin curing catalyst to 100 parts by weight of the coated resin solid content. Diluted in Next, 5 parts by weight of carbon black (VULCAN XC72R manufactured by Cabot Corporation) with respect to 100 parts by weight of the coated resin solids, and magnetite fine particles (KBC-100-60S manufactured by Kanto Denka Kogyo Co., Ltd., average particle size 0.3 μm) are coated with the solid resin. It added to the resin solution so that it might become 20 weight part with respect to 100 weight part per minute, and it stirred with the mixer, and obtained the coating resin solution.
The obtained coating resin solution is adjusted so that the resin solid content is 1.5 parts by weight with respect to 100 parts by weight of the core material (MnMg ferrite, average particle diameter 40 μm, saturation magnetization 63 Am 2 / kg), and fluidized bed type coating. After spray coating using an apparatus and drying the solvent, heat treatment was performed at 120 ° C. for 2 hours in a thermal circulation oven, and coarse particles were removed with a 75 μm sieve to obtain a carrier of the present invention having an average particle diameter of 40 μm ( (See Table 1).

[実施例2]
実施例1における樹脂の重量比をA:B:C=85:10:5に変更し、他は実施例1と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 2]
The carrier of the present invention having an average particle diameter of 40 μm was obtained in the same manner as in Example 1 except that the weight ratio of the resin in Example 1 was changed to A: B: C = 85: 10: 5.

[実施例3]
実施例1における樹脂の重量比をA:B:C=40:30:30に変更し、他は実施例1と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 3]
The carrier of the present invention having an average particle diameter of 40 μm was obtained in the same manner as in Example 1 except that the weight ratio of the resin in Example 1 was changed to A: B: C = 40: 30: 30.

[実施例4]
実施例1における樹脂の重量比をA:B:C=65:30:5に変更し、他は実施例1と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 4]
The carrier of the present invention having an average particle diameter of 40 μm was obtained in the same manner as in Example 1 except that the weight ratio of the resin in Example 1 was changed to A: B: C = 65: 30: 5.

[実施例5]
実施例1におけるシリコーン変性アクリル樹脂aをシリコーン変性アクリル樹脂bに変更し、他は実施例1と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 5]
The carrier of the present invention having an average particle diameter of 40 μm was obtained in the same manner as in Example 1 except that the silicone-modified acrylic resin a in Example 1 was changed to the silicone-modified acrylic resin b.

[実施例6]
実施例2におけるシリコーン変性アクリル樹脂aをシリコーン変性アクリル樹脂bに変更し、他は実施例2と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 6]
The carrier of the present invention having an average particle diameter of 40 μm was obtained in the same manner as in Example 2 except that the silicone-modified acrylic resin a in Example 2 was changed to the silicone-modified acrylic resin b.

[実施例7]
実施例3におけるシリコーン変性アクリル樹脂aをシリコーン変性アクリル樹脂bに変更し、他は実施例3と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 7]
The carrier of the present invention having an average particle diameter of 40 μm was obtained in the same manner as in Example 3 except that the silicone-modified acrylic resin a in Example 3 was changed to the silicone-modified acrylic resin b.

[実施例8]
実施例4におけるシリコーン変性アクリル樹脂aをシリコーン変性アクリル樹脂bに変更し、他は実施例4と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 8]
The carrier of the present invention having an average particle size of 40 μm was obtained in the same manner as in Example 4 except that the silicone-modified acrylic resin a in Example 4 was changed to the silicone-modified acrylic resin b.

[実施例9]
実施例1におけるカーボンブラックの添加量を被覆樹脂固形分100重量部に対して15重量部、マグネタイトの添加量を被覆樹脂固形分100重量部に対して150重量部とし、他は実施例1と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 9]
The amount of carbon black added in Example 1 was 15 parts by weight with respect to 100 parts by weight of the coated resin solids, the amount of magnetite added was 150 parts by weight with respect to 100 parts by weight of the coated resin solids, and the others were the same as in Example 1. Similarly, the carrier of the present invention having an average particle diameter of 40 μm was obtained.

[実施例10]
実施例1におけるカーボンブラックの添加量を被覆樹脂固形分100重量部に対して1重量部、マグネタイトの添加量を被覆樹脂固形分100重量部に対して10重量部とし、他は実施例1と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 10]
The amount of carbon black added in Example 1 is 1 part by weight with respect to 100 parts by weight of the coated resin solids, the amount of magnetite added is 10 parts by weight with respect to 100 parts by weight of the coated resin solids, and the others are the same as in Example 1. Similarly, the carrier of the present invention having an average particle diameter of 40 μm was obtained.

[実施例11]
実施例1における有機Ti触媒の添加量を被覆樹脂固形分100重量部に対して10重量部とし、他は実施例1と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 11]
The carrier of the present invention having an average particle diameter of 40 μm was obtained in the same manner as in Example 1 except that the amount of the organic Ti catalyst added in Example 1 was 10 parts by weight with respect to 100 parts by weight of the coating resin solid content.

[実施例12]
実施例1における有機Ti触媒の添加量を被覆樹脂固形分100重量部に対して4重量部とし、他は実施例1と同様にして、平均粒子径40μmの本発明のキャリアを得た。
[Example 12]
The carrier of the present invention having an average particle diameter of 40 μm was obtained in the same manner as in Example 1 except that the amount of the organic Ti catalyst added in Example 1 was 4 parts by weight with respect to 100 parts by weight of the coated resin solid content.

[実施例13]
実施例1において被覆樹脂として更にスチレン−アクリル樹脂a(三洋化成社製 SBM−100)を用い、重量比がA:B:C:D=60:20:10:10(A+B+Cの合計100重量部に対してDが11重量部)になるようにして平均粒子径40μmの本発明のキャリアを得た。ここで、アクリル樹脂、シリコーン樹脂、シリコーン変性アクリル樹脂及びスチレン−アクリル樹脂の合計を100重量%としたときのアクリル樹脂の重量%をA、シリコーン樹脂の重量%をB、シリコーン変性アクリル樹脂の重量%をC、スチレン−アクリル樹脂の重量%をDとした(以下、樹脂が四成分の例において同様)。
[Example 13]
In Example 1, styrene-acrylic resin a (SBM-100, manufactured by Sanyo Chemical Co., Ltd.) was used as the coating resin, and the weight ratio was A: B: C: D = 60: 20: 10: 10 (A + B + C total 100 parts by weight). The carrier of the present invention having an average particle diameter of 40 μm was obtained so that D was 11 parts by weight. Here, when the total of the acrylic resin, silicone resin, silicone-modified acrylic resin and styrene-acrylic resin is 100% by weight, the weight percent of the acrylic resin is A, the weight percent of the silicone resin is B, and the weight of the silicone-modified acrylic resin. % Is C, and the weight% of the styrene-acrylic resin is D (hereinafter, the same applies to the case where the resin is a four component).

[実施例14]
実施例1において被覆樹脂として更に実施例13と同じスチレン−アクリル樹脂aを用い、重量比がA:B:C:D=55:20:10:15(A+B+Cの合計100重量部に対してDが18重量部)になるようにして平均粒子径40μmの本発明のキャリアを得た。
[Example 14]
In Example 1, the same styrene-acrylic resin a as in Example 13 was used as the coating resin, and the weight ratio was A: B: C: D = 55: 20: 10: 15 (D for a total of 100 parts by weight of A + B + C) The carrier of the present invention having an average particle diameter of 40 μm was obtained.

[比較例1]
実施例1において被覆樹脂としてシリコーン変性アクリル樹脂を用いず、樹脂の重量比をA:B:C=85:15:0として平均粒子径40μmのキャリアを得た。
[Comparative Example 1]
In Example 1, a silicone-modified acrylic resin was not used as the coating resin, and a carrier having an average particle diameter of 40 μm was obtained with a resin weight ratio of A: B: C = 85: 15: 0.

[比較例2]
実施例1において被覆樹脂としてシリコーン樹脂を用いず、樹脂の重量比をA:B:C=85:0:15として平均粒子径40μmのキャリアを得た。
[Comparative Example 2]
In Example 1, a silicone resin was not used as the coating resin, and a carrier having an average particle diameter of 40 μm was obtained with a weight ratio of the resin of A: B: C = 85: 0: 15.

[比較例3]
実施例6において被覆樹脂としてシリコーン樹脂を用いず、樹脂の重量比をA:B:C=85:0:15として平均粒子径40μmのキャリアを得た。
[Comparative Example 3]
In Example 6, a silicone resin was not used as the coating resin, and a carrier having an average particle diameter of 40 μm was obtained with a resin weight ratio of A: B: C = 85: 0: 15.

[比較例4]
実施例1における樹脂の重量比をA:B:C=90:5:5に変更し、他は実施例1と同様にして、平均粒子径40μmのキャリアを得た。
[Comparative Example 4]
The weight ratio of the resin in Example 1 was changed to A: B: C = 90: 5: 5, and others were obtained in the same manner as in Example 1 to obtain a carrier having an average particle diameter of 40 μm.

[比較例5]
実施例1における樹脂の重量比をA:B:C=30:40:30に変更し、他は実施例1と同様にして、平均粒子径40μmのキャリアを得た。
[Comparative Example 5]
The weight ratio of the resin in Example 1 was changed to A: B: C = 30: 40: 30, and others were obtained in the same manner as in Example 1 to obtain a carrier having an average particle diameter of 40 μm.

[比較例6]
実施例1における樹脂の重量比をA:B:C=30:30:40に変更し平均粒子径40μmのキャリアを得た。
[Comparative Example 6]
The weight ratio of the resin in Example 1 was changed to A: B: C = 30: 30: 40 to obtain a carrier having an average particle diameter of 40 μm.

[比較例7]
実施例1におけるシリコーン変性アクリル樹脂aをアクリル変性シリコーン樹脂(信越化学社製KR−9706)に変更し、他は実施例1と同様にして、平均粒子径40μmのキャリアを得た。アクリル変性シリコーン樹脂は、主骨格がシリコーンであり、シリコーン変性アクリル樹脂とは異なるものである。
[Comparative Example 7]
The carrier having an average particle diameter of 40 μm was obtained in the same manner as in Example 1 except that the silicone-modified acrylic resin a in Example 1 was changed to an acrylic-modified silicone resin (KR-9706 manufactured by Shin-Etsu Chemical Co., Ltd.). The acrylic modified silicone resin has a main skeleton of silicone and is different from the silicone modified acrylic resin.

[比較例8]
実施例1におけるシリコーン変性アクリル樹脂aをアクリル系シランカップリング剤(信越化学社製KBM503)に変更し、他は実施例1と同様にして、平均粒子径40μmのキャリアを得た。
[Comparative Example 8]
A carrier having an average particle diameter of 40 μm was obtained in the same manner as in Example 1 except that the silicone-modified acrylic resin a in Example 1 was changed to an acrylic silane coupling agent (KBM503 manufactured by Shin-Etsu Chemical Co., Ltd.).

[比較例9]
実施例13において被覆樹脂の重量比をA:B:C:D=40:30:10:20とし平均粒子径40μmのキャリアを得た。
[Comparative Example 9]
In Example 13, the weight ratio of the coating resin was A: B: C: D = 40: 30: 10: 20 to obtain a carrier having an average particle diameter of 40 μm.

〔電子写真用キャリアの評価〕
実施例1〜14、比較例1〜9のキャリアに対して、温度22℃、湿度55%の環境下、SEM観察による樹脂被覆状態確認、飽和磁化、絶縁破壊電圧測定、電気抵抗値測定を、以下の方法で実施した。使用したキャリアの構成を表1に、評価結果を表2に示す。
[Evaluation of carrier for electrophotography]
For the carriers of Examples 1 to 14 and Comparative Examples 1 to 9, under the environment of a temperature of 22 ° C. and a humidity of 55%, the resin coating state confirmation by SEM observation, saturation magnetization, dielectric breakdown voltage measurement, electrical resistance value measurement, The following method was carried out. Table 1 shows the structure of the carrier used, and Table 2 shows the evaluation results.

<樹脂の被覆状態>
キャリアにおける樹脂の被覆状態はSEM観察により判断する。コア露出の多いキャリアは電荷のリークが大きく、また帯電保持力が低下する要因となる。SEM像の観察は走査型電子顕微鏡(S−3400N 日立ハイテク社製)を用いて観察し、キャリア粒子が100個以上写る視野で観察し、樹脂の被覆率が良好な粒子の数を集計することで評価した。ここで、被覆率が良好とは、1粒子毎の表面観察において、各々のコア露出部分が30%以下のものをいう。
○:被覆率が良好な粒子数が80%以上
×:被覆率が良好な粒子数が80%未満
<Resin coating state>
The state of resin coating on the carrier is determined by SEM observation. Carriers with many exposed cores cause a large charge leakage and a decrease in charge retention. The SEM image is observed using a scanning electron microscope (S-3400N manufactured by Hitachi High-Tech), observed in a field of view of 100 or more carrier particles, and the number of particles having a good resin coverage is counted. It was evaluated with. Here, good coverage means that each core exposed portion is 30% or less in surface observation for each particle.
○: Number of particles with good coverage is 80% or more ×: Number of particles with good coverage is less than 80%

<絶縁破壊電圧測定>
絶縁破壊電圧測定は、N極及びS極を対向させ磁極間間隔6mmとした測定器で行った(磁極:表面磁束密度1500G、対向磁極面積10mm×30mm)。絶縁破壊電圧測定器の回路図の概略を図1に示した。図1に示すように、磁極3、3’間に、非磁性の平行平板電極2、2’(電極面積10mm×40mm、電極間隔2mm)を配置し、該電極2、2’間に試料である電子写真用キャリア1を200mg入れ、磁力により電極2、2’間に電子写真用キャリア1を保持した。電極2、2’は、絶縁性の支持台4に設置されている。耐電圧試験器(TOS5051 菊水電子工業製)を用いて電極2、2’に交流電圧を印加し、漏れ電流値が110mA以上となる印加電圧値を絶縁破壊電圧とした。電極2は真鍮を使用した。支持台4はテフロン(登録商標)製であった。
<Dielectric breakdown voltage measurement>
The dielectric breakdown voltage was measured with a measuring instrument in which the N pole and the S pole were made to face each other and the distance between the magnetic poles was 6 mm (magnetic pole: surface magnetic flux density 1500 G, counter magnetic pole area 10 mm × 30 mm). A schematic circuit diagram of the breakdown voltage measuring instrument is shown in FIG. As shown in FIG. 1, nonmagnetic parallel plate electrodes 2 and 2 ′ (electrode area 10 mm × 40 mm, electrode interval 2 mm) are arranged between magnetic poles 3 and 3 ′, and a sample is placed between the electrodes 2 and 2 ′. 200 mg of a certain electrophotographic carrier 1 was put, and the electrophotographic carrier 1 was held between the electrodes 2 and 2 'by a magnetic force. The electrodes 2, 2 ′ are installed on an insulating support 4. An AC voltage was applied to the electrodes 2 and 2 ′ using a withstand voltage tester (TOS5051 manufactured by Kikusui Electronics Co., Ltd.), and an applied voltage value at which a leakage current value was 110 mA or more was defined as a dielectric breakdown voltage. The electrode 2 used brass. The support 4 was made of Teflon (registered trademark).

<電気抵抗値>
上記の絶縁破壊電圧測定で用いた測定器において、電極間隔を2mmに設定し、試料である電子写真用キャリアを保持し、直流電圧500Vの電圧を印加した際の電気抵抗値を絶縁抵抗測定器(TR−8601 武田理研製)を用いて測定した。表中、「抵抗値(500V)」として示した。
<Electric resistance value>
In the measuring instrument used in the above dielectric breakdown voltage measurement, the electrode interval is set to 2 mm, the electrophotographic carrier as a sample is held, and the electric resistance value when a DC voltage of 500 V is applied is measured as the insulation resistance measuring instrument. (TR-8601 Takeda Riken) was used. In the table, it is shown as “resistance value (500 V)”.

〔電子写真用二成分現像剤の作製及び評価〕
温度22℃、湿度55%の環境下、実施例又は比較例で作製したキャリア100重量部に対し、負帯電トナー7.0重量部をV型ブレンダーで30分間混合して現像剤を得た。この現像剤を用い複写機(30枚機)で画像面積5%のチャートを使用し5万枚の耐印刷試験を行い、現像剤の帯電量、画像濃度、エッジ効果、カブリ、キャリア付着、耐スペント性の測定を、以下の方法で行った。使用したキャリアの構成を表1に、評価結果を表2に示す。
[Production and evaluation of two-component developer for electrophotography]
Under an environment of a temperature of 22 ° C. and a humidity of 55%, 7.0 parts by weight of negatively charged toner was mixed for 30 minutes with a V-type blender with respect to 100 parts by weight of the carrier prepared in the example or the comparative example to obtain a developer. Using this developer, a printing resistance test of 50,000 sheets was performed on a copying machine (30 sheets machine) using a chart with an image area of 5%, and the developer charge amount, image density, edge effect, fog, carrier adhesion, resistance The spent property was measured by the following method. Table 1 shows the structure of the carrier used, and Table 2 shows the evaluation results.

<帯電量>
吸引式帯電量測定装置(q/m−meter Epping社製)を用い、セルに795メッシュを装着し、試験前後の帯電量を測定した。初期帯電量と5万枚耐刷後帯電量との差が5μC/g以上だと画像不良やカブリが起こりやすい。
<Charge amount>
Using a suction-type charge measuring device (q / m-meter Epping), a 795 mesh was attached to the cell, and the charge amount before and after the test was measured. If the difference between the initial charge amount and the charge amount after 50,000-sheet printing is 5 μC / g or more, image defects and fog are likely to occur.

<画像濃度>
反射濃度計(RD−915 マクベス社製)を用いて測定し、下記の基準で評価した。
◎:初期の画像濃度が1.3以上であり、5万枚耐刷後の画像濃度変化が0.0以上、0.05未満である。
○:初期の画像濃度が1.3以上であり、5万枚耐刷後の画像濃度変化が0.05以上、0.10未満である。
△:初期の画像濃度が1.3以上であり、5万枚耐刷後の画像濃度変化が0.10以上、0.15未満である。
×:初期の画像濃度が1.3未満である、又は5万枚耐刷後の画像濃度変化が0.15以上である。
<Image density>
It measured using the reflection densitometer (RD-915 Macbeth company make), and evaluated with the following reference | standard.
A: The initial image density is 1.3 or more, and the change in image density after printing 50,000 sheets is 0.0 or more and less than 0.05.
A: The initial image density is 1.3 or more, and the change in image density after printing 50,000 sheets is 0.05 or more and less than 0.10.
Δ: The initial image density is 1.3 or more, and the change in image density after 50,000 sheet printing is 0.10 or more and less than 0.15.
X: The initial image density is less than 1.3, or the change in image density after 50,000 sheet printing is 0.15 or more.

<エッジ効果>
ベタ画像チャートを印刷し、反射濃度計(RD−915 マクベス社製)を用いてベタ画像中央部の画像濃度とエッジ部の画像濃度を比較し評価を行った。
○:画像濃度差が0.05以内である。
△:画像濃度差が0.05超、0.10以内である。(使用可能レベル)
×:画像濃度差が0.10超である。(使用不可レベル)
<Edge effect>
A solid image chart was printed and evaluated using a reflection densitometer (RD-915 Macbeth) to compare the image density at the center of the solid image with the image density at the edge.
○: Image density difference is within 0.05.
Δ: Image density difference is more than 0.05 and within 0.10. (Usable level)
X: The image density difference is more than 0.10. (Unusable level)

<カブリ>
白色度計(TC−6D 東京電色社製)を用いて測定し、下記の基準で評価した。評価については耐印刷前の紙の値から耐印刷後の値の差をとり算出した。
◎:初期のカブリが0.2以下であり、耐印刷前の値と耐印刷後の値の差が0.0以上、0.1未満である。
○:初期のカブリが0.2以下であり、耐印刷前の値と耐印刷後の値の差が0.1以上、0.3未満である。
△:初期のカブリが0.2以下であり、耐印刷前の値と耐印刷後の値の差が0.3以上、0.5未満である。
×:初期のカブリが0.2超である、又は耐印刷前の値と耐印刷後の値の差が0.5以上である。
<Fog>
It measured using the whiteness meter (TC-6D Tokyo Denshoku Co., Ltd.), and evaluated on the following reference | standard. The evaluation was calculated by taking the difference of the value after printing resistance from the value of the paper before printing resistance.
A: The initial fog is 0.2 or less, and the difference between the value before printing resistance and the value after printing resistance is 0.0 or more and less than 0.1.
○: Initial fog is 0.2 or less, and the difference between the value before printing resistance and the value after printing resistance is 0.1 or more and less than 0.3.
(Triangle | delta): Initial fog is 0.2 or less, and the difference of the value before printing resistance and the value after printing resistance is 0.3 or more and less than 0.5.
X: The initial fog is more than 0.2, or the difference between the value before printing resistance and the value after printing resistance is 0.5 or more.

<キャリア付着>
ベタ画像印刷時の画像上のキャリア粒子の個数を目視より評価した。
○:画像上のキャリア付着粒子が3個以内である。
△:画像上のキャリア付着粒子が4個以上、8個以内である。(使用可能レベル)
×:画像上のキャリア付着粒子が9個以上である。(使用不可レベル)
<Carrier adhesion>
The number of carrier particles on the image during solid image printing was evaluated visually.
○: There are 3 or less carrier-adhering particles on the image.
Δ: The number of carrier-adhering particles on the image is 4 or more and 8 or less. (Usable level)
X: Nine or more carrier adhesion particles on the image. (Unusable level)

<耐スペント性>
耐印刷試験前のキャリアと耐印刷試験後の現像剤からトナーを除去したキャリアをCARBON ANALYZER (EMIA−221V HORIBA社製)を用いてカーボン値を測定し、以下の式によりカーボン値増加率を算出し、スペント量を見積もることで耐スペント性を評価した。
{(耐印刷後キャリアのカーボン値)−(耐印刷前キャリアのカーボン値〕}/(耐印刷前キャリアのカーボン値)×100=カーボン値増加率(%)
◎:カーボン値増加率が15%未満である。
○:カーボン値増加率が15%以上、30%未満である。
△:カーボン値増加率が30%以上、40%未満である。
×:カーボン値増加率が40%以上である。
<Spent resistance>
Measure the carbon value of the carrier from which the toner has been removed from the carrier before the printing resistance test and the developer after the printing resistance test using CARBON ANALYZER (EMIA-221V HORIBA), and calculate the increase rate of the carbon value by the following formula. The spent resistance was evaluated by estimating the spent amount.
{(Carbon value of carrier after printing) − (Carbon value of carrier before printing)} / (Carbon value of carrier before printing) × 100 = Carbon value increase rate (%)
A: Carbon value increase rate is less than 15%.
○: Carbon value increase rate is 15% or more and less than 30%.
(Triangle | delta): Carbon value increase rate is 30% or more and less than 40%.
X: Carbon value increase rate is 40% or more.

Figure 2015138230
Figure 2015138230

*1 コア材100重量部に対する被覆樹脂固形分の重量部
*2 被覆樹脂固形分100重量部に対する重量部
*3 かっこ内の数値は、A(アクリル樹脂)、B(シリコーン樹脂)、及びC(シリコーン変性アクリル樹脂)の合計量を100重量%としたときの重量%である。
* 1 Part by weight of coating resin solids with respect to 100 parts by weight of core material * 2 Part by weight with respect to 100 parts by weight of coating resin solids * 3 Figures in parentheses are A (acrylic resin), B (silicone resin), and C ( % By weight when the total amount of (silicone-modified acrylic resin) is 100% by weight.

Figure 2015138230
Figure 2015138230

表2より本発明により作製した実施例1〜14のキャリアは耐印刷試験後も良好な現像特性となった。一方、比較例1〜9により作製したキャリアは使用が困難である現像特性となった。   From Table 2, the carriers of Examples 1 to 14 prepared according to the present invention exhibited good development characteristics even after the printing resistance test. On the other hand, the carriers produced according to Comparative Examples 1 to 9 have development characteristics that are difficult to use.

以上実施例と共に説明したように電子写真用キャリアにおいて、コア材に少なくともアクリル樹脂とシリコーン変性アクリル樹脂とシリコーン樹脂とを特定の重量比で組み合わせた樹脂からなる樹脂被覆層を形成することで、トナーに対する帯電付与能力が高く、耐スペント性に優れ、かつ多数枚連続プリントにおいても帯電性が安定しており、初期の帯電立ち上がり性、帯電保持力にも優れ、コア材との密着性や塗膜性が良い電子写真用キャリアを得ることができた。   As described above with reference to the examples, in the electrophotographic carrier, the toner is formed by forming a resin coating layer made of a resin obtained by combining at least a specific weight ratio of an acrylic resin, a silicone-modified acrylic resin, and a silicone resin with the core material. High charging ability, excellent spent resistance, stable charging even in continuous printing of many sheets, excellent initial charge buildup and charge retention, adhesion to core material and coating film A good electrophotographic carrier could be obtained.

1:電子写真用キャリア
2、2’:電極
3、3’:磁極
4:支持台
1: Electrophotographic carrier 2, 2 ′: Electrode 3, 3 ′: Magnetic pole 4: Support base

Claims (11)

コア材と、該コア材の表面を被覆する樹脂被覆層とを有する電子写真用キャリアであって、
前記樹脂被覆層が、アクリル樹脂、シリコーン樹脂及びシリコーン変性アクリル樹脂を含み、
前記樹脂被覆層におけるアクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の割合が、アクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の合計量を100重量%としたとき、アクリル樹脂が40〜85重量%、シリコーン樹脂が10〜30重量%、シリコーン変性アクリル樹脂が5〜30重量%である、
電子写真用キャリア。
An electrophotographic carrier having a core material and a resin coating layer covering the surface of the core material,
The resin coating layer includes an acrylic resin, a silicone resin, and a silicone-modified acrylic resin,
The ratio of the acrylic resin, silicone resin, and silicone-modified acrylic resin in the resin coating layer is 40 to 85% by weight of acrylic resin when the total amount of acrylic resin, silicone resin, and silicone-modified acrylic resin is 100% by weight. The silicone resin is 10 to 30% by weight, and the silicone-modified acrylic resin is 5 to 30% by weight.
Electrophotographic carrier.
前記アクリル樹脂のガラス転移温度Tgが80℃以上である請求項1に記載の電子写真用キャリア。   The carrier for electrophotography according to claim 1, wherein the acrylic resin has a glass transition temperature Tg of 80 ° C. or higher. 前記アクリル樹脂の酸価が3以下である請求項1又は2に記載の電子写真用キャリア。   The electrophotographic carrier according to claim 1, wherein the acid value of the acrylic resin is 3 or less. 前記樹脂被覆層が、カーボンブラックとマグネタイトとを含む請求項1〜3の何れか1項記載の電子写真用キャリア。   The electrophotographic carrier according to claim 1, wherein the resin coating layer contains carbon black and magnetite. 前記カーボンブラックの含有量が、前記樹脂被覆層中の樹脂の固形分100重量部に対して、1〜15重量部であり、マグネタイトの含有量が、前記樹脂被覆層中の樹脂の固形分100重量部に対して、10〜150重量部である請求項4に記載の電子写真用キャリア。   The content of the carbon black is 1 to 15 parts by weight with respect to 100 parts by weight of the solid content of the resin in the resin coating layer, and the content of the magnetite is 100 solids content of the resin in the resin coating layer. The carrier for electrophotography according to claim 4, wherein the carrier is 10 to 150 parts by weight with respect to parts by weight. 前記樹脂被覆層が有機金属触媒を含み、樹脂被覆層中の樹脂の固形分100重量部に対する有機金属触媒の含有量X(重量部)と、樹脂被覆層中の樹脂の固形分100重量部に対するシリコーン樹脂の含有量Y(重量部)とが、(Y/5)≦X≦(Y/2)の関係式を満たす請求項1〜5の何れか1項記載の電子写真用キャリア。   The resin coating layer contains an organometallic catalyst, and the content X (parts by weight) of the organometallic catalyst with respect to 100 parts by weight of the solid content of the resin in the resin coating layer and the solid content of 100 parts by weight of the resin in the resin coating layer 6. The electrophotographic carrier according to claim 1, wherein the content Y (parts by weight) of the silicone resin satisfies a relational expression of (Y / 5) ≦ X ≦ (Y / 2). 前記樹脂被覆層が、更にスチレン−アクリル樹脂を含み、スチレン−アクリル樹脂の割合が、アクリル樹脂、シリコーン樹脂、及びシリコーン変性アクリル樹脂の合計100重量部に対して、0超〜30重量部である、請求項1〜6の何れか1項記載の電子写真用キャリア。   The resin coating layer further contains a styrene-acrylic resin, and the ratio of the styrene-acrylic resin is more than 0 to 30 parts by weight with respect to 100 parts by weight in total of the acrylic resin, the silicone resin, and the silicone-modified acrylic resin. The carrier for electrophotography according to any one of claims 1 to 6. 前記シリコーン変性アクリル樹脂が、メタクリル酸メチルと3−メタクリロキシプロピルトリメトキシシランをモノマー成分として含み構成される請求項1〜7の何れか1項記載の電子写真用キャリア。   The carrier for electrophotography according to any one of claims 1 to 7, wherein the silicone-modified acrylic resin comprises methyl methacrylate and 3-methacryloxypropyltrimethoxysilane as monomer components. 前記シリコーン樹脂が、熱硬化性シリコーン樹脂である請求項1〜8の何れか1項記載の電子写真用キャリア。   The electrophotographic carrier according to claim 1, wherein the silicone resin is a thermosetting silicone resin. 絶縁破壊電圧が0.5〜3.5kVである請求項1〜9の何れか1項記載の電子写真用キャリア。   10. The electrophotographic carrier according to claim 1, wherein the dielectric breakdown voltage is 0.5 to 3.5 kV. 請求項1〜10の何れか1項記載の電子写真用キャリアと、トナーとを含む電子写真用二成分現像剤。   An electrophotographic two-component developer comprising the electrophotographic carrier according to claim 1 and a toner.
JP2014011147A 2014-01-24 2014-01-24 Electrophotographic carrier Active JP6193138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011147A JP6193138B2 (en) 2014-01-24 2014-01-24 Electrophotographic carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011147A JP6193138B2 (en) 2014-01-24 2014-01-24 Electrophotographic carrier

Publications (3)

Publication Number Publication Date
JP2015138230A true JP2015138230A (en) 2015-07-30
JP2015138230A5 JP2015138230A5 (en) 2017-02-09
JP6193138B2 JP6193138B2 (en) 2017-09-06

Family

ID=53769239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011147A Active JP6193138B2 (en) 2014-01-24 2014-01-24 Electrophotographic carrier

Country Status (1)

Country Link
JP (1) JP6193138B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4036657A2 (en) 2021-01-28 2022-08-03 Canon Kabushiki Kaisha Magnetic carrier, two-component developer, and replenishment developer
EP4036656A2 (en) 2021-01-28 2022-08-03 Canon Kabushiki Kaisha Magnetic carrier, two-component developer, and replenishment developer
EP4036655A2 (en) 2021-01-28 2022-08-03 Canon Kabushiki Kaisha Magnetic carrier, two-component developer, and developer for replenishment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198664A (en) * 2002-12-17 2004-07-15 Ricoh Co Ltd Carrier for electrophotography, developer, vessel, and image forming method
JP2005308923A (en) * 2004-04-20 2005-11-04 Tomoegawa Paper Co Ltd Electrophotographic resin coated carrier and electrophotographic two-component developer using the same
JP2009198789A (en) * 2008-02-21 2009-09-03 Ricoh Co Ltd Electrophotographic developer carrier, electrophotographic two-component developer, and image forming method
JP2010244026A (en) * 2009-03-18 2010-10-28 Ricoh Co Ltd Carrier for use in developer developing electrostatic latent image, and electrostatic latent image developer
US20110165511A1 (en) * 2010-01-06 2011-07-07 Zhu Shunquan Method for producing toner
JP2011145388A (en) * 2010-01-13 2011-07-28 Ricoh Co Ltd Electrophotographic carrier, developer and image forming apparatus
JP2011145648A (en) * 2009-12-17 2011-07-28 Ricoh Co Ltd Carrier for electrostatic latent image developer, two-component developer, container containing developer, image forming method, and process cartridge
JP2013195734A (en) * 2012-03-21 2013-09-30 Ricoh Co Ltd Carrier for electrostatic latent image developer, two-component developer and image forming method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198664A (en) * 2002-12-17 2004-07-15 Ricoh Co Ltd Carrier for electrophotography, developer, vessel, and image forming method
JP2005308923A (en) * 2004-04-20 2005-11-04 Tomoegawa Paper Co Ltd Electrophotographic resin coated carrier and electrophotographic two-component developer using the same
JP2009198789A (en) * 2008-02-21 2009-09-03 Ricoh Co Ltd Electrophotographic developer carrier, electrophotographic two-component developer, and image forming method
JP2010244026A (en) * 2009-03-18 2010-10-28 Ricoh Co Ltd Carrier for use in developer developing electrostatic latent image, and electrostatic latent image developer
JP2011145648A (en) * 2009-12-17 2011-07-28 Ricoh Co Ltd Carrier for electrostatic latent image developer, two-component developer, container containing developer, image forming method, and process cartridge
US20110165511A1 (en) * 2010-01-06 2011-07-07 Zhu Shunquan Method for producing toner
JP2011145388A (en) * 2010-01-13 2011-07-28 Ricoh Co Ltd Electrophotographic carrier, developer and image forming apparatus
JP2013195734A (en) * 2012-03-21 2013-09-30 Ricoh Co Ltd Carrier for electrostatic latent image developer, two-component developer and image forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4036657A2 (en) 2021-01-28 2022-08-03 Canon Kabushiki Kaisha Magnetic carrier, two-component developer, and replenishment developer
EP4036656A2 (en) 2021-01-28 2022-08-03 Canon Kabushiki Kaisha Magnetic carrier, two-component developer, and replenishment developer
EP4036655A2 (en) 2021-01-28 2022-08-03 Canon Kabushiki Kaisha Magnetic carrier, two-component developer, and developer for replenishment

Also Published As

Publication number Publication date
JP6193138B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP5522468B2 (en) Electrostatic latent image development method
JP5454228B2 (en) Electrostatic latent image developer carrier and electrostatic latent image developer
JP6020877B2 (en) Carrier for electrostatic latent image developer, two-component developer, and image forming method
JP6155704B2 (en) Electrostatic latent image developer carrier, electrostatic latent image developer, image forming method, process cartridge
JP3891480B2 (en) Electrostatic latent image developing carrier, electrostatic latent image developer using the same, and electrostatic latent image developing method
US20120003579A1 (en) Ferrite carrier core material and ferrite carrier for electrophotographic developer, and electrophotographic developer using the ferrite carrier
JP4121252B2 (en) Electrostatic latent image developing carrier, developer, developing method and developing apparatus using the same
US10254674B2 (en) Carrier for developer of electrostatic latent image, developer, and image forming apparatus
JP2016212254A (en) Carrier and developer
JP2017003858A (en) Carrier and developer
JP2014021360A (en) Carrier for electrostatic latent image developer, and electrostatic latent image developer
JP5454261B2 (en) Electrostatic latent image developer carrier and electrostatic latent image developer
JP5626569B2 (en) Carrier for two-component developer
JP6193138B2 (en) Electrophotographic carrier
JP4596452B2 (en) Resin-coated carrier for electrophotography and two-component developer for electrophotography using the same
JP6061603B2 (en) Magnetic carrier, two-component developer and replenishment developer
JP6279911B2 (en) Electrophotographic carrier
JP2003131436A (en) Carrier for developing electrostatic latent image and electrostatic latent image developer
JP2012053300A (en) Developer for electrostatic latent image development, developer cartridge, process cartridge and image forming apparatus
JP2662327B2 (en) Electrophotographic carrier
JP5953861B2 (en) Electrostatic image developing toner, electrostatic image developer, toner cartridge, developer cartridge, process cartridge, image forming apparatus, and image forming method
JP3226993B2 (en) Positive charging red developer for electrostatic charge development
JP2006133777A (en) Carrier composition
JP3900458B2 (en) Electrophotographic image forming method, electrophotographic image forming apparatus, electrophotographic carrier, electrophotographic two-component developer, and container containing the developer
JP3226994B2 (en) Positive charging developer for electrostatic charge development

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170809

R150 Certificate of patent or registration of utility model

Ref document number: 6193138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250