JP2015138050A - Amphibian variable magnification lens, imaging device and manufacturing method of amphibian variable magnification lens - Google Patents

Amphibian variable magnification lens, imaging device and manufacturing method of amphibian variable magnification lens Download PDF

Info

Publication number
JP2015138050A
JP2015138050A JP2014007973A JP2014007973A JP2015138050A JP 2015138050 A JP2015138050 A JP 2015138050A JP 2014007973 A JP2014007973 A JP 2014007973A JP 2014007973 A JP2014007973 A JP 2014007973A JP 2015138050 A JP2015138050 A JP 2015138050A
Authority
JP
Japan
Prior art keywords
lens
lens group
state
moving
amphibious
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014007973A
Other languages
Japanese (ja)
Other versions
JP6287243B2 (en
Inventor
芝山 敦史
Atsushi Shibayama
敦史 芝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014007973A priority Critical patent/JP6287243B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to PCT/JP2015/000235 priority patent/WO2015107912A1/en
Priority to EP15737254.1A priority patent/EP3098641A4/en
Priority to CN201910628964.3A priority patent/CN110456493A/en
Priority to CN201580005222.5A priority patent/CN105960605A/en
Publication of JP2015138050A publication Critical patent/JP2015138050A/en
Priority to US15/212,230 priority patent/US9989742B2/en
Application granted granted Critical
Publication of JP6287243B2 publication Critical patent/JP6287243B2/en
Priority to US15/976,666 priority patent/US10545319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an amphibian variable magnification lens, imaging device and manufacturing method of the amphibian variable magnification lens that allow for varying magnification and are excellent in optical performance in both of a land photographing state and underwater photographing state even with a simple configuration.SOLUTION: An amphibian variable magnification lens 10 able to photograph in an underwater and land comprises, arranged in order from an object side along an optical axis,: a first lens group G1 having a lens shaped to have a lens surface on the most object side with a convex surface directed to the object side; and at least three moving lens groups (a second lens group G2, third lens group G, fourth lens group and fifth lens group in Fig.1). Upon varying magnification from a wide-angle end state to a telephoto end state, the first lens group G1 is stationary, and the moving lens groups move in a mutually independent manner. Of the moving lens groups, at least two lens groups (the fourth lens group G4 and fifth lens group G5 in Fig.1) are different in a movement trajectory upon zooming in a land photographing state and underwater photographing state.

Description

本発明は、水陸両用変倍レンズ装置、撮像装置、および水陸両用変倍レンズ装置の製造方法に関する。   The present invention relates to an amphibious variable-power lens device, an imaging device, and an amphibious variable-power lens device manufacturing method.

従来から、水陸両用変倍レンズが提案されている(例えば、特許文献1、2を参照)。   Conventionally, amphibious variable power lenses have been proposed (see, for example, Patent Documents 1 and 2).

特開平7−159687号公報JP-A-7-159687 特開平7−159689号公報Japanese Patent Laid-Open No. 7-159589

しかしながら、従来の水陸両用変倍レンズでは、水中撮影状態において、変倍ができなかったり、補助レンズ系の装着が必要であったりして、利便性がよくなかった。   However, the conventional amphibious zoom lens is not convenient because zooming cannot be performed or an auxiliary lens system needs to be mounted in an underwater shooting state.

本発明は、このような問題に鑑みてなされたものであり、簡素な構成でありながら、陸上撮影状態および水中撮影状態の両方において、変倍が可能で、優れた光学性能を有する水陸両用変倍レンズ装置、撮像装置、および水陸両用変倍レンズ装置の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and has a simple configuration, but can be changed in both land and underwater shooting conditions, and can be used for amphibious use having excellent optical performance. It is an object of the present invention to provide a method of manufacturing a double lens device, an imaging device, and an amphibious variable power lens device.

このような目的を達成するため、本発明に係る水陸両用変倍レンズ装置は、水中および陸上での撮影が可能な水陸両用変倍レンズ装置であって、光軸に沿って物体側から順に並んだ、最も物体側のレンズ面が物体側に凸面を向けた形状であるレンズを有する第1レンズ群と、少なくとも3つの移動レンズ群とを有し、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は固定し、前記移動レンズ群は互いに独立して移動し、前記移動レンズ群のうち、少なくとも2つのレンズ群は、陸上撮影状態と水中撮影状態とにおいて前記変倍時の移動軌跡が異なる。   In order to achieve such an object, an amphibious zoom lens device according to the present invention is an amphibious zoom lens device capable of photographing underwater and on land, and is arranged in order from the object side along the optical axis. However, it has a first lens group having a lens whose lens surface closest to the object side has a convex surface facing the object side, and at least three moving lens groups, and zooming from the wide-angle end state to the telephoto end state. At this time, the first lens group is fixed, the moving lens groups move independently from each other, and at least two of the moving lens groups are at the time of zooming in a land shooting state and an underwater shooting state. The movement trajectory is different.

本発明に係る水陸両用変倍レンズ装置は、次の条件式を満足することが好ましい。   The amphibious variable power lens apparatus according to the present invention preferably satisfies the following conditional expression.

0.80 < R1/Enpw < 4.00
但し、
R1:前記第1レンズ群の最も物体側のレンズ面の曲率半径、
Enpw:前記第1レンズ群の最も物体側のレンズ面から、前記水陸両用変倍レンズ装置の陸上撮影状態の広角端状態での無限遠撮影状態における入射瞳位置までの光軸上の距離。
0.80 <R1 / Enpw <4.00
However,
R1: radius of curvature of the lens surface closest to the object side of the first lens group,
Enpw: Distance on the optical axis from the most object-side lens surface of the first lens group to the entrance pupil position in the infinity photographing state at the wide-angle end state in the land photographing state of the amphibious variable magnification lens apparatus.

本発明に係る水陸両用変倍レンズ装置は、次の条件式を満足することが好ましい。   The amphibious variable power lens apparatus according to the present invention preferably satisfies the following conditional expression.

−0.90 < Δ1U/Δ1A < 0.90
0.20 < Δ2U/Δ2A < 2.00
但し、
Δ1U:前記少なくとも2つの移動レンズ群のうち、最も像側に位置するレンズ群の、水中撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)、
Δ1A:前記少なくとも2つの移動レンズ群のうち、最も像側に位置するレンズ群の、陸上撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)、
Δ2U:前記少なくとも2つの移動レンズ群のうち、像側から数えて2番目に位置するレンズ群の、水中撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)、
Δ2A:前記少なくとも2つの移動レンズ群のうち、像側から数えて2番目に位置するレンズ群の、陸上撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)。
−0.90 <Δ1U / Δ1A <0.90
0.20 <Δ2U / Δ2A <2.00
However,
Δ1U: Of the at least two moving lens groups, the lens group located closest to the image side is required to change from the infinity shooting state at the wide-angle end state in the underwater shooting state to the infinity shooting state at the telephoto end state. Amount of movement (however, the amount of movement in the image plane direction is given a positive sign, and the amount of movement in the object direction is attached with a negative sign),
Δ1A: Of the at least two moving lens groups, the lens group located closest to the image side needs to change from the infinity shooting state at the wide-angle end state in the land shooting state to the infinity shooting state at the telephoto end state. Amount of movement (however, the amount of movement in the image plane direction is given a positive sign, and the amount of movement in the object direction is attached with a negative sign),
Δ2U: Of the at least two moving lens groups, the second lens group counted from the image side changes from the infinity shooting state in the wide-angle end state in the underwater shooting state to the infinity shooting state in the telephoto end state. The amount of movement required for the change (however, the amount of movement in the image plane direction is given a positive sign and the amount of movement in the object direction is attached with a negative sign),
Δ2A: Of the at least two moving lens groups, the second lens group counted from the image side changes from the infinity shooting state in the wide-angle end state in the land shooting state to the infinity shooting state in the telephoto end state. The amount of movement required to change the distance (however, the amount of movement in the image plane direction is given a positive sign, and the amount of movement in the object direction is assigned a negative sign).

本発明に係る水陸両用変倍レンズ装置は、陸上撮影状態と水中撮影状態とを識別する識別部と、焦点距離を変更するための操作部と、前記操作部で変更された前記焦点距離を検知するための焦点距離検知部と、前記移動レンズ群のうち、少なくとも1つの移動レンズ群を、前記操作部の操作に連動して光軸に沿って移動させる移動機構と、前記移動レンズ群のうち、前記移動機構を介して移動するレンズ群以外の、少なくとも2つの移動レンズ群を、それぞれ光軸に沿って移動させる独立した少なくとも2つの駆動機構と、前記駆動機構を介して移動する少なくとも2つの移動レンズ群の、陸上撮影状態と水中撮影状態のそれぞれにおいて、焦点距離ごとに設定された光軸上の位置を記憶する記憶部と、前記識別部と前記焦点距離検知部からの出力に基づき、前記記憶部に記憶された所定の位置に前記少なくとも2つの移動レンズ群が移動するように、前記少なくとも2つの駆動機構の駆動を制御する制御部とを有することが好ましい。   An amphibious variable magnification lens apparatus according to the present invention includes an identification unit that distinguishes between a land shooting state and an underwater shooting state, an operation unit for changing a focal length, and the focal length changed by the operation unit. A moving mechanism for moving at least one moving lens group among the moving lens groups along the optical axis in conjunction with the operation of the operating unit, and the moving lens group. , At least two moving lens groups that move at least two moving lens groups along the optical axis, respectively, other than the lens group that moves through the moving mechanism, and at least two moving mechanisms that move through the driving mechanism. In each of the land photographing state and the underwater photographing state of the moving lens group, a storage unit that stores a position on the optical axis set for each focal length, the identification unit, and the focal length detection unit Based on the output, the at a predetermined position stored in the storage unit such that at least two movable lens groups are moved, it is preferable that a control unit for controlling the driving of said at least two drive mechanisms.

本発明に係る水陸両用変倍レンズ装置は、陸上撮影状態と水中撮影状態とを識別する識別部と、焦点距離を変更するための操作部と、前記操作部で変更された前記焦点距離を検知するための焦点距離検知部と、前記移動レンズ群のうち、少なくとも3つの移動レンズ群を、それぞれ光軸に沿って移動させる独立した少なくとも3つの駆動機構と、前記駆動機構を介して移動する少なくとも3つの移動レンズ群の、陸上撮影状態と水中撮影状態のそれぞれにおいて、焦点距離ごとに設定された光軸上の位置を記憶する記憶部と、前記識別部と前記焦点距離検知部からの出力に基づき、前記記憶部に記憶された所定の位置に前記少なくとも3つの移動レンズ群が移動するように、前記少なくとも3つの駆動機構の駆動を制御する制御部とを有することが好ましい。   An amphibious variable magnification lens apparatus according to the present invention includes an identification unit that distinguishes between a land shooting state and an underwater shooting state, an operation unit for changing a focal length, and the focal length changed by the operation unit. And at least three independent driving mechanisms for moving at least three of the moving lens groups along the optical axis, respectively, and at least moving through the driving mechanism. In each of the three moving lens groups in the land shooting state and the underwater shooting state, the storage unit stores the position on the optical axis set for each focal length, and outputs from the identification unit and the focal length detection unit And a control unit that controls driving of the at least three driving mechanisms so that the at least three moving lens groups move to the predetermined positions stored in the storage unit. Door is preferable.

本発明に係る水陸両用変倍レンズ装置は、物体側から順に並んだ、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、負屈折力の第4レンズ群と、正屈折力の第5レンズ群とを有し、前記移動機構を介して移動する、前記少なくとも1つの移動レンズ群は、前記第2レンズ群を含み、前記少なくとも2つの駆動機構を介して移動する、前記少なくとも2つの移動レンズ群は、前記第4レンズ群と、前記第5レンズ群とを含むことが好ましい。   The amphibious variable power lens apparatus according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens arrayed in order from the object side. The at least one moving lens group having a fourth lens group having a refractive power and a fifth lens group having a positive refractive power and moving via the moving mechanism includes the second lens group, and It is preferable that the at least two moving lens groups that move via two drive mechanisms include the fourth lens group and the fifth lens group.

本発明に係る水陸両用変倍レンズ装置は、物体側から順に並んだ、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、負屈折力の第4レンズ群と、正屈折力の第5レンズ群とを有し、前記少なくとも3つの駆動機構を介して移動する、前記少なくとも3つの移動レンズ群は、前記第2レンズ群と、前記第4レンズ群と、前記第5レンズ群とを含むことが好ましい。   The amphibious variable power lens apparatus according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens arrayed in order from the object side. The at least three moving lens groups having a fourth lens group having a refractive power and a fifth lens group having a positive refractive power and moving via the at least three driving mechanisms are the second lens group, It is preferable that the fourth lens group and the fifth lens group are included.

本発明に係る水陸両用変倍レンズ装置は、最も物体側に、物体側に凸面を向けたメニスカス形状のレンズを有し、次の条件式を満足することが好ましい。   The amphibious variable power lens apparatus according to the present invention preferably has a meniscus lens having a convex surface on the object side closest to the object side, and satisfies the following conditional expression.

−0.15 < φ1/φw < 0.15
但し、
φ1:前記メニスカス形状のレンズの空気中での屈折力、
φw:前記水陸両用変倍レンズ装置の陸上撮影状態における広角端状態での屈折力。
−0.15 <φ1 / φw <0.15
However,
φ1: refractive power of the meniscus lens in air
φw: Refracting power of the amphibious variable power lens apparatus in the wide-angle end state in the land photographing state.

本発明に係る水陸両用変倍レンズ装置は、最も物体側に、物体側に凸面を向けたメニスカス形状のレンズを有し、次の条件式を満足することが好ましい。   The amphibious variable power lens apparatus according to the present invention preferably has a meniscus lens having a convex surface on the object side closest to the object side, and satisfies the following conditional expression.

0.30 < R2/TL < 0.90
但し、
R2:前記メニスカス形状のレンズの像側面の曲率半径、
TL:前記水陸両用変倍レンズ装置の最も物体側のレンズ面から結像面までの光軸上の距離。
0.30 <R2 / TL <0.90
However,
R2: radius of curvature of the image side surface of the meniscus lens,
TL: Distance on the optical axis from the lens surface closest to the object side to the imaging surface of the amphibious variable magnification lens apparatus.

本発明に係る撮像装置は、上記いずれかの水陸両用変倍レンズ装置を備える。   An imaging apparatus according to the present invention includes any one of the above amphibious variable power lens apparatuses.

本発明に係る水陸両用変倍レンズ装置の製造方法は、水中および陸上での撮影が可能な水陸両用変倍レンズ装置の製造方法であって、光軸に沿って物体側から順に並んだ、最も物体側のレンズ面が物体側に凸面を向けた形状であるレンズを有する第1レンズ群と、少なくとも3つの移動レンズ群とを有し、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は固定し、前記移動レンズ群は互いに独立して移動し、前記移動レンズ群のうち、少なくとも2つのレンズ群は、陸上撮影状態と水中撮影状態とにおいて前記変倍時の移動軌跡が異なるように、筐体内に各レンズを配置する。   The manufacturing method of an amphibious zoom lens apparatus according to the present invention is a manufacturing method of an amphibious zoom lens apparatus capable of photographing underwater and on land, and is arranged in order from the object side along the optical axis. A first lens group having a lens whose lens surface on the object side has a convex surface facing the object side, and at least three moving lens groups, and for zooming from the wide-angle end state to the telephoto end state, The first lens group is fixed, the moving lens groups move independently of each other, and at least two of the moving lens groups move during the zooming in a land shooting state and an underwater shooting state. Each lens is arranged in the housing so that the two are different.

本発明によれば、簡素な構成でありながら、陸上撮影状態および水中撮影状態の両方において、変倍が可能で、優れた光学性能を有する水陸両用変倍レンズ装置、撮像装置、および水陸両用変倍レンズ装置の製造方法を提供することができる。   According to the present invention, an amphibious variable power lens apparatus, an imaging apparatus, and an amphibious variable lens that have a simple configuration and can perform zooming both in a land shooting state and an underwater shooting state, and have excellent optical performance. A method of manufacturing a double lens device can be provided.

第1実施形態に係る水陸両用変倍レンズ装置の断面構成図である。It is a section lineblock diagram of the amphibious variable magnification lens device concerning a 1st embodiment. 第1実施形態に係る水陸両用変倍レンズ装置の情報・制御の伝達関係を示す図である。It is a figure which shows the transmission relationship of the information and control of the amphibious variable magnification lens apparatus which concerns on 1st Embodiment. 第1実施形態に係る水陸両用変倍レンズ装置のレンズ構成を示す断面図と、広角端状態から望遠端状態までの各群の移動軌跡を示す図である。It is sectional drawing which shows the lens structure of the amphibious variable magnification lens apparatus which concerns on 1st Embodiment, and the figure which shows the movement locus | trajectory of each group from a wide-angle end state to a telephoto end state. 第1実施形態に係る水陸両用変倍レンズ装置の陸上撮影状態における無限遠合焦状態でのd線(波長587.6nm)に対する諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 6 is a diagram illustrating various aberrations with respect to d-line (wavelength: 587.6 nm) in an infinitely focused state in an on-land photographing state of the amphibious variable magnification lens device according to the first embodiment, where (a) is a wide-angle end state, and (b) Intermediate focal length state, (c) shows the telephoto end state. 第1実施形態に係る水陸両用変倍レンズ装置の水中撮影状態における無限遠合焦状態でのd線(波長587.6nm)に対する諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 4 is a diagram illustrating various aberrations with respect to d-line (wavelength: 587.6 nm) in an infinite focus state in an underwater photographing state of the amphibious variable magnification lens device according to the first embodiment, (a) is a wide-angle end state, and (b) is a wide-angle end state. Intermediate focal length state, (c) shows the telephoto end state. 第1実施形態に係る水陸両用変倍レンズ装置の変形例を示す図である。It is a figure which shows the modification of the amphibious variable magnification lens apparatus which concerns on 1st Embodiment. 第2実施形態に係る水陸両用変倍レンズ装置の断面構成図である。It is a section lineblock diagram of the amphibious variable magnification lens device concerning a 2nd embodiment. 第2実施形態に係る水陸両用変倍レンズ装置の情報・制御の伝達関係を示す図である。It is a figure which shows the transmission relationship of the information and control of the amphibious variable magnification lens apparatus which concerns on 2nd Embodiment. 第2実施形態に係る水陸両用変倍レンズ装置のレンズ構成を示す断面図と、広角端状態から望遠端状態までの各群の移動軌跡を示す図である。It is sectional drawing which shows the lens structure of the amphibious variable magnification lens apparatus which concerns on 2nd Embodiment, and the figure which shows the movement locus | trajectory of each group from a wide-angle end state to a telephoto end state. 第2実施形態に係る水陸両用変倍レンズ装置の陸上撮影状態における無限遠合焦状態でのd線(波長587.6nm)に対する諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 9 is a diagram illustrating various aberrations with respect to d-line (wavelength: 587.6 nm) in an infinitely focused state in an on-land photographing state of the amphibious variable magnification lens device according to the second embodiment, (a) is a wide-angle end state, and (b) is a wide-angle end state. Intermediate focal length state, (c) shows the telephoto end state. 第2実施形態に係る水陸両用変倍レンズ装置の水中撮影状態における無限遠合焦状態でのd線(波長587.6nm)に対する諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 9 is a diagram illustrating various aberrations with respect to d-line (wavelength: 587.6 nm) in an infinite focus state in an underwater photographing state of the amphibious variable magnification lens device according to the second embodiment, where (a) is a wide-angle end state, and (b) is a wide-angle state. Intermediate focal length state, (c) shows the telephoto end state. 第2実施形態に係る水陸両用変倍レンズ装置の変形例を示す図である。It is a figure which shows the modification of the amphibious variable magnification lens apparatus which concerns on 2nd Embodiment. 本実施形態に係る水陸両用変倍レンズ装置を備えるカメラ(撮像装置)の構成を示す図である。It is a figure which shows the structure of a camera (imaging device) provided with the amphibious variable magnification lens apparatus which concerns on this embodiment. 本実施形態に係る水陸両用変倍レンズ装置の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the amphibious variable magnification lens apparatus which concerns on this embodiment.

以下、本発明の実施形態について、上記図面を参照しながら説明する。まず、本発明に係る各実施形態に共通する光学系の特徴構成について説明する。次に、図1〜図6を参照しながら、本発明に係る第1実施形態について説明する。図7〜図12を参照しながら、本発明に係る第2実施形態について説明する。図13を参照しながら、これら実施形態に係る撮像装置について説明する。図14を参照しながら、これら実施形態に係る製造方法について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the characteristic configuration of the optical system common to each embodiment according to the present invention will be described. Next, a first embodiment according to the present invention will be described with reference to FIGS. A second embodiment according to the present invention will be described with reference to FIGS. The imaging apparatus according to these embodiments will be described with reference to FIG. The manufacturing method according to these embodiments will be described with reference to FIG.

後述する第1実施形態に係る水陸両用変倍レンズ装置10と、第2実施形態に係る水陸両用変倍レンズ装置100に共通する、光学系ZLの特徴構成について説明する(図3、図9参照)。   A characteristic configuration of the optical system ZL common to the amphibious variable power lens apparatus 10 according to the first embodiment and the amphibious variable power lens apparatus 100 according to the second embodiment will be described (see FIGS. 3 and 9). ).

水陸両用変倍レンズ装置10,100には、物体側から順に並んだ、最も物体側のレンズ面が物体側に凸面を向けた形状であるレンズを有する第1レンズ群G1と、少なくとも3つの移動レンズ群(例えば、第2レンズ群G2、第4レンズ群G4、第5レンズ群G5)とを有し、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1は固定し、前記移動レンズ群は互いに独立して光軸に沿って移動し、前記移動レンズ群のうち、少なくとも2つのレンズ群(例えば、第4レンズ群G4、第5レンズ群G5)は、陸上撮影状態と水中撮影状態とにおいて前記変倍時の移動軌跡が異なる特徴構成を有する光学系ZLが搭載されている。なお、図3および図9では、第4レンズ群G4および第5レンズ群G5の、陸上撮影状態での移動軌跡を実線で、水中撮影状態での移動軌跡を点線でそれぞれ示している。   The amphibious variable power lens apparatus 10, 100 includes at least three movements, a first lens group G1 having lenses arranged in order from the object side and having the lens surface closest to the object side with a convex surface facing the object side. Lens group (for example, the second lens group G2, the fourth lens group G4, the fifth lens group G5), and the first lens group G1 is fixed at the time of zooming from the wide-angle end state to the telephoto end state, The moving lens groups move along the optical axis independently of each other, and at least two lens groups (for example, the fourth lens group G4 and the fifth lens group G5) of the moving lens groups are in a land photography state. An optical system ZL having a characteristic configuration in which the movement locus at the time of zooming differs in the underwater shooting state is mounted. In FIGS. 3 and 9, the movement locus of the fourth lens group G4 and the fifth lens group G5 in the land photographing state is indicated by a solid line, and the movement locus in the underwater photographing state is indicated by a dotted line.

第1レンズ群G1を固定とすることにより、水中撮影状態での気密性を確保している。また、変倍作用は、移動する少なくとも3つのレンズ群で担っており、特に、本装置では、第2レンズ群G2を移動させることにより主たる変倍を行い、第4レンズ群G4と第5レンズ群G5とを移動させることにより、変倍や陸上撮影状態と水中撮影状態との切り替えに伴う像面湾曲をはじめとする諸収差の補正を行っている。また、光学系ZLの最も物体側のレンズ面(第1面m1)を、物体側に凸面を向けた形状とすることにより、水中に入れた際の画角変化を抑え、歪曲収差と倍率色収差の発生を抑えている。   By fixing the first lens group G1, airtightness in an underwater shooting state is secured. Further, the zooming action is carried out by at least three moving lens groups. In particular, in this apparatus, the main lens zooming is performed by moving the second lens group G2, and the fourth lens group G4 and the fifth lens are moved. By moving the group G5, various aberrations such as field curvature associated with zooming and switching between a land photographing state and an underwater photographing state are corrected. Further, by making the lens surface (first surface m1) closest to the object side of the optical system ZL with a convex surface facing the object side, the change in the angle of view when placed in water is suppressed, and distortion and lateral chromatic aberration are suppressed. Is suppressed.

この結果、後述の水陸両用変倍レンズ装置10,100においては、簡素な構成でありながら、陸上撮影状態および水中撮影状態の両方において、変倍が可能で、良好な光学性能を達成することができる。   As a result, the amphibious variable power lens apparatus 10 and 100 described later can be zoomed in both the land photographing state and the underwater photographing state while having a simple configuration, thereby achieving good optical performance. it can.

各実施形態において、光学系ZLは、次の条件式(1)を満足することが好ましい。   In each embodiment, it is preferable that the optical system ZL satisfies the following conditional expression (1).

0.80 < R1/Enpw < 4.00 …(1)
但し、
R1:第1レンズ群G1の最も物体側のレンズ面の曲率半径、
Enpw:第1レンズ群G1の最も物体側のレンズ面から、光学系ZLの陸上撮影状態の広角端状態での無限遠撮影状態における入射瞳位置までの光軸上の距離。
0.80 <R1 / Enpw <4.00 (1)
However,
R1: radius of curvature of the lens surface closest to the object side of the first lens group G1,
Enpw: the distance on the optical axis from the most object-side lens surface of the first lens group G1 to the entrance pupil position in the infinity photographing state at the wide-angle end state of the optical system ZL in the land photographing state.

条件式(1)は、水中撮影時の像面湾曲と歪曲収差の発生を抑えるための条件である。条件式(1)の下限値を下回ると、陸上撮影状態と水中撮影状態とで、第1レンズ群G1の最も物体側のレンズ面のパワーが大きく変化し、これにより水中撮影状態で像面湾曲が大きく発生し、陸上撮影状態と異なる移動軌跡で移動レンズ群を移動させてこの像面湾曲を補正しようとしても、補正しきれなくなる。条件式(1)の上限値を上回ると、第1レンズ群G1の最も物体側のレンズ面を平面で構成した場合に近くなり、水中撮影状態で第1レンズ群G1の最も物体側に位置するレンズで発生する正の歪曲収差が増大し、補正しきれなくなる。   Conditional expression (1) is a condition for suppressing the occurrence of field curvature and distortion during underwater photography. If the lower limit value of conditional expression (1) is not reached, the power of the lens surface closest to the object side of the first lens group G1 changes greatly between the land photographing state and the underwater photographing state, and thereby the field curvature in the underwater photographing state. When the moving lens group is moved along a movement locus different from that in the land photographing state, the correction of the field curvature cannot be corrected. If the upper limit of conditional expression (1) is exceeded, it becomes close to the case where the lens surface closest to the object side of the first lens group G1 is configured as a plane, and is located closest to the object side of the first lens group G1 in the underwater shooting state. Positive distortion generated in the lens increases and cannot be corrected.

本実施形態の効果を確実なものとするために、条件式(1)の下限値を1.00とすることが好ましい。本実施形態の効果を確実なものとするために、条件式(1)の上限値を3.50とすることが好ましい。   In order to ensure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (1) to 1.00. In order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (1) to 3.50.

各実施形態において、光学系ZLは、次の条件式(2)、(3)を満足することが好ましい。   In each embodiment, it is preferable that the optical system ZL satisfies the following conditional expressions (2) and (3).

−0.90 < Δ1U/Δ1A < 0.90 …(2)
0.20 < Δ2U/Δ2A < 2.00 …(3)
但し、
Δ1U:前記少なくとも2つの移動レンズ群のうち、最も像側に位置するレンズ群の、水中撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)、
Δ1A:前記少なくとも2つの移動レンズ群のうち、最も像側に位置するレンズ群の、陸上撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)、
Δ2U:前記少なくとも2つの移動レンズ群のうち、像側から数えて2番目に位置するレンズ群の、水中撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)、
Δ2A:前記少なくとも2つの移動レンズ群のうち、像側から数えて2番目に位置するレンズ群の、陸上撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)。
−0.90 <Δ1U / Δ1A <0.90 (2)
0.20 <Δ2U / Δ2A <2.00 (3)
However,
Δ1U: Of the at least two moving lens groups, the lens group located closest to the image side is required to change from the infinity shooting state at the wide-angle end state in the underwater shooting state to the infinity shooting state at the telephoto end state. Amount of movement (however, the amount of movement in the image plane direction is given a positive sign, and the amount of movement in the object direction is attached with a negative sign),
Δ1A: Of the at least two moving lens groups, the lens group located closest to the image side needs to change from the infinity shooting state at the wide-angle end state in the land shooting state to the infinity shooting state at the telephoto end state. Amount of movement (however, the amount of movement in the image plane direction is given a positive sign, and the amount of movement in the object direction is attached with a negative sign),
Δ2U: Of the at least two moving lens groups, the second lens group counted from the image side changes from the infinity shooting state in the wide-angle end state in the underwater shooting state to the infinity shooting state in the telephoto end state. The amount of movement required for the change (however, the amount of movement in the image plane direction is given a positive sign and the amount of movement in the object direction is attached with a negative sign),
Δ2A: Of the at least two moving lens groups, the second lens group counted from the image side changes from the infinity shooting state in the wide-angle end state in the land shooting state to the infinity shooting state in the telephoto end state. The amount of movement required to change the distance (however, the amount of movement in the image plane direction is given a positive sign, and the amount of movement in the object direction is assigned a negative sign).

条件式(2)、(3)は、陸上撮影状態と水中撮影状態のそれぞれにおいて、諸収差を良好に補正するための条件である。条件式(2)の上限値または下限値を超えると、陸上撮影状態もしくは水中撮影状態における、広角端状態と望遠端状態のいずれか又はその両方で、像面湾曲をはじめとする諸収差の補正が困難となる。同様に、条件式(3)の上限値または下限値を超えると、陸上撮影状態もしくは水中撮影状態における、広角端状態と望遠端状態のいずれか又はその両方で、像面湾曲をはじめとする諸収差の補正が困難となる。   Conditional expressions (2) and (3) are conditions for favorably correcting various aberrations in each of the land photographing state and the underwater photographing state. When the upper limit value or lower limit value of conditional expression (2) is exceeded, correction of various aberrations including field curvature in the wide-angle end state and / or the telephoto end state in the land shooting state or underwater shooting state It becomes difficult. Similarly, when the upper limit value or lower limit value of conditional expression (3) is exceeded, various curvatures including field curvature are observed in either the wide-angle end state, the telephoto end state, or both in the land shooting state or the underwater shooting state. It becomes difficult to correct aberrations.

各実施形態において、光学系ZLは、最も物体側に、物体側に凸面を向けたメニスカス形状のレンズL11を有し、次の条件式(4)を満足することが好ましい。   In each embodiment, it is preferable that the optical system ZL has a meniscus lens L11 having a convex surface on the object side closest to the object side, and satisfies the following conditional expression (4).

−0.15 < φ1/φw < 0.15 …(4)
但し、
φ1:メニスカス形状のレンズL11の空気中での屈折力、
φw:光学系ZLの陸上撮影状態における広角端状態での屈折力。
−0.15 <φ1 / φw <0.15 (4)
However,
φ1: refracting power of the meniscus lens L11 in air,
φw: Refracting power of the optical system ZL in the wide-angle end state in the land photographing state.

条件式(4)は、光学系ZL、ひいてはこれを搭載する水陸両用変倍レンズ装置10,100の小型化するための条件である。条件式(4)の下限値を下回ると、最も物体側に位置するメニスカス形状のレンズL11の屈折力が負に大きくなり、前記メニスカス形状のレンズL11より像側に位置するレンズの径が大きくなるため好ましくない。条件式(4)の上限値を上回ると、最も物体側に位置するメニスカス形状のレンズL11の屈折力が正に大きくなり、前記メニスカス形状のレンズL11の径が大きくなるため好ましくない。   Conditional expression (4) is a condition for reducing the size of the optical system ZL, and thus the amphibious variable power lens apparatus 10 and 100 on which the optical system ZL is mounted. When the lower limit of conditional expression (4) is not reached, the refractive power of the meniscus lens L11 located closest to the object side becomes negatively larger, and the diameter of the lens located closer to the image side becomes larger than the meniscus lens L11. Therefore, it is not preferable. Exceeding the upper limit value of conditional expression (4) is not preferable because the refractive power of the meniscus lens L11 located closest to the object side increases positively and the diameter of the meniscus lens L11 increases.

本実施形態の効果を確実なものとするために、条件式(4)の下限値を−0.10とすることが好ましい。本実施形態の効果を確実なものとするために、条件式(4)の上限値を0.10とすることが好ましい。   In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to −0.10. In order to ensure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (4) to 0.10.

各実施形態において、光学系ZLは、最も物体側に、物体側に凸面を向けたメニスカス形状のレンズL11を有し、次の条件式(5)を満足することが好ましい。   In each embodiment, it is preferable that the optical system ZL has a meniscus lens L11 having a convex surface on the object side closest to the object side, and satisfies the following conditional expression (5).

0.30 < R2/TL < 0.90 …(5)
但し、
R2:前記メニスカス形状のレンズL11の像側面の曲率半径、
TL:前記光学系ZLの最も物体側のレンズ面から結像面までの光軸上の距離。
0.30 <R2 / TL <0.90 (5)
However,
R2: radius of curvature of the image side surface of the meniscus lens L11,
TL: distance on the optical axis from the lens surface closest to the object side of the optical system ZL to the imaging surface.

条件式(5)は、水中撮影時の収差補正を良好とするための条件である。条件式(5)の下限値を下回ると、水中撮影状態で、前記メニスカス形状のレンズL11の像側面で発生する像面湾曲が大きくなり、補正しきれなくなる。条件式(5)の上限値を上回ると、前記メニスカス形状のレンズL11の像側面のレンズ面で発生する正の歪曲収差が大きくなり、補正しきれなくなる。   Conditional expression (5) is a condition for improving the aberration correction during underwater shooting. If the lower limit value of conditional expression (5) is not reached, the curvature of field generated on the image side surface of the meniscus lens L11 becomes large in the underwater shooting state and cannot be corrected. When the upper limit value of conditional expression (5) is exceeded, positive distortion occurring on the lens surface on the image side surface of the meniscus lens L11 becomes large and cannot be corrected.

本実施形態の効果を確実なものとするために、条件式(5)の下限値を0.34とすることが好ましい。本実施形態の効果を確実なものとするために、条件式(5)の上限値を0.80とすることが好ましい。   In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (5) to 0.34. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (5) to 0.80.

(第1実施形態)
これより、第1実施形態に係る水陸両用変倍レンズ装置10について説明する。図1に示すように、第1実施形態の水陸両用変倍レンズ装置10は、物体側から順に並んだ、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5とから光学系ZL(ZL1)を備える。
(First embodiment)
From here, the amphibious variable power lens apparatus 10 according to the first embodiment will be described. As shown in FIG. 1, the amphibious variable magnification lens apparatus 10 of the first embodiment includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, arranged in order from the object side, The optical system ZL (ZL1) includes a third lens group G3 having positive refractive power, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power.

また、筐体1に第1レンズ群固定部1aを介して第1レンズ群G1が光軸上に固定され、第3レンズ群固定部1bを介して第3レンズ群G3が光軸上に固定され、第1レンズ群G1と第3レンズ群G3との間に第2レンズ群G2が、第3レンズ群G3の像側に第4レンズ群G4、および第5レンズ群G5が、光軸に沿ってそれぞれ独立に移動可能に筐体1内に後述する部材にて保持されている。   The first lens group G1 is fixed on the optical axis via the first lens group fixing part 1a to the housing 1, and the third lens group G3 is fixed on the optical axis via the third lens group fixing part 1b. The second lens group G2 is located between the first lens group G1 and the third lens group G3. The fourth lens group G4 and the fifth lens group G5 are arranged on the image side of the third lens group G3. It is held by a member to be described later in the housing 1 so as to be independently movable along the direction.

筐体1の像側端部1cには、マウント部材2が固定されており、マウント部材2によって後述する撮像装置に固定する。   A mount member 2 is fixed to the image-side end portion 1c of the housing 1, and is fixed to an imaging device described later by the mount member 2.

第2レンズ群G2を保持するレンズ枠2aから径方向に延在するピン2bは、筐体1に開けられた長孔3を通して焦点距離を変化させるための操作部材31に形成されたカム溝31aに係合される。このピン2bは、操作部材31を回転させると操作部材31の内壁に形成されたカム溝31aに沿って移動し、これにより第2レンズ群G2は光軸に沿って移動する。   A pin 2b extending in the radial direction from the lens frame 2a holding the second lens group G2 is a cam groove 31a formed in an operating member 31 for changing the focal length through the long hole 3 opened in the housing 1. Is engaged. When the operation member 31 is rotated, the pin 2b moves along the cam groove 31a formed on the inner wall of the operation member 31, and thereby the second lens group G2 moves along the optical axis.

操作部材31は、連動部材32aを介して筐体1内に配置された焦点距離検知部32に接続されている。焦点距離検知部32は、操作部材31が操作されると連動部材32aを介して焦点距離の変更要求を検知し、操作部材31の回転量に応じた焦点距離の値を出力する。   The operation member 31 is connected to a focal length detection unit 32 disposed in the housing 1 via an interlocking member 32a. When the operation member 31 is operated, the focal length detection unit 32 detects a focal length change request via the interlocking member 32 a and outputs a focal length value corresponding to the rotation amount of the operation member 31.

なお、操作部材31と筐体1との間の摺動部には、不図示のゴムリングが挟まれており、水中撮影時の水の浸入を防止する構造となっている。   Note that a rubber ring (not shown) is sandwiched between the sliding portion between the operation member 31 and the housing 1 to prevent water from entering during underwater shooting.

筐体1の外側に、陸上撮影状態と水中撮影状態を切り替えるためのスイッチ部材37が設けられている。筐体1内には、スイッチ部材37で変更された撮影状態を識別する撮影状態識別部33が配置されている。   A switch member 37 for switching between the land photographing state and the underwater photographing state is provided outside the housing 1. A shooting state identification unit 33 for identifying the shooting state changed by the switch member 37 is disposed in the housing 1.

第4レンズ群G4は、第4レンズ群レンズ枠4aに保持され、このレンズ枠4aが第3レンズ群固定部1bと像側端部1cとの間に配置された第1の支持部材23に摺動可能に支持され、図2に示す制御部35からの制御信号に基づき、第1の駆動機構21によって光軸に沿って移動するように構成されている。   The fourth lens group G4 is held by a fourth lens group lens frame 4a, and this lens frame 4a is disposed on a first support member 23 disposed between the third lens group fixing portion 1b and the image side end portion 1c. It is supported so as to be slidable, and is configured to move along the optical axis by the first drive mechanism 21 based on a control signal from the control unit 35 shown in FIG.

第5レンズ群G5は、第5レンズ群レンズ枠5aに保持され、このレンズ枠5aが第3レンズ群固定部1bと像側端部1cとの間に配置された第2の支持部材24に摺動可能に支持され、制御部35からの制御信号に基づき、第2の駆動機構22によって光軸に沿って移動するように構成されている。   The fifth lens group G5 is held by a fifth lens group lens frame 5a, and this lens frame 5a is attached to a second support member 24 disposed between the third lens group fixing portion 1b and the image side end portion 1c. It is supported so as to be slidable, and is configured to move along the optical axis by the second drive mechanism 22 based on a control signal from the control unit 35.

第1実施形態に係る水陸両用変倍レンズ装置10は、前記駆動機構21、22を介して移動する少なくとも2つの移動レンズ群、すなわち第4レンズ群G4と第5レンズ群G5の、陸上撮影状態と水中撮影状態のそれぞれにおいて、焦点距離ごとに設定された光軸上の位置情報を、図2に示す記憶部34に記憶する。なお、記憶されていない焦点距離の第4レンズ群G4と第5レンズ群G5の位置情報は、記憶されている位置情報に基づき、制御部35が補間処理等の処理をすることで設定することができる。   The amphibious variable magnification lens apparatus 10 according to the first embodiment is a land photographing state of at least two moving lens groups that move via the drive mechanisms 21 and 22, that is, the fourth lens group G4 and the fifth lens group G5. In each of the underwater shooting states, position information on the optical axis set for each focal length is stored in the storage unit 34 shown in FIG. Note that the position information of the fourth lens group G4 and the fifth lens group G5 with the focal length not stored is set by the control unit 35 performing processing such as interpolation processing based on the stored position information. Can do.

このような構成を有する第1実施形態に係る水陸両用変倍レンズ装置10では、図2に示すように、スイッチ部材37が操作されて撮影状態識別部33によって識別された撮影状態は、制御部35に伝達される。また、操作部材31が操作されて焦点距離検知部32によって検知された焦点距離は、制御部35に伝達される。   In the amphibious variable magnification lens apparatus 10 according to the first embodiment having such a configuration, as shown in FIG. 2, the photographing state identified by the photographing state identifying unit 33 by operating the switch member 37 is the control unit. 35. Further, the focal length detected by the focal length detection unit 32 by operating the operation member 31 is transmitted to the control unit 35.

制御部35は、伝達された撮影状態と焦点距離に対応する、第4レンズ群G4と第5レンズ群G5の光軸上の位置情報を記憶部34から読み出し、第1の駆動機構21を介して第4レンズ群G4を、第2の駆動機構22を介して第5レンズ群G5をそれぞれ独立に所定の光軸位置に移動させる。   The control unit 35 reads position information on the optical axis of the fourth lens group G4 and the fifth lens group G5 corresponding to the transmitted shooting state and focal length from the storage unit 34, and passes through the first drive mechanism 21. The fourth lens group G4 and the fifth lens group G5 are independently moved to a predetermined optical axis position via the second drive mechanism 22.

この結果、第1実施形態に係る水陸両用変倍レンズ装置10は、スイッチ部材37を操作して撮影状態を変更し、操作部材31を操作して焦点距離を変更した際、陸上撮影状態と水中撮影状態の両方の各焦点距離において、第4レンズ群G4と第5レンズ群G5の光軸上の位置を、制御部35が記憶部34に記憶されている位置情報に基づき設定することで、陸上撮影状態と水中撮影状態の両方の全焦点距離範囲にわたって像面湾曲をはじめとする諸収差を良好に補正することができる。   As a result, the amphibious variable magnification lens apparatus 10 according to the first embodiment changes the shooting state by operating the switch member 37, and changes the focal length by operating the operation member 31. By setting the positions of the fourth lens group G4 and the fifth lens group G5 on the optical axis at each focal length in the shooting state based on the position information stored in the storage unit 34, Various aberrations including curvature of field can be favorably corrected over the entire focal length range in both the land photographing state and the underwater photographing state.

次に、第1実施形態に係る水陸両用変倍レンズ装置10が備える光学系ZL1について、図3〜図5および表1を用いて説明する。この光学系ZL1が有する、第2実施形態と共通する特徴構成については先述した通りである。   Next, the optical system ZL1 provided in the amphibious variable magnification lens apparatus 10 according to the first embodiment will be described with reference to FIGS. The characteristic configuration common to the second embodiment of the optical system ZL1 is as described above.

なお、図3に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施形態に係る図面と共通の参照符号を付していても、それらは他の実施形態とは必ずしも共通の構成ではない。   3 are used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference code. Therefore, even if the reference numerals common to the drawings according to the other embodiments are attached, they are not necessarily the same configuration as the other embodiments.

第1実施形態に係る水陸両用変倍レンズ装置10が備える光学系ZL1は、図3に示すように、物体側から順に並んだ、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5とからなる。   As shown in FIG. 3, the optical system ZL1 provided in the amphibious variable magnification lens apparatus 10 according to the first embodiment includes a first lens group G1 having a positive refractive power and a first lens unit having a negative refractive power arranged in order from the object side. 2 lens group G2, 3rd lens group G3 of positive refractive power, 4th lens group G4 of negative refractive power, and 5th lens group G5 of positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状のレンズL11と、像側に凹面を向けた負メニスカスレンズL12と両凸形状の正レンズL13との接合レンズと、物体側に凸面を向けた正メニスカスレンズL14とからなる。   The first lens group G1 is composed of a meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a concave surface facing the image side, and a biconvex positive lens L13 arranged in order from the object side. It consists of a lens and a positive meniscus lens L14 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合レンズとからなる。負メニスカスレンズL21は、物体側面に非球面形状の薄いプラスチック樹脂層を備えている。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a concave surface facing the image side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens. It consists of a cemented lens with L24. The negative meniscus lens L21 includes an aspheric thin plastic resin layer on the object side surface.

第3レンズ群G3は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズと、両凸形状の正レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズと、両凸形状の正レンズL35とからなる。   The third lens group G3 is arranged in order from the object side, a cemented lens of a negative meniscus lens L31 having a concave surface facing the image side and a biconvex positive lens L32, and a biconvex positive lens L33 and the object side. It consists of a cemented lens with a negative meniscus lens L34 having a concave surface, and a biconvex positive lens L35.

第4レンズ群G4は、物体側から順に並んだ、両凹形状の負レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合レンズとからなる。   The fourth lens group G4 includes a biconcave negative lens L41, and a cemented lens of a biconcave negative lens L42 and a biconvex positive lens L43, which are arranged in order from the object side.

第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズと、像側に凹面を向けた負メニスカスレンズL54と両凸形状の正レンズL55との接合レンズと、物体側に凹面を向けた負メニスカスレンズL56とからなる。両凸形状の正レンズL51の像側面は、非球面である。   The fifth lens group G5 includes a biconvex positive lens L51, a cemented lens of a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object side, arranged in order from the object side, and the image side. And a negative meniscus lens L56 having a concave surface facing the object side, and a cemented lens of a negative meniscus lens L54 having a concave surface facing the lens and a biconvex positive lens L55. The image side surface of the biconvex positive lens L51 is aspheric.

第3レンズ群G3の像側に、虹彩絞りSが隣接して配置される。   An iris diaphragm S is disposed adjacent to the image side of the third lens group G3.

第5レンズ群G5と像面Iの間には、フィルタ群Fが配置される。フィルタ群Fは、像面Iに配設されるCCDやCMOS等の撮像素子の限界解像以上の空間周波数をカットするためのローパスフィルタや、撮像素子のカバーガラス等で構成される。   A filter group F is arranged between the fifth lens group G5 and the image plane I. The filter group F includes a low-pass filter for cutting a spatial frequency equal to or higher than the limit resolution of an image sensor such as a CCD or CMOS disposed on the image plane I, a cover glass of the image sensor, and the like.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

上記構成の光学系ZL1において、第1レンズ群G1の最も物体側のレンズ面は、上述の条件式(1)を満たす曲率半径を持ち、物体側に凸面を向けている。これにより、水中撮影時の歪曲収差の発生を抑制している。   In the optical system ZL1 having the above-described configuration, the lens surface closest to the object side of the first lens group G1 has a radius of curvature that satisfies the above-described conditional expression (1), and has a convex surface facing the object side. As a result, the occurrence of distortion during underwater shooting is suppressed.

第1レンズ群G1と第3レンズ群G3は、常に固定である。   The first lens group G1 and the third lens group G3 are always fixed.

第2レンズ群G2は、陸上撮影状態・水中撮影状態ともに、カム溝31aに沿って、広角端状態から望遠端状態への変倍に際して像面方向に移動する。   The second lens group G2 moves in the image plane direction during zooming from the wide-angle end state to the telephoto end state along the cam groove 31a in both the land photographing state and the underwater photographing state.

第4レンズ群G4は、第1の駆動機構21によって、広角端状態から望遠端状態への変倍に際して、陸上撮影状態(図3の実線の矢印)と水中撮影状態(図3の点線の矢印)で異なる移動軌跡をとるように移動する。   The fourth lens group G4 has a land photographing state (solid arrow in FIG. 3) and an underwater photographing state (dotted arrow in FIG. 3) when zooming from the wide-angle end state to the telephoto end state by the first drive mechanism 21. ) And move to take different movement trajectories.

第5レンズ群G5は、第2の駆動機構22によって、広角端状態から望遠端状態への変倍に際して、陸上撮影状態(図3の実線の矢印)と水中撮影状態(図3の点線の矢印)で異なる移動軌跡をとるように移動する。   The fifth lens group G5 has a land shooting state (solid arrow in FIG. 3) and an underwater shooting state (dotted arrow in FIG. 3) during zooming from the wide-angle end state to the telephoto end state by the second drive mechanism 22. ) And move to take different movement trajectories.

このように、第4レンズ群G4と第5レンズ群G5の移動軌跡を、陸上撮影状態と水中撮影状態で変えることにより、陸上撮影状態と水中撮影状態で結像位置を一定に保ったまま、陸上撮影状態と水中撮影状態の両方で像面湾曲を良好に補正することが可能となる。   Thus, by changing the movement trajectory of the fourth lens group G4 and the fifth lens group G5 between the land photographing state and the underwater photographing state, the imaging position is kept constant in the land photographing state and the underwater photographing state, It is possible to satisfactorily correct field curvature in both the land shooting state and the underwater shooting state.

無限遠撮影状態から近距離撮影状態への合焦に際しては、第4レンズ群G4を像面方向に移動させる。合焦に際しても、変倍時と同様に、第1の駆動機構21によって第4レンズ群G4の移動がなされる。   In focusing from the infinity shooting state to the close-up shooting state, the fourth lens group G4 is moved in the image plane direction. Also during focusing, the fourth lens group G4 is moved by the first drive mechanism 21 in the same manner as during zooming.

以下の表1に、第1実施形態に係る水陸両用変倍レンズ装置10が備える光学系ZL1の諸元値を掲げる。表1における面番号1〜41が、図3に示すm1〜m41の各光学面に対応している。   Table 1 below lists specifications of the optical system ZL1 included in the amphibious variable magnification lens apparatus 10 according to the first embodiment. Surface numbers 1 to 41 in Table 1 correspond to the optical surfaces m1 to m41 shown in FIG.

表中の[レンズデータ]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数をそれぞれ示す。物面は物体面、(可変)は可変の面間隔、曲率半径の「∞」は平面、(絞りS)は虹彩絞りS、像面は像面Iをそれぞれ示す。空気の屈折率「1.000000」は省略する。光学面が非球面である場合には、面番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示す。   In [Lens data] in the table, the surface number is the order of the optical surfaces from the object side along the direction in which the light beam travels, R is the radius of curvature of each optical surface, and D is the next optical surface from each optical surface (or The distance between surfaces on the optical axis to the image plane), nd is the refractive index of the material of the optical member with respect to the d-line, and νd is the Abbe number with respect to the d-line of the material of the optical member. The object plane is the object plane, (variable) is the variable plane spacing, the curvature radius “∞” is the plane, (aperture S) is the iris diaphragm S, and the image plane is the image plane I. The refractive index of air “1.000000” is omitted. When the optical surface is an aspherical surface, the surface number is marked with *, and the column of curvature radius R indicates the paraxial curvature radius.

表中の[非球面データ]には、[レンズデータ]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。 In [Aspherical data] in the table, the shape of the aspherical surface shown in [Lens data] is shown by the following equation (a). X (y) is the distance along the optical axis direction from the tangential plane at the apex of the aspheric surface to the position on the aspheric surface at height y, R is the radius of curvature of the reference sphere (paraxial radius of curvature), and κ is Ai represents the i-th aspherical coefficient. “E-n” indicates “× 10 −n ”. For example, 1.234E-05 = 1.234 × 10 −5 .

X(y)=(y2/R)/{1+(1−κ×y2/R21/2}+A4・y4+A6・y6+A8・y8+A10・y10+A12・y12+A14・y14 …(a) X (y) = (y 2 / R) / {1+ (1−κ × y 2 / R 2 ) 1/2 } + A 4 · y 4 + A 6 · y 6 + A 8 · y 8 + A 10 · y 10 + A 12 · y 12 + A 14 Y 14 ... (a)

表中の[各種データ]において、fはレンズ全系の焦点距離、FNOはFナンバー、2ωは画角(単位:°)、Yは像高、TLはレンズ全長(光軸上でのレンズ最も物体側のレンズ面から近軸像面までの距離)、Bfはバックフォーカスを示す。また、Diは可変間隔であり、第i面と第(i+1)面の可変間隔を示す。   In [Various data] in the table, f is the focal length of the entire lens system, FNO is the F number, 2ω is the angle of view (unit: °), Y is the image height, TL is the total lens length (the most lens on the optical axis) Bf represents back focus, the distance from the lens surface on the object side to the paraxial image plane). Di is a variable interval and indicates a variable interval between the i-th surface and the (i + 1) -th surface.

表中の[レンズ群データ]において、各レンズ群の始面番号(最も物体側のレンズ面番号)、終面番号(最も像面側のレンズ面番号)、空気中における焦点距離を示す。   In [Lens Group Data] in the table, the start surface number (the most object-side lens surface number), the end surface number (the most image-side lens surface number), and the focal length in the air are shown.

表中の[各レンズ群の位置データ]は、陸上撮影状態の広角端状態における無限遠撮影状態での各レンズ群の位置を基準とした、陸上撮影状態および水中撮影状態の各焦点距離における無限遠撮影状態での各レンズ群の位置を示す。符号は、像面方向を正とする。   The [Position data of each lens group] in the table is infinite at each focal length in the land shooting state and the underwater shooting state with reference to the position of each lens group in the infinity shooting state in the wide-angle end state in the land shooting state. The position of each lens group in the far shooting state is shown. The sign is positive in the image plane direction.

表中の[条件式対応値]には、上記の条件式(1)〜(5)に対応する値を示す。   “Values corresponding to conditional expressions” in the table indicate values corresponding to the conditional expressions (1) to (5).

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、水陸両用変倍レンズは比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。   Hereinafter, in all the specification values, “mm” is generally used for the focal length f, curvature radius R, surface interval D, and other lengths, etc. unless otherwise specified. Since the same optical performance can be obtained even if proportional expansion or proportional reduction is performed, the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.

ここまでの表の説明は、他の実施形態においても同様である。   The description of the table so far is the same in other embodiments.

(表1)
[レンズデータ]
面番号 R D nd νd
1 60.0000 5.0000 1.516800 63.88
2 58.2950 15.8000
3 102.3091 2.0000 1.795040 28.69
4 41.8010 10.4000 1.497820 82.57
5 -1007.6756 0.1000
6 37.6062 5.1500 1.834810 42.73
7 98.9884 D7(可変)
*8 99.2450 0.1500 1.553890 38.09
9 94.6723 1.4000 1.834810 42.73
10 12.0783 6.0000
11 -32.7960 1.0000 1.834810 42.73
12 46.9143 0.4000
13 25.5606 3.8000 1.846660 23.78
14 -54.2180 1.0000 1.816000 46.59
15 54.1534 D15(可変)
16 34.7874 0.8000 1.850260 32.35
17 16.6502 2.6000 1.618000 63.34
18 -37.1204 1.2000
19 48.7843 2.6000 1.497820 82.57
20 -18.5410 0.8000 1.850260 32.35
21 -41.7038 0.3000
22 47.8525 1.6000 1.696800 55.52
23 -59.5425 0.5000
24 ∞(絞り) D24(可変)
25 -33.1327 0.8000 1.816000 46.59
26 23.8736 0.7000
27 -23.1424 0.8000 1.816000 46.59
28 16.9872 2.0000 1.808090 22.74
29 -33.9829 D29(可変)
30 49.4602 3.5000 1.589130 61.18
*31 -19.7954 0.1000
32 23.4122 4.4000 1.497820 82.57
33 -23.4006 1.0000 1.950000 29.37
34 -80.0819 0.3000
35 85.4967 1.0000 1.883000 40.66
36 14.9004 4.0000 1.517420 52.20
37 -50.2458 1.4500
38 -30.3940 1.0000 2.000690 25.46
39 -82.9601 D39(可変)
40 ∞ 2.7900 1.516800 63.88
41 ∞ Bf
像面 ∞

[非球面データ]
第8面
κ = +15.1751
A4 = +4.64891E-06
A6 = -1.26998E-08
A8 = -3.35661E-10
A10= +2.59761E-12
A12= -8.51930E-15
A14= +1.02560E-17

第31面
κ = +1.2313
A4 = +1.39795E-05
A6 = +3.25121E-08
A8 = 0.00000E+00
A10= 0.00000E+00
A12= 0.00000E+00
A14= 0.00000E+00

[各種データ]
(陸上撮影状態)
f 10.60 19.05 45.07
FNO 4.58 4.99 5.48
2ω 76.48 44.65 19.40
Y 8.00 8.00 8.00
TL 158.41 158.41 158.41
D7 1.822 11.822 22.822
D15 30.318 20.318 9.318
D24 2.508 5.447 12.132
D29 17.391 15.008 11.482
D39 17.831 17.275 14.116
Bf 2.104 2.104 2.104

(水中撮影状態)
f 8.32 13.76 30.42
FNO 4.65 5.17 6.23
2ω 74.34 47.24 21.89
Y 8.00 8.00 8.00
TL 158.41 158.41 158.41
D7 1.822 11.822 22.822
D15 30.318 20.318 9.318
D24 2.971 6.248 14.349
D29 17.477 14.667 7.736
D39 17.277 16.811 15.641
Bf 2.104 2.104 2.104

[レンズ群データ]
群 始面 終面 焦点距離
第1レンズ群 1 7 67.131
第2レンズ群 8 15 -10.504
第3レンズ群 16 23 16.830
第4レンズ群 25 29 -14.660
第5レンズ群 30 39 24.633

[各レンズ群の位置データ]
(陸上撮影状態)
f 10.60 19.05 45.07
第2レンズ群 0.000 9.999 20.998
第4レンズ群 0.000 2.938 9.622
第5レンズ群 0.000 0.556 3.713

(水中撮影状態)
f 8.32 13.76 30.42
第2レンズ群 0.000 9.999 20.998
第4レンズ群 0.463 3.744 11.845
第5レンズ群 0.554 1.020 2.190

[条件式対応値]
条件式(1)R1/Enpw= 1.126
条件式(2)Δ1U/Δ1A= 0.440
条件式(3)Δ2U/Δ2A= 1.183
条件式(4)φ1/φw= 0.000
条件式(5)R2/TL= 0.368
R1= 60.000
Enpw= 53.283
Δ1U= 1.636
Δ1A= 3.715
Δ2U= 11.382
Δ2A= 9.622
φ1= 0.000
φw= 0.094
R2= 58.295
TL= 158.41
(Table 1)
[Lens data]
Surface number R D nd νd
1 60.0000 5.0000 1.516800 63.88
2 58.2950 15.8000
3 102.3091 2.0000 1.795040 28.69
4 41.8010 10.4000 1.497820 82.57
5 -1007.6756 0.1000
6 37.6062 5.1500 1.834810 42.73
7 98.9884 D7 (variable)
* 8 99.2450 0.1500 1.553890 38.09
9 94.6723 1.4000 1.834810 42.73
10 12.0783 6.0000
11 -32.7960 1.0000 1.834810 42.73
12 46.9143 0.4000
13 25.5606 3.8000 1.846660 23.78
14 -54.2180 1.0000 1.816000 46.59
15 54.1534 D15 (variable)
16 34.7874 0.8000 1.850260 32.35
17 16.6502 2.6000 1.618000 63.34
18 -37.1204 1.2000
19 48.7843 2.6000 1.497820 82.57
20 -18.5410 0.8000 1.850 260 32.35
21 -41.7038 0.3000
22 47.8525 1.6000 1.696800 55.52
23 -59.5425 0.5000
24 ∞ (Aperture) D24 (Variable)
25 -33.1327 0.8000 1.816000 46.59
26 23.8736 0.7000
27 -23.1424 0.8000 1.816000 46.59
28 16.9872 2.0000 1.808090 22.74
29 -33.9829 D29 (variable)
30 49.4602 3.5000 1.589130 61.18
* 31 -19.7954 0.1000
32 23.4122 4.4000 1.497820 82.57
33 -23.4006 1.0000 1.950000 29.37
34 -80.0819 0.3000
35 85.4967 1.0000 1.883000 40.66
36 14.9004 4.0000 1.517420 52.20
37 -50.2458 1.4500
38 -30.3940 1.0000 2.000690 25.46
39 -82.9601 D39 (variable)
40 ∞ 2.7900 1.516800 63.88
41 ∞ Bf
Image plane ∞

[Aspherical data]
8th surface κ = +15.1751
A4 = + 4.64891E-06
A6 = -1.26998E-08
A8 = -3.35661E-10
A10 = + 2.59761E-12
A12 = -8.51930E-15
A14 = + 1.02560E-17

31st plane κ = +1.2313
A4 = + 1.39795E-05
A6 = + 3.25121E-08
A8 = 0.00000E + 00
A10 = 0.00000E + 00
A12 = 0.00000E + 00
A14 = 0.00000E + 00

[Various data]
(Land shooting state)
f 10.60 19.05 45.07
FNO 4.58 4.99 5.48
2ω 76.48 44.65 19.40
Y 8.00 8.00 8.00
TL 158.41 158.41 158.41
D7 1.822 11.822 22.822
D15 30.318 20.318 9.318
D24 2.508 5.447 12.132
D29 17.391 15.008 11.482
D39 17.831 17.275 14.116
Bf 2.104 2.104 2.104

(Underwater shooting)
f 8.32 13.76 30.42
FNO 4.65 5.17 6.23
2ω 74.34 47.24 21.89
Y 8.00 8.00 8.00
TL 158.41 158.41 158.41
D7 1.822 11.822 22.822
D15 30.318 20.318 9.318
D24 2.971 6.248 14.349
D29 17.477 14.667 7.736
D39 17.277 16.811 15.641
Bf 2.104 2.104 2.104

[Lens group data]
Group Start surface End surface Focal length First lens group 1 7 67.131
Second lens group 8 15 -10.504
Third lens group 16 23 16.830
4th lens group 25 29 -14.660
5th lens group 30 39 24.633

[Position data for each lens group]
(Land shooting state)
f 10.60 19.05 45.07
Second lens group 0.000 9.999 20.998
Fourth lens group 0.000 2.938 9.622
5th lens group 0.000 0.556 3.713

(Underwater shooting)
f 8.32 13.76 30.42
Second lens group 0.000 9.999 20.998
Fourth lens group 0.463 3.744 11.845
5th lens group 0.554 1.020 2.190

[Conditional expression values]
Conditional expression (1) R1 / Enpw = 1.126
Conditional expression (2) Δ1U / Δ1A = 0.440
Conditional expression (3) Δ2U / Δ2A = 1.183
Conditional expression (4) φ1 / φw = 0.000
Conditional expression (5) R2 / TL = 0.368
R1 = 60.000
Enpw = 53.283
Δ1U = 1.636
Δ1A = 3.715
Δ2U = 11.382
Δ2A = 9.622
φ1 = 0.000
φw = 0.094
R2 = 58.295
TL = 158.41

表1から、第1実施形態に係る水陸両用変倍レンズ装置10は、条件式(1)〜(5)を満たすことが分かる。   From Table 1, it can be seen that the amphibious variable magnification lens apparatus 10 according to the first embodiment satisfies the conditional expressions (1) to (5).

図4は、第1実施形態に係る水陸両用変倍レンズ装置10の設計値に基づく、陸上撮影状態における無限遠合焦状態でのd線(波長587.6nm)に対する諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図5は、第1実施形態に係る水陸両用変倍レンズ装置10の設計値に基づく、水中撮影状態における無限遠合焦状態でのd線(波長587.6nm)に対する諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 4 is a diagram showing various aberrations for the d-line (wavelength 587.6 nm) in the infinitely focused state in the land photographing state, based on the design value of the amphibious variable magnification lens apparatus 10 according to the first embodiment. ) Shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. FIG. 5 is a diagram showing various aberrations for the d-line (wavelength 587.6 nm) in the infinite focus state in the underwater photographing state based on the design value of the amphibious variable magnification lens device 10 according to the first embodiment. ) Shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state.

各収差図において、FNOはFナンバーを、Yは像高を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面を示す。以上、収差図の説明は、他の実施形態においても同様である。   In each aberration diagram, FNO indicates an F number, and Y indicates an image height. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The description of the aberration diagrams is the same in the other embodiments.

各収差図から、第1実施形態に係る水陸両用変倍レンズ装置10は、陸上撮影状態と水中撮影状態の両方で、歪曲収差、像面湾曲等の諸収差が良好に補正され、高い結像性能を有することが分かる。   From the respective aberration diagrams, the amphibious variable magnification lens apparatus 10 according to the first embodiment is well corrected for various aberrations such as distortion and curvature of field in both the land photographing state and the underwater photographing state, and has high image formation. It can be seen that it has performance.

なお、第1実施形態では、陸上撮影状態と水中撮影状態とを識別する方法として、上述のように、筐体1にスイッチ部材37を設け、撮影者の切り替え操作に応じて識別する方法を採用しているが、これに限定されるものではない。例えば、図6の水陸両用変倍レンズ装置11に示すように、筐体1の外側に露呈するように2つの端子36を設け、端子間の電気抵抗を測定することにより自動で識別する方法等を採用することも可能である。この構成により、より利便性を高めることができる。   In the first embodiment, as a method for identifying the land shooting state and the underwater shooting state, as described above, the switch member 37 is provided in the housing 1, and the method for identifying according to the switching operation of the photographer is adopted. However, the present invention is not limited to this. For example, as shown in the amphibious variable magnification lens device 11 of FIG. 6, a method of automatically identifying the two terminals 36 by exposing them to the outside of the housing 1 and measuring the electrical resistance between the terminals, etc. It is also possible to adopt. With this configuration, convenience can be further enhanced.

(第2実施形態)
これより、第2実施形態に係る水陸両用変倍レンズ装置について説明する。図7に示すように、第2実施形態の水陸両用変倍レンズ装置100は、物体側から順に並んだ、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5とから光学系ZL(ZL2)を備える。
(Second Embodiment)
The amphibious variable power lens apparatus according to the second embodiment will be described. As shown in FIG. 7, the amphibious variable magnification lens apparatus 100 according to the second embodiment includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power, which are arranged in order from the object side. A third lens group G3 having positive refractive power, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power are provided with an optical system ZL (ZL2).

また、筐体101に第1レンズ群固定部101aを介して第1レンズ群G1が光軸上に固定され、第3レンズ群固定部101bを介して第3レンズ群G3が光軸上に固定され、第1レンズ群G1と第3レンズ群G3との間に第2レンズ群G2が、第3レンズ群G3の像側に第4レンズ群G4、および第5レンズ群G5が、光軸に沿ってそれぞれ独立に移動可能に筐体101内に後述する部材にて保持されている。   The first lens group G1 is fixed on the optical axis via the first lens group fixing portion 101a to the housing 101, and the third lens group G3 is fixed on the optical axis via the third lens group fixing portion 101b. The second lens group G2 is located between the first lens group G1 and the third lens group G3. The fourth lens group G4 and the fifth lens group G5 are arranged on the image side of the third lens group G3. It is held by a member to be described later in the housing 101 so as to be independently movable along the direction.

筐体101の外側に、焦点距離を変更するための焦点距離変更スイッチ部材138が設けられている。筐体101内には、焦点距離変更スイッチ部材138の操作による焦点距離の変更要求を検知する焦点距離検知部132が配置されている。   A focal length change switch member 138 for changing the focal length is provided outside the housing 101. A focal length detection unit 132 that detects a focal length change request by operating the focal length change switch member 138 is disposed in the housing 101.

筐体101の外側に、水中撮影状態と陸上撮影状態を切り替えるための撮影状態切替スイッチ部材137が設けられている。筐体101内には、撮影状態切替スイッチ部材137で変更された撮影状態を識別する撮影状態識別部133が配置されている。   A shooting state changeover switch member 137 for switching between an underwater shooting state and a land shooting state is provided outside the housing 101. In the housing 101, a shooting state identification unit 133 that identifies the shooting state changed by the shooting state changeover switch member 137 is disposed.

筐体101の像側端部101cに、マウント部材102が固定されており、マウント部材102によって後述する撮像装置に固定する。   A mount member 102 is fixed to the image side end portion 101c of the housing 101, and is fixed to an imaging apparatus described later by the mount member 102.

第2レンズ群G2は、第2レンズ群レンズ枠102aに保持され、このレンズ枠102aが第1レンズ群固定部101aと第3レンズ群固定部101bとの間に配置された第1の支持部材126に摺動可能に支持され、図9に示す制御部135からの制御信号に基づき第1の駆動機構125によって光軸に沿って移動するように構成されている。   The second lens group G2 is held by the second lens group lens frame 102a, and the first support member is disposed between the first lens group fixing part 101a and the third lens group fixing part 101b. 126 is slidably supported, and is configured to move along the optical axis by the first drive mechanism 125 based on a control signal from the control unit 135 shown in FIG.

第4レンズ群G4は、第4レンズ群レンズ枠104aに保持され、このレンズ枠104aが第3レンズ群固定部101bと像側端部101cとの間に配置された第2の支持部材123に摺動可能に支持され、制御部135からの制御信号に基づき第2の駆動機構121によって光軸に沿って移動するように構成されている。   The fourth lens group G4 is held by a fourth lens group lens frame 104a, and this lens frame 104a is attached to a second support member 123 disposed between the third lens group fixing portion 101b and the image side end portion 101c. The second drive mechanism 121 is supported so as to be slidable and moves along the optical axis based on a control signal from the control unit 135.

第5レンズ群G5は、第5レンズ群レンズ枠105aに保持され、このレンズ枠5aが第3レンズ群固定部101bと像側端部101cとの間に配置された第3の支持部材124に摺動可能に支持され、制御部135からの制御信号に基づき第3の駆動機構122によって光軸に沿って移動するように構成されている。   The fifth lens group G5 is held by a fifth lens group lens frame 105a, and this lens frame 5a is attached to a third support member 124 disposed between the third lens group fixing portion 101b and the image side end portion 101c. It is supported so as to be slidable, and is configured to move along the optical axis by the third drive mechanism 122 based on a control signal from the control unit 135.

第2実施形態に係る水陸両用変倍レンズ装置100は、陸上撮影状態と水中撮影状態のそれぞれにおいて、焦点距離ごとに設定された第2レンズ群G2、第4レンズ群G4および第5レンズ群G5の光軸上の位置情報を記憶部134に記憶する。記憶されていない焦点距離の第2レンズ群G2、第4レンズ群G4および第5レンズ群G5の位置情報は、記憶されている位置情報に基づき、制御部135が補間処理等の処理をすることで設定することができる。   The amphibious variable magnification lens apparatus 100 according to the second embodiment includes a second lens group G2, a fourth lens group G4, and a fifth lens group G5 set for each focal length in each of a land photographing state and an underwater photographing state. The position information on the optical axis is stored in the storage unit 134. The position information of the second lens group G2, the fourth lens group G4, and the fifth lens group G5 with the focal length not stored is processed by the control unit 135 based on the stored position information, such as interpolation processing. Can be set.

第2実施形態に係る水陸両用変倍レンズ装置100では、図8に示すように、撮影状態切替スイッチ部材137が操作されて撮影状態識別部133によって識別された撮影状態は、制御部135に伝達される。焦点距離変更スイッチ部材138が操作され焦点距離検知部132によって検知された焦点距離変更要求は、制御部135に伝達される。   In the amphibious variable magnification lens apparatus 100 according to the second embodiment, as shown in FIG. 8, the shooting state identified by the shooting state identification unit 133 when the shooting state changeover switch member 137 is operated is transmitted to the control unit 135. Is done. The focal length change request detected by the focal length detection unit 132 when the focal length change switch member 138 is operated is transmitted to the control unit 135.

制御部135は、伝達された撮影状態と焦点距離要求に対応する第2レンズ群G2、第4レンズ群G4、および第5レンズ群G5の光軸上の位置情報を記憶部134から読み出し、第1の駆動機構125を介して第2レンズ群G2を、第2の駆動機構121を介して第4レンズ群G4を、および第3の駆動手段122を介して第5レンズ群G5をそれぞれ独立に所定の光軸位置に移動させる。   The control unit 135 reads position information on the optical axis of the second lens group G2, the fourth lens group G4, and the fifth lens group G5 corresponding to the transmitted photographing state and focal length request from the storage unit 134, and The second lens group G2 via the first drive mechanism 125, the fourth lens group G4 via the second drive mechanism 121, and the fifth lens group G5 via the third drive means 122, respectively. Move to a predetermined optical axis position.

この結果、第2実施形態に係る水陸両用変倍レンズ装置100は、撮影状態切替スイッチ部材137を操作して撮影状態を変更し、焦点距離変更スイッチ部材138を操作して焦点距離を変更した際、陸上撮影状態と水中撮影状態の両方の各焦点距離において、第2レンズ群G2と第4レンズ群G4と第5レンズ群G5の光軸上の位置を制御部135が記憶部134に記憶されている位置情報に基づき設定することで、陸上撮影状態と水中撮影状態の両方の全焦点距離範囲にわたって像面湾曲をはじめとする諸収差を良好に補正することができる。   As a result, the amphibious variable magnification lens apparatus 100 according to the second embodiment changes the shooting state by operating the shooting state changeover switch member 137, and changes the focal length by operating the focal length change switch member 138. The control unit 135 stores the positions of the second lens group G2, the fourth lens group G4, and the fifth lens group G5 on the optical axis in the storage unit 134 at each focal length in both the land shooting state and the underwater shooting state. By setting based on the position information, it is possible to satisfactorily correct various aberrations including field curvature over the entire focal length range in both the land photographing state and the underwater photographing state.

次に、第2実施形態に係る水陸両用変倍レンズ装置100が備える光学系ZL2について、図9〜図12および表2を用いて説明する。この光学系ZL2が有する、第1実施形態と共通する特徴構成については上述した通りである。   Next, the optical system ZL2 included in the amphibious variable magnification lens apparatus 100 according to the second embodiment will be described with reference to FIGS. The characteristic configuration of the optical system ZL2 that is common to the first embodiment is as described above.

第2実施形態に係る水陸両用変倍レンズ装置100が備える光学系ZL2は、図9に示すように、物体側から順に並んだ、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3と、負屈折力の第4レンズ群G4と、正屈折力の第5レンズ群G5とからなる。   As shown in FIG. 9, the optical system ZL2 provided in the amphibious variable magnification lens apparatus 100 according to the second embodiment includes a first lens group G1 having a positive refractive power and a first lens unit having a negative refractive power arranged in order from the object side. 2 lens group G2, 3rd lens group G3 of positive refractive power, 4th lens group G4 of negative refractive power, and 5th lens group G5 of positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けたメニスカス形状のレンズL11と、像側に凹面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合レンズと、物体側に凸面を向けた正メニスカスレンズL14とからなる。   The first lens group G1 includes, in order from the object side, a meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a concave surface facing the image side, and a positive meniscus lens having a convex surface facing the object side. It consists of a cemented lens with L13 and a positive meniscus lens L14 with a convex surface facing the object side.

第2レンズ群G2は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とからなる。負メニスカスレンズL21の物体側面は、非球面である。   The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a concave surface facing the image side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens. Lens L24. The object side surface of the negative meniscus lens L21 is aspheric.

第3レンズ群G3は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズと、像側に凹面を向けた負メニスカスレンズL33と両凸形状の正レンズL34との接合レンズと、両凸形状の正レンズL35とからなる。   The third lens group G3 is composed of a cemented lens composed of a negative meniscus lens L31 having a concave surface facing the image side and a biconvex positive lens L32, and a negative meniscus lens L33 having a concave surface facing the image side. And a biconvex positive lens L34, and a biconvex positive lens L35.

第4レンズ群G4は、物体側から順に並んだ、両凹形状の負レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合レンズとからなる。   The fourth lens group G4 includes a biconcave negative lens L41, and a cemented lens of a biconcave negative lens L42 and a biconvex positive lens L43, which are arranged in order from the object side.

第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51と、像側に凹面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズと、両凸形状の正レンズL54と、物体側に凹面を向けた負メニスカスレンズL55とからなる。   The fifth lens group G5 includes a biconvex positive lens L51 arranged in order from the object side, a cemented lens of a negative meniscus lens L52 having a concave surface facing the image side, and a biconvex positive lens L53, and a biconvex lens. It comprises a positive lens L54 having a shape and a negative meniscus lens L55 having a concave surface facing the object side.

第3レンズ群G3の像側に、虹彩絞りSが隣接して配置される。   An iris diaphragm S is disposed adjacent to the image side of the third lens group G3.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

上記構成の光学系ZL2において、第1レンズ群G1の最も物体側のレンズ面は、上述の条件式(1)を満たす曲率半径を持ち、物体側に凸面を向けている。これにより、水中撮影時の歪曲収差の発生を抑制している。   In the optical system ZL2 configured as described above, the lens surface closest to the object side of the first lens group G1 has a radius of curvature that satisfies the above-described conditional expression (1), and has a convex surface facing the object side. As a result, the occurrence of distortion during underwater shooting is suppressed.

第1レンズ群G1と第3レンズ群G3は、常に固定である。   The first lens group G1 and the third lens group G3 are always fixed.

第2レンズ群G2は、第1の駆動機構125によって、広角端状態から望遠端状態への変倍に際して、像面方向へ移動する。但し、第2レンズ群G2の移動範囲は、陸上撮影状態と水中撮影状態で異なる範囲をとる。   The second lens group G2 is moved in the image plane direction by the first drive mechanism 125 upon zooming from the wide-angle end state to the telephoto end state. However, the moving range of the second lens group G2 is different between the land photographing state and the underwater photographing state.

第4レンズ群G4は、第2の駆動機構121によって、広角端状態から望遠端状態への変倍に際して、陸上撮影状態(図9の実線の矢印)と水中撮影状態(図9の点線の矢印)で異なる移動軌跡をとるように移動する。   The fourth lens group G4 has a land shooting state (solid arrow in FIG. 9) and an underwater shooting state (dotted arrow in FIG. 9) during zooming from the wide-angle end state to the telephoto end state by the second drive mechanism 121. ) And move to take different movement trajectories.

第5レンズ群G5は、第3の駆動機構122によって、広角端状態から望遠端状態への変倍に際して、陸上撮影状態と(図9の実線の矢印)水中撮影状態(図9の点線の矢印)で異なる移動軌跡をとるように移動する。   The fifth lens group G5 has a land driving state (solid arrow in FIG. 9) and an underwater shooting state (dotted arrow in FIG. 9) upon zooming from the wide-angle end state to the telephoto end state by the third drive mechanism 122. ) And move to take different movement trajectories.

このように第4レンズ群G4と第5レンズ群G5の移動軌跡を、陸上撮影状態と水中撮影状態で変えることにより、陸上撮影状態と水中撮影状態で結像位置を一定に保ったまま、陸上撮影状態と水中撮影状態の両方で像面湾曲を良好に補正することが可能となる。   In this way, by changing the movement trajectory of the fourth lens group G4 and the fifth lens group G5 between the land photographing state and the underwater photographing state, the image formation position is kept constant in the land photographing state and the underwater photographing state. It is possible to satisfactorily correct field curvature in both the photographing state and the underwater photographing state.

無限遠撮影状態から近距離撮影状態への合焦に際しては、第4レンズ群G4を像面方向に移動させる。合焦に際しても、変倍時と同様に、第2の駆動機構121によって第4レンズ群G4の移動がなされる。   In focusing from the infinity shooting state to the close-up shooting state, the fourth lens group G4 is moved in the image plane direction. In focusing, the fourth lens group G4 is moved by the second drive mechanism 121 as in the case of zooming.

以下の表2に、第2実施形態に係る水陸両用変倍レンズ装置100が備える光学系ZL2の諸元値を掲げる。表2における面番号1〜38が、図9に示すm1〜m38の各光学面に対応している。   Table 2 below lists specification values of the optical system ZL2 included in the amphibious variable magnification lens apparatus 100 according to the second embodiment. Surface numbers 1 to 38 in Table 2 correspond to the optical surfaces m1 to m38 shown in FIG.

(表2)
[レンズデータ]
面番号 r d nd νd
1 100.0000 3.0000 1.516800 63.88
2 98.9800 4.0000
3 74.1356 1.8000 1.850260 32.35
4 36.0351 7.0000 1.497820 82.51
5 3038.1597 0.1000
6 36.3362 5.0000 1.729157 54.66
7 170.0064 D7(可変)
*8 159.7676 1.0000 1.816000 46.62
9 11.1111 5.7573
10 -57.3031 0.8000 1.816000 46.62
11 32.0791 0.2020
12 18.8298 4.0000 1.846660 23.78
13 -127.9381 0.3170
14 -90.0599 1.0000 1.816000 46.62
15 41.7316 D15(可変)
16 22.5107 0.8000 1.834000 37.16
17 12.0861 2.5000 1.603001 65.46
18 -69.1710 1.0000
19 864.1596 1.0000 1.850260 32.35
20 16.8557 2.2000 1.603001 65.46
21 -47.4738 0.1000
22 24.2921 1.8000 1.729157 54.66
23 -67.1681 1.0000
24 ∞(絞り) D24(可変)
25 -43.6868 0.8000 1.834807 42.72
26 22.6901 0.8000
27 -25.0831 0.8000 1.834807 42.72
28 11.7100 1.8000 1.846660 23.78
29 -48.7106 D29(可変)
30 24.1884 2.5000 1.497820 82.51
31 -58.4609 0.2000
32 40.9485 1.0000 1.834807 42.72
33 15.4156 3.5000 1.497820 82.51
34 -46.0872 8.5639
35 28.3973 2.5000 1.497820 82.51
36 -123.1319 3.7652
37 -20.5259 1.0000 1.846660 23.78
38 -54.7499 Bf
像面 ∞

[非球面データ]
第8面
κ = -20.0000
A4 = +4.26826E-06
A6 = -9.97395E-09
A8 = +1.52813E-11
A10= -3.70867E-14
A12= 0.00000E+00
A14= 0.00000E+00

[各種データ]
(陸上撮影状態)
f 10.41 45.47 98.00
FNO 4.60 5.15 5.89
2ω 77.37 19.45 9.06
Y 8.00 8.00 8.00
TL 135.78 135.78 135.78
D7 0.800 20.355 28.029
D15 28.052 8.497 0.823
D24 0.800 8.210 13.112
D29 16.136 9.093 6.831
Bf 18.391 18.023 15.383

(水中撮影状態)
f 9.50 16.43 38.02
FNO 4.65 4.95 5.67
2ω 64.38 39.34 17.66
Y 8.00 8.00 8.00
TL 135.78 135.78 135.78
D7 0.800 10.200 20.355
D15 28.052 18.652 8.497
D24 1.618 4.381 10.362
D29 16.899 13.919 7.212
Bf 16.809 17.026 17.762

[レンズ群データ]
群 始面 終面 焦点距離
第1レンズ群 1 7 58.171
第2レンズ群 8 15 -10.550
第3レンズ群 16 23 16.309
第4レンズ群 25 29 -14.362
第5レンズ群 30 38 24.289

[各レンズ群の位置データ]
(陸上撮影状態)
f 10.41 45.47 98.00
第2レンズ群 0.000 19.555 27.230
第4レンズ群 0.000 7.411 12.313
第5レンズ群 0.000 0.368 3.008

(水中撮影状態)
f 9.50 16.43 38.02
第2レンズ群 0.000 9.400 19.555
第4レンズ群 0.818 3.581 9.562
第5レンズ群 1.582 1.365 0.629

(条件式対応値)
条件式(1) R1/Enpw= 3.014
条件式(2) Δ1U/Δ1A= −0.317
条件式(3) Δ2U/Δ2A= 0.710
条件式(4) φ1/φw= 0.000
条件式(5) R2/TL= 0.729
R1= 100.000
Enpw= 33.183
Δ1U= −0.953
Δ1A= 3.008
Δ2U= 8.744
Δ2A= 12.313
φ1= 0.000
φw= 0.096
R2= 98.98
TL= 135.78
(Table 2)
[Lens data]
Surface number r d nd νd
1 100.0000 3.0000 1.516800 63.88
2 98.9800 4.0000
3 74.1356 1.8000 1.850260 32.35
4 36.0351 7.0000 1.497820 82.51
5 3038.1597 0.1000
6 36.3362 5.0000 1.729157 54.66
7 170.0064 D7 (variable)
* 8 159.7676 1.0000 1.816000 46.62
9 11.1111 5.7573
10 -57.3031 0.8000 1.816000 46.62
11 32.0791 0.2020
12 18.8298 4.0000 1.846660 23.78
13 -127.9381 0.3170
14 -90.0599 1.0000 1.816000 46.62
15 41.7316 D15 (variable)
16 22.5107 0.8000 1.834000 37.16
17 12.0861 2.5000 1.603001 65.46
18 -69.1710 1.0000
19 864.1596 1.0000 1.850260 32.35
20 16.8557 2.2000 1.603001 65.46
21 -47.4738 0.1000
22 24.2921 1.8000 1.729157 54.66
23 -67.1681 1.0000
24 ∞ (Aperture) D24 (Variable)
25 -43.6868 0.8000 1.834807 42.72
26 22.6901 0.8000
27 -25.0831 0.8000 1.834807 42.72
28 11.7100 1.8000 1.846660 23.78
29 -48.7106 D29 (variable)
30 24.1884 2.5000 1.497820 82.51
31 -58.4609 0.2000
32 40.9485 1.0000 1.834807 42.72
33 15.4156 3.5000 1.497820 82.51
34 -46.0872 8.5639
35 28.3973 2.5000 1.497820 82.51
36 -123.1319 3.7652
37 -20.5259 1.0000 1.846660 23.78
38 -54.7499 Bf
Image plane ∞

[Aspherical data]
8th surface κ = -20.0000
A4 = + 4.26826E-06
A6 = -9.97395E-09
A8 = + 1.52813E-11
A10 = -3.70867E-14
A12 = 0.00000E + 00
A14 = 0.00000E + 00

[Various data]
(Land shooting state)
f 10.41 45.47 98.00
FNO 4.60 5.15 5.89
2ω 77.37 19.45 9.06
Y 8.00 8.00 8.00
TL 135.78 135.78 135.78
D7 0.800 20.355 28.029
D15 28.052 8.497 0.823
D24 0.800 8.210 13.112
D29 16.136 9.093 6.831
Bf 18.391 18.023 15.383

(Underwater shooting)
f 9.50 16.43 38.02
FNO 4.65 4.95 5.67
2ω 64.38 39.34 17.66
Y 8.00 8.00 8.00
TL 135.78 135.78 135.78
D7 0.800 10.200 20.355
D15 28.052 18.652 8.497
D24 1.618 4.381 10.362
D29 16.899 13.919 7.212
Bf 16.809 17.026 17.762

[Lens group data]
Group Start surface End surface Focal length 1st lens group 1 7 58.171
Second lens group 8 15 -10.550
Third lens group 16 23 16.309
4th lens group 25 29 -14.362
5th lens group 30 38 24.289

[Position data for each lens group]
(Land shooting state)
f 10.41 45.47 98.00
Second lens group 0.000 19.555 27.230
Fourth lens group 0.000 7.411 12.313
5th lens group 0.000 0.368 3.008

(Underwater shooting)
f 9.50 16.43 38.02
Second lens group 0.000 9.400 19.555
Fourth lens group 0.818 3.581 9.562
5th lens group 1.582 1.365 0.629

(Values for conditional expressions)
Conditional expression (1) R1 / Enpw = 3.014
Conditional expression (2) Δ1U / Δ1A = −0.317
Conditional expression (3) Δ2U / Δ2A = 0.710
Conditional expression (4) φ1 / φw = 0.000
Conditional expression (5) R2 / TL = 0.729
R1 = 100.000
Enpw = 33.183
Δ1U = −0.953
Δ1A = 3.008
Δ2U = 8.744
Δ2A = 12.313
φ1 = 0.000
φw = 0.096
R2 = 98.98
TL = 135.78

表2から、第2実施形態に係る水陸両用変倍レンズ装置100は、条件式(1)〜(5)を満たすことが分かる。   From Table 2, it can be seen that the amphibious variable magnification lens apparatus 100 according to the second embodiment satisfies the conditional expressions (1) to (5).

図10は、第2実施形態に係る水陸両用変倍レンズ装置100の設計値に基づく、陸上撮影状態における無限遠合焦状態でのd線(波長587.6nm)に対する諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図11は、第2実施形態に係る水陸両用変倍レンズ装置100の設計値に基づく、水中撮影状態における無限遠合焦状態でのd線(波長587.6nm)に対する諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 10 is a diagram of various aberrations for the d-line (wavelength 587.6 nm) in the infinitely focused state in the land photographing state, based on the design value of the amphibious variable magnification lens device 100 according to the second embodiment. ) Shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. FIG. 11 is a diagram showing various aberrations with respect to the d-line (wavelength 587.6 nm) in an infinite focus state in an underwater photographing state, based on the design value of the amphibious variable magnification lens device 100 according to the second embodiment. ) Shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state.

各収差図から、第2実施形態に係る水陸両用変倍レンズ装置100は、陸上撮影状態と水中撮影状態の両方で、歪曲収差、像面湾曲等の諸収差が良好に補正され、高い結像性能を有することが分かる。   From the respective aberration diagrams, the amphibious variable magnification lens device 100 according to the second embodiment is well corrected for various aberrations such as distortion and field curvature in both the land photographing state and the underwater photographing state, and has high image formation. It can be seen that it has performance.

なお、第2実施形態では、陸上撮影状態と水中撮影状態とを識別する方法として、上述のように、筐体101に撮影状態切替スイッチ部材137を設け、撮影者の切り替え操作に応じて識別する方法を採用しているが、これに限定されるものではない。例えば、図12の水陸両用変倍レンズ装置110に示すように、筐体101の外側に露呈するように2つの端子136を設け、端子間の電気抵抗を測定することにより自動で識別する方法等を採用することも可能である。この構成により、より利便性を高めることができる。   In the second embodiment, as a method for discriminating between the land photographing state and the underwater photographing state, as described above, the photographing state changeover switch member 137 is provided in the casing 101 and is identified according to the switching operation of the photographer. Although the method is adopted, it is not limited to this. For example, as shown in the amphibious variable magnification lens device 110 of FIG. 12, a method of automatically identifying two terminals 136 by exposing them to the outside of the casing 101 and measuring the electrical resistance between the terminals, etc. It is also possible to adopt. With this configuration, convenience can be further enhanced.

続いて、図13を参照しながら、第1及び第2実施形態に係る水陸両用変倍レンズ装置を搭載したカメラ(撮像装置)40について説明する。ここでは、第1実施形態に係る水陸両用変倍レンズ装置10(図1参照)を搭載した場合について説明するが、第2形態でも同様である。   Next, a camera (imaging device) 40 equipped with the amphibious variable magnification lens device according to the first and second embodiments will be described with reference to FIG. Here, a case where the amphibious variable magnification lens device 10 (see FIG. 1) according to the first embodiment is mounted will be described, but the same applies to the second embodiment.

カメラ40は、図13に示すように、第1実施形態に係る水陸両用変倍レンズ装置10を着脱可能に保持する、レンズ交換式水陸両用カメラである。このカメラ40において、不図示の被写体からの光は、水陸両用変倍レンズ装置10の光学系ZL1で集光され、撮像素子41上に結像される。撮像素子41上に結像した被写体像は、不図示の電気回路によって映像信号に変換され、モニター画面42に表示され、撮影者に観察可能となる。撮影者は、スイッチ部材37(図1参照)を操作して撮影状態を設定し、操作部材31(図1参照)を操作して焦点距離を設定した後、不図示のレリーズ釦を半押ししながら、モニター画面42を介して被写体像を観察して撮影構図を決める。続いて、撮影者によりレリーズ釦が全押しされると、カメラ40では、被写体からの光が、撮像素子41で受光され、撮影画像が取得され、不図示のメモリに記録される。   As shown in FIG. 13, the camera 40 is a lens-exchangeable amphibious camera that detachably holds the amphibious variable magnification lens device 10 according to the first embodiment. In this camera 40, light from a subject (not shown) is collected by the optical system ZL 1 of the amphibious variable magnification lens device 10 and imaged on the image sensor 41. The subject image formed on the image sensor 41 is converted into a video signal by an electric circuit (not shown) and displayed on the monitor screen 42 so that it can be observed by the photographer. The photographer operates the switch member 37 (see FIG. 1) to set the shooting state, operates the operation member 31 (see FIG. 1) to set the focal length, and then half-presses a release button (not shown). While observing the subject image via the monitor screen 42, the shooting composition is determined. Subsequently, when the release button is fully pressed by the photographer, in the camera 40, light from the subject is received by the image sensor 41, and a photographed image is acquired and recorded in a memory (not shown).

以上の構成を備える本実施形態に係る水陸両用カメラ40によれば、第1実施形態に係る水陸両用変倍レンズ装置10を備えることにより、簡素な構成でありながら、陸上撮影状態および水中撮影状態の両方において、変倍が可能で、優れた光学性能を有するカメラを実現することができる。   According to the amphibious camera 40 according to the present embodiment having the above-described configuration, the amphibious zoom lens device 10 according to the first embodiment is provided. In both cases, it is possible to realize a camera capable of zooming and having excellent optical performance.

なお、図13に記載のカメラ40は、水陸両用変倍レンズ装置10を着脱可能に搭載するタイプのものだけでなく、カメラ本体と水陸両用変倍レンズ装置10とが一体に成形されたタイプのものであってもよい。また、カメラ40は、クイックリターンミラーを有する、いわゆる一眼レフカメラであっても、主として動画撮影を行うビデオカメラであってもよい。   The camera 40 shown in FIG. 13 is not only a type in which the amphibious zoom lens device 10 is detachably mounted, but also a type in which the camera body and the amphibious zoom lens device 10 are integrally formed. It may be a thing. Further, the camera 40 may be a so-called single-lens reflex camera having a quick return mirror or a video camera that mainly performs moving image shooting.

続いて、図14を参照しながら、第1及び第2実施形態に係る水陸両用変倍レンズ装置の製造方法について説明する。ここでは、第1実施形態に係る水陸両用変倍レンズ装置10(図1参照)を製造した場合について説明するが、第2実施形態でも同様である。   Then, the manufacturing method of the amphibious variable magnification lens apparatus which concerns on 1st and 2nd embodiment is demonstrated, referring FIG. Here, although the case where the amphibious variable magnification lens apparatus 10 (refer FIG. 1) which concerns on 1st Embodiment is manufactured is demonstrated, it is the same also in 2nd Embodiment.

まず、光軸に沿って物体側から順に並んだ、最も物体側のレンズ面が物体側に凸面を向けた形状であるレンズを有する第1レンズ群と、少なくとも3つの移動レンズ群とを有するように、各レンズを筐体1内に配置する(ステップST10)。このとき、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1は固定し、前記移動レンズ群(例えば、第2レンズ群G2、第4レンズ群G4、第5レンズ群G5)は互いに独立して移動するように、各レンズを配置する(ステップST20)。また、前記移動レンズ群のうち、少なくとも2つのレンズ群(例えば、第4レンズ群G4、第5レンズ群G5)は、陸上撮影状態と水中撮影状態とにおいて前記変倍時の移動軌跡が異なるように、各レンズを配置する(ステップST30)。   First, a first lens group having lenses arranged in order from the object side along the optical axis and having a lens surface with the convex surface facing the object side closest to the object side, and at least three moving lens groups are included. In addition, each lens is arranged in the housing 1 (step ST10). At this time, when zooming from the wide-angle end state to the telephoto end state, the first lens group G1 is fixed and the moving lens group (for example, the second lens group G2, the fourth lens group G4, and the fifth lens group G5) is fixed. The lenses are arranged so as to move independently from each other (step ST20). Further, among the moving lens groups, at least two lens groups (for example, the fourth lens group G4 and the fifth lens group G5) have different movement loci at the time of zooming in the land photographing state and the underwater photographing state. Then, each lens is arranged (step ST30).

本実施形態におけるレンズ配置の一例を挙げると、第1実施形態に係る水陸両用変倍レンズ装置10では、上述したように(図3参照)、第1レンズ群G1として、物体側から順に、物体側に凸面を向けたメニスカス形状のレンズL11と、像側に凹面を向けた負メニスカスレンズL12と両凸形状の正レンズL13との接合レンズと、物体側に凸面を向けた正メニスカスレンズL14を、筐体内1に配置する。第2レンズ群G2として、物体側から順に、物体側に凸面を向けた正メニスカスレンズL21と像側に凹面を向けた負メニスカスレンズL22との接合レンズと、両凹形状の負レンズL23と、両凸形状の正レンズL24と両凹形状の負レンズL25との接合レンズを、筐体1内に配置する。第3レンズ群G3として、物体側から順に、像側に凹面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズと、両凸形状の正レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズと、両凸形状の正レンズL35を、筐体1内に配置する。第4レンズ群G4として、物体側から順に、両凹形状の負レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合レンズを、筐体1内に配置する。第5レンズ群G5として、物体側から順に並んだ、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズと、像側に凹面を向けた負メニスカスレンズL54と両凸形状の正レンズL55との接合レンズと、物体側に凹面を向けた負メニスカスレンズL56を、筐体1に配置する。   As an example of the lens arrangement in this embodiment, in the amphibious variable magnification lens apparatus 10 according to the first embodiment, as described above (see FIG. 3), as the first lens group G1, objects are sequentially arranged from the object side. A meniscus lens L11 having a convex surface on the side, a cemented lens of a negative meniscus lens L12 having a concave surface on the image side and a positive lens L13 having a biconvex shape, and a positive meniscus lens L14 having a convex surface on the object side. And placed in the housing 1. As the second lens group G2, in order from the object side, a cemented lens of a positive meniscus lens L21 having a convex surface facing the object side and a negative meniscus lens L22 having a concave surface facing the image side, a biconcave negative lens L23, A cemented lens of a biconvex positive lens L24 and a biconcave negative lens L25 is disposed in the housing 1. As the third lens group G3, in order from the object side, a cemented lens of a negative meniscus lens L31 having a concave surface facing the image side and a biconvex positive lens L32, and a biconvex positive lens L33 and a concave surface on the object side. A cemented lens with the directed negative meniscus lens L34 and a biconvex positive lens L35 are arranged in the housing 1. As the fourth lens group G4, a biconcave negative lens L41, and a cemented lens of a biconcave negative lens L42 and a biconvex positive lens L43 are arranged in the housing 1 in order from the object side. As the fifth lens group G5, a cemented lens of a biconvex positive lens L51, a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object side, arranged in order from the object side, and the image side A cemented lens composed of a negative meniscus lens L54 having a concave surface facing the lens and a biconvex positive lens L55, and a negative meniscus lens L56 having a concave surface facing the object side are disposed in the housing 1.

このような製造方法によれば、簡素な構成でありながら、陸上撮影状態および水中撮影状態の両方において、変倍が可能で、優れた光学性能を有する水陸両用変倍レンズ装置10を製造することができる。   According to such a manufacturing method, the amphibious variable power lens apparatus 10 having a simple configuration and capable of zooming in both the land shooting state and the underwater shooting state and having excellent optical performance is manufactured. Can do.

ここまで本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。   In order to make the present invention easy to understand, the configuration requirements of the embodiment have been described, but it goes without saying that the present invention is not limited to this.

例えば、上記の各実施形態では、5群構成の光学系について説明したが、4群構成、6群以上の構成など、他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、合焦時や変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。なお、6群以上の構成の場合には、移動レンズ群は、3つに限らず、4つ以上でも適用可能である。また、移動レンズ群が4つ以上の場合には、記憶部34、134は、2〜4つの移動レンズ群の位置情報を記憶しておくことで、上記実施形態と同様の効果を奏することができる   For example, in each of the above embodiments, an optical system having a five-group configuration has been described. However, the present invention can be applied to other group configurations such as a four-group configuration and a six-group configuration or more. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during focusing or zooming. In the case of a configuration of six groups or more, the number of moving lens groups is not limited to three, and four or more moving lens groups are applicable. Further, when there are four or more moving lens groups, the storage units 34 and 134 can obtain the same effects as those of the above embodiment by storing the positional information of the two to four moving lens groups. it can

各実施形態において、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。この合焦レンズ群は、オートフォーカスにも適用することができ、オートフォーカス用の(超音波モーター等を用いた)モーター駆動にも適している。特に、第4レンズ群G4を合焦レンズ群とするのが好ましい。   In each embodiment, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. This focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like). In particular, the fourth lens group G4 is preferably a focusing lens group.

各実施形態において、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   In each embodiment, the lens surface may be formed of a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

各実施形態において、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を設けてもよい。   In each embodiment, each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

切替スイッチ
10、11、100、110 水陸両用変倍レンズ装置
1、101 筐体
21、125 第1の駆動機構
22、121 第2の駆動機構
31 操作部材(焦点距離変更用)
2a レンズ枠(移動機構)
2b ピン(移動機構)
31a カム溝(移動機構)
32、132 焦点距離検知部
33、133 撮影状態識別部
34、134 記憶部
35、135 制御部
37、137 スイッチ部材(撮影状態切替用)
40 水陸両用カメラ(撮像装置)
41 撮像素子
42 モニター画面
122 第3の駆動機構
138 スイッチ部材(焦点距離変更用)
ZL(ZL1、ZL2) 光学系
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
S 絞り
F フィルタ群
I 像面
Changeover switch 10, 11, 100, 110 Amphibious variable power lens apparatus 1, 101 Housing 21, 125 First drive mechanism 22, 121 Second drive mechanism 31 Operation member (for changing focal length)
2a Lens frame (movement mechanism)
2b pin (movement mechanism)
31a Cam groove (moving mechanism)
32, 132 Focal length detection unit 33, 133 Shooting state identification unit 34, 134 Storage unit 35, 135 Control unit 37, 137 Switch member (for shooting state switching)
40 Amphibious camera (imaging device)
41 Image sensor 42 Monitor screen 122 Third drive mechanism 138 Switch member (for changing focal length)
ZL (ZL1, ZL2) Optical system G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G5 Fifth lens group S Aperture F Filter group I Image surface

Claims (11)

水中および陸上での撮影が可能な水陸両用変倍レンズ装置であって、
光軸に沿って物体側から順に並んだ、最も物体側のレンズ面が物体側に凸面を向けた形状であるレンズを有する第1レンズ群と、少なくとも3つの移動レンズ群とを有し、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は固定し、前記移動レンズ群は互いに独立して移動し、
前記移動レンズ群のうち、少なくとも2つのレンズ群は、陸上撮影状態と水中撮影状態とにおいて前記変倍時の移動軌跡が異なることを特徴とする水陸両用変倍レンズ装置。
An amphibious variable power lens device capable of photographing underwater and on land,
A first lens group having lenses that are arranged in order from the object side along the optical axis and whose lens surface closest to the object side has a convex surface facing the object side; and at least three moving lens groups;
During zooming from the wide-angle end state to the telephoto end state, the first lens group is fixed, and the moving lens group moves independently of each other,
Among the moving lens groups, at least two lens groups have different movement trajectories at the time of zooming in the land shooting state and the underwater shooting state.
以下の条件式を満足することを特徴とする請求項1に記載の水陸両用変倍レンズ装置。
0.80 < R1/Enpw < 4.00
但し、
R1:前記第1レンズ群の最も物体側のレンズ面の曲率半径、
Enpw:前記第1レンズ群の最も物体側のレンズ面から、前記水陸両用変倍レンズ装置の陸上撮影状態の広角端状態での無限遠撮影状態における入射瞳位置までの光軸上の距離。
The amphibious variable power lens apparatus according to claim 1, wherein the following conditional expression is satisfied.
0.80 <R1 / Enpw <4.00
However,
R1: radius of curvature of the lens surface closest to the object side of the first lens group,
Enpw: Distance on the optical axis from the most object-side lens surface of the first lens group to the entrance pupil position in the infinity photographing state at the wide-angle end state in the land photographing state of the amphibious variable magnification lens apparatus.
以下の条件式を満足することを特徴とする請求項1又は2に記載の水陸両用変倍レンズ装置。
−0.90 < Δ1U/Δ1A < 0.90
0.20 < Δ2U/Δ2A < 2.00
但し、
Δ1U:前記少なくとも2つの移動レンズ群のうち、最も像側に位置するレンズ群の、水中撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)、
Δ1A:前記少なくとも2つの移動レンズ群のうち、最も像側に位置するレンズ群の、陸上撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)、
Δ2U:前記少なくとも2つの移動レンズ群のうち、像側から数えて2番目に位置するレンズ群の、水中撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)、
Δ2A:前記少なくとも2つの移動レンズ群のうち、像側から数えて2番目に位置するレンズ群の、陸上撮影状態における広角端状態での無限遠撮影状態から望遠端状態での無限遠撮影状態への変更に要する移動量(但し、像面方向への移動量には正の符号を付し、物体方向への移動量には負の符号を付す)。
The amphibious variable power lens apparatus according to claim 1 or 2, wherein the following conditional expression is satisfied.
−0.90 <Δ1U / Δ1A <0.90
0.20 <Δ2U / Δ2A <2.00
However,
Δ1U: Of the at least two moving lens groups, the lens group located closest to the image side is required to change from the infinity shooting state at the wide-angle end state in the underwater shooting state to the infinity shooting state at the telephoto end state. Amount of movement (however, the amount of movement in the image plane direction is given a positive sign, and the amount of movement in the object direction is attached with a negative sign),
Δ1A: Of the at least two moving lens groups, the lens group located closest to the image side needs to change from the infinity shooting state at the wide-angle end state in the land shooting state to the infinity shooting state at the telephoto end state. Amount of movement (however, the amount of movement in the image plane direction is given a positive sign, and the amount of movement in the object direction is attached with a negative sign),
Δ2U: Of the at least two moving lens groups, the second lens group counted from the image side changes from the infinity shooting state in the wide-angle end state in the underwater shooting state to the infinity shooting state in the telephoto end state. The amount of movement required for the change (however, the amount of movement in the image plane direction is given a positive sign and the amount of movement in the object direction is attached with a negative sign),
Δ2A: Of the at least two moving lens groups, the second lens group counted from the image side changes from the infinity shooting state in the wide-angle end state in the land shooting state to the infinity shooting state in the telephoto end state. The amount of movement required to change the distance (however, the amount of movement in the image plane direction is given a positive sign, and the amount of movement in the object direction is assigned a negative sign).
陸上撮影状態と水中撮影状態とを識別する識別部と、
焦点距離を変更するための操作部と、
前記操作部で変更された前記焦点距離を検知するための焦点距離検知部と、
前記移動レンズ群のうち、少なくとも1つの移動レンズ群を、前記操作部の操作に連動して光軸に沿って移動させる移動機構と、
前記移動レンズ群のうち、前記移動機構を介して移動するレンズ群以外の、少なくとも2つの移動レンズ群を、それぞれ光軸に沿って移動させる独立した少なくとも2つの駆動機構と、
前記駆動機構を介して移動する少なくとも2つの移動レンズ群の、陸上撮影状態と水中撮影状態のそれぞれにおいて、焦点距離ごとに設定された光軸上の位置を記憶する記憶部と、
前記識別部と前記焦点距離検知部からの出力に基づき、前記記憶部に記憶された所定の位置に前記少なくとも2つの移動レンズ群が移動するように、前記少なくとも2つの駆動機構の駆動を制御する制御部とを有することを特徴とする請求項1〜3のいずれか一項に記載の水陸両用変倍レンズ装置。
An identification unit for distinguishing between a land shooting state and an underwater shooting state;
An operation unit for changing the focal length;
A focal length detection unit for detecting the focal length changed by the operation unit;
A moving mechanism for moving at least one moving lens group among the moving lens groups along the optical axis in conjunction with an operation of the operation unit;
At least two independent driving mechanisms for moving at least two moving lens groups other than the lens group moving through the moving mechanism among the moving lens groups, respectively, along the optical axis;
A storage unit that stores positions on the optical axis set for each focal length in each of a land shooting state and an underwater shooting state of at least two moving lens groups that move via the drive mechanism;
Based on outputs from the identification unit and the focal length detection unit, the driving of the at least two drive mechanisms is controlled so that the at least two moving lens groups move to a predetermined position stored in the storage unit. The amphibious variable power lens apparatus according to any one of claims 1 to 3, further comprising a control unit.
陸上撮影状態と水中撮影状態とを識別する識別部と、
焦点距離を変更するための操作部と、
前記操作部で変更された前記焦点距離を検知するための焦点距離検知部と、
前記移動レンズ群のうち、少なくとも3つの移動レンズ群を、それぞれ光軸に沿って移動させる独立した少なくとも3つの駆動機構と、
前記駆動機構を介して移動する少なくとも3つの移動レンズ群の、陸上撮影状態と水中撮影状態のそれぞれにおいて、焦点距離ごとに設定された光軸上の位置を記憶する記憶部と、
前記識別部と前記焦点距離検知部からの出力に基づき、前記記憶部に記憶された所定の位置に前記少なくとも3つの移動レンズ群が移動するように、前記少なくとも3つの駆動機構の駆動を制御する制御部とを有することを特徴とする請求項1〜3のいずれか一項に記載の水陸両用変倍レンズ装置。
An identification unit for distinguishing between a land shooting state and an underwater shooting state;
An operation unit for changing the focal length;
A focal length detection unit for detecting the focal length changed by the operation unit;
At least three independent driving mechanisms for moving at least three of the moving lens groups along the optical axis, respectively;
A storage unit that stores positions on the optical axis set for each focal length in each of a land shooting state and an underwater shooting state of at least three moving lens groups that move via the drive mechanism;
Based on the outputs from the identification unit and the focal length detection unit, the driving of the at least three drive mechanisms is controlled so that the at least three moving lens groups move to predetermined positions stored in the storage unit. The amphibious variable power lens apparatus according to any one of claims 1 to 3, further comprising a control unit.
物体側から順に並んだ、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、負屈折力の第4レンズ群と、正屈折力の第5レンズ群とを有し、
前記移動機構を介して移動する、前記少なくとも1つの移動レンズ群は、前記第2レンズ群を含み、
前記少なくとも2つの駆動機構を介して移動する、前記少なくとも2つの移動レンズ群は、前記第4レンズ群と、前記第5レンズ群とを含むことを特徴とする請求項4に記載の水陸両用変倍レンズ装置。
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power arranged in order from the object side. A fifth lens group,
The at least one moving lens group that moves via the moving mechanism includes the second lens group;
The amphibious variable according to claim 4, wherein the at least two moving lens groups that move via the at least two drive mechanisms include the fourth lens group and the fifth lens group. Double lens device.
物体側から順に並んだ、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、負屈折力の第4レンズ群と、正屈折力の第5レンズ群とを有し、
前記少なくとも3つの駆動機構を介して移動する、前記少なくとも3つの移動レンズ群は、前記第2レンズ群と、前記第4レンズ群と、前記第5レンズ群とを含むことを特徴とする請求項5に記載の水陸両用変倍レンズ装置。
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power arranged in order from the object side. A fifth lens group,
The at least three moving lens groups that move via the at least three drive mechanisms include the second lens group, the fourth lens group, and the fifth lens group. The amphibious variable-power lens apparatus according to 5.
最も物体側に、物体側に凸面を向けたメニスカス形状のレンズを有し、
以下の条件式を満足することを特徴とする請求項1〜7のいずれか一項に記載の水陸両用変倍レンズ装置。
−0.15 < φ1/φw < 0.15
但し、
φ1:前記メニスカス形状のレンズの空気中での屈折力、
φw:前記水陸両用変倍レンズ装置の陸上撮影状態における広角端状態での屈折力。
On the most object side, it has a meniscus lens with a convex surface facing the object side,
The amphibious variable power lens apparatus according to any one of claims 1 to 7, wherein the following conditional expression is satisfied.
−0.15 <φ1 / φw <0.15
However,
φ1: refractive power of the meniscus lens in air
φw: Refracting power of the amphibious variable power lens apparatus in the wide-angle end state in the land photographing state.
最も物体側に、物体側に凸面を向けたメニスカス形状のレンズを有し、
以下の条件式を満足することを特徴とする請求項1〜7のいずれか一項に記載の水陸両用変倍レンズ装置。
0.30 < R2/TL < 0.90
但し、
R2:前記メニスカス形状のレンズの像側面の曲率半径、
TL:前記水陸両用変倍レンズ装置の最も物体側のレンズ面から結像面までの光軸上の距離。
On the most object side, it has a meniscus lens with a convex surface facing the object side,
The amphibious variable power lens apparatus according to any one of claims 1 to 7, wherein the following conditional expression is satisfied.
0.30 <R2 / TL <0.90
However,
R2: radius of curvature of the image side surface of the meniscus lens,
TL: Distance on the optical axis from the lens surface closest to the object side to the imaging surface of the amphibious variable magnification lens apparatus.
請求項1〜9のいずれか一項に記載の水陸両用変倍レンズ装置を備えることを特徴とする撮像装置。   An image pickup apparatus comprising the amphibious variable power lens apparatus according to any one of claims 1 to 9. 水中および陸上での撮影が可能な水陸両用変倍レンズ装置の製造方法であって、
光軸に沿って物体側から順に並んだ、最も物体側のレンズ面が物体側に凸面を向けた形状であるレンズを有する第1レンズ群と、少なくとも3つの移動レンズ群とを有し、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は固定し、前記移動レンズ群は互いに独立して移動し、
前記移動レンズ群のうち、少なくとも2つのレンズ群は、陸上撮影状態と水中撮影状態とにおいて前記変倍時の移動軌跡が異なるように、
筐体内に各レンズを配置することを特徴とする水陸両用変倍レンズ装置の製造方法。
A method of manufacturing an amphibious variable magnification lens apparatus capable of photographing underwater and on land,
A first lens group having lenses that are arranged in order from the object side along the optical axis and whose lens surface closest to the object side has a convex surface facing the object side; and at least three moving lens groups;
During zooming from the wide-angle end state to the telephoto end state, the first lens group is fixed, and the moving lens group moves independently of each other,
Among the moving lens groups, at least two lens groups have different movement loci at the time of zooming in the land shooting state and the underwater shooting state,
A method for manufacturing an amphibious variable power lens apparatus, wherein each lens is disposed in a housing.
JP2014007973A 2014-01-20 2014-01-20 Amphibious zoom lens device and imaging device Active JP6287243B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014007973A JP6287243B2 (en) 2014-01-20 2014-01-20 Amphibious zoom lens device and imaging device
EP15737254.1A EP3098641A4 (en) 2014-01-20 2015-01-20 Optical system, imaging device, and optical system production method
CN201910628964.3A CN110456493A (en) 2014-01-20 2015-01-20 Optical system, photographic device and variable-power optical system
CN201580005222.5A CN105960605A (en) 2014-01-20 2015-01-20 Optical system, imaging device, and optical system production method
PCT/JP2015/000235 WO2015107912A1 (en) 2014-01-20 2015-01-20 Optical system, imaging device, and optical system production method
US15/212,230 US9989742B2 (en) 2014-01-20 2016-07-16 Optical system, imaging device, and method for manufacturing the optical system
US15/976,666 US10545319B2 (en) 2014-01-20 2018-05-10 Optical system, imaging device, and method for manufacturing the optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007973A JP6287243B2 (en) 2014-01-20 2014-01-20 Amphibious zoom lens device and imaging device

Publications (2)

Publication Number Publication Date
JP2015138050A true JP2015138050A (en) 2015-07-30
JP6287243B2 JP6287243B2 (en) 2018-03-07

Family

ID=53769107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007973A Active JP6287243B2 (en) 2014-01-20 2014-01-20 Amphibious zoom lens device and imaging device

Country Status (1)

Country Link
JP (1) JP6287243B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051137A (en) * 2014-09-02 2016-04-11 キヤノン株式会社 Zoom lens and image capturing device having the same
CN111787203A (en) * 2020-07-14 2020-10-16 孝感华中精密仪器有限公司 Camera and video all-in-one machine based on image space scanning

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614211A (en) * 1979-07-16 1981-02-12 Minolta Camera Co Ltd Amphibian lens
JPH07159687A (en) * 1993-12-02 1995-06-23 Olympus Optical Co Ltd Optical system of amphibious camera
JPH07159689A (en) * 1993-12-09 1995-06-23 Olympus Optical Co Ltd Optical system for amphibious camera
JPH07311339A (en) * 1994-05-16 1995-11-28 Minolta Co Ltd Compact zoom lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5614211A (en) * 1979-07-16 1981-02-12 Minolta Camera Co Ltd Amphibian lens
JPH07159687A (en) * 1993-12-02 1995-06-23 Olympus Optical Co Ltd Optical system of amphibious camera
JPH07159689A (en) * 1993-12-09 1995-06-23 Olympus Optical Co Ltd Optical system for amphibious camera
JPH07311339A (en) * 1994-05-16 1995-11-28 Minolta Co Ltd Compact zoom lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051137A (en) * 2014-09-02 2016-04-11 キヤノン株式会社 Zoom lens and image capturing device having the same
US10031323B2 (en) 2014-09-02 2018-07-24 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
CN111787203A (en) * 2020-07-14 2020-10-16 孝感华中精密仪器有限公司 Camera and video all-in-one machine based on image space scanning

Also Published As

Publication number Publication date
JP6287243B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
CN108490592B (en) Zoom optical system
JP3862520B2 (en) Zoom lens and optical apparatus using the same
JP5448028B2 (en) Zoom lens and optical apparatus having the same
CN107850763B (en) Variable magnification optical system and optical device
WO2015107912A1 (en) Optical system, imaging device, and optical system production method
JP2008203449A (en) Zoom lens and imaging apparatus
CN110832376A (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP2010032701A (en) Zoom lens, optical device having the same and method for varying magnification
JP2005092056A (en) Zoom lens and image pickup device having same
CN108139572B (en) Zoom lens and optical apparatus
JP2007293052A (en) Zoom lens system, imaging apparatus, and camera
JP6287242B2 (en) Amphibious zoom lens and imaging device
JPWO2018074413A1 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
CN108604003B (en) Zoom lens and optical apparatus
CN107850762B (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JPH09218346A (en) Optical system
JP6287243B2 (en) Amphibious zoom lens device and imaging device
JP6268792B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5790106B2 (en) OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP2003149553A (en) Zoom lens and optical equipment having the same
JP2016071282A (en) Variable magnification optical system, imaging device, and manufacturing method of variable magnification optical system
JP5608986B2 (en) Variable magnification optical system, optical equipment
JP2000231056A (en) Photographing lens and photographing device provided with the lens
CN113056695A (en) Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
JP6451074B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6287243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250