JP2015138022A - Diameter measurement method using fundamental frequency of nano-bubble excited by external excited vibration - Google Patents

Diameter measurement method using fundamental frequency of nano-bubble excited by external excited vibration Download PDF

Info

Publication number
JP2015138022A
JP2015138022A JP2014023797A JP2014023797A JP2015138022A JP 2015138022 A JP2015138022 A JP 2015138022A JP 2014023797 A JP2014023797 A JP 2014023797A JP 2014023797 A JP2014023797 A JP 2014023797A JP 2015138022 A JP2015138022 A JP 2015138022A
Authority
JP
Japan
Prior art keywords
nanobubble
frequency
diameter
nanobubbles
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014023797A
Other languages
Japanese (ja)
Inventor
鈴木 範人
Norito Suzuki
範人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014023797A priority Critical patent/JP2015138022A/en
Publication of JP2015138022A publication Critical patent/JP2015138022A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve a problem that the miniaturization of a nanobubble diameter is required in variety of fields not only in a medical field, however, there is no measurement method of the nanobubble diameter since a scattering probability of light at the 6-multiplication of the diameter not larger than 0.1 micron is decreased, and then, to provide a measurement method of the nanobubble diameter which is not affected by a size of the nanobubble diameter.SOLUTION: A probability of the collapse of a microbubble is large when the microbubble is contracted, on the hand, a probability of the collapse of a nanobubble is small, and the nanobubble vibrates in a radial direction in such an extremely-specific large non-linear form that pressure at the contraction becomes infinitive. This seems vague in diameter, however, this non-linear vibration is analyzed, and a common name such as an equivalent radius is theoretically defined. Since the equivalent radius is theoretically defined, the equivalent radius is theoretically led to a frequency of the non-linear vibration. Accordingly, the equivalent radius is obtained by measuring a frequency of the non-linear vibration.

Description

本発明はナノバブルの非線形振動の基本波の周波数を知ることにより該ナノバブルの径を求めるものである。The present invention obtains the diameter of the nanobubble by knowing the frequency of the fundamental wave of the nonlinear vibration of the nanobubble.

医療分野その他の分野で使用するナノバブルを製造あるいは使用する場合、そのナノバブル径の確認や管理は重要になるであろう。しかし合理的な測定法は存在しないといえる。現在、動的光散乱法と呼ばれるものが使われているが、レーザの光子統計分光の範疇のもので、コヒーレント状態の光子というポアソン統計に従うランダムな光子数分布からの「バンチング方向へのずれの量」を信号としていることに変わりはない。一方アインシュタイン・ストークスの式から見ればナノ粒子によるスペクトルの拡がりは広く、測定は光子統計分光ではなく、ファブリ―ペロー干渉分光の領域であろう。When producing or using nanobubbles for use in the medical field or other fields, confirmation and management of the nanobubble diameter will be important. However, it can be said that there is no reasonable measurement method. At present, what is called dynamic light scattering is used, but it is in the category of laser photon statistical spectroscopy, and it is different from the random photon number distribution according to Poisson statistics of photons in the coherent state. There is no change in using “quantity” as a signal. On the other hand, from the Einstein-Stokes equation, the broadening of the spectrum by nanoparticles is wide, and the measurement will be in the domain of Fabry-Perot interferometry rather than photon statistical spectroscopy.

そもそも、光の散乱確率は0.1ミクロン以下の微小散乱粒子の場合、径が微小になるにともない粒子径の6乗に比例して減少する。ナノバブルだけの入った液は透明で散乱光は無いに近い。In the first place, the probability of light scattering decreases in proportion to the sixth power of the particle diameter as the diameter becomes smaller in the case of a minute scattering particle of 0.1 microns or less. A liquid containing only nanobubbles is transparent and has almost no scattered light.

ナノバブルは固有の周波数で非線形振動をしている。ナノバブルが膨れたときの径はバブル内部の圧力が外部の静液圧に近いぐらい大きいが、縮んだときの径はバブル内部の圧力が超高圧になるくらい限りなく小さくなる。大変な振動で、ナノバブル径はつかみどころが無い。それでは済まないので、等価半径という呼び名が理論的に定義されている。等価半径は理論的に定義されているものであるから、理論的に非線形振動の周波数と結びつく。非線形振動の周波数を測定してその値から理論的に求めたのが唯一の合理的な等価半径でありそれ以外に径と呼べるものは無い。
従って、非線形振動の周波数とナノバブルの径との関係を理論的に明確すること、それから、ナノバブルの振動周波数測定を行う場合、アインシュタイン・ストークスの式に従ったナノバブルのランダム運動のドップラー効果による周波数のシフトがたいへんな問題になる。この問題の解決をすることの二件を課題とする。
Nanobubbles are oscillating nonlinearly at a specific frequency. The diameter when the nanobubbles expand is so large that the pressure inside the bubble is close to the external hydrostatic pressure, but the diameter when it is shrunk becomes as small as the pressure inside the bubble becomes extremely high. Due to the great vibration, the nanobubble diameter is indispensable. Since this is not enough, the name equivalent radius is theoretically defined. Since the equivalent radius is theoretically defined, it is theoretically linked to the frequency of nonlinear vibration. The only reasonable equivalent radius was obtained by measuring the frequency of the non-linear vibration and theoretically determining it from that value.
Therefore, when theoretically clarifying the relationship between the frequency of nonlinear vibration and the diameter of nanobubbles, and when measuring the vibration frequency of nanobubbles, the frequency due to the Doppler effect of random motion of nanobubbles according to the Einstein-Stokes equation Shift is a big problem. Two issues of solving this problem are the issues.

課題を解決する手段Means to solve the problem

ナノバブルの半径方向の振動は専らRayleigh−Plesset方程式を用いて議論している。
Rayleigh−Plesset方程式は

Figure 2015138022
である。R=R(t)はバブルの半径、Rは等価半径、ρは液体の密度、pは静液圧、pはバブル内の蒸気圧、kはポリトロ−プ定数、σは表面張力、μは液体の粘性係数、F(t)は外力である。The vibration of the nanobubbles in the radial direction is discussed exclusively using the Rayleigh-Plesset equation.
The Rayleigh-Plesset equation is
Figure 2015138022
It is. R = R (t) is the radius of the bubble, R 0 is equivalent radius, [rho is the density of the liquid, p h is Seieki圧, p v is the vapor pressure within the bubble, k is Poritoro - flop constant, sigma is the surface tension , Μ is the viscosity coefficient of the liquid, and F (t) is the external force.

図1はRayleigh−Plesset方程式の解を示したものである。点線は大振幅の場合、実線は小振幅の場合で振幅の大小により波形が大巾に変わる大変な振動であるが、周波数は変わらない。非線形振動の周波数とナノバブルの径との関係を理論的に明確するとき、周波数が変わらないことは非線形振動の基本振動周波数を知ればよいことを意味する。S/N比が充分であれば振幅は小さい方がよい。そこでRayleigh−Plesset方程式を小振幅の扱いに適した形に変形する。
x(t)<<1,
という条件のもとで
R(t)=R(1+x(t))
とおく。外力を外部励起超音波
F(t)=Psin(ωet)
として(1)式を書き換えると

Figure 2015138022
となる。右辺第一項は線形振動項2σρ/R という量は復元力である。方程式(2)の解の基本振動角周波数をωとすると。
Figure 2015138022
が成り立つ。この関係が課題を解決する原点である。この周波数はナノバブルの非線形振動の基本振動角周波数でもある。FIG. 1 shows the solution of the Rayleigh-Plesset equation. The dotted line is a large amplitude, the solid line is a small amplitude, and the waveform changes greatly depending on the amplitude, but the frequency does not change. When theoretically clarifying the relationship between the frequency of nonlinear vibration and the diameter of nanobubbles, the fact that the frequency does not change means that the fundamental vibration frequency of nonlinear vibration needs to be known. If the S / N ratio is sufficient, the amplitude should be small. Therefore, the Rayleigh-Plesset equation is transformed into a form suitable for handling small amplitudes.
x (t) << 1,
R (t) = R 0 (1 + x (t))
far. External force, external excitation ultrasound F (t) = P a sin (ωet)
And rewriting equation (1) as
Figure 2015138022
It becomes. The first term on the right side is the linear vibration term 2σρ / R 0 2 is the restoring force. If the fundamental vibration angular frequency of the solution of equation (2) is ω 0 .
Figure 2015138022
Holds. This relationship is the starting point for solving the problem. This frequency is also a fundamental vibration angular frequency of nonlinear vibration of nanobubbles.

外力として外部励起超音波を印加する場合、その超音波の角周波数ωeはナノバブルの基本振動角周波数ωとフィルタで分離出来る程度に離れている必要がある。
非線形振動のスペクトルのテールは長い。1/2分周波、第2高調波の周波数をカバーしている。ωe/2πが1/2分周波の周波数以下、あるいは第2高調波の周波数以上でも、スペクトルのテールを介してナノバブルの基本振動は励起される。図3に1/2分周波数ωe=ω/2の外部励起超音波で励起した場合のスペクトルを示す。図示しないがωe=2ωとした場合も同様である。この励起はナノバブルの振動が調和振動からの変形が目立たないていどの強さに制御する。つまり、(2)式の線形項以外が無視できるような励起を行いナノバブルの基本振動角周波数ωのみをとりだす。図2は外部励起超音波F(t)=Psin(ωet)が無い場合のスペクトルである。
外力として外部励起超音波の印加は振動のスペクトル幅を狭くして基本波の角周波数ωをクリアにする効果もある。
When an external excitation ultrasonic wave is applied as an external force, the angular frequency ωe of the ultrasonic wave needs to be separated from the fundamental vibration angular frequency ω 0 of the nanobubbles so as to be separated by a filter.
The tail of the nonlinear vibration spectrum is long. The half-frequency and second-harmonic frequencies are covered. Even if ωe / 2π is equal to or lower than the frequency of the half frequency, or higher than the frequency of the second harmonic, the fundamental vibration of the nanobubble is excited through the tail of the spectrum. Figure 3 shows the spectrum when excited with 1/2 external excitation ultrasonic frequency ωe = ω 0/2. If not shown it was .omega.e = 2 [omega 0 is the same. This excitation controls the strength of the vibration of the nanobubbles so that the deformation from the harmonic vibration is not noticeable. That is, excitation is performed such that other than the linear term in the equation (2) can be ignored, and only the fundamental vibration angular frequency ω 0 of the nanobubble is extracted. FIG. 2 shows a spectrum when there is no external excitation ultrasonic wave F (t) = P a sin (ωet).
The application of externally excited ultrasonic waves as an external force has the effect of narrowing the spectrum width of the vibration and clearing the angular frequency ω 0 of the fundamental wave.

ドップラー効果による周波数シフトの影響の除去の問題は、一例であるが、共焦点型の結像系の主軸を法線とする平面内を運動するナノバブルの波動のみを取り出すことで解決する。The problem of removing the influence of the frequency shift due to the Doppler effect is an example, but can be solved by extracting only the wave of nanobubbles moving in a plane whose normal is the main axis of the confocal imaging system.

発明の効果Effect of the invention

医療分野その他でナノバブルの径が小さくなること望んでいるが、バブル径が0.1ミクロンを下回るとバブル径の6乗に比例して散乱光の強度は下がる。光によるバブル径の観測はことごとく不能となる。
本発明はナノバブルの基本振動周波数を観測して、ナノバブルの振動周波数の値から理論的にナノノバブル径を算出するものである。
マイクロバブル崩壊するが、ナノバブルは崩壊しないで特異な非線形振動をする。大振幅では、バブルの内圧は膨れたときは回りの水圧にほぼ等しいほど大きいが、縮んだときは核融合起こるかも知れないといわはれるほど小さい。大きさは流体力学の理論で定義をして名前を付けている。等価半径という名前で、非線形振動周波数の関数でもある。非線形振動周波数を測定して等価半径を求める。これが唯一の求め方である。取引も「等価半径」で行うしかない。
問題はアインシュタイン・ストークスの式に従い、激しく運動しているナノバブル群の出す波動の周波数をドップラー フリーで観測する手段である。本発明では共焦点系を利用して問題を解決している。
It is hoped that the diameter of nanobubbles will be reduced in the medical field and others, but when the bubble diameter is less than 0.1 microns, the intensity of scattered light decreases in proportion to the sixth power of the bubble diameter. Observation of the bubble diameter by light is completely impossible.
The present invention observes the fundamental vibration frequency of nanobubbles and theoretically calculates the nanobubble diameter from the value of the vibration frequency of nanobubbles.
Microbubbles collapse, but nanobubbles do not collapse and have a unique nonlinear oscillation. At large amplitudes, the bubble's internal pressure is as large as the water pressure around it when it swells, but small enough to say that fusion may occur when it shrinks. The size is defined and named in the theory of fluid mechanics. It is called the equivalent radius and is also a function of the nonlinear vibration frequency. Measure the nonlinear vibration frequency to find the equivalent radius. This is the only way to ask. Transactions can only be made with an “equivalent radius”.
The problem is how to observe the frequency of waves generated by intensely moving nanobubbles in a Doppler-free manner according to the Einstein-Stokes equation. The present invention uses a confocal system to solve the problem.

はナノバブル固有の非線形振動の波形である。Is a waveform of nonlinear vibration unique to nanobubbles. はナノバブル固有の非線形振動スペクトルである。Is a nonlinear vibration spectrum unique to nanobubbles. は外部励起超音波で励起したナノバブルの非線形振動スペクトルである。Is the nonlinear vibration spectrum of nanobubbles excited by externally excited ultrasound. は装置に関する実施例である。Is an embodiment relating to the apparatus.

ナノバブルは、その大きさその他で決まる固有の角周波数ωで非線形振動をおこなっているが、このナノバブルに外力として前記非線形振動の角周波数と異なる角周波数ωeを持つ外部励起超音波を印加して角周波数ωの非線形振動を取り出し、該角周波数ωの値から計算によって該ナノバブルの径を求めるのであるが、該ナノバブルの角周波数ωの測定に際して大きい問題を解決する必要がある。その問題はナノバブルが早い速さでランダムな運動を行っており、ドップラー効果でナノバブルの角周波数ωの値が大きくランダムに変調されるが、このランダムな変調の影響をなくさなければならない。この変調の影響の除去の方法が発明を実施するための形態になる。The nanobubbles undergo non-linear vibration at a specific angular frequency ω 0 determined by its size and other factors, and external excitation ultrasonic waves having an angular frequency ωe different from the non-linear vibration angular frequency are applied as external forces to the nanobubbles. removed nonlinear oscillation of the angular frequency omega 0, but by calculation from the values of the angular frequency omega 0 is determine the diameter of the nano-bubbles, it is necessary to solve the problems of the time measurement of the angular frequency omega 0 of the nanobubbles. The problem is that nanobubbles are moving randomly at high speed, and the value of angular frequency ω 0 of nanobubbles is greatly modulated randomly by the Doppler effect, but the influence of this random modulation must be eliminated. This method of removing the influence of modulation is a mode for carrying out the invention.

図4は本発明の実施例である。ナノバブル集団3内のナノバブルは角周波数ωeを持つ外部励起超音波1で励起され、角周波数ωの非線形振動の超音波を放出しながら高速でランダムな方向に運動している。ランダムな方向に運動しているナノバブル群のうち、二つの平面超音波検知器6、16と超音波レンズ4で構成される共焦点系の主軸5を法線とする平面内に速度ベクトル7をもつ集団のみを披測定ナノバブル群と見做す。即ち、二つの平面超音波検知器に同じ周波数の波を与えるナノバブル群である。該ナノバブル群の識別は検知器6と検知器16の電気出力をリアルタイムのスペクトラムアナライザの対8,18で監視し、スペクトルが合致した周波数のみをアンド回路9で信号として取り出す。そしてその角周波数ωは計算器10で用いられ、(3)式ω =2σ ρ/R から直ちに得られる式R=(2σ ρ)1/2/ωとして集団を構成するナノバブルの等価半径が求められる。FIG. 4 shows an embodiment of the present invention. Nanobubbles in nanobubbles population 3 is excited by external excitation ultrasonic 1 having an angular frequency .omega.e, they are moving in random directions at high speed while emitting ultrasonic nonlinear oscillation of angular frequency omega 0. Among the nanobubbles moving in a random direction, a velocity vector 7 is placed in a plane normal to the main axis 5 of the confocal system composed of the two planar ultrasonic detectors 6 and 16 and the ultrasonic lens 4. Only the group that has it is regarded as a measurement nanobubble group. That is, a group of nanobubbles that gives waves of the same frequency to two planar ultrasonic detectors. For identifying the nanobubble group, the electrical outputs of the detector 6 and the detector 16 are monitored by the real-time spectrum analyzer pairs 8 and 18, and only the frequency having the matched spectrum is extracted as a signal by the AND circuit 9. Then, the angular frequency ω 0 is used in the calculator 10, and a group is formed as an expression R 0 = (2σ ρ) 1/2 / ω 0 immediately obtained from the expression (3) ω 0 2 = 2σ ρ / R 0 2 The equivalent radius of the nanobubble is calculated.

1、外部励起超音波
2、ナノバブルの基本振動角周波数
3、ナノバブル集団
4、収束型超音波レンズ
5、主軸
6,16、平面超音波検知器
7、面内速度ベクトル
8,18スペクトラムアナライザ
9,アンド回路
10、計算器
1, external excitation ultrasonic wave 2, basic vibration angular frequency 3 of nano bubble, nano bubble group 4, convergent ultrasonic lens 5, main axes 6, 16, plane ultrasonic detector 7, in-plane velocity vector 8, 18 spectrum analyzer 9, AND circuit 10, calculator

Claims (2)

2つの超音波平面検知器と収束レンズからなる合成収束レンズをの焦点が一致するように向い合せた共焦点系の焦点あるいは該共焦点系と等価な系の焦点をナノバブル群を通過させるか停滞させる手段と該ナノバブル群に超音波を印加するする手段と該ナノバブル群が放出する超音波を前記2つの超音波平面検知器で検知された2つの超音波の2つの周波数を比較して該2つの周波数が等しい場合にのみ該周波数の値を出力する手段からなることを特徴する周波数測定法The focal point of a confocal system facing the focal point of a synthetic converging lens composed of two ultrasonic flat panel detectors and a converging lens is allowed to pass through the nanobubble group or stagnation through the focal point of a confocal system or a system equivalent to the confocal system. Means for applying ultrasonic waves to the nanobubble group and ultrasonic waves emitted by the nanobubble group by comparing two frequencies of two ultrasonic waves detected by the two ultrasonic flat detectors. Frequency measuring method comprising means for outputting a value of the frequency only when two frequencies are equal ナノバブル基本振動周波数の2分の1近傍或いは2倍近傍の周波数をもつ超音波を外力として該ナノバブルに印加する手段と、該超音波の印加により振幅が生成或いは成長する該ナノバブルの基本振動周波数を観測する手段と該観測された基本振動周波数と流体力学の理論で得られるナノバブル半径と基本振動周波数の関係数式をもちいて該ナノバブルの半径を算出する手段をもつことを特徴するナノバブルの半径測定法Means for applying an ultrasonic wave having a frequency near half or twice the fundamental vibration frequency of the nanobubble to the nanobubble as an external force, and the fundamental vibration frequency of the nanobubble whose amplitude is generated or grows by the application of the ultrasonic wave. A method for measuring the radius of nanobubbles, characterized by having means for observing and means for calculating the radius of the nanobubbles using a relational expression between the observed fundamental vibration frequency and the theory of fluid dynamics and the fundamental bubble frequency.
JP2014023797A 2014-01-23 2014-01-23 Diameter measurement method using fundamental frequency of nano-bubble excited by external excited vibration Pending JP2015138022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014023797A JP2015138022A (en) 2014-01-23 2014-01-23 Diameter measurement method using fundamental frequency of nano-bubble excited by external excited vibration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014023797A JP2015138022A (en) 2014-01-23 2014-01-23 Diameter measurement method using fundamental frequency of nano-bubble excited by external excited vibration

Publications (1)

Publication Number Publication Date
JP2015138022A true JP2015138022A (en) 2015-07-30

Family

ID=53769097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023797A Pending JP2015138022A (en) 2014-01-23 2014-01-23 Diameter measurement method using fundamental frequency of nano-bubble excited by external excited vibration

Country Status (1)

Country Link
JP (1) JP2015138022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175885A1 (en) * 2019-02-28 2020-09-03 서강대학교산학협력단 Microscope device and method for operating microscope device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175885A1 (en) * 2019-02-28 2020-09-03 서강대학교산학협력단 Microscope device and method for operating microscope device
US11762179B2 (en) 2019-02-28 2023-09-19 Sogang University Research & Business Development Foundation Microscope device with increased three-dimensional image depth and method for operating the same

Similar Documents

Publication Publication Date Title
RU2659584C2 (en) Methods for measuring properties of multiphase oil-water-gas mixtures
Saint-Michel et al. Uncovering instabilities in the spatiotemporal dynamics of a shear-thickening cornstarch suspension
Otsuka Self-mixing thin-slice solid-state laser metrology
Ryabtsev et al. Fluid flow vorticity measurement using laser beams with orbital angular momentum
US8797514B2 (en) Localized dynamic light scattering system with doppler velocity measuring capability
Kennedy et al. Investigation of the second-mode instability at Mach 14 using calibrated schlieren
JP2020079802A (en) Ultrasonic particle diameter measuring instrument and ultrasonic measuring device
CN108645751A (en) A kind of measurement method and device of the dynamic viscosity based on light suspended particulates
Sudo et al. Quick and easy measurement of particle size of Brownian particles and plankton in water using a self-mixing laser
Xu et al. Quantitative calibration of sound pressure in ultrasonic standing waves using the Schlieren method
Brenn et al. The oscillating drop method for measuring the deformation retardation time of viscoelastic liquids
Talbi et al. Interferometric particle imaging of ice particles using a multi-view optical system
Cao et al. Non-contact damage detection under operational conditions with multipoint laservibrometry
Ohtomo et al. Detection and counting of a submicrometer particle in liquid flow by self-mixing microchip Yb: YAG laser velocimetry
JP2015138022A (en) Diameter measurement method using fundamental frequency of nano-bubble excited by external excited vibration
JP6050619B2 (en) Particle property measuring device
Nguyen et al. Spectrally wide acoustic frequency combs generated using oscillations of polydisperse gas bubble clusters in liquids
Cazaubiel et al. Forced three-wave interactions of capillary-gravity surface waves
Silva et al. Parametric amplification of the dynamic radiation force of acoustic waves in fluids
Sun Quantitative estimation technique for wear amounts by real time measurement of wear debris in lubricating oil
JP2003065930A (en) Method and apparatus for measuring local viscoelasticity in complex fluid
Sudo et al. Measurements of liquid surface fluctuations using a self-mixing solid-state laser
Spiekhout et al. Time-resolved absolute radius estimation of vibrating contrast microbubbles using an acoustical camera
Nakashima et al. Viscoelastic responses of flow driven by a permeable disk investigated by ultrasound velocity profiling
RU2548735C2 (en) Food products quality express evaluation device