JP2015137210A - Method and unit for melting silicon and silicon single crystal manufacturing apparatus including unit - Google Patents

Method and unit for melting silicon and silicon single crystal manufacturing apparatus including unit Download PDF

Info

Publication number
JP2015137210A
JP2015137210A JP2014010227A JP2014010227A JP2015137210A JP 2015137210 A JP2015137210 A JP 2015137210A JP 2014010227 A JP2014010227 A JP 2014010227A JP 2014010227 A JP2014010227 A JP 2014010227A JP 2015137210 A JP2015137210 A JP 2015137210A
Authority
JP
Japan
Prior art keywords
silicon
raw material
silicon raw
khz
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014010227A
Other languages
Japanese (ja)
Other versions
JP6264058B2 (en
Inventor
渉 杉村
Wataru Sugimura
渉 杉村
三照 林
Mitsuaki Hayashi
三照 林
藤原 俊幸
Toshiyuki Fujiwara
俊幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2014010227A priority Critical patent/JP6264058B2/en
Publication of JP2015137210A publication Critical patent/JP2015137210A/en
Application granted granted Critical
Publication of JP6264058B2 publication Critical patent/JP6264058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To completely, efficiently melt a silicon raw material by further reducing an occurrence frequency of high frequency noise.SOLUTION: The method for melting silicon comprises: pre-heating a silicon raw material by supplying AC to an induction coil in the state of surrounding the outer periphery of a melting vessel storing the silicon raw material by a cylindrical pre-heating mechanism; and induction-heating the pre-heated silicon raw material by supplying AC to the induction coil in the state of removing the preheating mechanism from the periphery of the silicon raw material after the silicon raw material reaches a predetermined temperature by the pre-heating. A frequency of AC supplied to the induction coil is set to 5 kHz or more and less than 100 kHz, preferably, 10 kHz or more and 80 kHz, and the predetermined temperature is set to more than 800°C and less than 1412°C, preferably, 1000°C or more and 1200°C or less.

Description

本発明はシリコンの溶解方法及びその装置に関する。更に詳しくは、シリコン原料を誘導加熱によって溶融させる方法及び装置に関する。また、本発明はこのシリコン溶解装置を備えたシリコン単結晶製造装置に関する。   The present invention relates to a silicon melting method and apparatus. More specifically, the present invention relates to a method and apparatus for melting a silicon raw material by induction heating. The present invention also relates to a silicon single crystal manufacturing apparatus equipped with this silicon melting apparatus.

従来、シリコン原料を収容するルツボ内に棒状のカーボン発熱体を挿入し、この発熱体を高周波加熱して、上記シリコン原料を予備加熱するシリコンの急速溶解方法が開示されている(例えば、特許文献1参照。)。この方法によれば、不純物の混入がなく、急速にシリコンを加熱することができる。しかしながら、このカーボン発熱体は、棒状であるため誘導コイルとカーボン発熱体との距離が遠くなり、その結果、十分な予備加熱ができず、また棒状のカーボン発熱体をルツボ内に挿入する必要があるため、その分シリコン原料のチャージ量が減少し、更にシリコン原料とカーボン発熱体との接触を避けるために、カーボン発熱体をシリカ製容器に収容する必要があり、構造が複雑となる等の問題があった。   Conventionally, a silicon rapid melting method has been disclosed in which a rod-like carbon heating element is inserted into a crucible containing silicon raw material, the heating element is heated at high frequency, and the silicon raw material is preheated (for example, Patent Documents). 1). According to this method, there is no contamination of impurities and silicon can be heated rapidly. However, since this carbon heating element is rod-shaped, the distance between the induction coil and the carbon heating element is increased. As a result, sufficient preheating cannot be performed, and it is necessary to insert the rod-shaped carbon heating element into the crucible. Therefore, the amount of charge of the silicon raw material is reduced correspondingly, and in order to avoid contact between the silicon raw material and the carbon heating element, the carbon heating element must be accommodated in a silica container, and the structure becomes complicated. There was a problem.

上記問題を解決したシリコンの溶解方法として、本出願人は、筒状の予備加熱機構によってシリコン原料を取り囲んだ状態で誘導コイルに交流電流を流すことにより、シリコン原料を輻射により予備加熱した後、この予備加熱機構を上記シリコン原料の周囲から取り外した状態で誘導コイルに交流電流を流すことにより、予備加熱されたシリコン原料を誘導加熱するシリコンの溶解方法を提案した(例えば、特許文献2参照。)。この方法では、予備加熱時に誘導コイルに流す交流電流の周波数を好ましくは100kHz以上200kHzにし、予備加熱されたシリコン原料を誘導加熱するときの誘導コイルに流す交流電流の周波数を好ましくは100kHz以上2MHz未満とし、更に好ましくは100kHz以上300kHz未満としている。また予備加熱機構を取り外すときの温度について700℃以上800℃以下の範囲に設定することが好ましいとしている。そしてこの方法によれば、第一にシリコン原料を誘導加熱する前に効率よく予備加熱を行うことが可能となり、第二に誘導コイルが放電を起こす危険性も少ないため、放電の発生による電源装置などの停止などもほとんど無く、作業効率を高めることも可能となり、第三に交流電流の周波数を100kHz以上300kHz未満とすることで、シリコン原料に浸透する電流の深さを最適にして、より効率よくシリコン原料を完全に溶解させるようにしている。   As a silicon melting method that solves the above problems, the present applicant pre-heats the silicon raw material by radiation by passing an alternating current through the induction coil in a state of surrounding the silicon raw material by a cylindrical pre-heating mechanism, A silicon melting method was proposed in which the preheated silicon material is induction-heated by passing an alternating current through the induction coil with the preheating mechanism removed from the periphery of the silicon material (see, for example, Patent Document 2). ). In this method, the frequency of the alternating current that flows through the induction coil during preheating is preferably 100 kHz or more and 200 kHz, and the frequency of the alternating current that flows through the induction coil when the preheated silicon raw material is induction heated is preferably 100 kHz or more and less than 2 MHz. And more preferably 100 kHz or more and less than 300 kHz. Further, the temperature when removing the preheating mechanism is preferably set in the range of 700 ° C. or higher and 800 ° C. or lower. And according to this method, first, it becomes possible to efficiently perform preliminary heating before induction heating of the silicon raw material, and secondly, there is less risk of the induction coil causing discharge. It is possible to increase the working efficiency, and thirdly, by setting the frequency of the alternating current to 100 kHz or more and less than 300 kHz, the depth of current penetrating into the silicon raw material is optimized and more efficient. The silicon raw material is often completely dissolved.

特開平11−130581号公報(請求項3、段落[0014]、[0026]〜[0028]、図1)JP-A-11-130581 (Claim 3, paragraphs [0014], [0026] to [0028], FIG. 1) 特開2010−150100号公報(請求項1、段落[0012]、[0013]、[0027]、[0029]、図1、図2)JP 2010-150100 A (Claim 1, paragraphs [0012], [0013], [0027], [0029], FIGS. 1 and 2)

上記特許文献2において、個々のチップ原料の最大長が2mm以上100mm未満のシリコン原料を高周波による直接加熱で溶解させるためには、予備加熱時に誘導コイルに流す交流電流の周波数を100kHz以上にすることが好ましく、予備加熱機構を取り外すときの温度(直接加熱開始温度)を700℃以上800℃以下の範囲に設定して直接加熱時の誘導コイルに流す交流電流の周波数を100kHz以上にすることが好ましかった。100kHz以上にするのはシリコン原料の表皮に高周波を集中的に付加させてシリコン原料を発熱させ溶解させるためであった。周波数が100kHz未満ではシリコン原料を溶解するために十分な発熱量が得られず、直接加熱によりシリコン原料を完全に溶解させるには不十分であった。その一方、予備加熱時及び直接加熱時において誘導コイルに流す交流電流の周波数を100kHz以上にした場合、加熱雰囲気を500Torr以下の減圧下で実施すると、加熱効率は良いものの、予備加熱中及び直接加熱中における高周波ノイズの発生頻度が高く、シリコンの溶解を停止せざるを得ない状況が頻繁に発生するという問題があった。即ち、誘導コイルに流す周波数の下限値を100kHzに設定した場合でも、減圧下で加熱したときには、この周波数において、依然として高周波のノイズが発生し、このノイズが単結晶育成炉を制御する精密機器に影響を与えて、その制御を乱し、高品質の単結晶を育成することを阻害していた。   In the above-mentioned Patent Document 2, in order to dissolve silicon raw materials whose maximum length of each chip raw material is 2 mm or more and less than 100 mm by direct heating with high frequency, the frequency of the alternating current flowing through the induction coil during preheating is set to 100 kHz or more. Preferably, the temperature when removing the preheating mechanism (direct heating start temperature) is set in the range of 700 ° C. or higher and 800 ° C. or lower, and the frequency of the alternating current flowing through the induction coil during direct heating is preferably 100 kHz or higher. It was good. The reason why the frequency is set to 100 kHz or more is that the silicon raw material is heated and melted by intensively applying a high frequency to the skin of the silicon raw material. When the frequency is less than 100 kHz, a sufficient calorific value cannot be obtained to dissolve the silicon raw material, which is insufficient to completely dissolve the silicon raw material by direct heating. On the other hand, when the frequency of the alternating current flowing through the induction coil during preheating and direct heating is set to 100 kHz or more, the heating atmosphere is good under heating at a reduced pressure of 500 Torr or less, but the heating efficiency is good, but during the preheating and direct heating. There is a problem that high-frequency noise is frequently generated in the inside, and a situation in which dissolution of silicon must be stopped frequently occurs. That is, even when the lower limit value of the frequency passed through the induction coil is set to 100 kHz, when heated under reduced pressure, high frequency noise is still generated at this frequency, and this noise becomes a precision instrument for controlling the single crystal growth furnace. It had an effect, disturbed its control and hindered the growth of high quality single crystals.

本発明者らは、上記課題を解決するために、鋭意検討を重ねた結果、シリコン原料への直接加熱を開始する温度、即ち予備加熱機構をシリコン原料の周囲から取り外し始める温度を800℃を超える温度にすれば、誘導コイルに流す交流電流の周波数を100kHz未満に下げても、効率よくシリコン原料を完全に溶解することができ、かつ高周波ノイズの発生頻度をより一層低減することができるという知見を得て、本発明に到達した。   As a result of intensive investigations to solve the above problems, the present inventors have exceeded the temperature at which the direct heating of the silicon raw material is started, that is, the temperature at which the preheating mechanism starts to be removed from the periphery of the silicon raw material, exceeding 800 ° C. Knowledge that if the temperature is set, even if the frequency of the alternating current flowing through the induction coil is lowered to less than 100 kHz, the silicon raw material can be efficiently dissolved completely and the frequency of occurrence of high-frequency noise can be further reduced. And reached the present invention.

本発明の目的は、シリコン原料を完全に効率よく溶解でき、かつ高周波ノイズの発生頻度をより一層低減できるシリコンの溶解方法及びその装置を提供することにある。本発明の別の目的は、この溶解装置を用いてシリコン単結晶を連続的に引き上げることができるシリコン単結晶製造装置を提供することにある。   An object of the present invention is to provide a silicon melting method and apparatus capable of melting silicon raw materials completely efficiently and further reducing the frequency of occurrence of high frequency noise. Another object of the present invention is to provide a silicon single crystal manufacturing apparatus capable of continuously pulling up a silicon single crystal using this melting apparatus.

本発明の第1の観点は、筒状の予備加熱機構によってシリコン原料を収容する溶解容器の外周を取り囲んだ状態で誘導コイルに交流電流を流すことにより、前記シリコン原料を予備加熱する予備加熱工程と、前記予備加熱によって前記シリコン原料が所定の温度に達した後に前記予備加熱機構を前記シリコン原料の周囲から取り外した状態で前記誘導コイルに交流電流を流すことにより、予備加熱された前記シリコン原料を誘導加熱する誘導加熱工程とを備えたシリコンの溶解方法の改良である。その特徴ある点は、予備加熱時に予備加熱機構を介してシリコン原料を加熱するとき及び予備加熱されたシリコン原料を誘導加熱するときの前記誘導コイルに流す交流電流の周波数をそれぞれ5kHz以上100kHz未満に設定し、前記所定の温度を800℃を超えかつ1412℃未満の温度に設定することにある。   A first aspect of the present invention is a preheating step of preheating the silicon raw material by passing an alternating current through the induction coil in a state of surrounding the outer periphery of the melting container containing the silicon raw material by a cylindrical preheating mechanism. And the silicon raw material that has been preheated by passing an alternating current through the induction coil with the preheating mechanism removed from the periphery of the silicon raw material after the silicon raw material has reached a predetermined temperature by the preheating. And an induction heating process for induction heating of silicon. The characteristic point is that the frequency of the alternating current flowing through the induction coil is 5 kHz or more and less than 100 kHz when the silicon raw material is heated through the preheating mechanism during the preheating and when the preheated silicon raw material is induction heated. The predetermined temperature is set to a temperature exceeding 800 ° C. and less than 1412 ° C.

本発明の第2の観点は、第1の観点に基づく発明であって、予備加熱時に予備加熱機構を介してシリコン原料を加熱するとき及び予備加熱されたシリコン原料を誘導加熱するときの前記誘導コイルに流す交流電流の周波数をそれぞれ10kHz以上80kHz未満に設定し、前記所定の温度を1000℃以上1200℃以下の温度に設定するシリコンの溶解方法である。   A second aspect of the present invention is an invention based on the first aspect, wherein the induction when the silicon raw material is heated via the preheating mechanism during the preheating and when the preheated silicon raw material is induction heated. In this silicon melting method, the frequency of the alternating current flowing in the coil is set to 10 kHz or more and less than 80 kHz, respectively, and the predetermined temperature is set to 1000 ° C. or more and 1200 ° C. or less.

本発明の第3の観点は、シリコン原料を収容する溶解容器と、前記溶解容器を取り囲む筒状の予備加熱機構と、前記予備加熱機構の周囲に巻回された誘導コイルと、前記誘導コイルに交流電流を供給する電源装置と、前記予備加熱機構の着脱を行う着脱機構と、前記シリコン原料の温度を検出する温度センサと、前記温度センサの検出出力に基づいて前記着脱機構の着脱を制御する制御回路とを備え、前記電源装置は、前記誘導コイルに5kHz以上100kHz未満の周波数の交流電流を流すように設定され、前記制御回路は、前記温度センサが前記シリコン原料が800℃を超えかつ1412℃未満の所定の温度を検出するまでは前記予備加熱機構を前記溶解容器を取り囲む位置に配置するように前記着脱機構を制御し、かつ前記温度センサが前記所定の温度を検出したときには、前記予備加熱機構を前記溶解容器の周囲から取り外して前記シリコン原料を前記誘導コイルにより直接誘導加熱するように前記着脱機構を制御することを特徴とする。   According to a third aspect of the present invention, there is provided a melting container for containing a silicon raw material, a cylindrical preheating mechanism surrounding the melting container, an induction coil wound around the preheating mechanism, and the induction coil. A power supply device for supplying an alternating current, an attachment / detachment mechanism for attaching / detaching the preliminary heating mechanism, a temperature sensor for detecting the temperature of the silicon raw material, and attachment / detachment of the attachment / detachment mechanism based on a detection output of the temperature sensor. A control circuit, wherein the power supply device is set to flow an alternating current having a frequency of 5 kHz or more and less than 100 kHz to the induction coil, and the control circuit is configured such that the temperature sensor exceeds 800 ° C. and 1412 Until the predetermined temperature of less than 0 ° C. is detected, the preheating mechanism is controlled so as to be disposed at a position surrounding the dissolution vessel, and the temperature sensor is controlled. When the service detects the predetermined temperature, and controlling the detaching mechanism to direct heated directly by the induction coil of the silicon raw material by removing said preheating mechanism from the periphery of the melting vessel.

本発明の第4の観点は、第3の観点に基づく発明であって、前記電源装置は、前記誘導コイルに10kHz以上80kHz未満の周波数の交流電流を流すように設定され、前記制御回路は、前記シリコン原料が1000℃以上1200℃以下の所定の温度に達するまでは前記予備加熱機構を前記溶解容器を取り囲む位置に配置するように前記着脱機構を制御するシリコン溶融装置である。   A fourth aspect of the present invention is the invention based on the third aspect, wherein the power supply device is set to flow an alternating current having a frequency of 10 kHz or more and less than 80 kHz to the induction coil, and the control circuit is The silicon melting apparatus controls the attaching / detaching mechanism so that the preheating mechanism is arranged at a position surrounding the melting container until the silicon raw material reaches a predetermined temperature of 1000 ° C. or more and 1200 ° C. or less.

本発明の第5の観点は、石英ルツボ内のシリコン融液からシリコン単結晶を引き上げる引き上げ機構と、第3又は第4の観点のシリコン溶解装置と、前記溶解装置の溶解容器内のシリコン融液を前記石英ルツボに供給する供給機構とを備えたシリコン単結晶製造装置である。   According to a fifth aspect of the present invention, there is provided a pulling mechanism for pulling up a silicon single crystal from a silicon melt in a quartz crucible, a silicon melting apparatus according to the third or fourth aspect, and a silicon melt in a melting container of the melting apparatus. Is a silicon single crystal manufacturing apparatus provided with a supply mechanism for supplying to the quartz crucible.

本発明の第6の観点は、第5の観点に基づく発明であって、前記供給機構は、前記引き上げ機構によるシリコン単結晶の引き上げ中に前記シリコン融液を石英ルツボに連続して追加供給可能に構成されたシリコン単結晶製造装置である。   A sixth aspect of the present invention is the invention based on the fifth aspect, wherein the supply mechanism can continuously supply the silicon melt continuously to the quartz crucible during the pulling of the silicon single crystal by the pulling mechanism. It is the silicon single crystal manufacturing apparatus comprised in this.

本発明の第1の観点の溶解方法及び第3の観点の溶解装置によれば、直接加熱を開始するときの被加熱体であるシリコン原料の温度を従来の700〜800℃より高い800℃を超えかつ1412℃未満の所定の温度に予備加熱により上昇させることにより、被加熱体(シリコン原料)の抵抗率を大幅に下げることができる。この抵抗率の低下により、従来の100kHz以上よりも低い10kHz以上100kHz未満の周波数であっても、直接加熱時の誘導コイルに流す交流電流の浸透深さを小さくでき、被加熱体(シリコン原料)の表皮に流れる誘導電流の密度を低下させずに、シリコン原料を完全に効率よく溶解することができる。また予備加熱中及び直接加熱中の周波数が10kHz以上100kHz未満の従来より低い周波数であるため、誘導コイルが放電を起こす危険性がより低下し、単結晶育成炉を制御する精密機器に悪影響を及ぼす高周波ノイズの発生頻度をより一層低減することができる。   According to the melting method of the first aspect and the melting apparatus of the third aspect of the present invention, the temperature of the silicon raw material that is a heated object when directly heating is set to 800 ° C. higher than the conventional 700 to 800 ° C. By increasing the temperature to a predetermined temperature exceeding 1412 ° C. by preheating, the resistivity of the object to be heated (silicon raw material) can be significantly reduced. Due to this decrease in resistivity, the penetration depth of the alternating current flowing through the induction coil during direct heating can be reduced even at a frequency of 10 kHz or more and less than 100 kHz, which is lower than the conventional 100 kHz or more. The silicon raw material can be dissolved completely efficiently without reducing the density of the induced current flowing in the skin of the film. In addition, since the frequency during the preheating and the direct heating is lower than the conventional frequency of 10 kHz or more and less than 100 kHz, the risk of the induction coil causing a discharge is further reduced, which adversely affects the precision equipment that controls the single crystal growth furnace. The occurrence frequency of high frequency noise can be further reduced.

本発明の第2の観点の溶解方法及び第4の溶解装置によれば、誘導コイルに流す交流電流の周波数を10kHz以上80kHz未満に設定して直接加熱を開始するときの所定の温度を1000℃以上1200℃以下の温度に設定することにより、シリコン原料をより一層完全に効率よく溶解することができ、また誘導コイルが放電を起こす危険性を更に低下させることができる。   According to the melting method and the fourth melting apparatus of the second aspect of the present invention, the predetermined temperature when starting the direct heating by setting the frequency of the alternating current flowing through the induction coil to 10 kHz or more and less than 80 kHz is 1000 ° C. By setting the temperature to 1200 ° C. or lower, the silicon raw material can be dissolved more completely and efficiently, and the risk of the induction coil causing discharge can be further reduced.

本発明の第5の観点の溶解装置によれば、従来の石英ルツボ内のシリコン融液からシリコン単結晶を引き上げる引き上げ機構に加えて、第3又は第4の観点の溶解装置とこの溶解装置の溶解容器内のシリコン融液を上記石英ルツボに供給する供給機構とを備えることにより、従来の引き上げ機構を連続チャージCZ炉(CCZ炉)にすることができる。   According to the melting apparatus of the fifth aspect of the present invention, in addition to the conventional pulling mechanism for pulling up the silicon single crystal from the silicon melt in the quartz crucible, the melting apparatus of the third or fourth aspect and the melting apparatus By providing a supply mechanism for supplying the silicon melt in the melting container to the quartz crucible, the conventional pulling mechanism can be a continuous charge CZ furnace (CCZ furnace).

本発明の第6の観点の溶解装置によれば、供給機構は、前記引き上げ機構によるシリコン単結晶の引き上げ中に前記シリコン融液を石英ルツボに連続して追加供給可能に構成されるので、シリコン単結晶を連続的に引き上げることが可能になる。   According to the melting apparatus of the sixth aspect of the present invention, the supply mechanism is configured so that the silicon melt can be additionally supplied continuously to the quartz crucible during the pulling of the silicon single crystal by the pulling mechanism. The single crystal can be continuously pulled up.

本発明の実施形態によるシリコン溶解装置の構成を示す模式図である。It is a mimetic diagram showing the composition of the silicon dissolution device by the embodiment of the present invention. その溶解装置の着脱機構によって予備加熱機構を取り外した状態を示す図である。It is a figure which shows the state which removed the preheating mechanism with the attachment / detachment mechanism of the melt | dissolution apparatus. 本発明の実施形態によるシリコンの溶解方法を説明するためのフローチャートである。5 is a flowchart for explaining a silicon melting method according to an embodiment of the present invention. 本発明の実施形態によるシリコン単結晶製造装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the silicon single crystal manufacturing apparatus by embodiment of this invention.

次に本発明を実施するための形態を説明する。   Next, the form for implementing this invention is demonstrated.

図1に示すように、本実施形態によるシリコン溶解装置10は、シリコン原料2が収容される溶解容器11と、溶解容器11の周囲に巻回された誘導コイル12と、誘導コイル12に交流電流を供給する電源装置13と、シリコン原料2を予備加熱する予備加熱機構14と、予備加熱機構14の着脱を行う着脱機構15と、シリコン原料2の温度を検出する温度センサ16と、温度センサ16の検出出力に基づいて着脱機構15の着脱を制御する制御回路17を備える。   As shown in FIG. 1, the silicon melting apparatus 10 according to the present embodiment includes a melting container 11 in which the silicon raw material 2 is accommodated, an induction coil 12 wound around the melting container 11, and an alternating current in the induction coil 12. , A preheating mechanism 14 for preheating the silicon raw material 2, an attaching / detaching mechanism 15 for attaching / detaching the preheating mechanism 14, a temperature sensor 16 for detecting the temperature of the silicon raw material 2, and a temperature sensor 16 Is provided with a control circuit 17 for controlling the attachment / detachment of the attachment / detachment mechanism 15 based on the detected output.

溶解容器11は、シリコン原料2を収容し、予備加熱機構14による予備加熱及び誘導コイル12による誘導加熱によって溶解したシリコン融液を保持するための容器である。溶解容器11の材料は、耐熱性及び絶縁性を有しシリコン融液との反応性の低い材料であれば特に限定されないが、石英ガラスを用いることが特に好ましい。   The melting container 11 is a container that contains the silicon raw material 2 and holds the silicon melt melted by the preheating by the preheating mechanism 14 and the induction heating by the induction coil 12. The material of the dissolution vessel 11 is not particularly limited as long as it is a material having heat resistance and insulating properties and low reactivity with the silicon melt, but it is particularly preferable to use quartz glass.

誘導コイル12は、溶解容器11に充填されたシリコン原料2又は予備加熱機構14を誘導加熱するためのコイルであり、溶解容器11の周囲に巻回されている。誘導コイル12の一端及び他端は電源装置13に接続されており、電源装置13から交流電流が供給されると誘導加熱を行う。電源装置13は、供給する電力量及び周波数の切り替えが可能に構成されている。本実施の形態では、電源装置13は、誘導コイル12に3kW以上100kW以下の範囲、好ましくは5kW以上40kW以下の範囲の電力量を供給するように設定され、かつ5kHz以上100kHz未満の範囲、好ましくは10kHz以上80kHz未満の範囲の周波数の交流電流を流すように設定される。電力量が上記下限値未満であると原料温度が上昇せず、ポリシリコンが溶解しない不具合があり、上記上限値を超えるとコイル間電圧が高くなり、コイル間で放電が発生しやすい環境が生まれるという不具合がある。周波数が上記下限値未満であると予備加熱機構及びシリコン原料への誘導コイルによる誘導加熱が不十分になり加熱効率が低下する。上記上限値を超えると誘導コイルの放電回数が増え、高周波のノイズの発生頻度が高くなる。   The induction coil 12 is a coil for induction heating the silicon raw material 2 or the preheating mechanism 14 filled in the melting container 11, and is wound around the melting container 11. One end and the other end of the induction coil 12 are connected to the power supply device 13, and induction heating is performed when an alternating current is supplied from the power supply device 13. The power supply device 13 is configured to be able to switch the amount of power to be supplied and the frequency. In the present embodiment, the power supply device 13 is set to supply power to the induction coil 12 in the range of 3 kW to 100 kW, preferably in the range of 5 kW to 40 kW, and in the range of 5 kHz to less than 100 kHz, preferably Is set to flow an alternating current having a frequency in the range of 10 kHz to less than 80 kHz. If the amount of electric power is less than the above lower limit, the raw material temperature will not rise and polysilicon will not dissolve, and if the upper limit is exceeded, the voltage between the coils will increase, creating an environment where discharge is likely to occur between the coils. There is a problem that. When the frequency is less than the lower limit, induction heating by the preheating mechanism and the induction coil to the silicon raw material becomes insufficient, and the heating efficiency is lowered. If the upper limit is exceeded, the number of discharges of the induction coil increases and the frequency of high-frequency noise increases.

予備加熱機構14は、輻射熱によって溶解容器11に収容されたシリコン原料2を予備加熱するための機構であり、本実施形態では溶解容器11の外周を取り囲む筒状部材によって構成されている。筒状部材の材料としては、耐熱性及び導電性の高い材料を用いる必要があり、カーボン材料又はカーボンと同等の導電性を有する材料が用いられる。本実施形態のように、溶解容器11の外周を取り囲む筒状部材によって予備加熱機構14を構成すれば、シリコン原料2と予備加熱機構14とが直接接しないことから、シリコン原料2に混入する不純物を低減することが可能となる。   The preheating mechanism 14 is a mechanism for preheating the silicon raw material 2 accommodated in the melting container 11 by radiant heat, and is configured by a cylindrical member surrounding the outer periphery of the melting container 11 in this embodiment. As the material of the cylindrical member, it is necessary to use a material having high heat resistance and conductivity, and a carbon material or a material having conductivity equivalent to carbon is used. If the preheating mechanism 14 is configured by a cylindrical member surrounding the outer periphery of the dissolution vessel 11 as in the present embodiment, the silicon raw material 2 and the preheating mechanism 14 do not directly contact each other, so that impurities mixed into the silicon raw material 2 Can be reduced.

予備加熱機構14は、着脱機構15によって溶解容器11から着脱可能に構成されている。図1に示すように、着脱機構15によって予備加熱機構14が装着された状態においては、誘導コイル12とシリコン原料2との間に予備加熱機構14が位置する。このため、この状態で誘導コイル12に交流電流を流すと、予備加熱機構14が誘導加熱され、これによって生じる輻射熱によってシリコン原料2が間接的に加熱される。即ちシリコン原料2が予備加熱される。一方、図2に示すように、着脱機構15によって予備加熱機構14が取り外された状態においては、誘導コイル12とシリコン原料2との間に予備加熱機構14が存在しないことから、この状態で誘導コイル12に交流電流を流すと、シリコン原料2が誘導加熱される。即ち、シリコン原料2が直接加熱される。   The preheating mechanism 14 is configured to be detachable from the dissolution container 11 by an attachment / detachment mechanism 15. As shown in FIG. 1, in a state where the preheating mechanism 14 is mounted by the attaching / detaching mechanism 15, the preheating mechanism 14 is positioned between the induction coil 12 and the silicon raw material 2. For this reason, when an alternating current is passed through the induction coil 12 in this state, the preheating mechanism 14 is induction-heated, and the silicon raw material 2 is indirectly heated by the radiant heat generated thereby. That is, the silicon raw material 2 is preheated. On the other hand, as shown in FIG. 2, when the preheating mechanism 14 is removed by the attaching / detaching mechanism 15, the preheating mechanism 14 does not exist between the induction coil 12 and the silicon raw material 2. When an alternating current is passed through the coil 12, the silicon raw material 2 is induction-heated. That is, the silicon raw material 2 is directly heated.

温度センサ16は、予備加熱中及び直接加熱中のシリコン原料2の温度を検出する。温度センサとしては、接触温度計の熱電対や、非接触温度計の放射温度計が挙げられる。制御回路17は、温度センサ16の検出出力に基づいて、着脱機構を制御する。具体的には制御回路17は温度センサ16がシリコン原料2が800℃を超えかつ1412℃未満、好ましくは1000℃以上1200℃以下の所定の温度を検出するまでは、予備加熱機構14を溶解容器11を取り囲む位置に配置するように、即ち予備加熱機構14が装着された状態になるように着脱機構15を制御する。また制御回路17は温度センサ16が上記所定の温度を検出したときには、予備加熱機構14を溶解容器11の周囲から取り外してシリコン原料2を誘導コイル12により直接誘導加熱するように着脱機構15を制御する。上記所定の温度の範囲における下限値未満である場合、被加熱体であるシリコン原料の抵抗率を下げて、電流浸透深さを小さくできず、誘導コイルの交流電流の周波数が5kHz以上100kHz未満では、直接加熱でシリコン原料を完全に効率よく溶解することができない。上限値はシリコンの融点に近いため、この温度を超えることはほぼ不可能であるためである。   The temperature sensor 16 detects the temperature of the silicon raw material 2 during preheating and direct heating. Examples of the temperature sensor include a thermocouple of a contact thermometer and a radiation thermometer of a non-contact thermometer. The control circuit 17 controls the attachment / detachment mechanism based on the detection output of the temperature sensor 16. Specifically, the control circuit 17 sets the preheating mechanism 14 until the temperature sensor 16 detects a predetermined temperature of the silicon raw material 2 exceeding 800 ° C. and less than 1412 ° C., preferably 1000 ° C. or more and 1200 ° C. or less. The detachable mechanism 15 is controlled so as to be disposed at a position surrounding the refractor 11, that is, so that the preheating mechanism 14 is mounted. When the temperature sensor 16 detects the predetermined temperature, the control circuit 17 controls the attachment / detachment mechanism 15 so that the preliminary heating mechanism 14 is removed from the periphery of the melting vessel 11 and the silicon raw material 2 is directly induction heated by the induction coil 12. To do. When the temperature is less than the lower limit in the predetermined temperature range, the resistivity of the silicon raw material to be heated cannot be reduced to reduce the current penetration depth, and the frequency of the alternating current of the induction coil is not less than 5 kHz and less than 100 kHz. The silicon raw material cannot be completely efficiently dissolved by direct heating. This is because the upper limit is close to the melting point of silicon and it is almost impossible to exceed this temperature.

次に、本実施形態によるシリコン溶解装置10を用いたシリコンの溶解方法について説明する。   Next, a silicon melting method using the silicon melting apparatus 10 according to the present embodiment will be described.

図3のフローチャートに示すように、溶解容器11にシリコン原料2を充填する(ステップS1)。充填するシリコン原料2の形状やサイズについては特に限定されないが、後述するステップS5の誘導加熱において効率よく加熱を行うためには、個々のチップ原料の最大長が2mm以上100mm未満であることが好ましい。これは、2mm未満であると誘導電流の浸透深さからチップ原料にパワーが入らず高周波溶解ができないからだからであり、100mm以上であると原料内部に大きな熱応力が生じて割れる可能性があるからである。   As shown in the flowchart of FIG. 3, the melting material 11 is filled with the silicon raw material 2 (step S1). The shape and size of the silicon raw material 2 to be filled are not particularly limited, but the maximum length of each chip raw material is preferably 2 mm or more and less than 100 mm in order to efficiently perform heating in the induction heating in step S5 described later. . This is because if the thickness is less than 2 mm, power does not enter the chip raw material due to the penetration depth of the induced current and high-frequency melting is impossible, and if it is 100 mm or more, there is a possibility that a large thermal stress is generated inside the raw material and breaks. Because.

シリコン原料2を溶解容器11に充填した後、制御回路17は温度センサ16がシリコン原料2の温度が所定の温度より低いと検出するときには、着脱機構15により予備加熱機構14を装着にする。この状態で、電源装置13は誘導コイル12に3kW以上100kW以下の範囲の電力量を供給し、かつ5kHz以上100kHz未満の範囲の周波数の交流電流を流す。その結果、予備加熱機構14が誘導加熱され、これによって生じる輻射熱によりシリコン原料2が予備加熱される(ステップS2)。予備加熱時における電力量及び周波数は、シリコン原料2の重量によって上記範囲の中から定められる。例えばシリコン原料2の重量が1.5kgであれば、5kW以上40kW以下の範囲に設定することが好ましい。シリコン原料2を誘導加熱する際に必要となる電力量は、周波数が5kHz以上100kHz未満の範囲において低い周波数であるほど少なくなる。また、周波数を高くすると、溶解容器11の上部でブリッジが形成されることがあり、シリコン原料2を上部から連続的に供給する場合にはこれが問題となり得る。これらの点を考慮すれば、シリコン原料2を誘導加熱する際の周波数は10kHz以上80kHz未満とすることが好ましい。   After the silicon raw material 2 is filled in the melting container 11, when the temperature sensor 16 detects that the temperature of the silicon raw material 2 is lower than a predetermined temperature, the preheating mechanism 14 is attached by the attaching / detaching mechanism 15. In this state, the power supply device 13 supplies the induction coil 12 with a power amount in the range of 3 kW to 100 kW, and allows an alternating current having a frequency in the range of 5 kHz to less than 100 kHz to flow. As a result, the preheating mechanism 14 is induction-heated, and the silicon raw material 2 is preheated by the radiant heat generated thereby (step S2). The amount of electric power and frequency during preheating are determined from the above range depending on the weight of the silicon raw material 2. For example, if the weight of the silicon raw material 2 is 1.5 kg, it is preferable to set it in the range of 5 kW to 40 kW. The amount of electric power required for induction heating of the silicon raw material 2 becomes smaller as the frequency is lower in the range of 5 kHz or more and less than 100 kHz. Further, when the frequency is increased, a bridge may be formed in the upper part of the dissolution vessel 11, and this may be a problem when the silicon raw material 2 is continuously supplied from the upper part. Considering these points, it is preferable that the frequency at the time of induction heating the silicon raw material 2 is 10 kHz or more and less than 80 kHz.

予備加熱によってシリコン原料2が所定の温度に達したことを温度センサ16が検出すると(ステップS3:YES)、制御回路17は着脱機構15を制御して予備加熱機構14を取り外す(ステップS4)。これによりシリコン原料2が直接誘導加熱され、融点まで上昇する(ステップS5)。誘導加熱は、輻射熱による加熱と比べて単位重量に対する溶解速度が非常に速いため、シリコン原料2を効率よく完全に溶解させることが可能となる。   When the temperature sensor 16 detects that the silicon raw material 2 has reached a predetermined temperature by preheating (step S3: YES), the control circuit 17 controls the attaching / detaching mechanism 15 to remove the preheating mechanism 14 (step S4). Thereby, the silicon raw material 2 is directly heated by induction and rises to the melting point (step S5). Induction heating has a very high dissolution rate per unit weight as compared with heating by radiant heat, so that the silicon raw material 2 can be efficiently and completely dissolved.

以上のプロセスにより溶解容器11内のシリコン原料2が完全に溶解し、シリコン融液を得ることができる。このように、本実施形態によるシリコンの溶解方法によれば、まず予備加熱機構14からの輻射熱によってシリコン原料2を予備加熱し、これによりシリコン原料2が所定の温度まで加熱されてからシリコン原料2への直接的な誘導加熱を行っていることから、シリコン原料への全体加熱が可能となる。これによりチップ状のシリコン原料が均一に小さくなり、溶解過程で従来発生していた原料ブリッジ(棚吊り)現象を回避することができる。また溶解容器に充填した全てのシリコン原料が完全に溶解するまでに必要な全電力量が小さくなる。これはシリコン原料への全体加熱により原料自体の保温効果により外部への放熱量が小さくなるためで、充填原料の外側のみの局所加熱と比較し、効率よくシリコン融液を生成することができる。また低い周波数にすることにより、誘導コイルの放電の発生頻度を下げることができ、周波数を100kHz未満にすることで従来と比べて発生頻度を50%以下にすることができ、これにより高周波ノイズに起因した溶解装置周囲の精密機器への影響度を下げることができる。   Through the above process, the silicon raw material 2 in the dissolution vessel 11 is completely dissolved, and a silicon melt can be obtained. As described above, according to the silicon melting method according to the present embodiment, the silicon raw material 2 is first preheated by the radiant heat from the preheating mechanism 14, whereby the silicon raw material 2 is heated to a predetermined temperature and then the silicon raw material 2 is heated. Since direct induction heating is performed, the entire silicon material can be heated. As a result, the silicon material in the form of chips is uniformly reduced, and the material bridge (shelf hanging) phenomenon that has conventionally occurred in the melting process can be avoided. Further, the total amount of electric power required until all the silicon raw materials filled in the melting container are completely melted is reduced. This is because the amount of heat released to the outside is reduced due to the heat-retaining effect of the raw material itself due to the overall heating of the silicon raw material, and a silicon melt can be efficiently generated as compared with local heating only outside the filled raw material. In addition, by making the frequency low, the frequency of occurrence of discharge of the induction coil can be lowered, and by making the frequency less than 100 kHz, the frequency of occurrence can be reduced to 50% or less compared to the conventional case, thereby reducing high frequency noise. The degree of influence on the precision equipment around the melting device can be reduced.

その上、予備加熱機構14が筒状であることから、誘導コイル12と予備加熱機構14との近接させることができる。このため、予備加熱機構14を効率的に誘導加熱することが可能となる。しかも、シリコン原料2が外周側から予備加熱されるため、保温性の高い状態で予備加熱を行うことも可能となる。さらに、本実施形態では、溶解容器11の外周を取り囲むように予備加熱機構14を配置していることから、シリコン原料2と予備加熱機構14とが接することがなく、シリコン原料2の汚染を防止することができる。しかも、予備加熱機構14が溶解容器11の外部に配置されることから、シリコン原料2のチャージ量が減少することもない。   In addition, since the preheating mechanism 14 is cylindrical, the induction coil 12 and the preheating mechanism 14 can be brought close to each other. For this reason, the preliminary heating mechanism 14 can be efficiently induction-heated. Moreover, since the silicon raw material 2 is preheated from the outer peripheral side, it is possible to perform preheating in a state of high heat retention. Furthermore, in this embodiment, since the preheating mechanism 14 is disposed so as to surround the outer periphery of the melting vessel 11, the silicon raw material 2 and the preheating mechanism 14 do not come into contact with each other, and contamination of the silicon raw material 2 is prevented. can do. In addition, since the preheating mechanism 14 is arranged outside the melting vessel 11, the charge amount of the silicon raw material 2 is not reduced.

本実施形態によるシリコン溶解装置10は、連続チャージCZ法によるシリコン単結晶の引き上げが可能なシリコン単結晶製造装置に用いることが好適である。   The silicon melting apparatus 10 according to the present embodiment is preferably used in a silicon single crystal manufacturing apparatus capable of pulling up a silicon single crystal by a continuous charge CZ method.

図4は、連続チャージCZ法によるシリコン単結晶の引き上げが可能なシリコン単結晶製造装置20の構成を示す模式図である。   FIG. 4 is a schematic diagram showing a configuration of a silicon single crystal manufacturing apparatus 20 capable of pulling up a silicon single crystal by a continuous charge CZ method.

図4に示すシリコン単結晶製造装置20では、シリコン融液4を収容する石英ルツボ21がチャンバ22の内部に設けられている。この石英ルツボ21の外周面および外底面はグラファイトサセプタ23により保持される。グラファイトサセプタ23は鉛直方向に平行な支持軸24の上端に固定され、この支持軸24を介して石英ルツボ21を回転させるとともに、上下方向に移動できるように構成されている。   In the silicon single crystal manufacturing apparatus 20 shown in FIG. 4, a quartz crucible 21 for storing the silicon melt 4 is provided inside the chamber 22. The outer peripheral surface and the outer bottom surface of the quartz crucible 21 are held by a graphite susceptor 23. The graphite susceptor 23 is fixed to the upper end of a support shaft 24 parallel to the vertical direction, and is configured to rotate the quartz crucible 21 via the support shaft 24 and to move in the vertical direction.

石英ルツボ21およびグラファイトサセプタ23の外周面はヒータ25により囲繞され、このヒータ25はさらに保温筒26により包囲される。シリコン単結晶の育成における原料溶解の過程では、ヒータ25の加熱により石英ルツボ21内に充填された高純度の多結晶シリコン原料が加熱、溶解されてシリコン融液4になる。   The outer peripheral surfaces of the quartz crucible 21 and the graphite susceptor 23 are surrounded by a heater 25, and the heater 25 is further surrounded by a heat insulating cylinder 26. In the raw material melting process in the growth of the silicon single crystal, the high-purity polycrystalline silicon raw material filled in the quartz crucible 21 by the heating of the heater 25 is heated and melted to form the silicon melt 4.

一方、チャンバ22の上端部には引き上げ機構27が設けられる。この引き上げ機構27には石英ルツボ21の回転中心に向かって垂下されたワイヤケーブル28が取り付けられ、ワイヤケーブル28を巻き取りまたは繰り出す引上げ用モータ(図示せず)が配備される。ワイヤケーブル28の下端には種結晶8が取り付けられる。   On the other hand, a lifting mechanism 27 is provided at the upper end of the chamber 22. The pulling mechanism 27 is provided with a wire cable 28 that is suspended toward the rotation center of the quartz crucible 21, and a pulling motor (not shown) that winds or feeds the wire cable 28 is provided. A seed crystal 8 is attached to the lower end of the wire cable 28.

育成中のシリコン単結晶6を囲繞するように、シリコン単結晶6と保温筒26との間に円筒状の熱遮蔽部材29が設けられる。この熱遮蔽部材29はコーン部29aとフランジ部29bとからなり、このフランジ部29bを保温筒26に取り付けることにより熱遮蔽部材29が所定位置に配置される。   A cylindrical heat shielding member 29 is provided between the silicon single crystal 6 and the heat insulating cylinder 26 so as to surround the silicon single crystal 6 being grown. The heat shield member 29 includes a cone portion 29a and a flange portion 29b, and the heat shield member 29 is disposed at a predetermined position by attaching the flange portion 29b to the heat retaining cylinder 26.

図4に示すシリコン単結晶製造装置20は、上述したシリコン溶解装置10を更に備え、これによって石英ルツボ21へのシリコン融液4を追加供給することが可能になる。シリコン溶解装置10によって生成されたシリコン融液4は、供給機構30を介して石英ルツボ21に供給される。供給機構30は、引き上げ機構27によるシリコン単結晶6の引き上げ中にシリコン融液4を石英ルツボ21に追加供給することができ、これにより、シリコン単結晶6の連続的な引き上げが可能になる。供給機構30は配管を有しており、配管へのシリコン融液4の供給は、溶解容器11の上部に設けた堰の上下動や、溶解容器11の傾転により行うことができる。また、溶解容器11の底部に配管を接続し、密閉したチャンバ22中の雰囲気の圧力を調整することによっても行うことができる。   The silicon single crystal manufacturing apparatus 20 shown in FIG. 4 further includes the above-described silicon melting apparatus 10, whereby the silicon melt 4 can be additionally supplied to the quartz crucible 21. The silicon melt 4 generated by the silicon melting apparatus 10 is supplied to the quartz crucible 21 via the supply mechanism 30. The supply mechanism 30 can additionally supply the silicon melt 4 to the quartz crucible 21 during the pulling of the silicon single crystal 6 by the pulling mechanism 27, thereby enabling continuous pulling of the silicon single crystal 6. The supply mechanism 30 has a pipe, and the supply of the silicon melt 4 to the pipe can be performed by the vertical movement of a weir provided on the upper part of the dissolution container 11 or the tilting of the dissolution container 11. It can also be performed by connecting a pipe to the bottom of the dissolution vessel 11 and adjusting the pressure of the atmosphere in the sealed chamber 22.

連続チャージCZ法(CCZ法)においてシリコン融液4を追加供給するためには、シリコン原料2を高速に溶解させる必要があるが、本実施形態によるシリコン溶解装置10を用いることによりこれを実現することが可能となる。 In order to additionally supply the silicon melt 4 in the continuous charge CZ method (CCZ method), it is necessary to dissolve the silicon raw material 2 at a high speed, which is realized by using the silicon melting apparatus 10 according to the present embodiment. It becomes possible.

以上、本発明の好ましい実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の変更を加えることが可能であり、それらも本発明に包含されるものであることは言うまでもない。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, these are also included in the present invention.

例えば上記実施形態では、シリコン溶解装置10の用途として、連続チャージCZ法において追加供給するシリコン融液の生成に用いた例を示したが、本発明によるシリコン溶解装置の用途がこれに限定されるものではない。したがって、シリコン単結晶の引き上げにおいて初期チャージのシリコン原料2をあらかじめシリコン溶解装置10によって溶解させ、得られたシリコン融液を石英ルツボに移し替えるといった用途に用いることも可能である。このような用途は、近年のシリコン単結晶及び石英ルツボの大型化に伴って生じる大チャージ化の問題を解決する方法の一つとして有望であると考えられる。   For example, in the above-described embodiment, an example of using the silicon melting apparatus 10 as an application of the silicon melt additionally supplied in the continuous charge CZ method is shown as an application of the silicon melting apparatus 10, but the application of the silicon melting apparatus according to the present invention is limited to this. It is not a thing. Therefore, when pulling up the silicon single crystal, the silicon material 2 of the initial charge can be dissolved in advance by the silicon melting apparatus 10 and the obtained silicon melt can be transferred to a quartz crucible. Such an application is considered to be promising as one of the methods for solving the problem of the large charge generated with the recent increase in the size of silicon single crystals and quartz crucibles.

次に本発明の実施例を図面に基づいて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示す構成を有するシリコン溶解装置を用意した。実施例では、温度センサ16として溶解容器11に収容されたシリコン原料2の内部に挿入するタイプの白金熱電対(図示せず)を用いた。溶解容器11としては、内径120mm、外径140mm、高さ140mmの石英蓋つき石英円筒容器を用い、これを耐熱レンガ上に載置した。予備加熱機構14としては、厚さ8mmのカーボン製の筒状部材(カーボン筒)を用い、これを溶解容器11の外周を囲むように配置した。   A silicon melting apparatus having the configuration shown in FIG. 1 was prepared. In the example, a platinum thermocouple (not shown) of the type inserted into the silicon raw material 2 accommodated in the melting container 11 was used as the temperature sensor 16. As the melting container 11, a quartz cylindrical container with a quartz lid having an inner diameter of 120 mm, an outer diameter of 140 mm, and a height of 140 mm was used, and this was placed on a heat-resistant brick. As the preheating mechanism 14, a carbon tubular member (carbon cylinder) having a thickness of 8 mm was used and disposed so as to surround the outer periphery of the dissolution vessel 11.

次に、カーボン筒に囲まれた領域に最大長が10〜30mmサイズ(平均20mmサイズ)のチップ状の多結晶シリコン原料2を2kg充填した。更に加熱中の断熱性を確保するため、厚さ35mmの断熱材(図示せず)を容器全体に巻きつけた。誘導コイル12は6ターンとした。チップ状の多結晶シリコン原料2の中央部に温度センサ16として熱電対(材質:WRe)を挿入し、加熱中のシリコン原料の温度を直接計測できるようにした。   Next, 2 kg of chip-shaped polycrystalline silicon raw material 2 having a maximum length of 10 to 30 mm (average 20 mm) was filled in a region surrounded by the carbon cylinder. Furthermore, in order to ensure heat insulation during heating, a heat insulating material (not shown) having a thickness of 35 mm was wound around the entire container. The induction coil 12 has 6 turns. A thermocouple (material: WRe) was inserted as a temperature sensor 16 in the center of the chip-like polycrystalline silicon raw material 2 so that the temperature of the silicon raw material being heated could be directly measured.

以上の準備が整った後、図1に示すように、誘導コイル12に交流電流を流すことによってカーボン筒を誘導加熱し、その輻射熱によってシリコン原料2を加熱した。電源装置13により誘導コイル12に流す交流電流の周波数が2kHz、5kHz,10kHz、50kHz、80kHz、100kHzに切換わるように周波数を設定した。電力は30kWとした。なお、シリコン原料2の加熱中は、常にアルゴン(Ar)ガスを溶解容器11内に導入し、これによってシリコン表層の酸化を抑制した。   After the above preparation was completed, as shown in FIG. 1, the carbon cylinder was induction-heated by passing an alternating current through the induction coil 12, and the silicon raw material 2 was heated by the radiant heat. The frequency was set so that the frequency of the alternating current passed through the induction coil 12 by the power supply device 13 was switched to 2 kHz, 5 kHz, 10 kHz, 50 kHz, 80 kHz, and 100 kHz. The power was 30 kW. In addition, during the heating of the silicon raw material 2, argon (Ar) gas was always introduced into the dissolution vessel 11, thereby suppressing oxidation of the silicon surface layer.

次いで、上記5種類の周波数の交流電流を誘導コイル12に各別に流し、カーボン筒を介して加熱されたシリコン原料2の温度が700℃、800℃、1000℃、1200℃にそれぞれ達した時点で、図2に示すように、カーボン筒を着脱機構15により溶解容器11から取り外し、誘導コイル12によるシリコン原料への直接加熱を開始した。シリコン原料2に挿入した熱電対の温度を計測し、直接加熱によるシリコンの溶解の状況を調べた。その結果を表1に示す。   Next, alternating currents of the above five frequencies are separately supplied to the induction coil 12, and when the temperature of the silicon raw material 2 heated through the carbon tube reaches 700 ° C., 800 ° C., 1000 ° C., and 1200 ° C., respectively. As shown in FIG. 2, the carbon cylinder was removed from the melting container 11 by the attaching / detaching mechanism 15, and direct heating of the silicon raw material by the induction coil 12 was started. The temperature of the thermocouple inserted in the silicon raw material 2 was measured, and the state of dissolution of silicon by direct heating was investigated. The results are shown in Table 1.

Figure 2015137210
Figure 2015137210

表1において、「良」は溶解容器内のシリコン原料がシリコン融点まで上昇し、シリコンが完全に溶解するまでの時間が4分未満の短い状況をいい、「可」は溶解容器内のシリコン原料がシリコン融点まで上昇するが、シリコンが完全に溶解するまでの時間が4分以上である長い状況をいい、「不可」は溶解容器内のシリコン原料の温度が下がり、シリコンが溶解しない状況をいう。   In Table 1, “good” means that the silicon raw material in the dissolution vessel rises to the silicon melting point and the time until silicon completely dissolves is less than 4 minutes, and “good” indicates the silicon raw material in the dissolution vessel. The temperature rises to the silicon melting point, but the time until the silicon is completely dissolved is longer than 4 minutes, and “impossible” refers to the situation where the temperature of the silicon raw material in the melting container decreases and the silicon does not melt. .

表1から明らかなように、シリコン原料を完全に溶解するためには、誘電コイルに流す交流電流の周波数を5kHz以上100kHz未満にし、直接加熱を開始する温度を800℃以上1412℃未満にすればよく、しかも放電の発生頻度がゼロ又は1回以下にすることができることが判った。また上記周波数を10kHz以上80kHz以下にし、直接加熱を開始する温度を1000℃以上1200℃以下にすれば、放電の発生頻度がゼロとなり、更に良好な結果が得られることが判った。   As is clear from Table 1, in order to completely dissolve the silicon raw material, the frequency of the alternating current flowing through the dielectric coil is set to 5 kHz or more and less than 100 kHz, and the temperature at which direct heating is started is set to 800 ° C. or more and less than 1412 ° C. In addition, it has been found that the frequency of occurrence of discharge can be zero or less than once. Further, it has been found that if the frequency is set to 10 kHz or more and 80 kHz or less and the temperature at which direct heating is started is set to 1000 ° C. or more and 1200 ° C. or less, the frequency of occurrence of discharge becomes zero and a better result can be obtained.

2 シリコン原料
4 シリコン融液
6 シリコン単結晶
8 種結晶
10 シリコン溶解装置
11 溶解容器
12 誘導コイル
13 電源装置
14 予備加熱機構
15 着脱機構
16 温度センサ
17 制御回路
20 シリコン単結晶製造装置
21 石英ルツボ
22 チャンバ
23 グラファイトサセプタ
24 支持軸
25 ヒータ
26 保温筒
27 引き上げ機構
28 ワイヤケーブル
29 熱遮蔽部材
29a コーン部
29b フランジ部
30 供給機構
2 Silicon raw material 4 Silicon melt 6 Silicon single crystal 8 Seed crystal 10 Silicon melting device 11 Melting vessel 12 Induction coil 13 Power supply device 14 Preheating mechanism 15 Detachment mechanism 16 Temperature sensor 17 Control circuit 20 Silicon single crystal manufacturing device 21 Quartz crucible 22 Chamber 23 Graphite susceptor 24 Support shaft 25 Heater 26 Thermal insulation cylinder 27 Lifting mechanism 28 Wire cable 29 Heat shield member 29a Cone portion 29b Flange portion 30 Supply mechanism

Claims (6)

筒状の予備加熱機構によってシリコン原料を収容する溶解容器の外周を取り囲んだ状態で誘導コイルに交流電流を流すことにより、前記シリコン原料を予備加熱する予備加熱工程と、前記予備加熱によって前記シリコン原料が所定の温度に達した後に前記予備加熱機構を前記シリコン原料の周囲から取り外した状態で前記誘導コイルに交流電流を流すことにより、予備加熱された前記シリコン原料を誘導加熱する誘導加熱工程とを備えたシリコンの溶解方法において、
前記予備加熱時に前記予備加熱機構を介してシリコン原料を加熱するとき及び前記予備加熱されたシリコン原料を誘導加熱するときの前記誘導コイルに流す交流電流の周波数をそれぞれ5kHz以上100kHz未満に設定し、前記所定の温度については800℃を超えかつ1412℃未満の温度に設定することを特徴とするシリコンの溶解方法。
A preheating step of preheating the silicon raw material by passing an alternating current through the induction coil in a state of surrounding the outer periphery of the melting container containing the silicon raw material by a cylindrical preheating mechanism, and the silicon raw material by the preheating An induction heating step of inductively heating the preheated silicon material by passing an alternating current through the induction coil in a state where the preheating mechanism is removed from the periphery of the silicon material after the temperature reaches a predetermined temperature. In the silicon melting method provided,
The frequency of the alternating current flowing through the induction coil when heating the silicon raw material through the preheating mechanism during the preheating and when induction heating the preheated silicon raw material is set to 5 kHz or more and less than 100 kHz, respectively. The silicon melting method, wherein the predetermined temperature is set to a temperature exceeding 800 ° C. and less than 1412 ° C.
前記予備加熱時に前記予備加熱機構を介してシリコン原料を加熱するとき及び前記予備加熱されたシリコン原料を誘導加熱するときの前記誘導コイルに流す交流電流の周波数をそれぞれ10kHz以上80kHz未満に設定し、前記所定の温度については1000℃以上1200℃以下の温度に設定する請求項1記載のシリコンの溶解方法。   When the silicon raw material is heated through the preheating mechanism during the preheating and the frequency of the alternating current flowing through the induction coil when the preheated silicon raw material is induction-heated is set to 10 kHz or more and less than 80 kHz, The silicon melting method according to claim 1, wherein the predetermined temperature is set to a temperature of 1000 ° C. or more and 1200 ° C. or less. シリコン原料を収容する溶解容器と、前記溶解容器を取り囲む筒状の予備加熱機構と、前記予備加熱機構の周囲に巻回された誘導コイルと、前記誘導コイルに交流電流を供給する電源装置と、前記予備加熱機構の着脱を行う着脱機構と、前記シリコン原料の温度を検出する温度センサと、前記温度センサの検出出力に基づいて前記着脱機構の着脱を制御する制御回路とを備え、
前記電源装置は、前記誘導コイルに5kHz以上100kHz未満の周波数の交流電流を流すように設定され、
前記温度センサによって前記シリコン原料の温度が800℃を超えかつ1412℃未満の所定の温度であることを検出するまでは、前記制御回路が、前記予備加熱機構を前記溶解容器を取り囲む位置に配置するように前記着脱機構を制御し、かつ前記温度センサによって前記所定の温度を検出したときには、前記制御回路が、前記予備加熱機構を前記溶解容器の周囲から取り外して前記シリコン原料を前記誘導コイルにより直接誘導加熱するように前記着脱機構を制御することを特徴とするシリコン溶解装置。
A melting container containing silicon raw material, a cylindrical preheating mechanism surrounding the melting container, an induction coil wound around the preheating mechanism, and a power supply device for supplying an alternating current to the induction coil, An attachment / detachment mechanism for attaching / detaching the preliminary heating mechanism, a temperature sensor for detecting the temperature of the silicon raw material, and a control circuit for controlling attachment / detachment of the attachment / detachment mechanism based on a detection output of the temperature sensor,
The power supply device is set to flow an alternating current having a frequency of 5 kHz or more and less than 100 kHz to the induction coil,
Until the temperature sensor detects that the temperature of the silicon raw material is a predetermined temperature exceeding 800 ° C. and less than 1412 ° C., the control circuit arranges the preheating mechanism at a position surrounding the melting container. When the predetermined temperature is detected by the temperature sensor, the control circuit removes the preheating mechanism from the periphery of the melting container and directly removes the silicon raw material by the induction coil. A silicon melting apparatus, wherein the attachment / detachment mechanism is controlled to perform induction heating.
前記電源装置は、前記誘導コイルに10kHz以上80kHz未満の周波数の交流電流を流すように設定され、前記シリコン原料の温度が1000℃以上1200℃以下の所定の温度に達するまでは、前記制御回路が、前記予備加熱機構を前記溶解容器を取り囲む位置に配置するように前記着脱機構を制御する請求項3記載のシリコン溶融装置。   The power supply device is set so that an alternating current having a frequency of 10 kHz or more and less than 80 kHz flows through the induction coil, and the control circuit is operated until the temperature of the silicon raw material reaches a predetermined temperature of 1000 ° C. or more and 1200 ° C. or less. 4. The silicon melting apparatus according to claim 3, wherein the attaching / detaching mechanism is controlled so that the preheating mechanism is disposed at a position surrounding the melting container. 石英ルツボ内のシリコン融液からシリコン単結晶を引き上げる引き上げ機構と、請求項3又は4記載のシリコン溶解装置と、前記溶解装置の溶解容器内のシリコン融液を前記石英ルツボに供給する供給機構とを備えたシリコン単結晶製造装置。   A pulling mechanism for pulling up the silicon single crystal from the silicon melt in the quartz crucible, a silicon melting apparatus according to claim 3 or 4, and a supply mechanism for supplying the silicon melt in the melting container of the melting apparatus to the quartz crucible. A silicon single crystal manufacturing apparatus comprising: 前記供給機構は、前記引き上げ機構によるシリコン単結晶の引き上げ中に前記シリコン融液を石英ルツボに連続して追加供給可能に構成された請求項5記載のシリコン単結晶製造装置。

6. The silicon single crystal manufacturing apparatus according to claim 5, wherein the supply mechanism is configured to be able to continuously supply the silicon melt continuously to the quartz crucible during the pulling of the silicon single crystal by the pulling mechanism.

JP2014010227A 2014-01-23 2014-01-23 Silicon melting method and apparatus, and silicon single crystal manufacturing apparatus equipped with the apparatus Active JP6264058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010227A JP6264058B2 (en) 2014-01-23 2014-01-23 Silicon melting method and apparatus, and silicon single crystal manufacturing apparatus equipped with the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014010227A JP6264058B2 (en) 2014-01-23 2014-01-23 Silicon melting method and apparatus, and silicon single crystal manufacturing apparatus equipped with the apparatus

Publications (2)

Publication Number Publication Date
JP2015137210A true JP2015137210A (en) 2015-07-30
JP6264058B2 JP6264058B2 (en) 2018-01-24

Family

ID=53768466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010227A Active JP6264058B2 (en) 2014-01-23 2014-01-23 Silicon melting method and apparatus, and silicon single crystal manufacturing apparatus equipped with the apparatus

Country Status (1)

Country Link
JP (1) JP6264058B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102276131B1 (en) * 2020-09-24 2021-07-12 한화솔루션 주식회사 Continuous ingot growing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271706B1 (en) * 2020-09-28 2021-07-01 한화솔루션 주식회사 Ingot growing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162117A (en) * 1982-12-22 1984-09-13 テキサス・インスツルメンツインコ−ポレイテツド Silicon production from silicon containing gas
JPH11130581A (en) * 1997-08-25 1999-05-18 Nippon Steel Corp Rapid melting of silicon and apparatus therefor
JP2010150100A (en) * 2008-12-26 2010-07-08 Sumco Corp Method of melting silicon, device for melting silicon, and apparatus for producing silicon single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162117A (en) * 1982-12-22 1984-09-13 テキサス・インスツルメンツインコ−ポレイテツド Silicon production from silicon containing gas
JPH11130581A (en) * 1997-08-25 1999-05-18 Nippon Steel Corp Rapid melting of silicon and apparatus therefor
JP2010150100A (en) * 2008-12-26 2010-07-08 Sumco Corp Method of melting silicon, device for melting silicon, and apparatus for producing silicon single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102276131B1 (en) * 2020-09-24 2021-07-12 한화솔루션 주식회사 Continuous ingot growing apparatus
WO2022065736A1 (en) * 2020-09-24 2022-03-31 한화솔루션 주식회사 Apparatus for continuously growing ingot

Also Published As

Publication number Publication date
JP6264058B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
KR102157388B1 (en) Silicon single crystal manufacturing method and apparatus
TW475951B (en) Method for fabricating a single-crystal semiconductor
JP6302192B2 (en) Single crystal growth apparatus and method
TW480294B (en) Process for producing a silicon single crystal, and heater for carrying out the process
JP5163386B2 (en) Silicon melt forming equipment
JP6264058B2 (en) Silicon melting method and apparatus, and silicon single crystal manufacturing apparatus equipped with the apparatus
TW404991B (en) Single crystal raw material auxiliary melting device and the single crystal raw material melting method
JP2010024123A (en) Device for feeding silicon melt and apparatus for growing silicon single crystal equipped with the same
KR101381326B1 (en) Method for producing semiconductor wafers composed of silicon
JP2014125404A (en) Sapphire single crystal growth apparatus
JPS5835938B2 (en) Jiyungarasu no Koushiyu Hachiyousei
JP2010030867A (en) Method for growing silicon single crystal
JP5228899B2 (en) Silicon melting method, silicon melting apparatus, and silicon single crystal manufacturing apparatus
JP6107308B2 (en) Silicon single crystal manufacturing method
JP6834493B2 (en) Oxide single crystal growing device and growing method
CN112074626A (en) Method for controlling convection mode of silicon melt and method for producing single-crystal silicon
JP2020066555A (en) Apparatus and method for growing single crystal
JP6485286B2 (en) Method for producing silicon single crystal
CN103266346B (en) The growth apparatus of a kind of crystal Pulling YVO4 crystal and growing method based on this growth apparatus
JP5577726B2 (en) Method and apparatus for melting silicon raw material
JP2018043904A (en) Method for manufacturing silicon single crystal
JP2010030860A (en) Method for growing silicon single crystal
WO2014073165A1 (en) Single crystal producing apparatus
TWI605160B (en) Single crystal pulling device with heating element selection method
JPH06183876A (en) Device for lifting single crystal and method for lifting the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6264058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250