JP2015137187A - Dental zirconia sintered body, crown frame, and bridge frame - Google Patents

Dental zirconia sintered body, crown frame, and bridge frame Download PDF

Info

Publication number
JP2015137187A
JP2015137187A JP2014008068A JP2014008068A JP2015137187A JP 2015137187 A JP2015137187 A JP 2015137187A JP 2014008068 A JP2014008068 A JP 2014008068A JP 2014008068 A JP2014008068 A JP 2014008068A JP 2015137187 A JP2015137187 A JP 2015137187A
Authority
JP
Japan
Prior art keywords
porous layer
layer
sintered body
zirconia
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014008068A
Other languages
Japanese (ja)
Other versions
JP6218617B2 (en
Inventor
中 博律
Hironori Naka
博律 中
大西 宏司
Koji Onishi
宏司 大西
隆志 中村
Takashi Nakamura
隆志 中村
剛 菅野
Takeshi Sugano
剛 菅野
一道 若林
Kazumichi Wakabayashi
一道 若林
博文 矢谷
Hirobumi Yatani
博文 矢谷
関野 徹
Toru Sekino
徹 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nikkato Corp
Osaka University NUC
Original Assignee
Tohoku University NUC
Nikkato Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nikkato Corp, Osaka University NUC filed Critical Tohoku University NUC
Priority to JP2014008068A priority Critical patent/JP6218617B2/en
Publication of JP2015137187A publication Critical patent/JP2015137187A/en
Application granted granted Critical
Publication of JP6218617B2 publication Critical patent/JP6218617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dental zirconia sintered body that has less occurrence of fracture or detachment when used as a frame or when the frame is bonded to porcelain, and in which the low-temperature deterioration is suppressed.SOLUTION: The dental zirconia sintered body contains at least ZrOand YO, and satisfies the following (a) to (f) requirements: (a) it has a two layer structure of a dense layer and a porous layer; (b) the porosity of the dense layer is 1.0% or less; (c) the porosity of the porous layer is 5 to 20%; (d) the average pore diameter of the porous layer is 5 to 40 μm; (e) the YO/ZrOmole ratio of the dense layer and porous layer is 2.0/98.0 to 5.0/95.0; and (f) the average crystal grain size of the dense layer and the porous layer is 0.20 to 0.50 μm.

Description

本発明は歯冠修復材料として使用される歯科用ジルコニア質焼結体、該焼結体よりなるクラウン用フレーム及びブリッジ用フレームに関する。   The present invention relates to a dental zirconia sintered body used as a crown restoration material, a crown frame and a bridge frame made of the sintered body.

近年、歯冠修復材料は高度な審美への要求と金属アレルギーの問題から、更には金属価格が高騰していることから、自然歯に近い審美性と生体親和性に優れたセラミックスへの注目が高まっている。中でもジルコニアは他のセラミックス材料に比べて高靱性・高強度といった優れた機械的特性を有することから主流になりつつある。例えば、特許文献1には、焼結体密度及び強度が高く透光感の優れたジルコニア焼結体が開示されているが、クラウン用フレーム及びブリッジ用フレームとして適用する場合、陶材との接着強度が低いため口腔で陶材の破折や剥離が生じ安全面に劣るという問題がある。この陶材との接着強度を高めるため、アルミナなどの硬い微粒子を高圧でジルコニアフレームに吹き付け、表面に微細な凹凸を付けるブラスト処理が採用されている。しかしながら、ブラスト処理後の表面に亀裂などが生じてフレームの強度が著しく低下するという問題がある。   In recent years, crown restoration materials have been attracting attention to ceramics with excellent aesthetics and biocompatibility similar to natural teeth due to the demand for advanced aesthetics and the problem of metal allergy, and the price of metals has been rising. It is growing. Among them, zirconia is becoming mainstream because it has excellent mechanical properties such as high toughness and high strength compared to other ceramic materials. For example, Patent Document 1 discloses a zirconia sintered body having high sintered body density and strength and excellent translucency. However, when applied as a frame for a crown and a frame for a bridge, it is bonded to porcelain. Since the strength is low, there is a problem that the porcelain is broken or peeled off in the oral cavity, resulting in poor safety. In order to increase the adhesive strength with this porcelain material, a blasting process is applied in which hard fine particles such as alumina are sprayed onto a zirconia frame at a high pressure to give fine irregularities on the surface. However, there is a problem that the strength of the frame is remarkably reduced due to cracks and the like on the surface after blasting.

そこで特許文献2には、陶材との接着性を改善するためジルコニア質焼結体を多孔質化する技術が開示されている。この文献では、陶材が表面の気孔に浸入して高い接着強度が実現できるとしているが、多孔質ジルコニアは緻密質ジルコニアに比べて強度や靱性が低いため、強度が必要とされるオールセラミックスクラウンなどには適用できない。
このような多孔質体の強度低下を防止するため、多孔質体の気孔部に特定のガラスを含侵させて強度と靱性の低下を防止する技術が特許文献3に開示されている。しかしながら、抜歯した部分の歯冠とその両隣の歯冠が一体化したブリッジにおいては、歯冠の連結部下部に大きな応力が集中するため特に高強度が必要であり、ガラス含侵型の多孔質セラミックスは、この大きな応力に耐え得るだけの強度を有するものでは無い。
このように従来の緻密質単体からなる歯科用ジルコニア質焼結体は、陶材との接着強度が低いため陶材の破折や剥離を生じるという問題があり、多孔質単体は緻密質よりも強度や靱性が低いため、高強度を必要する部分には適用できないという問題がある。
Therefore, Patent Document 2 discloses a technique for making a zirconia sintered body porous in order to improve adhesion to porcelain. In this document, porcelain penetrates into the pores of the surface and high adhesive strength can be realized. However, porous zirconia has lower strength and toughness than dense zirconia, so all ceramic crowns that require strength are required. It is not applicable to.
In order to prevent such a decrease in the strength of the porous body, Patent Document 3 discloses a technique for impregnating specific glass in the pores of the porous body to prevent a decrease in strength and toughness. However, in the bridge where the extracted crown and the adjacent crowns are integrated, a large stress is concentrated at the lower part of the connecting part of the crown, so a particularly high strength is required. Ceramics do not have sufficient strength to withstand this large stress.
Thus, the conventional dental zirconia sintered body composed of a single compact has a problem that the ceramic is broken or peeled off due to its low adhesive strength with the ceramic. Since strength and toughness are low, there is a problem that it cannot be applied to portions that require high strength.

一方、現状の歯科用ジルコニアの大部分を占めるYを安定化剤とした部分安定化ジルコニアは、高湿度の低温域で使用すると正方晶系ジルコニアから単斜晶系ジルコニアへ相転移し、その際に生じる体積変化によって微小クラックが多数発生して強度低下につながる低温劣化の問題が指摘されてきた。この低温劣化を克服するため、安定化剤を増やしたり、特許文献1に開示されているようなジルコニア焼結体の結晶粒径を特定範囲に制御する技術などが提案されてきた。しかしながら、口腔のような低温で湿潤な環境下であっても、長期間に渡って咬合力が繰り返し加わるため、唾液などの水分によってジルコニア結晶粒界で応力腐食を生じ低温劣化をきたす。したがって、従来の歯科用ジルコニア質焼結体では信頼性に劣るという問題が指摘されており、低温劣化が抑制された歯科用ジルコニア質焼結体が望まれている。 On the other hand, partially stabilized zirconia using Y 2 O 3 as a stabilizer, which accounts for the majority of current dental zirconia, undergoes a phase transition from tetragonal zirconia to monoclinic zirconia when used in a low temperature range of high humidity. However, the problem of low temperature deterioration has been pointed out that a large number of microcracks are generated by the volume change that occurs at that time, leading to a decrease in strength. In order to overcome this low temperature deterioration, a technique for increasing the number of stabilizers or controlling the crystal grain size of the zirconia sintered body in a specific range as disclosed in Patent Document 1 has been proposed. However, even in a low-temperature and humid environment such as the oral cavity, the occlusal force is repeatedly applied over a long period of time, so that moisture such as saliva causes stress corrosion at the zirconia crystal grain boundary and causes low-temperature deterioration. Therefore, it has been pointed out that the conventional dental zirconia sintered body is inferior in reliability, and a dental zirconia sintered body in which deterioration at low temperature is suppressed is desired.

特開2009−269812号公報JP 2009-269812 A 特開2007−22889号公報JP 2007-22889 A 特開平5−58835号公報JP-A-5-58835

本発明は、従来のYを安定化剤とした歯科用ジルコニア質焼結体よりも、フレームに使用したとき及び該フレームを陶材と接着したときの破折や剥離などが少なく、低温劣化が抑制された歯科用ジルコニア質焼結体、並びに、該焼結体からなるクラウン用フレーム及びブリッジ用フレームの提供を目的とする。 The present invention has less breakage and peeling when used in a frame and when the frame is bonded to porcelain than a dental zirconia sintered body using Y 2 O 3 as a stabilizer, An object of the present invention is to provide a dental zirconia sintered body in which low temperature deterioration is suppressed, and a crown frame and a bridge frame made of the sintered body.

本発明者らは鋭意研究を重ねた結果、従来の緻密質単体で構成されていた歯科用ジルコニア質焼結体を緻密質層と多孔質層の2層構造とすることが極めて有効であることを知見した。そして緻密質層と多孔質層の気孔率、多孔質層の平均気孔径、緻密質層と多孔質層のY/ZrOモル比及び平均結晶粒径を特定範囲に制御することにより、陶材の破折や剥離を抑制することができ、クラウンなどに適用した時の破折が少ない歯科用ジルコニア質焼結体を見出し、本発明を完成させた。
更に、緻密質層と多孔質層のSiO含有量を特定範囲に制御することにより、従来の歯科用ジルコニア質焼結体よりも低温劣化の抑制を実現できることも見出した。
即ち、上記課題は、次の1)〜5)の発明によって解決される。
1) 少なくともZrOとYを含有し、次の(a)〜(f)の要件を満たすことを特徴とする歯科用ジルコニア質焼結体。
(a)緻密質層と多孔質層の2層構造を有する。
(b)緻密質層の気孔率が1.0%以下である。
(c)多孔質層の気孔率が5〜20%である。
(d)多孔質層の平均気孔径が5〜40μmである。
(e)緻密質層及び多孔質層のY/ZrOモル比が2.0/98.0〜5.0/95.0である。
(f)緻密質層及び多孔質層の平均結晶粒径が0.20〜0.50μmである。
2) (g)更にSiOを含有し、緻密質層及び多孔質層のSiO含有量が0.10〜0.50重量%である1)記載の歯科用ジルコニア質焼結体。
3) (h)更にAlを含有し、緻密質層及び多孔質層のAl含有量が0.10〜0.40重量%である1)又は2)記載の歯科用ジルコニア質焼結体。
4) 1)〜3)のいずれかに記載の歯科用ジルコニア質焼結体からなるクラウン用フレーム。
5) 1)〜3)のいずれかに記載の歯科用ジルコニア質焼結体からなるブリッジ用フレーム。
As a result of intensive studies, the present inventors have found that it is extremely effective to make a dental zirconia sintered body composed of a conventional dense single body into a two-layer structure of a dense layer and a porous layer. I found out. By controlling the porosity of the dense layer and the porous layer, the average pore diameter of the porous layer, the Y 2 O 3 / ZrO 2 molar ratio of the dense layer and the porous layer, and the average crystal grain size within a specific range The present invention has been completed by finding a dental zirconia sintered body that can suppress the breaking and peeling of porcelain and has few breakage when applied to a crown or the like.
Furthermore, it has also been found that by controlling the SiO 2 content of the dense layer and the porous layer within a specific range, it is possible to achieve lower temperature degradation than conventional dental zirconia sintered bodies.
That is, the above-mentioned problems are solved by the following inventions 1) to 5).
1) A dental zirconia sintered body containing at least ZrO 2 and Y 2 O 3 and satisfying the following requirements (a) to (f):
(A) It has a two-layer structure of a dense layer and a porous layer.
(B) The porosity of the dense layer is 1.0% or less.
(C) The porosity of the porous layer is 5 to 20%.
(D) The average pore diameter of the porous layer is 5 to 40 μm.
(E) The Y 2 O 3 / ZrO 2 molar ratio of the dense layer and the porous layer is 2.0 / 98.0 to 5.0 / 95.0.
(F) The average crystal grain size of the dense layer and the porous layer is 0.20 to 0.50 μm.
2) (g) The dental zirconia sintered body according to 1), further containing SiO 2 , wherein the dense layer and the porous layer have an SiO 2 content of 0.10 to 0.50% by weight.
3) (h) Dental zirconia according to 1) or 2), further comprising Al 2 O 3 , wherein the dense layer and the porous layer have an Al 2 O 3 content of 0.10 to 0.40% by weight. Sintered material.
4) A crown frame comprising the dental zirconia sintered body according to any one of 1) to 3).
5) A bridge frame comprising the dental zirconia sintered body according to any one of 1) to 3).

本発明に依れば、従来のYを安定化剤とした歯科用ジルコニア質焼結体よりも、フレームに使用したとき及び該フレームを陶材と接着したときの破折や剥離などが少なく、低温劣化が抑制された歯科用ジルコニア質焼結体、並びに、該焼結体からなるクラウン用フレーム及びブリッジ用フレームを提供できる。
本発明の歯科用ジルコニア質焼結体は、陶材や支台歯を接着する部分を多孔質層とし、高強度が必要な部分を緻密質層とした2層構造とすることにより、従来の緻密質のみからなるものよりも陶材や支台歯との接着性が向上し、陶材やフレームの破折や剥離が少なくなり、信頼性を向上することができる。また、保険適用でない従来の歯科用ジルコニア質焼結体のクラウンやブリッジでは、陶材が破折すると再製が必要となり、患者の経済的な負担が大きかったが、本発明の歯科用ジルコニア質焼結体を使用すれば、このような負担を大幅に軽減できる。更に、低温劣化が抑制されることにより、人口股関節で報告されたジルコニア関節頭の破壊のようなフレームの破壊の可能性を低くすることができる。
このように、本発明の歯科用ジルコニア質焼結体は、従来よりも優れた特性を有するので、歯科用インプラント材料にも使用することができる。
According to the present invention, compared to a conventional dental zirconia sintered body using Y 2 O 3 as a stabilizer, breakage or peeling when used in a frame and when the frame is bonded to porcelain, etc. There can be provided a dental zirconia sintered body that is low in deterioration and low temperature deterioration, and a crown frame and a bridge frame made of the sintered body.
The dental zirconia sintered body of the present invention has a conventional two-layer structure in which a portion to which porcelain and abutment teeth are bonded is a porous layer and a portion requiring high strength is a dense layer. Adhesiveness to porcelain and abutment teeth is improved compared to those consisting only of dense materials, and the breakage and peeling of the porcelain and the frame are reduced, and the reliability can be improved. In addition, conventional dental zirconia sintered crowns and bridges that are not covered by insurance have to be remanufactured when the porcelain breaks down, which is an economic burden on the patient. If a ligature is used, such a burden can be greatly reduced. Further, by suppressing the low temperature deterioration, the possibility of frame breakage such as zirconia joint head breakage reported in artificial hip joints can be reduced.
As described above, since the dental zirconia sintered body of the present invention has characteristics superior to those of the prior art, it can also be used for dental implant materials.

本発明の2層構造の歯科用ジルコニア質焼結体を臼歯部のクラウン用フレームに使用した時の一例を示す図。The figure which shows an example when the dental zirconia sintered compact of the 2 layer structure of this invention is used for the frame | frame for crowns of a molar part. 従来の歯科用ジルコニア質焼結体を臼歯部のクラウン用フレームに使用した時の一例を示す図。The figure which shows an example when the conventional dental zirconia sintered compact is used for the crown frame of a molar part. 本発明の2層構造の歯科用ジルコニア質焼結体の緻密質層と多孔質層の境界部を走査型電子顕微鏡で観察した写真。The photograph which observed the boundary part of the dense layer and porous layer of the dental zirconia sintered compact of the 2 layer structure of this invention with the scanning electron microscope. 剪断試験用治具を装着した万能試験機により、陶材を築盛した試料の接合界面に荷重を負荷して剪断試験を行い、接着強度を測定する様子を説明するための模式図。The schematic diagram for demonstrating a mode that a shear test is performed by applying a load to the joining interface of the sample which built up the porcelain, and measuring the adhesive strength with a universal testing machine equipped with a shear test jig. 実施例1の試料と比較例1の試料の破壊荷重試験後の外観写真。(A)実施例1、(B)比較例1The external appearance photograph after the fracture load test of the sample of Example 1 and the sample of Comparative Example 1. (A) Example 1, (B) Comparative Example 1 万能試験機を使用した加速劣化試験の3点曲げ試験の模式図。The schematic diagram of the three-point bending test of the accelerated deterioration test using a universal testing machine.

以下、本発明の歯科用ジルコニア焼結体が充足すべき各要件について詳細に説明する。
(a)緻密質層と多孔質層の2層構造とする点
従来の緻密質単体よりなる歯科用ジルコニア質焼結体は、高強度であるが、陶材との接着強度が低く接着性に劣るため、陶材の破折や剥離が生じるという問題があった。一方、多孔質単体は接着性には優れているが、緻密質よりも強度と靱性が低いため、高強度が必要とされるフレームには適用できなかった。そこで、本発明では、これらの問題を解決するため、緻密質層と多孔質層の2層構造とした。
本発明における多孔質層は、陶材との高い接着強度を得るために設ける。多孔質層があると、陶材築盛時の陶材ペーストが多孔質層の気孔に浸込してアンカー効果が大きくなり、接着性が向上する。同様に接着用レジンセメントが多孔質層の気孔に浸込することにより、支台歯との接着性も向上する。その結果、本発明のジルコニア質焼結体は、ブラスト処理無しでも高い接着性を実現できる。
一方、多孔質層による強度低下を補うため、高強度の緻密質層を多孔質層の下部に設けて、ジルコニアフレーム全体の強度を確保し、フレームの破折を抑制する。
Hereinafter, each requirement that the dental zirconia sintered body of the present invention should satisfy will be described in detail.
(A) Point that has a two-layer structure consisting of a dense layer and a porous layer The conventional dental zirconia sintered body made of a dense single body has high strength, but has low adhesive strength with porcelain and is adhesive. Since it was inferior, there was a problem that the porcelain was broken or peeled off. On the other hand, although the porous simple substance is excellent in adhesiveness, it cannot be applied to a frame that requires high strength because it has lower strength and toughness than dense. Therefore, in the present invention, in order to solve these problems, a two-layer structure of a dense layer and a porous layer is adopted.
The porous layer in the present invention is provided in order to obtain high adhesive strength with porcelain. When there is a porous layer, the porcelain paste at the time of building up the porcelain penetrates into the pores of the porous layer, the anchor effect is increased, and the adhesiveness is improved. Similarly, when the resin cement for bonding penetrates into the pores of the porous layer, the adhesion to the abutment tooth is also improved. As a result, the zirconia sintered body of the present invention can achieve high adhesion without blasting.
On the other hand, in order to compensate for the strength reduction due to the porous layer, a high-strength dense layer is provided below the porous layer to ensure the strength of the entire zirconia frame and to prevent frame breakage.

このような本発明の2層構造の歯科用ジルコニア質焼結体を臼歯部のクラウン用フレームに使用した時の一例を図1に示す。また、従来の緻密質単体からなる歯科用ジルコニア質焼結体を使用した時の一例を図2に示す。図1に示すように、本発明の2層構造の焼結体からなるフレームは、陶材を築盛する部分と支台歯と接着する部分に多孔質層が位置し、多孔質層の下部に緻密質層が位置する構造である。
緻密質層と多孔質層の厚みは特に限定されず、歯の種類や形状などに応じて適宜調整できるが、緻密質層と多孔質層の厚み比は10:90〜90:10が好ましく、20:80〜80:20がより好ましい。
なお、本発明の2層構造の歯科用ジルコニア質焼結体について、緻密質層と多孔質層の境界部を走査型電子顕微鏡で観察した写真を図3に示す。この図から解るように、緻密質層と多孔質層との間に境界面が存在しないため層間の結合強度が高く、層が剥離する危険性は極めて低い。
FIG. 1 shows an example when such a dental zirconia sintered body having a two-layer structure of the present invention is used for a crown frame of a molar portion. FIG. 2 shows an example when a conventional dental zirconia sintered body made of a compact single body is used. As shown in FIG. 1, in the frame made of the sintered body of the two-layer structure of the present invention, the porous layer is located in the part where the porcelain material is built up and the part where the abutment tooth is bonded, and the lower part of the porous layer. It is a structure in which a dense layer is located.
The thicknesses of the dense layer and the porous layer are not particularly limited and can be appropriately adjusted according to the type and shape of the teeth, but the thickness ratio of the dense layer and the porous layer is preferably 10:90 to 90:10, 20: 80-80: 20 is more preferable.
In addition, about the dental zirconia sintered compact of 2 layers structure of this invention, the photograph which observed the boundary part of a dense layer and a porous layer with the scanning electron microscope is shown in FIG. As can be seen from this figure, since there is no interface between the dense layer and the porous layer, the bond strength between the layers is high, and the risk of the layer peeling off is extremely low.

(b)緻密質層の気孔率を、1.0%以下とする点
緻密質層の気孔率は1.0%以下、好ましくは0.8%以下とする。該気孔率が1.0%を越えると、2層構造のジルコニア質焼結体全体の強度が低下する。気孔率の下限は、製造上の限界から0.3%程度である。
本発明でいう気孔率とは下記式により算出したものを指す。なお、かさ密度はアルキメデス法で測定する。
気孔率(%)=〔100−(焼結体かさ密度/理論密度)〕×100
(B) The porosity of the dense layer is 1.0% or less The porosity of the dense layer is 1.0% or less, preferably 0.8% or less. When the porosity exceeds 1.0%, the strength of the entire zirconia sintered body having a two-layer structure is lowered. The lower limit of the porosity is about 0.3% from the manufacturing limit.
The porosity as used in the field of this invention refers to what was computed by the following formula. The bulk density is measured by the Archimedes method.
Porosity (%) = [100− (sintered body bulk density / theoretical density)] × 100

(c)多孔質層の気孔率を、5〜20%とする点
多孔質層の気孔率は5〜20%、好ましくは5〜18%とする。該気孔率が5%未満では、陶材築盛時の陶材ペーストや支台歯固定時の接着用レジンセメントが浸込する気孔が少なくなるため、陶材や支台歯との接着強度が低下する。また多孔質層の気孔率が20%を越えると、ジルコニア質焼結体全体の強度が低下する。気孔率の測定法は前記緻密質層の場合と同様である。
(C) Point that the porosity of the porous layer is 5 to 20% The porosity of the porous layer is 5 to 20%, preferably 5 to 18%. If the porosity is less than 5%, the number of pores into which the porcelain paste when building up the porcelain and the resin cement for bonding when fixing the abutment tooth will decrease, and the adhesive strength with the porcelain and the abutment tooth will decrease. To do. On the other hand, when the porosity of the porous layer exceeds 20%, the strength of the entire zirconia sintered body is lowered. The method for measuring the porosity is the same as in the case of the dense layer.

(d)多孔質層の平均気孔径を、5〜40μmとする点
多孔質層の平均気孔径は5〜40μm、好ましくは5〜38μmとする。該平均気孔径が5μm未満では、陶材ペースト及び接着用レジンセメントが気孔に浸込せず、接着強度が低下する。一方、平均気孔径が40μmを越えると、ジルコニア質焼結体全体の強度が低下する。
平均気孔径はジルコニア質焼結体を鏡面仕上げし、走査型電子顕微鏡(測定倍率200〜500倍)により観察し、無作為で100個の気孔径の長径側を測定し、その平均値Dを求めて、下記式により算出する。
平均気孔径(μm)=1.5×D(μm)
(D) The point that the average pore diameter of the porous layer is 5 to 40 μm The average pore diameter of the porous layer is 5 to 40 μm, preferably 5 to 38 μm. When the average pore diameter is less than 5 μm, the porcelain paste and the adhesive resin cement do not penetrate into the pores, and the adhesive strength decreases. On the other hand, when the average pore diameter exceeds 40 μm, the strength of the entire zirconia sintered body decreases.
The average pore diameter is a mirror-finished zirconia sintered body, observed with a scanning electron microscope (measurement magnification: 200 to 500 times), randomly measured on the long diameter side of 100 pore diameters, and the average value D is Obtained and calculated by the following formula.
Average pore diameter (μm) = 1.5 × D (μm)

(e)緻密質層及び多孔質層のY/ZrOモル比を、2.0/98.0〜5.0/95.0とする点
緻密質層及び多孔質層のY/ZrOモル比は2.0/98.0〜5.0/95.0、好ましくは2.2/97.8〜4.8/95.2とする。なお、ジルコニア原料中に少量含有されることのあるHfOが混入していても良く、ジルコニアとHfOの合計量をZrO量とする。
前記モル比が2.0/98.0未満では、焼結体中の単斜晶系ジルコニア量が増加し、焼結体内部にクラックが発生して、負荷が加わるとクラックが進展しジルコニア質焼結体全体の強度が低下する。一方、前記モル比が5.0/95.0を越えると、立方晶系ジルコニアが増加して正方晶系ジルコニア量が低下するため、正方晶系ジルコニアから単斜晶系ジルコニアへ変態する量が少なくなって応力誘起変態強化の効果が得られず、強度が低下する。単斜晶系ジルコニアの含有量は5容積%以下とする。該含有量は、焼結体表面を鏡面にした試料を用いて、X線回折により、回折角27°〜33°の走査範囲で測定し、下記の式より求める。
(E) The dense layer and the porous layer have a Y 2 O 3 / ZrO 2 molar ratio of 2.0 / 98.0 to 5.0 / 95.0. Y 2 of the dense layer and the porous layer The molar ratio of O 3 / ZrO 2 is 2.0 / 98.0 to 5.0 / 95.0, preferably 2.2 / 97.8 to 4.8 / 95.2. In addition, HfO 2 which may be contained in a small amount in the zirconia raw material may be mixed, and the total amount of zirconia and HfO 2 is defined as the amount of ZrO 2 .
When the molar ratio is less than 2.0 / 98.0, the amount of monoclinic zirconia in the sintered body increases, cracks are generated inside the sintered body, and when a load is applied, the cracks develop and the zirconia material The strength of the entire sintered body is reduced. On the other hand, when the molar ratio exceeds 5.0 / 95.0, cubic zirconia increases and the amount of tetragonal zirconia decreases, so that the amount of transformation from tetragonal zirconia to monoclinic zirconia is small. The effect of strengthening the stress-induced transformation is not obtained and the strength decreases. The monoclinic zirconia content is 5% by volume or less. The content is measured by X-ray diffraction in a scanning range of diffraction angles of 27 ° to 33 ° using a sample having a mirror surface of the sintered body, and obtained from the following formula.

なお、X線回折条件は、X線源:CuKα、出力:40kV/40mA、発散スリット:1/2°、散乱スリット:1/2°、受光スリット:0.15mm、スキャンスピード:0.5°/min、走査軸:2θ/θ、モノクロ受光スリット:0.8mm、カウンタ:シンチレーションカウンタ、モノクロメーター:自動モノクロメーターで行う。
本発明では緻密質層と多孔質層のY/ZrOモル比を前記範囲内に調整することにより、多孔質層と緻密質層との間に境界面が存在しない微構造を得ることができる。
The X-ray diffraction conditions were as follows: X-ray source: CuKα, output: 40 kV / 40 mA, diverging slit: 1/2 °, scattering slit: 1/2 °, light receiving slit: 0.15 mm, scan speed: 0.5 ° / Min, scanning axis: 2θ / θ, monochrome light receiving slit: 0.8 mm, counter: scintillation counter, monochromator: automatic monochromator.
In the present invention, by adjusting the Y 2 O 3 / ZrO 2 molar ratio of the dense layer and the porous layer within the above range, a microstructure having no interface between the porous layer and the dense layer is obtained. be able to.

(f)緻密質層及び多孔質層の平均結晶粒径を、0.20〜0.50μmとする点
緻密質層及び多孔質層の平均結晶粒径は0.20〜0.50μm、好ましくは0.22〜0.48μmとする。平均結晶粒径が0.20μm未満では、ジルコニア質焼結体中の結晶粒界面積が増加して水による応力腐食が進み易くなり、低温劣化を抑制する効果が低下する。また、結晶粒界面積の増加によって結晶界面での光散乱が多くなり、透光感が失われ、自然歯に近い審美性の再現が難しくなる。一方、平均結晶粒径が0.50μmを越えると、ジルコニア質焼結体全体の強度が低下するだけでなく、正方晶系ジルコニアの熱安定性が低下し、低温劣化を抑制する効果が低下する。
(F) The average crystal grain size of the dense layer and the porous layer is 0.20 to 0.50 μm. The average crystal grain size of the dense layer and the porous layer is 0.20 to 0.50 μm, preferably It is set to 0.22 to 0.48 μm. When the average crystal grain size is less than 0.20 μm, the interfacial area of crystal grains in the zirconia sintered body is increased, and stress corrosion due to water is likely to proceed, and the effect of suppressing low-temperature deterioration is reduced. In addition, the increase in the crystal grain interface area results in an increase in light scattering at the crystal interface, resulting in a loss of translucency, making it difficult to reproduce aesthetics close to natural teeth. On the other hand, when the average crystal grain size exceeds 0.50 μm, not only the strength of the entire zirconia sintered body is lowered, but also the thermal stability of tetragonal zirconia is lowered and the effect of suppressing low-temperature degradation is lowered. .

平均結晶粒径は、焼結体表面を鏡面まで研磨加工し、得られた鏡面に熱エッチング又は化学エッチングを施した後、走査型電子顕微鏡(測定倍率1000〜3000倍)で観察して、インターセプト法により10点測定した平均値とする。算出式は次の通りである。
D=1.5×L/n
D:平均結晶粒径(μm)
n:長さL当たりの結晶粒子数
L:測定長さ(μm)
なお、緻密質層と多孔質層の平均結晶粒径は、各特性の安定性を図る上で近似していることが望ましく、緻密質層と多孔質層の結晶粒径比(緻密質層の平均結晶粒径/多孔質層の平均結晶粒径)は0.8〜1.2が好ましく、より好ましくは0.9〜1.1である。
The average grain size is obtained by polishing the sintered body surface to a mirror surface, subjecting the obtained mirror surface to thermal etching or chemical etching, and then observing with a scanning electron microscope (measurement magnification: 1000 to 3000 times). The average value measured at 10 points by the method is used. The calculation formula is as follows.
D = 1.5 × L / n
D: Average crystal grain size (μm)
n: Number of crystal grains per length L
L: Measurement length (μm)
The average crystal grain size of the dense layer and the porous layer is preferably approximated in order to achieve stability of each characteristic, and the crystal grain size ratio between the dense layer and the porous layer (the density of the dense layer) The average crystal grain size / average crystal grain size of the porous layer is preferably 0.8 to 1.2, more preferably 0.9 to 1.1.

(g)緻密質層及び多孔質層のSiO含有量を、0.10〜0.50重量%とする点
本発明では、緻密質層及び多孔質層に微量のSiOを含有させることにより、SiOがジルコニア結晶粒界に偏析して、結晶粒界近傍のY及び/又はZrOの水との水和反応を抑えて応力腐食を抑制し、低温劣化を抑制する効果があるので好ましい。従来のジルコニア質焼結体におけるSiOは不純物であって、特性向上に何ら寄与することの無い有害成分であり、その含有量は極力低減しなければならなかった。これに対し、本発明におけるSiOは前述したようにジルコニア結晶粒界を制御し、低温劣化の抑制に寄与する成分であり、従来技術とは全く異なるものである。これは、後述する製造方法に記載するように、本発明では極めて微細なSiO粒子からなる微粒子粉末を使用することにより、不純物量よりも多量のSiOを含有させても、ジルコニア結晶粒界に偏析させることが可能となり、ジルコニア結晶粒界を制御することができるからである。
SiO含有量は0.10〜0.50重量%が好ましく、0.15〜0.45重量%がより好ましい。含有量が0.10重量%未満では、SiOの添加効果が得られないし、含有量が0.50重量%を越えると、不純物と反応してジルコニア結晶粒界の3重点にガラス相が多く形成され、応力腐食が進み、低温劣化を抑制する効果が低下する。
(G) a SiO 2 content of dense layer and the porous layer, the present invention points to 0.10 to 0.50 wt%, by containing SiO 2 traces the dense layer and the porous layer , SiO 2 segregates at the zirconia grain boundaries, suppresses hydration reaction of Y 2 O 3 and / or ZrO 2 with water near the grain boundaries, suppresses stress corrosion, and suppresses low-temperature deterioration. This is preferable. In the conventional zirconia sintered body, SiO 2 is an impurity and is a harmful component that does not contribute to the improvement of properties, and its content has to be reduced as much as possible. On the other hand, SiO 2 in the present invention is a component that controls the zirconia grain boundaries and contributes to the suppression of low-temperature deterioration as described above, and is completely different from the prior art. As described later in the manufacturing method, the present invention uses a fine particle powder composed of extremely fine SiO 2 particles in the present invention, so that even if a larger amount of SiO 2 is contained than the amount of impurities, the zirconia grain boundary This is because the zirconia crystal grain boundaries can be controlled.
The SiO 2 content is preferably 0.10 to 0.50% by weight, and more preferably 0.15 to 0.45% by weight. If the content is less than 0.10% by weight, the effect of adding SiO 2 cannot be obtained. If the content exceeds 0.50% by weight, it reacts with impurities and there are many glass phases at the triple point of the zirconia crystal grain boundary. As a result, stress corrosion progresses, and the effect of suppressing low temperature deterioration is reduced.

(h)緻密質層及び多孔質層のAl含有量を、0.10〜0.40重量%とする点
本発明では、緻密質層及び多孔質層に特定量のAlを含有させることにより、Alがジルコニアの焼結助剤として働き、焼結性が向上する効果があるため好ましい。これにより、緻密質層と多孔質層の収縮率差により発生する接合面に残存する歪みを抑制することができる。更に、焼結後の変形を抑制する効果もあるため、支台歯との適合性に優れ、フレームのような単冠の場合よりも形状が複雑で高い適合精度が要求されるブリッジに対しても好適に使用することができる。
Al含有量は0.10〜0.40重量%が好ましく、0.20重量%を越え、0.40重量%以下がより好ましく、0.30重量%越え、0.40重量%以下が更に好ましい。Al含有量が0.10重量%未満の場合、Alの添加効果が得られない。Al含有量が0.40重量%を越える場合、ジルコニア焼結体内部でAlが粒子として存在する量が多くなるため、ジルコニアとAlの屈折率差による光散乱が多くなって、透光感が失われる。更に、緻密質層と多孔質層間の接合強度の低下や、焼結後の変形が大きくなる。
(H) The content of Al 2 O 3 in the dense layer and the porous layer is 0.10 to 0.40% by weight In the present invention, a specific amount of Al 2 O 3 is added to the dense layer and the porous layer. It is preferable because Al 2 O 3 acts as a zirconia sintering aid and improves the sinterability. Thereby, the distortion which remains on the joint surface which arises by the shrinkage | contraction rate difference of a dense layer and a porous layer can be suppressed. In addition, since it has the effect of suppressing deformation after sintering, it is excellent in compatibility with abutment teeth, and for bridges that are more complicated in shape than a single crown such as a frame and require high accuracy of fitting. Can also be suitably used.
The content of Al 2 O 3 is preferably 0.10 to 0.40% by weight, more than 0.20% by weight, more preferably 0.40% by weight or less, more than 0.30% by weight and 0.40% by weight or less. Is more preferable. When the Al 2 O 3 content is less than 0.10% by weight, the effect of adding Al 2 O 3 cannot be obtained. When the Al 2 O 3 content exceeds 0.40% by weight, the amount of Al 2 O 3 present as particles in the zirconia sintered body increases, so that light scattering due to the refractive index difference between zirconia and Al 2 O 3 is increased. Increases the loss of translucency. Further, the bonding strength between the dense layer and the porous layer is lowered, and deformation after sintering is increased.

本発明の歯科用ジルコニア質焼結体は種々の方法で作製できるが、その一例を示す。
本発明では、液相法により精製したジルコニア原料粉末を使用することができる。ジルコニアとYの含有量が所定のモル比となるようにジルコニウム化合物(例えばオキシ塩化ジルコニウム)の水溶液とイットリウム化合物(例えば塩化イットリウム)の水溶液を均一に混合し、加水分解して水和物を得、脱水、乾燥させた後、500〜1000℃で仮焼すれば、不純物の少ないイットリア含有のジルコニア仮焼粉体が得られる。また、ジルコニア原料とY原料を混合することもできる。Yの原料粉末は水酸化物、酸化物等の形態で用いることができる。使用する各原料粉末の純度は99.7%以上、平均粒子径は1.0μm以下とする。各原料粉末の純度が99.7%未満では、原料粉末中に含まれる不純物が多くなり、ジルコニア焼結体の結晶粒界にガラス相を多く形成することになって、強度が低下する。また、平均粒子径が1.0μmを越えると、所定の粉砕・混合・分散の処理時間が長くなり、その結果、粉砕機の摩耗による不純物が多く混入して強度が低下する。平均粒子径の下限値は0.2μm程度である。なお、本発明における不純物とは前述した入荷原料や製造工程から混入する成分であり、主にMgO、CaO、KO、TiO、Fe及びNaO等である。これら不純物の合計量は0.3重量%以下であり、下限は製造工程上の限界から0.05重量%程度である。
Although the dental zirconia sintered body of the present invention can be produced by various methods, an example is shown.
In this invention, the zirconia raw material powder refine | purified by the liquid phase method can be used. An aqueous solution of a zirconium compound (for example, zirconium oxychloride) and an aqueous solution of an yttrium compound (for example, yttrium chloride) are uniformly mixed so that the content of zirconia and Y 2 O 3 becomes a predetermined molar ratio, and hydrolyzed to hydrate. If a product is obtained, dehydrated and dried, and then calcined at 500 to 1000 ° C., a yttria-containing zirconia calcined powder with less impurities can be obtained. It is also possible to mix the zirconia material and Y 2 O 3 raw material. The raw material powder of Y 2 O 3 can be used in the form of hydroxide, oxide or the like. The purity of each raw material powder used is 99.7% or more, and the average particle size is 1.0 μm or less. If the purity of each raw material powder is less than 99.7%, the amount of impurities contained in the raw material powder increases, and a large amount of glass phase is formed at the crystal grain boundaries of the zirconia sintered body, resulting in a decrease in strength. On the other hand, if the average particle diameter exceeds 1.0 μm, the predetermined pulverization / mixing / dispersion processing time becomes longer, and as a result, a large amount of impurities are mixed due to abrasion of the pulverizer, resulting in a decrease in strength. The lower limit of the average particle diameter is about 0.2 μm. Note that the impurity in the present invention is a component to be mixed from the stock material and manufacturing process described above, is primarily MgO, CaO, K 2 O, TiO 2, Fe 2 O 3 and Na 2 O or the like. The total amount of these impurities is 0.3% by weight or less, and the lower limit is about 0.05% by weight from the limit in the production process.

SiOを添加する場合には、前記ジルコニア仮焼粉体の粉砕・混合・分散時に酸化物の形態で添加するか、或いは熱分解により残存させることのできるエチルシリケートなどの有機金属化合物の形態で添加しても良い。有機金属化合物の形態で添加するとSiOを均一にジルコニア粉体中に分散させることができる。SiOは一次粒子径が50nm以下の微粒子を使用する。SiO微粒子の一次粒子径が50nmを越えると、SiOがジルコニア結晶粒界に偏析されずに不純物と反応してジルコニア結晶粒界の3重点にガラス相が多く形成され、応力腐食が進み、低温劣化を抑制する効果が低下する。なお、一次粒子径の下限値は5nm程度である。
Alを添加する場合には、Al原料粉末を使用することができる。Al原料粉末の平均粒子径は1.0μm以下である。Al原料粉末の平均粒子径が1.0μmを越える場合、ジルコニア結晶粒界にAlが粒子として析出する量が多くなるため、ジルコニアとAlの屈折率差による光散乱が多くなって、透光感が失われ、自然歯に近い審美性の再現が難しくなる。なお、平均粒子径の下限値は0.2μm程度である。
When SiO 2 is added, it is added in the form of an oxide when the zirconia calcined powder is pulverized, mixed, or dispersed, or in the form of an organometallic compound such as ethyl silicate that can be left by thermal decomposition. It may be added. When added in the form of an organometallic compound, SiO 2 can be uniformly dispersed in the zirconia powder. SiO 2 uses fine particles having a primary particle diameter of 50 nm or less. When the primary particle diameter of the SiO 2 fine particles exceeds 50 nm, SiO 2 reacts with impurities without being segregated at the zirconia grain boundaries, and a lot of glass phases are formed at the triple points of the zirconia grain boundaries, and stress corrosion proceeds. The effect of suppressing low temperature deterioration is reduced. In addition, the lower limit of the primary particle diameter is about 5 nm.
In the case of adding Al 2 O 3 , Al 2 O 3 raw material powder can be used. The average particle diameter of the Al 2 O 3 raw material powder is 1.0 μm or less. When the average particle diameter of the Al 2 O 3 raw material powder exceeds 1.0 μm, the amount of Al 2 O 3 precipitated as particles in the zirconia crystal grain boundary increases, so the light due to the refractive index difference between zirconia and Al 2 O 3 Scattering increases, translucency is lost, and reproduction of aesthetics close to natural teeth becomes difficult. The lower limit of the average particle diameter is about 0.2 μm.

上記の原料粉末を所定の割合となるように配合し、ポットミル、アトリッションミル、媒体撹拌ミル等の粉砕・混合・分散装置により、水又は有機溶媒を用いて湿式で粉砕・混合・分散する。   The above raw material powder is blended so as to have a predetermined ratio, and is pulverized / mixed / dispersed in a wet manner using water or an organic solvent by a pulverization / mixing / dispersing device such as a pot mill, an attrition mill, or a medium stirring mill .

粉砕・混合・分散処理で得られるスラリーの平均粒子径は0.2〜0.7μmとする。平均粒子径が0.2μm未満では、成形性が低下し、焼結体内部に微細な内部欠陥を多く含有することになり、強度が低下する。一方、0.7μmを超えると、焼結性が低下して気孔率が高くなり、強度が低下する。粉砕・混合・分散後の粉体の平均粒子径は、粉砕・混合・分散時のスラリー濃度や処理時間の調整などでコントロールすることができる。
なお、本発明における原料粉末及びスラリーの平均粒子径とは、一次粒子が凝集した二次粒子の体積平均粒子径の平均値のことであり、例えばレーザー回折式粒度分布測定装置などで測定することができる。
The average particle size of the slurry obtained by pulverization / mixing / dispersion treatment is 0.2 to 0.7 μm. If the average particle diameter is less than 0.2 μm, the moldability is lowered, and many fine internal defects are contained inside the sintered body, resulting in a decrease in strength. On the other hand, when it exceeds 0.7 μm, the sinterability is lowered, the porosity is increased, and the strength is lowered. The average particle size of the powder after pulverization / mixing / dispersion can be controlled by adjusting the slurry concentration and treatment time during pulverization / mixing / dispersion.
The average particle size of the raw material powder and the slurry in the present invention is an average value of the volume average particle size of the secondary particles in which the primary particles are aggregated, and for example, measured by a laser diffraction type particle size distribution measuring device or the like. Can do.

粉砕・混合・分散後のスラリーに必要により公知の成形助剤〔例えばアクリル系樹脂、PVA(ポリビニルアルコール)等〕を添加し、スプレードライヤーなどの公知の方法で乾燥させて緻密質層用の成形用粉体を作製する。
多孔質層用の成形用粉体は、前記粉砕・混合・分散後のスラリーに目的の気孔率となるように気孔形成剤を添加した後、公知の攪拌機などで混合すれば得られる。混合後のスラリーに必要により公知の成形助剤(例えばアクリル系樹脂、PVA等)を添加し、スプレードライヤー等の公知の方法で乾燥させて多孔質層用の成形用粉体を作製する。また、前記緻密質層用の成形用粉体に所定量の気孔形成剤を添加して乾式で混合し、多孔質層用の成形用粉体を作製しても良い。
If necessary, a known molding aid (for example, acrylic resin, PVA (polyvinyl alcohol), etc.) is added to the slurry after pulverization, mixing, and dispersion, and dried by a known method such as a spray dryer to form a dense layer. Powder is prepared.
The molding powder for the porous layer can be obtained by adding a pore-forming agent to the slurry after pulverization / mixing / dispersion so as to achieve a desired porosity and then mixing with a known stirrer or the like. If necessary, a known molding aid (for example, acrylic resin, PVA, etc.) is added to the mixed slurry, and dried by a known method such as a spray dryer to produce a molding powder for the porous layer. In addition, a predetermined amount of pore-forming agent may be added to the compacting powder for the dense layer and mixed in a dry manner to produce the compacting powder for the porous layer.

気孔形成剤の平均粒子径は6〜50μmとする。平均粒子径が6μm未満では、多孔質層の平均気孔径が5μm未満となり、接着強度が低下する。一方、平均粒子径が50μmを越えると、多孔質層の平均気孔径が40μmを越え、ジルコニア質焼結体全体の強度が低下する。なお、気孔形成剤の素材としては焼成過程で分解して飛散する有機物が好適であり、例えばポリエチレン樹脂粒子、多糖類粒子、パラフィン系粒子等が使用できる。
気孔形成剤の添加量は10〜50容積%とする。添加量が10容積%未満では多孔質層の気孔率が5%未満になり、接着強度が低下する。一方、添加量が50容積%を越えると、多孔質層の気孔率が20%を越えるため、ジルコニア質焼結体全体の強度が低下する。
スラリーに気孔形成剤を添加する場合は配合したセラミックス粉体の全量に対する添加量とし、乾式で混合する場合は緻密質層用の成形用粉体に対する添加量として、目的の気孔率になるように適宜調整する。
The average particle diameter of the pore forming agent is 6 to 50 μm. When the average particle diameter is less than 6 μm, the average pore diameter of the porous layer is less than 5 μm, and the adhesive strength is lowered. On the other hand, if the average particle diameter exceeds 50 μm, the average pore diameter of the porous layer exceeds 40 μm, and the strength of the entire zirconia sintered body decreases. The material for the pore forming agent is preferably an organic substance that decomposes and scatters during the firing process. For example, polyethylene resin particles, polysaccharide particles, paraffin particles, and the like can be used.
The amount of the pore-forming agent added is 10 to 50% by volume. When the addition amount is less than 10% by volume, the porosity of the porous layer is less than 5%, and the adhesive strength is lowered. On the other hand, if the addition amount exceeds 50% by volume, the porosity of the porous layer exceeds 20%, so that the strength of the entire zirconia sintered body decreases.
When adding a pore-forming agent to the slurry, it should be added to the total amount of the blended ceramic powder, and when mixed dry, it should be added to the molding powder for the dense layer so as to achieve the desired porosity. Adjust as appropriate.

次いで、緻密質層用及び多孔質層用の各成形用粉体を順に金型やゴム型などに充填し、メカプレス成形、ラバープレス成形、CIP成形(静水圧プレス成形)等の公知の方法で成形する。各粉体の投入量により緻密質層と多孔質層の厚みを制御する。
以上のようにして得た成形体を大気中、1350〜1500℃で焼成する。焼成温度が1350℃未満では、単斜晶系ジルコニア量が増加したり緻密質層の気孔率が高くなり、強度が低下する。また、ジルコニアの平均結晶粒径が小さくなるため、低温劣化を抑制する効果が低下する。一方、焼成温度が1500℃を越えると、ジルコニアの平均結晶粒径が大きくなるため、強度が低下し、低温劣化を抑制する効果が低下する。
Next, the molding powders for the dense layer and the porous layer are filled in a mold or a rubber mold in order, and a known method such as mechanical press molding, rubber press molding, CIP molding (hydrostatic press molding) or the like is used. Mold. The thicknesses of the dense layer and the porous layer are controlled by the amount of each powder charged.
The molded body obtained as described above is fired at 1350 to 1500 ° C. in the air. When the firing temperature is less than 1350 ° C., the amount of monoclinic zirconia increases, the porosity of the dense layer increases, and the strength decreases. In addition, since the average crystal grain size of zirconia is reduced, the effect of suppressing low temperature deterioration is reduced. On the other hand, when the firing temperature exceeds 1500 ° C., the average crystal grain size of zirconia becomes large, so that the strength is lowered and the effect of suppressing low temperature deterioration is lowered.

以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited at all by these Examples.

〔実施例1〜12、比較例1〜13〕
実施例1〜12及び比較例1〜2と4〜13は、純度99.9%で平均粒子径0.9μmのジルコニア原料粉末、純度99.9%で平均粒子径0.5μmのY原料粉末、純度99.9%で一次粒子径30nmのSiO微粒子粉末、純度99.9%で平均粒子径0.6μmのAl原料粉末を、表1−1、表1−2の実施例及び比較例の各欄に示した組成となるように配合し、水を溶媒として媒体撹拌ミルで粉砕・混合・分散処理を行って各スラリーを得た。これらのスラリーの平均粒子径は、いずれも0.6μmであった。
比較例3は純度99.9%で平均粒子径0.9μmのジルコニア原料粉末、純度99.9%で平均粒子径0.5μmのY原料粉末、純度99.9%で一次粒子径30nmのSiO微粒子粉末、純度99.9%で平均粒子径0.6μmのAl原料粉末を、表1−1、表1−2の比較例3の欄に示した組成となるように配合し、水を溶媒として媒体撹拌ミルで他の実施例及び比較例よりも処理時間を1/2以下に短くして粉砕・混合・分散処理を行い、スラリーを得た。このスラリーの平均粒子径は0.8μmであった。
次いで、上記各スラリーに、バインダーとしてPVAを3重量%添加し、スプレードライヤーで乾燥して緻密質層用の成形用粉体を作製した。
多孔質層用の成形用粉体は、前記各スラリーに多糖類粒子(コーンスターチ)からなる気孔形成剤を添加し、撹拌機で混合した後、スプレードライヤーで乾燥して作製した。
次いで、金型に緻密質層用と多孔質層用の成形用粉体を順に入れて1tonf/cmの圧力でメカプレス成形し、2層構造の各成形体を作製した。なお、比較例1は緻密質層用の成形用粉体のみで、比較例2は多孔質層用の成形用粉体のみで作製した。
次いで、各成形体を、大気中、焼成温度1320〜1550℃で焼成して、焼結体を作製した。得られた各焼結体の特性を表1−1、表1−2に示す。
[Examples 1 to 12, Comparative Examples 1 to 13]
Examples 1 to 12 and Comparative Examples 1 to 2 and 4 to 13 are zirconia raw material powder having a purity of 99.9% and an average particle size of 0.9 μm, and Y 2 O having a purity of 99.9% and an average particle size of 0.5 μm. 3 raw material powders, SiO 2 fine particle powders having a purity of 99.9% and a primary particle diameter of 30 nm, Al 2 O 3 raw material powders having a purity of 99.9% and an average particle diameter of 0.6 μm, Tables 1-1 and 1-2 Each slurry was obtained by blending so as to have the composition shown in each column of the Examples and Comparative Examples, and pulverizing, mixing, and dispersing with a medium stirring mill using water as a solvent. The average particle size of these slurries was 0.6 μm.
Comparative Example 3 is a zirconia raw material powder having a purity of 99.9% and an average particle diameter of 0.9 μm, a Y 2 O 3 raw material powder having a purity of 99.9% and an average particle diameter of 0.5 μm, and a primary particle diameter of 99.9% purity. 30 nm SiO 2 fine particle powder, Al 2 O 3 raw material powder having a purity of 99.9% and an average particle diameter of 0.6 μm, so as to have the composition shown in the column of Comparative Example 3 in Table 1-1 and Table 1-2. In a medium stirring mill using water as a solvent, the treatment time was shortened to ½ or less than other examples and comparative examples, and pulverization, mixing, and dispersion treatment were performed to obtain a slurry. The average particle size of this slurry was 0.8 μm.
Next, 3% by weight of PVA as a binder was added to each of the above slurries, and dried with a spray dryer to prepare a molding powder for a dense layer.
The molding powder for the porous layer was prepared by adding a pore forming agent composed of polysaccharide particles (corn starch) to each of the slurries, mixing with a stirrer, and drying with a spray dryer.
Next, molding powders for the dense layer and the porous layer were put in the mold in order, and mechanical press molding was performed at a pressure of 1 tonf / cm 2 to prepare each molded body having a two-layer structure. In addition, Comparative Example 1 was produced with only the molding powder for the dense layer, and Comparative Example 2 was produced with only the molding powder for the porous layer.
Next, each molded body was fired at a firing temperature of 1320 to 1550 ° C. in the atmosphere to produce a sintered body. The characteristics of the obtained sintered bodies are shown in Table 1-1 and Table 1-2.

〔多孔質層と陶材との接着強度の試験〕
試験用の試料として、長さ12mm×幅10mm×厚み2.4mmに加工した緻密質層及び多孔質層の厚みが各1.2mmの2層構造体を使用した。なお、比較例1は緻密質層が2.4mm、比較例2は多孔質層が2.4mmの単相構造体とした。多孔質層側の面に対して、陶材(セラビアンZR、クラレノリタケデンタル社製)を直径5mm×高さ3mmになるように築盛し、陶材メーカー推奨の焼成スケジュールで焼き付けした。なお、比較例1は陶材を築盛する前にブラスト処理を施した。
剪断試験用治具を装着した万能試験機により、図4の模式図に示すように陶材を築盛した試料の接合界面に荷重を負荷し、クロスヘッドスピード1.0mm/minで剪断試験を行い、接着強度を測定した。結果を表1−1、表1−2に示す。なお、表中の接着強度は各試料10本測定時の平均値である。
[Test of adhesive strength between porous layer and porcelain]
As a test sample, a two-layer structure in which a dense layer and a porous layer processed to have a length of 12 mm, a width of 10 mm, and a thickness of 2.4 mm were each 1.2 mm was used. Comparative Example 1 was a single-phase structure having a dense layer of 2.4 mm, and Comparative Example 2 having a porous layer of 2.4 mm. A porcelain material (Celabian ZR, manufactured by Kuraray Noritake Dental Co., Ltd.) was built on the porous layer side so as to have a diameter of 5 mm and a height of 3 mm, and baked according to a firing schedule recommended by the porcelain manufacturer. In Comparative Example 1, blasting was performed before building up the porcelain.
Using a universal testing machine equipped with a shear test jig, a load was applied to the joint interface of the sample constructed of porcelain as shown in the schematic diagram of FIG. 4, and a shear test was performed at a crosshead speed of 1.0 mm / min. The adhesive strength was measured. The results are shown in Table 1-1 and Table 1-2. In addition, the adhesive strength in a table | surface is an average value at the time of 10 sample measurement.

〔クラウンの破壊荷重試験〕
クラウンとしての強度を評価するため、次のようにしてオールセラミックスクラウンを作製し、上部から荷重を掛けてクラウンが破壊した時の破壊荷重を測定した。
歯科用CAM/CAD(パナソニックデンタル社製)によりチタン製支台歯の計測、ジルコニアフレームの設計、切削加工を行い、2層構造のフレームを作製した。このフレームに陶材(セラビアンZR、クラレノリタケデンタル社製)を築盛・焼成して、オールセラミッククラウンを作製した。なお、比較例1の試料は陶材を築盛する前にブラスト処理を施した。このクラウンをチタン製支台歯に接着用レジンセメント(SAルーティング、クラレメディカル社製)で接着した。接着用レジンセメントが硬化した後、クラウンの上面の中央部に直径7mmの鉄球を介在させ、万能試験機を用いてクロスヘッドスピード0.5mm/minの速度で垂直方向から荷重を負荷して圧縮破壊試験を行い、破壊荷重を測定した。結果を表1−1、表1−2に示す。なお、表中の破壊荷重は各試料10個測定時の平均値である。
[Crown fracture load test]
In order to evaluate the strength of the crown, an all-ceramic crown was produced as follows, and the breaking load when the crown was broken by applying a load from above was measured.
Measurement of the titanium abutment tooth, design of the zirconia frame, and cutting were performed by a dental CAM / CAD (manufactured by Panasonic Dental Co., Ltd.) to prepare a two-layer frame. Porcelain (Celabian ZR, manufactured by Kuraray Noritake Dental Co., Ltd.) was built and fired on this frame to produce an all-ceramic crown. In addition, the sample of the comparative example 1 performed the blasting process before building up porcelain. This crown was bonded to a titanium abutment tooth with an adhesive resin cement (SA routing, manufactured by Kuraray Medical Co., Ltd.). After the adhesive resin cement has hardened, an iron ball with a diameter of 7 mm is interposed in the center of the top surface of the crown, and a load is applied from the vertical direction at a crosshead speed of 0.5 mm / min using a universal testing machine. A compressive fracture test was performed and the fracture load was measured. The results are shown in Table 1-1 and Table 1-2. The breaking load in the table is an average value when 10 samples are measured.

表1−1、表1−2に示す接着強度の試験結果から分かるように、実施例は全て接着強度が30MPa以上であり、陶材の破折や脱離を生じることの無い接着強度であった。
これに対し、比較例1、4、6は接着強度が30MPa未満のため、陶材の破折や脱離が危惧される接着強度であった。
また、表1−1、表1−2に示すクラウンの破壊荷重の試験結果から分かるように、実施例の試料の破壊荷重は全て2000N以上と高く、強度が要求されるオールセラミックスクラウンやブリッジに適用できる強度であった。これに対し、比較例の試料は、比較例4、6の試料を除き、破壊荷重が2000N未満であり、強度が要求される部分に適用できるものでは無かった。
As can be seen from the adhesive strength test results shown in Table 1-1 and Table 1-2, all of the examples have an adhesive strength of 30 MPa or more, and the adhesive strength does not cause breakage or detachment of the porcelain. It was.
On the other hand, since Comparative Examples 1, 4, and 6 had an adhesive strength of less than 30 MPa, they were adhesive strengths at which the porcelain was broken or detached.
In addition, as can be seen from the test results of the fracture load of the crown shown in Table 1-1 and Table 1-2, the fracture load of all the samples of the examples is as high as 2000 N or more, and it is suitable for all ceramic crowns and bridges that require strength. The strength was applicable. On the other hand, the samples of the comparative examples, except for the samples of Comparative Examples 4 and 6, had a breaking load of less than 2000 N, and were not applicable to portions requiring strength.

実施例1の試料と比較例1の試料について、破壊荷重試験後の試料の外観写真を図5に示す。(A)は実施例1の試料、(B)は比較例1の試料のものである。図5から分かるように、実施例1の試料はジルコニアフレームごと破折しているのに対し、比較例1の試料は陶材が剥離しており破壊形態が全く異なるものであった。比較例1の試料は陶材とジルコニアフレームとの接着強度が低いため、接着強度が低い陶材とフレームの界面に応力が集中して陶材が剥離し、破壊荷重も1850Nと低い値であった。これに対し、実施例1の試料は接着強度が高いために陶材が剥離せず、破壊荷重は2720Nと高い値を示した。即ち、本発明のジルコニアフレームは高い破壊荷重を有し、比較例1の試料よりも陶材やフレームの破折や剥離が生じにくく、高い信頼性を有するものであった。   About the sample of Example 1 and the sample of Comparative Example 1, the external appearance photograph of the sample after a destructive load test is shown in FIG. (A) is the sample of Example 1, and (B) is the sample of Comparative Example 1. As can be seen from FIG. 5, the sample of Example 1 was broken together with the zirconia frame, whereas the sample of Comparative Example 1 was completely different from the fractured form because the porcelain was peeled off. Since the sample of Comparative Example 1 has a low adhesive strength between the porcelain and the zirconia frame, the stress concentrates on the interface between the porcelain and the frame having a low adhesive strength, the porcelain peels off, and the fracture load is also low at 1850 N It was. On the other hand, since the sample of Example 1 had high adhesive strength, the porcelain did not peel off, and the breaking load showed a high value of 2720N. That is, the zirconia frame of the present invention had a high breaking load, and was less likely to break or peel off the porcelain or the frame than the sample of Comparative Example 1, and had high reliability.

実施例に比べて比較例1〜13の試料の特性が劣る理由は以下のとおりである。
比較例1の試料は緻密質層単体からなるため、陶材との接着強度が低く、クラウンとしての破壊荷重も低いものであった。
比較例2の試料は多孔質層単体からなるため、クラウンとしての破壊荷重が低いものであった。
比較例3の試料は緻密質層の気孔率が規定範囲を超えているため、クラウンとしての破壊荷重が低いものであった。
比較例4の試料は多孔質層の気孔率が規定範囲未満のため、接着強度が低いものであった。
比較例5の試料は多孔質層の気孔率が規定範囲を超えているため、クラウンとしての破壊荷重が低いものであった。
比較例6の試料は多孔質層の平均気孔径が規定範囲未満のため、接着強度が低いものであった。
比較例7の試料は多孔質層の平均気孔径が規定範囲を超えているため、クラウンとしての破壊荷重が低いものであった。
比較例8の試料はY/ZrOモル比が規定範囲未満のため、単斜晶系ジルコニア量が多くなり、焼結体内部にクラックが発生して強度が低下し、クラウンとしての破壊荷重が低いものであった。
比較例9の試料はY/ZrOモル比が規定範囲を越えているため、正方晶系ジルコニア量が少なくなり応力誘起変態強化の効果が得られず、クラウンとしての破壊荷重が低いものであった。
比較例10の試料は焼成温度が高く、平均結晶粒径が規定範囲を超えているため、クラウンとしての破壊荷重が低いものであった。
比較例11の試料は焼成温度が低く、緻密質層の気孔率が規定範囲未満であり、平均結晶粒径が規定範囲未満のため、クラウンとしての破壊荷重が低いものであった。
比較例12の試料は緻密質層のY/ZrOモル比が規定範囲を越えているため、正方晶系ジルコニア量が少なくなり応力誘起変態強化の効果が得られず、クラウンとしての破壊荷重が低いものであった。
比較例13の試料は多孔質層のY/ZrOモル比が規定範囲未満のため、単斜晶系ジルコニア量が多くなり、焼結体内部にクラックが発生して強度が低下し、クラウンとしての破壊荷重が低いものであった。
The reason why the characteristics of the samples of Comparative Examples 1 to 13 are inferior to the examples is as follows.
Since the sample of Comparative Example 1 was composed of a dense layer alone, the adhesive strength with the porcelain was low, and the breaking load as a crown was low.
Since the sample of Comparative Example 2 was composed of a single porous layer, the fracture load as a crown was low.
In the sample of Comparative Example 3, since the porosity of the dense layer exceeded the specified range, the fracture load as a crown was low.
The sample of Comparative Example 4 had a low adhesive strength because the porosity of the porous layer was less than the specified range.
In the sample of Comparative Example 5, since the porosity of the porous layer exceeded the specified range, the fracture load as a crown was low.
The sample of Comparative Example 6 had a low adhesive strength because the average pore size of the porous layer was less than the specified range.
In the sample of Comparative Example 7, the average pore size of the porous layer exceeded the specified range, so that the fracture load as a crown was low.
In the sample of Comparative Example 8, since the Y 2 O 3 / ZrO 2 molar ratio is less than the specified range, the amount of monoclinic zirconia increases, cracks are generated inside the sintered body, the strength decreases, and the crown The breaking load was low.
In the sample of Comparative Example 9, since the Y 2 O 3 / ZrO 2 molar ratio exceeds the specified range, the amount of tetragonal zirconia is reduced, the effect of strengthening stress-induced transformation is not obtained, and the fracture load as a crown is low. It was a thing.
Since the sample of Comparative Example 10 had a high firing temperature and the average crystal grain size exceeded the specified range, the fracture load as a crown was low.
In the sample of Comparative Example 11, the firing temperature was low, the porosity of the dense layer was less than the specified range, and the average crystal grain size was less than the specified range, so the fracture load as a crown was low.
In the sample of Comparative Example 12, since the Y 2 O 3 / ZrO 2 molar ratio of the dense layer exceeds the specified range, the amount of tetragonal zirconia is reduced, and the effect of strengthening the stress-induced transformation cannot be obtained. The breaking load was low.
In the sample of Comparative Example 13, since the Y 2 O 3 / ZrO 2 molar ratio of the porous layer is less than the specified range, the amount of monoclinic zirconia increases, cracks are generated inside the sintered body, and the strength decreases. The fracture load as a crown was low.

実施例1〜12の試料と比較例3〜13の2層構造の試料について、下記の加速劣化試験を行い、強度劣化により低温劣化を評価した。また、焼結後の変形量を評価した。
〔加速劣化試験〕
試験用の試料として、長さ20mm×幅5mm×厚み1.2mmに加工した、緻密質層及び多孔質層の厚みが各0.6mmの2層構造体を使用した。
テフロン(登録商標)製容器を装着した分解容器に蒸留水を入れ、次いで各試料を投入し密閉した。この分解容器を恒温乾燥機に入れて200℃、2気圧の状態で50時間の加速劣化試験を行った。歯科用セラミックス規格であるISO6872に準じた3点曲げ試験を加熱試験前後の試料で行い、強度劣化の割合を評価した。なお、3点曲げ試験は万能試験機を使用し、図6の模式図に示すように各試料をセットし、クロスヘッドスピード1.0mm/min、支点間距離13.5mmで行った。結果を表2に示す。なお、表中の強度劣化は各試料10本測定時の平均値である。
The samples of Examples 1 to 12 and the samples of the two-layer structure of Comparative Examples 3 to 13 were subjected to the following accelerated deterioration test, and low temperature deterioration was evaluated by strength deterioration. In addition, the amount of deformation after sintering was evaluated.
[Accelerated deterioration test]
As a test sample, a two-layer structure in which the thickness of the dense layer and the porous layer was 0.6 mm each processed to 20 mm long × 5 mm wide × 1.2 mm thick was used.
Distilled water was put into a decomposition container equipped with a Teflon (registered trademark) container, and then each sample was added and sealed. This decomposition container was put into a constant temperature dryer, and an accelerated deterioration test was conducted for 50 hours at 200 ° C. and 2 atm. A three-point bending test according to ISO 6872, which is a dental ceramic standard, was performed on samples before and after the heating test, and the strength deterioration rate was evaluated. In the three-point bending test, a universal testing machine was used, each sample was set as shown in the schematic diagram of FIG. 6, and the crosshead speed was 1.0 mm / min and the distance between fulcrums was 13.5 mm. The results are shown in Table 2. In addition, the strength deterioration in the table is an average value when 10 samples are measured.

〔変形量の評価試験〕
試験用の試料として、直径60mm×厚み2mmで、緻密質層及び多孔質層の厚みが各1.0mmの円盤状成形体を使用した。成形体を表1−1、表1−2の焼成温度の欄に示した焼成温度で焼成し、この焼結体を定盤上に置いて焼結体と定盤との隙間を測定し、この隙間を変形量とした。結果を表2に示す。なお、表中の変形量は各試料5個測定時の平均値である。
表2の結果から、請求項2の規定範囲を満足する試料は強度劣化が20%以下と小さく、低温劣化を抑制する効果が向上した。これに対し、請求項2の規定範囲を満足しない実施例9〜11と比較例3〜10の試料は強度劣化が30%を越え、低温劣化を抑制する効果が低下した。また、請求項3の規定範囲を満足する試料は変形量が35μm以下と小さく、変形を抑制する効果が向上した。これに対し、請求項3の規定範囲を満足しない実施例11〜12と比較例8〜13は変形量が55μmを越え、変形を抑制する効果が低下した。
[Deformation evaluation test]
As a test sample, a disk-shaped molded body having a diameter of 60 mm × thickness of 2 mm and a dense layer and a porous layer each having a thickness of 1.0 mm was used. The molded body was fired at the firing temperature shown in the column of firing temperature in Table 1-1 and Table 1-2, and the sintered body was placed on a surface plate to measure the gap between the sintered body and the surface plate, This gap was defined as the amount of deformation. The results are shown in Table 2. In addition, the deformation amount in the table is an average value when five samples are measured.
From the results shown in Table 2, the sample satisfying the specified range of claim 2 has a small strength deterioration of 20% or less, and the effect of suppressing the low temperature deterioration is improved. On the other hand, the samples of Examples 9 to 11 and Comparative Examples 3 to 10 that do not satisfy the specified range of claim 2 had a strength deterioration exceeding 30%, and the effect of suppressing the low temperature deterioration was lowered. Further, the sample satisfying the specified range of claim 3 has a small deformation amount of 35 μm or less, and the effect of suppressing deformation was improved. On the other hand, in Examples 11 to 12 and Comparative Examples 8 to 13 that do not satisfy the specified range of claim 3, the deformation amount exceeds 55 μm, and the effect of suppressing the deformation is reduced.

各試料の低温劣化を抑制する効果が低下した理由と変形を抑制する効果が低下した理由は、以下のとおりである。
実施例9の試料は緻密質層及び多孔質層のSiO含有量が少ないため、強度劣化が大きく、低温劣化を抑制する効果が低下した。
実施例10の試料は緻密質層及び多孔質層のSiO含有量が多いため、強度劣化が大きく、低温劣化を抑制する効果が低下した。
実施例11の試料は緻密質層及び多孔質層のSiO含有量が少ないため、強度劣化が大きく、低温劣化を抑制する効果が低下した。また、緻密質層及び多孔質層のAl含有量が少ないため、変形を抑制する効果が低下した。
実施例12の試料は緻密質層及び多孔質層のAl含有量が多いため、変形を抑制する効果が低下した。
比較例3の試料は緻密質層及び多孔質層のSiO含有量が多いため、強度劣化が大きく、低温劣化を抑制する効果が低下した。
比較例4の試料は緻密質層及び多孔質層のSiO含有量が少ないため、強度劣化が大きく、低温劣化を抑制する効果が低下した。
比較例5の試料は多孔質層のSiO含有量が多いため、強度劣化が大きく、低温劣化を抑制する効果が低下した。
比較例6の試料は緻密質層のSiO含有量が少ないため、強度劣化が大きく、低温劣化を抑制する効果が低下した。
比較例7の試料は平均結晶粒径が小さいため、強度劣化が大きく、低温劣化を抑制する効果が低下した。
比較例8の試料は平均結晶粒径が大きいため、強度劣化が大きく、低温劣化を抑制する効果が低下した。また、焼成温度が高いため、変形を抑制する効果が低下した。
比較例9の試料は緻密質層及び多孔質層のSiO含有量が少ないため、強度劣化が大きく、低温劣化を抑制する効果が低下した。また、緻密質層及び多孔質層のAl含有量が少ないため、変形を抑制する効果が低下した。
比較例10の試料は多孔質層のSiO含有量が少ないため、強度劣化が大きく、低温劣化を抑制する効果が低下した。また、緻密質層のAl含有量が多いため、変形を抑制する効果が低下した。
比較例11の試料は緻密質層及び多孔質層のAl含有量が少ないため、変形を抑制する効果が低下した。
比較例12の試料は緻密質層のAl含有量が少ないため、変形を抑制する効果が低下した。
比較例13の試料は多孔質層のAl含有量が多いため、変形を抑制する効果が低下した。
The reason why the effect of suppressing the low-temperature deterioration of each sample is reduced and the reason why the effect of suppressing deformation is reduced are as follows.
Since the sample of Example 9 had a small SiO 2 content in the dense layer and the porous layer, the strength was greatly deteriorated, and the effect of suppressing low temperature deterioration was reduced.
Since the sample of Example 10 had a high SiO 2 content in the dense layer and the porous layer, the strength was greatly deteriorated and the effect of suppressing low temperature deterioration was reduced.
Since the sample of Example 11 had a small SiO 2 content in the dense layer and the porous layer, the strength deterioration was large, and the effect of suppressing low temperature deterioration was reduced. Moreover, since the Al 2 O 3 content of the dense layer and the porous layer is small, the effect of suppressing deformation is reduced.
Since the sample of Example 12 had a high Al 2 O 3 content in the dense layer and the porous layer, the effect of suppressing deformation was reduced.
Since the sample of Comparative Example 3 contained a large amount of SiO 2 in the dense layer and the porous layer, the strength was greatly deteriorated, and the effect of suppressing low temperature deterioration was reduced.
Since the sample of Comparative Example 4 had a small SiO 2 content in the dense layer and the porous layer, the strength was greatly deteriorated, and the effect of suppressing low temperature deterioration was reduced.
Since the sample of Comparative Example 5 had a large SiO 2 content in the porous layer, the strength was greatly deteriorated, and the effect of suppressing low temperature deterioration was reduced.
Since the sample of Comparative Example 6 had a small SiO 2 content in the dense layer, the strength was greatly deteriorated, and the effect of suppressing low temperature deterioration was reduced.
Since the sample of Comparative Example 7 had a small average crystal grain size, the strength deterioration was large, and the effect of suppressing low temperature deterioration was reduced.
Since the sample of Comparative Example 8 had a large average crystal grain size, the strength was greatly deteriorated, and the effect of suppressing low temperature deterioration was reduced. Moreover, since the firing temperature was high, the effect of suppressing deformation was reduced.
Since the sample of Comparative Example 9 had a small SiO 2 content in the dense layer and the porous layer, the strength deterioration was large and the effect of suppressing low temperature deterioration was reduced. Moreover, since the Al 2 O 3 content of the dense layer and the porous layer is small, the effect of suppressing deformation is reduced.
Since the sample of Comparative Example 10 had a small SiO 2 content in the porous layer, the strength was greatly deteriorated, and the effect of suppressing low temperature deterioration was reduced. Also, because many Al 2 O 3 content in the dense layer, the effect of suppressing deformation was reduced.
Since the sample of Comparative Example 11 had a small Al 2 O 3 content in the dense layer and the porous layer, the effect of suppressing deformation was reduced.
Since the sample of Comparative Example 12 had a small Al 2 O 3 content in the dense layer, the effect of suppressing deformation was reduced.
Since the sample of Comparative Example 13 had a high Al 2 O 3 content in the porous layer, the effect of suppressing deformation was reduced.

Claims (5)

少なくともZrOとYを含有し、次の(a)〜(f)の要件を満たすことを特徴とする歯科用ジルコニア質焼結体。
(a)緻密質層と多孔質層の2層構造を有する。
(b)緻密質層の気孔率が1.0%以下である。
(c)多孔質層の気孔率が5〜20%である。
(d)多孔質層の平均気孔径が5〜40μmである。
(e)緻密質層及び多孔質層のY/ZrOモル比が2.0/98.0〜5.0/95.0である。
(f)緻密質層及び多孔質層の平均結晶粒径が0.20〜0.50μmである。
A dental zirconia sintered body containing at least ZrO 2 and Y 2 O 3 and satisfying the following requirements (a) to (f):
(A) It has a two-layer structure of a dense layer and a porous layer.
(B) The porosity of the dense layer is 1.0% or less.
(C) The porosity of the porous layer is 5 to 20%.
(D) The average pore diameter of the porous layer is 5 to 40 μm.
(E) The Y 2 O 3 / ZrO 2 molar ratio of the dense layer and the porous layer is 2.0 / 98.0 to 5.0 / 95.0.
(F) The average crystal grain size of the dense layer and the porous layer is 0.20 to 0.50 μm.
(g)更にSiOを含有し、緻密質層及び多孔質層のSiO含有量が、0.10〜0.50重量%である請求項1記載の歯科用ジルコニア質焼結体。 (G) further contains SiO 2, SiO 2 content of dense layer and the porous layer, dental zirconia sintered body according to claim 1, wherein 0.10 to 0.50 wt%. (h)更にAlを含有し、緻密質層及び多孔質層のAl含有量が0.10〜0.40重量%である請求項1又は2記載の歯科用ジルコニア質焼結体。 (H) Further containing Al 2 O 3 , and the dense layer and the porous layer have an Al 2 O 3 content of 0.10 to 0.40% by weight, The dental zirconia-based firing according to claim 1 or 2 Union. 請求項1〜3のいずれかに記載の歯科用ジルコニア質焼結体からなるクラウン用フレーム。   A crown frame comprising the dental zirconia sintered body according to claim 1. 請求項1〜3のいずれかに記載の歯科用ジルコニア質焼結体からなるブリッジ用フレーム。   A bridge frame comprising the dental zirconia sintered body according to claim 1.
JP2014008068A 2014-01-20 2014-01-20 Dental zirconia sintered body, crown frame, bridge frame Active JP6218617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014008068A JP6218617B2 (en) 2014-01-20 2014-01-20 Dental zirconia sintered body, crown frame, bridge frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008068A JP6218617B2 (en) 2014-01-20 2014-01-20 Dental zirconia sintered body, crown frame, bridge frame

Publications (2)

Publication Number Publication Date
JP2015137187A true JP2015137187A (en) 2015-07-30
JP6218617B2 JP6218617B2 (en) 2017-10-25

Family

ID=53768447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008068A Active JP6218617B2 (en) 2014-01-20 2014-01-20 Dental zirconia sintered body, crown frame, bridge frame

Country Status (1)

Country Link
JP (1) JP6218617B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137182A1 (en) * 2017-01-25 2018-08-02 北京大学口腔医院 Artificial tooth, and artificial tooth manufacturing method and device
WO2023190119A1 (en) * 2022-03-31 2023-10-05 第一稀元素化学工業株式会社 Zirconia powder, sintered zirconia object, and method for producing sintered zirconia object
JP7433806B2 (en) 2018-08-22 2024-02-20 株式会社松風 Zirconia cut object for dental cutting and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299472A (en) * 1996-05-10 1997-11-25 Ngk Spark Plug Co Ltd Implant material for living body and its preparation
JP2000191372A (en) * 1998-12-25 2000-07-11 Ngk Spark Plug Co Ltd Zirconia sintered body for medical material and its production
JP2003047622A (en) * 2001-08-03 2003-02-18 Noritake Co Ltd Dental ceramic frame, manufacture for it and dental prosthesis including the frame
JP2004075532A (en) * 2002-08-01 2004-03-11 Kobe Steel Ltd High strength / high toughness zirconia sintered material and biomaterial using the same
JP2007022889A (en) * 2005-07-21 2007-02-01 Matsushita Electric Works Ltd Ceramic sintered compact for orthoprosthesis, orthoprosthesis, and method for manufacturing these

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09299472A (en) * 1996-05-10 1997-11-25 Ngk Spark Plug Co Ltd Implant material for living body and its preparation
JP2000191372A (en) * 1998-12-25 2000-07-11 Ngk Spark Plug Co Ltd Zirconia sintered body for medical material and its production
JP2003047622A (en) * 2001-08-03 2003-02-18 Noritake Co Ltd Dental ceramic frame, manufacture for it and dental prosthesis including the frame
JP2004075532A (en) * 2002-08-01 2004-03-11 Kobe Steel Ltd High strength / high toughness zirconia sintered material and biomaterial using the same
JP2007022889A (en) * 2005-07-21 2007-02-01 Matsushita Electric Works Ltd Ceramic sintered compact for orthoprosthesis, orthoprosthesis, and method for manufacturing these

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137182A1 (en) * 2017-01-25 2018-08-02 北京大学口腔医院 Artificial tooth, and artificial tooth manufacturing method and device
CN109561952A (en) * 2017-01-25 2019-04-02 北京大学口腔医学院 Artificial tooth, artificial tooth production method and device
CN109561952B (en) * 2017-01-25 2021-08-17 北京大学口腔医学院 Denture, denture manufacturing method and device
JP7433806B2 (en) 2018-08-22 2024-02-20 株式会社松風 Zirconia cut object for dental cutting and its manufacturing method
WO2023190119A1 (en) * 2022-03-31 2023-10-05 第一稀元素化学工業株式会社 Zirconia powder, sintered zirconia object, and method for producing sintered zirconia object

Also Published As

Publication number Publication date
JP6218617B2 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
US9783459B2 (en) Zirconium oxide-based composite material
JP6688838B2 (en) Zirconia sintered body, zirconia composition and calcined body
JP6393328B2 (en) Control of sintering kinetics of oxide ceramics.
He et al. Effect of sandblasting on surface roughness of zirconia-based ceramics and shear bond strength of veneering porcelain
EP2403428B1 (en) Process for the manufacture of zirconium dioxide based prostheses
US10047013B2 (en) Zirconia-based monophase and multiphase materials
JP6063040B2 (en) CeO2 stabilized ZrO2 ceramics for dental applications
JP6218617B2 (en) Dental zirconia sintered body, crown frame, bridge frame
JP2019535630A (en) Translucent nanocrystalline glass ceramic
JP4398840B2 (en) Zirconia composite sintered body and biomaterial using the same
Magalhães et al. Effects of Y-TZP blank manufacturing control and addition of TiO2 nanotubes on structural reliability of dental materials
de Lima Gomes et al. Direct ink writing of 3Y-TZP ceramics using PEG-Laponite® as additive
Hao et al. Influence of sintering temperature on translucency of yttria-stabilized zirconia for dental crown applications
Zhang et al. Effect of alumina addition on mechanical behavior and fracture properties of all-ceramics zirconia dental materials
Aboras et al. Influence of processing on mechanical properties of 3Y-Tzp for dental applications
JP2006290854A (en) Whisker-reinforced ceramic for dental use and method for producing the same under normal pressure
Amat et al. INFLUENCE OF PARTICLE SIZE AND PRE-SINTERING TEMPERATURE ON THE PROPERTIES OF ZIRCONIA BLOCK
KR101492916B1 (en) Glass-infiltrated sapphire/alumina composites for tooth restorations and preparation method thereof
JP2018100229A (en) Dental prosthesis with improved toughness
TWI593393B (en) Method of producing a zirconia blank used for prosthodontics
Kim et al. Fabrication of an All-Ceramic Implant by Slip Casting of Nanoscale Zirconia Powder
WO2019093334A1 (en) Dental product with enhanced toughness
TWI531552B (en) The method of preparing the silicon-containing zirconia sintering object
JP2023023743A (en) Zirconia-based ceramics calcined body and method for producing the same, and dental zirconia mill blank composed of the zirconia-based ceramics calcined body and method for producing dental prostheses using the dental zirconia mill blank
Aboras et al. Effect of Sintering Temperature on the Mechanical Properties of Nanostructured Ceria-Zirconia Prepared by Colloidal Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170926

R150 Certificate of patent or registration of utility model

Ref document number: 6218617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250