JP2015136553A - Bone restoration material using peek as base material and method for producing the same - Google Patents

Bone restoration material using peek as base material and method for producing the same Download PDF

Info

Publication number
JP2015136553A
JP2015136553A JP2014010910A JP2014010910A JP2015136553A JP 2015136553 A JP2015136553 A JP 2015136553A JP 2014010910 A JP2014010910 A JP 2014010910A JP 2014010910 A JP2014010910 A JP 2014010910A JP 2015136553 A JP2015136553 A JP 2015136553A
Authority
JP
Japan
Prior art keywords
titanium oxide
surface layer
base material
bone repair
repair material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014010910A
Other languages
Japanese (ja)
Other versions
JP6187975B2 (en
Inventor
小久保 正
Tadashi Kokubo
正 小久保
貴司 木付
Takashi Kitsuke
貴司 木付
松下 富春
Tomiharu Matsushita
富春 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu University
Original Assignee
Chubu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu University filed Critical Chubu University
Priority to JP2014010910A priority Critical patent/JP6187975B2/en
Publication of JP2015136553A publication Critical patent/JP2015136553A/en
Application granted granted Critical
Publication of JP6187975B2 publication Critical patent/JP6187975B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bone restoration material having an elastic modulus close to that of a bone with PEEK as a base material, and in which the surface layer has high apatite organization properties.SOLUTION: Provided is a bone restoration material comprising: a base material made of polyether ether ketone (PEEK); and a surface layer made of titanium oxide and stuck to the prescribed part of the surface in the base material by a chemical bond via an oxycarbonyl (-O-C=O) group or the irregularity engagement of particles, and the surface layer has a zeta potential of +3 mV to +20 mV in a neutral aqueous solution.

Description

この発明は、ポリエーテルエーテルケトン(PEEK)を基材とする骨修復材料及びその製造方法に関する。この発明の骨修復材料は、体内の大きな荷重の加わる部分における骨修復のために好適に利用されうる。   The present invention relates to a bone repair material based on polyetheretherketone (PEEK) and a method for producing the same. The bone repair material of the present invention can be suitably used for bone repair in a portion where a large load is applied in the body.

現在、体内の大きな荷重の加わる部分における骨修復のための材料には、チタン金属あるいはその合金が主に使用されている。これらの金属は、骨組織よりはるかに高い弾性率を有するので、周囲の骨に異常な応力を生じることのないように多孔体にして、しかもその気孔率や気孔径を適切に制御して製造される。   Currently, titanium metal or an alloy thereof is mainly used as a material for bone repair in a portion to which a large load is applied in the body. Since these metals have a much higher modulus of elasticity than bone tissue, they are made of porous material so that no abnormal stress is generated in the surrounding bone, and the porosity and pore diameter are controlled appropriately. Is done.

また、近年では骨に近い弾性率を有するPEEKが、例えば椎間スペーサーなどとして実用化されている。そして、PEEK自体は骨と結合しないので、椎間スペーサーが有する空隙部分に自家骨を充填して埋入することにより、周囲の骨との結合性が付与されている。   In recent years, PEEK having an elastic modulus close to that of bone has been put into practical use as an intervertebral spacer, for example. And since PEEK itself does not couple | bond with a bone, the connectivity with the surrounding bone is provided by filling and inserting an autologous bone in the space | gap part which an intervertebral spacer has.

更に、自家骨を用いることなく、PEEKに骨結合性を付与するために、例えばPEEK基材の表面をNaOH処理などの化学処理により活性化する(非特許文献1)、PEEK粉末を生体活性セラミックスと混合して複合材を作る(非特許文献2及び3、特許文献1及び2)、PEEK基材をカルシウムイオン及び/又はリン酸イオンを含む水溶液に浸漬することにより基材表面に水酸アパタイトなどのリン酸カルシウムを析出させる(非特許文献4、特許文献3−5)、リン酸カルシウムなどの生体活性物質を縣濁させた液にPEEK基材を浸漬して、その表面に生体活性物質を沈着させ、これをガラス転移温度以上融点以下で加熱することにより、生体活性物質をPEEK基材に固着させる(特許文献6)、PEEK基材にアパタイトをプラズマ溶射する(非特許文献5)、PEEK基材にアパタイトをコールドスプレーする(非特許文献6)、アークイオンプレーティングによりPEEK基材の表面に酸化チタンを成膜する(非特許文献7)などの様々な方法が報告されている。   Furthermore, in order to impart bone-binding properties to PEEK without using autologous bone, for example, the surface of the PEEK base material is activated by chemical treatment such as NaOH treatment (Non-patent Document 1), and PEEK powder is bioactive ceramics. To form a composite material (Non-patent Documents 2 and 3, Patent Documents 1 and 2), and dipping the PEEK base material in an aqueous solution containing calcium ions and / or phosphate ions to form hydroxyapatite on the surface of the base material (E.g., non-patent document 4 and patent document 3-5), a PEEK base material is immersed in a liquid in which a bioactive substance such as calcium phosphate is suspended, and the bioactive substance is deposited on the surface thereof. By heating this at the glass transition temperature or higher and below the melting point, the bioactive substance is fixed to the PEEK base material (Patent Document 6), and apatite is plasma sprayed on the PEEK base material (Non-Patent Document 5). Apatite cold spray (Non-patent Document 6), a variety of methods such as forming a titanium oxide on the surface of the PEEK substrate (Non-Patent Document 7) have been reported by arc ion plating.

特開2010−35827号公報JP 2010-35827 A 特開2011−78624号公報JP 2011-78624 A 特開2008−245775号公報JP 2008-245775 A 特開2009−34302号公報JP 2009-34302 A 特開2009−611045号公報JP 2009-611045 A 特開2013−22234号公報JP 2013-22234 A

Pinoら、Acta Biomat, vol.4, p1827-1836 (2008)Pino et al. Acta Biomat, vol.4, p1827-1836 (2008) Kimら、Biomater Appl, vol.24, p105-118 (2009)Kim et al., Biomater Appl, vol.24, p105-118 (2009) Shucongら、Biomaterials, vol.226, p2343-2352 (2005)Shucong et al., Biomaterials, vol.226, p2343-2352 (2005) Haら、J Mater Sci: Mater Med, vol.8, p683-690 (1997)Ha et al., J Mater Sci: Mater Med, vol. 8, p683-690 (1997) Haら、J Mater Sci: Mater Med, vol.5, p481-484 (1994)Ha et al., J Mater Sci: Mater Med, vol. 5, p481-484 (1994) Leeら、Acta Biomat, vol.9, p6177-6187 (2013)Lee et al. Acta Biomat, vol. 9, p6177-6187 (2013) Tsou H-Kら、Surf Coat Tech, vol.204, p1121-1125 (2009)Tsou H-K et al., Surf Coat Tech, vol.204, p1121-1125 (2009)

しかし、自家骨を充填する方法は、自家骨を採取するために正常部位に侵襲を与えるばかりでなく、椎間スペーサーの固定も十分でない。非特許文献1記載の方法では、高濃度のNaOH水溶液を用いても実用上満足できる程度に高いアパタイト形成能をPEEKに与えることができない。非特許文献2及び3あるいは特許文献1及び2記載の方法では、高いアパタイト形成能を得るためには多量の生体活性セラミックス粉末を混合しなければならず、それに伴い複合材の機械的強度が低下する。非特許文献4、特許文献3−5記載の方法では、PEEK基材の表面にリン酸カルシウムを析出させているだけであるから、保管中あるいは体内でリン酸カルシウム層が剥離する可能性があり、信頼性に乏しい。特許文献6記載の方法で得られる材料においては、生体活性物質によるPEEK基材表面の被覆率が50%以下であるため、高い骨結合力が得られない。非特許文献5記載の方法では、PEEK基材が溶射時に熱変性する可能性がある。非特許文献6記載の方法は、PEEK基材に強固に固定化されたアパタイト層を与えない。非特許文献7記載の方法は、特殊で高価な装置を必要とし、またそのままでは酸化チタンがアパタイト形成能を示さない。   However, the method of filling the autologous bone not only invades a normal site in order to extract the autologous bone, but also the fixation of the intervertebral spacer is not sufficient. According to the method described in Non-Patent Document 1, even if a high-concentration NaOH aqueous solution is used, it is not possible to provide PEEK with an apatite-forming ability that is high enough to be practically satisfactory. In the methods described in Non-Patent Documents 2 and 3 or Patent Documents 1 and 2, a large amount of bioactive ceramic powder must be mixed in order to obtain a high apatite-forming ability, and the mechanical strength of the composite material decreases accordingly. To do. In the methods described in Non-Patent Document 4 and Patent Documents 3-5, only calcium phosphate is deposited on the surface of the PEEK base material. Therefore, the calcium phosphate layer may be peeled off during storage or in the body. poor. In the material obtained by the method described in Patent Document 6, since the coverage of the PEEK base material surface with a bioactive substance is 50% or less, a high bone bonding force cannot be obtained. In the method described in Non-Patent Document 5, the PEEK base material may be thermally denatured during thermal spraying. The method described in Non-Patent Document 6 does not give an apatite layer firmly fixed to a PEEK base material. The method described in Non-Patent Document 7 requires a special and expensive apparatus, and titanium oxide does not exhibit apatite forming ability as it is.

それ故、この発明の課題は、PEEKを基材として骨に近い弾性率を有し、しかも表面層が高いアパタイト形成能を有する骨修復材料を提供することにある。   Therefore, an object of the present invention is to provide a bone repair material having an elastic modulus close to that of bone using PEEK as a base material and having a high surface layer apatite forming ability.

その課題を解決するために、この発明の骨修復材料は、
ポリエーテルエーテルケトン(PEEK)からなる基材と、
酸化チタンからなり、前記基材の表面の所定部位に固着された表面層とを備え、
前記表面層が中性水溶液中で正のゼータ電位を有することを特徴とする。
ここで、前記表面層が中性水溶液中で正のゼータ電位を有するか否かは、塩化ナトリウムなどの電解質を含む中性溶液中でゼータ電位を測定することにより、確認することができる。このときの電解質濃度は、塩化ナトリウムであれば10mM程度が適当であるが、限定されない。
In order to solve the problem, the bone repair material of the present invention is
A substrate made of polyetheretherketone (PEEK);
A surface layer made of titanium oxide and fixed to a predetermined portion of the surface of the substrate;
The surface layer has a positive zeta potential in a neutral aqueous solution.
Here, whether or not the surface layer has a positive zeta potential in a neutral aqueous solution can be confirmed by measuring the zeta potential in a neutral solution containing an electrolyte such as sodium chloride. The electrolyte concentration at this time is suitably about 10 mM for sodium chloride, but is not limited.

この骨修復材料は、基材がPEEKからなるので、骨と同等以上の引っ張り強さと骨に近い弾性率を有する。従って、インプラントされた状態で周囲の骨に異常な応力を生じることはなく、患者が安心して快適に過ごすことができる。そして、基材の表面の所定部位に酸化チタンからなる表面層を備え、その表面層が中性水溶液中で正のゼータ電位を有するものであるから、生体内においても表面層上にアパタイトが形成されて骨と結合する。表面層は、骨の欠損状況に応じて骨との結合が望まれる位置に設けられる。例えば椎体の欠損部にインプラントされる骨修復材料であるときは、前記所定部位が前記欠損部と対向する部分である。   Since this base material is made of PEEK, this bone repair material has a tensile strength equal to or higher than that of bone and an elastic modulus close to that of bone. Therefore, abnormal stress is not generated in the surrounding bone in the implanted state, and the patient can spend comfortably in comfort. In addition, a surface layer made of titanium oxide is provided at a predetermined site on the surface of the substrate, and the surface layer has a positive zeta potential in a neutral aqueous solution, so that apatite is formed on the surface layer even in vivo. To be combined with bone. The surface layer is provided at a position where it is desired to bond with the bone according to the bone defect situation. For example, when the bone repair material is implanted in a vertebral body defect, the predetermined part is a part facing the defect.

この発明の骨修復材料を製造する適切な方法は、
ポリエーテルエーテルケトンからなる基材を用意し、その基材表面の所定部位に酸化チタンからなる表面層を形成する表面層形成工程と、
前記表面層に酸を接触させる酸処理工程と
を順に経ることを特徴とする。
Suitable methods for producing the bone repair material of this invention include:
A surface layer forming step of preparing a base material made of polyether ether ketone and forming a surface layer made of titanium oxide at a predetermined portion of the base material surface;
An acid treatment step of bringing an acid into contact with the surface layer is sequentially performed.

酸化チタンのような金属酸化物は、水中でその表面が水和してOH基を有する。そして、常識的には分散媒体の水のpHが7より低いときはOH基にプロトンが付加して正に帯電し、pHが7より高いときはOH基からプロトンが引き抜かれて負に帯電する。ところが、酸処理された酸化チタンの表面は、中性水溶液中でも正に帯電し、しかも高いアパタイト形成能を発揮する。   A metal oxide such as titanium oxide has an OH group as its surface is hydrated in water. Commonly speaking, when the pH of the water of the dispersion medium is lower than 7, protons are added to the OH groups and positively charged. When the pH is higher than 7, protons are extracted from the OH groups and charged negatively. . However, the surface of the acid-treated titanium oxide is positively charged even in a neutral aqueous solution and exhibits high apatite forming ability.

以上のように、この発明の骨修復材料は、PEEK基材が生体骨に近い弾性率を示し、しかも表面の酸化チタン層が体液中で正の電位を有して優れたアパタイト形成能を示すことから、周囲の骨組織に異常な応力を生じることなく、周囲の骨に安定に固定化される。   As described above, in the bone repair material of the present invention, the PEEK base material exhibits an elastic modulus close to that of living bone, and the surface titanium oxide layer has a positive potential in body fluid and exhibits excellent apatite forming ability. Therefore, it is stably fixed to the surrounding bone without causing abnormal stress in the surrounding bone tissue.

未処理のPEEK基材(比較例1)、O2プラズマ処理したPEEK基材(実施例1)およびUV処理したPEEK基材(実施例2)のX線光電子(XPS)スペクトルである。2 is an X-ray photoelectron (XPS) spectrum of an untreated PEEK substrate (Comparative Example 1), an O 2 plasma treated PEEK substrate (Example 1) and a UV treated PEEK substrate (Example 2).

前記表面層の中性水溶液中での電位は好ましくは+3mV以上+20mV以下である。+3mVに満たないとアパタイト形成能が若干乏しくなるし、+20mVを超えるように帯電させることは現実的に困難だからである。   The potential in the neutral aqueous solution of the surface layer is preferably +3 mV or more and +20 mV or less. This is because if it is less than +3 mV, the apatite-forming ability is slightly poor, and it is practically difficult to charge it to exceed +20 mV.

前記表面層と前記所定部位との好ましい固着形態の一つは、前記酸化チタンと前記ポリエーテルエーテルケトンとの化学結合である。これにより両者が強固に結合され、生体内で使用中に表面層が剥離するおそれがほとんどないからである。前記酸化チタンがゲル状をなし、前記ポリエーテルエーテルケトンが、その分子末端に親水基を有するものであるときは、前記化学結合がその親水基を介していてよい。   One preferable form of fixing between the surface layer and the predetermined portion is a chemical bond between the titanium oxide and the polyether ether ketone. This is because the two are firmly bonded to each other, and there is almost no possibility that the surface layer is peeled off during use in a living body. When the titanium oxide is in a gel form and the polyether ether ketone has a hydrophilic group at its molecular end, the chemical bond may be through the hydrophilic group.

そして、前記酸化チタンがゲル状をなすときは、前記表面層の好ましい厚さは0.5μm〜10μmである。この範囲を外れると製造困難だからである。すなわち、0.5μmに満たないと、正に帯電させるための、例えば後述の酸処理工程などにおいて、表面層が消失しないように著しく慎重に操作する必要がある。また、10μmを超えると、例えば後述のゲル化工程などにおいて、表面層がひび割れしないように著しく慎重に操作する必要がある。   And when the said titanium oxide makes gel form, the preferable thickness of the said surface layer is 0.5 micrometer-10 micrometers. This is because manufacturing outside this range is difficult. That is, if the thickness is less than 0.5 μm, it is necessary to operate with great care so that the surface layer does not disappear in, for example, an acid treatment step described later for positively charging. On the other hand, if it exceeds 10 μm, for example, in the gelation step described later, it is necessary to operate remarkably carefully so that the surface layer does not crack.

前記表面層と前記所定部位とのもう一つの好ましい固着形態は、前記酸化チタンが粒子状をなし、その粒子の前記基材内部への食い込みである。これにより表面層及び基材のいずれも化学変化することなく両者が強固に結合され、生体内で使用中に表面層が剥離することがほとんどないからである。前記粒子は、前記基材に食い込んでいる部分以外は基材の表面から露出しており、その露出部分にアパタイトが形成される。前記酸化チタン粒子の好ましい平均粒径は1μm以上1mm以下である。1μmに満たないと、食い込ませることが困難であるし、1mmを超えると表面が粗くなりすぎて生体内で周囲の組織を傷つける可能性があるからである。特に好ましい平均粒径は、3μm以上100μm以下である。   Another preferable form of fixing between the surface layer and the predetermined portion is that the titanium oxide is in the form of particles and the particles bite into the substrate. This is because both the surface layer and the base material are firmly bonded to each other without chemically changing, and the surface layer hardly peels off during use in vivo. The particles are exposed from the surface of the substrate except for the portion that bites into the substrate, and apatite is formed in the exposed portion. A preferable average particle diameter of the titanium oxide particles is 1 μm or more and 1 mm or less. If it is less than 1 μm, it is difficult to bite in, and if it exceeds 1 mm, the surface becomes too rough and may damage surrounding tissues in the living body. A particularly preferable average particle diameter is 3 μm or more and 100 μm or less.

前記表面層は、前記の通りゲル状の酸化チタン及び粒子状の酸化チタンのいずれかからなっていてもよいし、両方を組み合わせたものであってもよい。組み合わせの一つ例は、粒子状の酸化チタンからなる内層と、内層を一様に覆うゲル状の酸化チタンからなる外層との積層構造をなし、前記内層を構成する酸化チタン粒子が一部前記基材の表面から露出した状態で基材の内部に食い込んでいることにより、前記表面層が前記所定部位に固着されているものである。前記内層及び外層を構成する化学種は、いずれも酸化チタンであるから、内層と外層とは酸素とチタンとの化学結合により強く固着している。   As described above, the surface layer may be composed of either gel-like titanium oxide or particulate titanium oxide, or may be a combination of both. One example of the combination is a laminated structure of an inner layer made of particulate titanium oxide and an outer layer made of gelled titanium oxide that uniformly covers the inner layer, and a part of the titanium oxide particles constituting the inner layer are The surface layer is fixed to the predetermined portion by biting into the base material while being exposed from the surface of the base material. Since the chemical species constituting the inner layer and the outer layer are both titanium oxide, the inner layer and the outer layer are strongly fixed by a chemical bond between oxygen and titanium.

表面層がこのように積層構造をなすときも、前記内層を構成する酸化チタンの好ましい平均粒径は1μm以上1mm以下であり、前記外層を構成する酸化チタンの好ましい厚さは0.5μm〜10μmであってよい。   Even when the surface layer has such a laminated structure, the preferred average particle diameter of titanium oxide constituting the inner layer is 1 μm or more and 1 mm or less, and the preferred thickness of the titanium oxide constituting the outer layer is 0.5 μm to 10 μm. It may be.

前記酸処理工程で用いられる酸は、好ましくは塩酸、硝酸及び硫酸のうちから選ばれる一種以上の水溶液であって、0.01M以上5Mの濃度を有する。特に好ましい濃度は、0.1M〜0.5Mであり、この範囲で酸処理すると比較的短時間で前記表面層を+3mV〜+20mVに帯電させることができる。   The acid used in the acid treatment step is preferably one or more aqueous solutions selected from hydrochloric acid, nitric acid, and sulfuric acid, and has a concentration of 0.01M to 5M. A particularly preferable concentration is 0.1 M to 0.5 M. When the acid treatment is performed within this range, the surface layer can be charged to +3 mV to +20 mV in a relatively short time.

前記表面層をゲル状の酸化チタンで構成するために好ましい一つの表面層形成工程は、
前記所定部位に親水基を形成させる工程と、次いで同部位に酸化チタンのゾルを接触させるとともに、同ゾルをゲル化させる工程との2つのサブ工程を備える。酸化チタンのゾルは、チタンテトライソプロポキシドのようなチタンアルコキシドを加水分解することにより、容易に得られる。そして、加水分解後に重縮合とともにゲル化が始まる。従って、ゾルを加熱するなどして水を蒸発させることにより、ゲル化が加速される。
PEEKは、本質的に疎水性であるところ、表面層を形成させるべき部位に予め親水基を形成しておくことで、酸化チタンのゾルを同部位に接触させ付着させることができる。従って、ゲル化と同時にゲルが親水基を介してPEEKに強固に結合する。
One preferred surface layer forming step for constituting the surface layer with gelled titanium oxide is:
There are two sub-steps: a step of forming a hydrophilic group at the predetermined portion, and a step of bringing the sol of titanium oxide into contact with the same portion and gelling the sol. The titanium oxide sol can be easily obtained by hydrolyzing a titanium alkoxide such as titanium tetraisopropoxide. And gelation begins with polycondensation after hydrolysis. Therefore, gelation is accelerated by evaporating water by heating the sol.
Since PEEK is essentially hydrophobic, a titanium oxide sol can be brought into contact with and attached to the site by forming a hydrophilic group in advance at the site where the surface layer is to be formed. Accordingly, simultaneously with gelation, the gel is firmly bonded to PEEK via the hydrophilic group.

前記親水基はオキシカルボニル(−O−C=O)基またはカルボニル(−C=O)基であってよい。オキシカルボニル(−O−C=O)基またはカルボニル(−C=O)基であれば、PEEK基材を酸素雰囲気下プラズマ処理又は紫外線照射することにより容易に形成される。プラズマ処理あるいはUV照射の好ましい時間は、それぞれ30秒以上あるいは5分以上であり、特に好ましくはそれぞれ5分以上あるいは30分以上である。   The hydrophilic group may be an oxycarbonyl (—O—C═O) group or a carbonyl (—C═O) group. In the case of an oxycarbonyl (—O—C═O) group or a carbonyl (—C═O) group, the PEEK substrate is easily formed by plasma treatment or ultraviolet irradiation in an oxygen atmosphere. The preferable time of plasma treatment or UV irradiation is 30 seconds or more or 5 minutes or more, respectively, and particularly preferably 5 minutes or more or 30 minutes or more, respectively.

前記表面層を粒子状の酸化チタンで構成するために好ましい一つの表面層形成工程は、酸化チタン粒子を前記所定部位に投射する投射工程である。酸化チタン粒子を高圧で基材の表面に投射すると、粒径と圧力に応じた深さにまで粒子が食い込み、基材と粒子とが凹凸係合する。これにより基材と粒子とが強固に結合される。粒子が前記の範囲の平均粒径を有するときは、基材表面に均一に食い込む。   One preferable surface layer forming step for forming the surface layer with particulate titanium oxide is a projecting step of projecting titanium oxide particles onto the predetermined portion. When the titanium oxide particles are projected onto the surface of the substrate at a high pressure, the particles bite to a depth corresponding to the particle size and pressure, and the substrate and the particles engage with each other. Thereby, a base material and particle | grains are couple | bonded firmly. When the particles have an average particle size in the above range, they uniformly bite into the substrate surface.

前記表面層を前記内層と外層との積層構造とするために好ましい一つの表面層形成工程は、酸化チタン粒子を前記所定部位に投射する工程と、次いで同部位及び/又は投射された酸化チタン粒子に酸化チタンのゾルを接触させるとともに、ゲル化させる工程とを備える。   One preferable surface layer forming step for forming the surface layer as a laminated structure of the inner layer and the outer layer is a step of projecting titanium oxide particles to the predetermined portion, and then the same portion and / or the projected titanium oxide particles. And a step of bringing the sol of titanium oxide into contact with the gel.

[製造条件]
−実施例1−
φ12mm×厚さ3mmの大きさのPEEK円板を#800のSiC研磨紙を用いて研磨し、2−プロパノールで30分間超音波洗浄した後、超純水で洗浄し、乾燥機で乾燥させた。このPEEK円板をサムコインターナショナル製plasma polymerization system PD-2Sを使用し、酸素分圧50Pa、ガス流量30cm3/分、陽極−基材間距離25mm、処理時間5分間の条件で処理した(以下、「O2プラズマ処理」という。)。
[Production conditions]
Example 1
A PEEK disk having a size of φ12 mm × thickness 3 mm was polished with # 800 SiC abrasive paper, ultrasonically washed with 2-propanol for 30 minutes, then washed with ultrapure water, and dried with a dryer. . This PEEK disc was treated using a plasma polymerization system PD-2S manufactured by Samco International under the conditions of an oxygen partial pressure of 50 Pa, a gas flow rate of 30 cm 3 / min, an anode-substrate distance of 25 mm, and a treatment time of 5 minutes (hereinafter referred to as “the following”) "O 2 plasma treatment").

次いで、チタンテトライソプロポキシド(TTIP)0.01molとエタノール(EtOH)0.185molを混合した溶液Aと、水(H2O)0.01molとエタノール0.185molと濃硝酸(HNO3)0.001molを混合した溶液Bを調製し、溶液Aを撹拌しながらこれに溶液Bを徐々に滴下することにより、酸化チタンゾルを調製した(ゾル中の成分のモル比はTTIP:H2O:EtOH:HNO3=1:1:37:0.1である。)。このゾルにO2プラズマ処理した前記PEEK円板を1cm/分の速度で沈め、1cm/分の速度で引き上げた後、乾燥雰囲気中80℃で24時間加熱した(以下、「ゾル−ゲルコート処理」という。)。
その後、前記PEEK円板を0.1Mの塩酸に80℃で24時間浸漬し(以下、「酸処理」という。)、超純水により30秒洗浄した。
Next, a solution A in which 0.01 mol of titanium tetraisopropoxide (TTIP) and 0.185 mol of ethanol (EtOH) are mixed, 0.01 mol of water (H 2 O), 0.185 mol of ethanol and concentrated nitric acid (HNO 3 ) 0 A solution B mixed with 0.001 mol was prepared, and the solution B was gradually added dropwise to the solution A while stirring to prepare a titanium oxide sol (the molar ratio of the components in the sol was TTIP: H 2 O: EtOH). : HNO 3 = 1: 1: 37: 0.1). The PEEK disk treated with O 2 plasma in this sol was submerged at a rate of 1 cm / min, pulled up at a rate of 1 cm / min, and then heated at 80 ° C. for 24 hours in a dry atmosphere (hereinafter referred to as “sol-gel coating treatment”). That said.)
Thereafter, the PEEK disk was immersed in 0.1 M hydrochloric acid at 80 ° C. for 24 hours (hereinafter referred to as “acid treatment”) and washed with ultrapure water for 30 seconds.

−実施例2−
実施例1において、O2プラズマ処理の代わりにフィルジェン株式会社製UVオゾンクリーナーUV253に付属のUV光源(出力5.2mW/cm2、波長254nm+185nm)を約30分間照射したことを除く他は実施例1と同じ条件で試料を製造した。
−実施例3−
実施例1において、酸処理に用いた塩酸の濃度を0.01Mとしたことを除く他は実施例1と同じ条件で試料を製造した。
−実施例4−
実施例1において、酸処理に用いた塩酸の温度を70℃としたことを除く他は実施例1と同じ条件で試料を製造した。
−実施例5
実施例1において、酸処理の時間を18時間としたことを除く他は実施例1と同じ条件で試料を製造した。
−実施例6−
実施例1において、酸処理に用いた溶液を0.1Mの硝酸としたことを除く他は実施例1と同じ条件で試料を製造した。
−実施例7−
実施例1において、酸処理に用いた溶液を0.1Mの硫酸としたことを除く他は実施例1と同じ条件で試料を製造した。
-Example 2-
In Example 1, instead of the O 2 plasma treatment, the UV light source (output 5.2 mW / cm 2 , wavelength 254 nm + 185 nm) attached to the UV ozone cleaner UV253 manufactured by Philgen Corporation was used for about 30 minutes. Samples were prepared under the same conditions as in Example 1.
Example 3
In Example 1, a sample was produced under the same conditions as in Example 1 except that the concentration of hydrochloric acid used in the acid treatment was 0.01M.
Example 4
In Example 1, a sample was produced under the same conditions as in Example 1 except that the temperature of hydrochloric acid used for the acid treatment was 70 ° C.
-Example 5
In Example 1, a sample was produced under the same conditions as in Example 1 except that the acid treatment time was 18 hours.
-Example 6
In Example 1, a sample was produced under the same conditions as in Example 1 except that the solution used for the acid treatment was 0.1 M nitric acid.
-Example 7-
In Example 1, a sample was produced under the same conditions as in Example 1 except that the solution used for the acid treatment was changed to 0.1 M sulfuric acid.

−実施例8−
φ12mm×厚さ3mmの大きさのPEEK円板を#800のSiC研磨紙を用いて研磨し、2−プロパノールで30分間超音波洗浄した後、超純水で洗浄し、乾燥機で乾燥させた。このPEEK円板に東邦チタニウム製酸化チタンHT0100(平均粒形3.6μm、ルチル相)を圧力0.5MPa、ノズル−基材間距離10mmで30秒間投射し(以下、「投射処理」という。)、2−プロパノールで30分間超音波洗浄した後、超純水で洗浄し、乾燥機で乾燥させた。
その後、2Mの塩酸に80℃で24時間浸漬し、超純水により30秒洗浄した。
-Example 8-
A PEEK disk having a size of φ12 mm × thickness 3 mm was polished with # 800 SiC abrasive paper, ultrasonically washed with 2-propanol for 30 minutes, then washed with ultrapure water, and dried with a dryer. . Titanium oxide HT0100 (average particle size 3.6 μm, rutile phase) manufactured by Toho Titanium was projected onto this PEEK disk for 30 seconds at a pressure of 0.5 MPa and a nozzle-substrate distance of 10 mm (hereinafter referred to as “projection treatment”). Then, after ultrasonically washing with 2-propanol for 30 minutes, it was washed with ultrapure water and dried with a dryer.
Then, it was immersed in 2M hydrochloric acid at 80 ° C. for 24 hours and washed with ultrapure water for 30 seconds.

−実施例9−
実施例8において、酸処理に用いた塩酸の濃度を0.01Mとしたことを除く他は実施例8と同じ条件で試料を製造した。
−実施例10−
実施例8において、酸処理に用いた溶液の温度を30℃としたことを除く他は実施例8と同じ条件で試料を製造した。
−実施例11−
実施例8において、酸処理の時間を0.1時間としたことを除く他は実施例8と同じ条件で試料を製造した。
−実施例12−
実施例8と同条件で投射処理した後、実施例1と同条件でゾル−ゲルコート処理及び酸処理を施して試料を製造した。
-Example 9-
In Example 8, a sample was produced under the same conditions as in Example 8 except that the concentration of hydrochloric acid used in the acid treatment was 0.01M.
-Example 10-
In Example 8, a sample was produced under the same conditions as in Example 8 except that the temperature of the solution used for the acid treatment was 30 ° C.
-Example 11-
In Example 8, a sample was produced under the same conditions as in Example 8 except that the acid treatment time was 0.1 hour.
-Example 12-
After the projection treatment under the same conditions as in Example 8, a sol-gel coating treatment and an acid treatment were performed under the same conditions as in Example 1 to produce a sample.

−比較例1−
実施例1において、O2プラズマ処理を施さなかったことを除く他は実施例1と同じ条件で試料を製造した。
−比較例2−
実施例1において、酸処理を施さなかったことを除く他は実施例1と同じ条件で試料を製造した。
−比較例3−
実施例1において、酸処理の代わりに純水中で80℃、24時間処理したことを除く他は実施例1と同じ条件で試料を製造した。
−比較例4 −
実施例8において、酸処理を施さなかったことを除く他は実施例8と同じ条件で試料を製造した。
−比較例5−
実施例12において、酸処理を施さなかったことを除く他は実施例12と同じ条件で試料を製造した。
-Comparative Example 1-
In Example 1, a sample was manufactured under the same conditions as Example 1 except that the O 2 plasma treatment was not performed.
-Comparative Example 2-
In Example 1, a sample was produced under the same conditions as in Example 1 except that the acid treatment was not performed.
-Comparative Example 3-
In Example 1, a sample was produced under the same conditions as in Example 1 except that it was treated in pure water at 80 ° C. for 24 hours instead of acid treatment.
-Comparative Example 4-
In Example 8, a sample was produced under the same conditions as in Example 8 except that the acid treatment was not performed.
-Comparative Example 5-
In Example 12, a sample was produced under the same conditions as Example 12 except that the acid treatment was not performed.

以上の実施例及び比較例の製造条件をまとめて表1に示す。

Figure 2015136553
The production conditions of the above examples and comparative examples are summarized in Table 1.
Figure 2015136553

[酸化チタン層形成の確認]
実施例および比較例の試料の表面の組成をエネルギー分散型X線分析(EDX)により調べると、表2に示すように、PEEK基材に酸素雰囲気下でプラズマ処理した後、ゾル−ゲルコート処理をして得られた試料においては(比較例2)、その表面に1.4原子%のTiが検出されたことから、PEEK基材の表面に酸化チタンゲル層が形成されたことが確認された。さらに、同試料を0.1Mの塩酸に80℃で24時間浸漬すると(実施例1)、その表面に0.5原子%のTiが検出されたことから、PEEK基材表面の酸化チタンゲル層は塩酸処理によりいくらか溶解するが塩酸処理後も残っていることが確認された。
[Confirmation of titanium oxide layer formation]
When the composition of the surface of the sample of the example and the comparative example was examined by energy dispersive X-ray analysis (EDX), as shown in Table 2, after the plasma treatment was performed on the PEEK substrate in an oxygen atmosphere, the sol-gel coating treatment was performed. In the sample obtained in this way (Comparative Example 2), it was confirmed that a titanium oxide gel layer was formed on the surface of the PEEK substrate because 1.4 atomic% Ti was detected on the surface. Furthermore, when the same sample was immersed in 0.1 M hydrochloric acid at 80 ° C. for 24 hours (Example 1), 0.5 atomic% Ti was detected on the surface, so that the titanium oxide gel layer on the surface of the PEEK substrate was It was confirmed that it was dissolved somewhat by treatment with hydrochloric acid but remained after treatment with hydrochloric acid.

PEEK基材に酸化チタン粒子を投射処理して得られた試料においては(比較例4)、その表面に16.0原子%のTiが検出されたことから、PEEK基材の表面に酸化チタン粒子が埋め込まれたことが確認された。同試料を2Mの塩酸に80℃で24時間浸漬すると(実施例5)、その表面のTi量に変化がなく、酸化チタン粒子が残存していることが確認された。   In the sample obtained by projecting the titanium oxide particles onto the PEEK base material (Comparative Example 4), 16.0 atomic% Ti was detected on the surface, so the titanium oxide particles on the surface of the PEEK base material. Was confirmed to be embedded. When the sample was immersed in 2M hydrochloric acid at 80 ° C. for 24 hours (Example 5), it was confirmed that the amount of Ti on the surface did not change and titanium oxide particles remained.

PEEK基材に酸化チタン粒子を投射処理した後、ゾル−ゲルコート処理をして得られた試料においては(比較例5)、その表面に16.6原子%のTiが検出されたことから、PEEK基材の表面に酸化チタン粒子が埋め込まれ、その上に酸化チタンゲル層が形成されたことが確認された。さらに、同試料を0.1Mの塩酸に80℃で24時間浸漬すると(実施例12)、その表面に15.3原子%のTiが検出されたことから、酸化チタンゲル層は塩酸処理によりいくらか溶解するが塩酸処理後も残っていることが確認された。   In the sample obtained by projecting the titanium oxide particles to the PEEK base material and then performing the sol-gel coating treatment (Comparative Example 5), 16.6 atomic% of Ti was detected on the surface, so PEEK It was confirmed that titanium oxide particles were embedded in the surface of the base material, and a titanium oxide gel layer was formed thereon. Further, when the sample was immersed in 0.1 M hydrochloric acid at 80 ° C. for 24 hours (Example 12), 15.3 atomic% Ti was detected on the surface, so that the titanium oxide gel layer was somewhat dissolved by the hydrochloric acid treatment. However, it was confirmed that it remained after the treatment with hydrochloric acid.

Figure 2015136553
Figure 2015136553

[PEEK基材上の官能基の形成]
PEEK基材について、プラズマ処理あるいはUV処理前後のX線光電子スペクトルを調べると、図1および表3に示すように、未処理のPEEK基材上(比較例1)では、C−C、C−O、C=Oおよびπ−π結合に由来するピークだけが検出された。
これに対してPEEK基材に酸素雰囲気下でプラズマ処理(実施例1、3、4、5、6、7、比較例2、3)あるいはUV処理(実施例2)を施したところ、その表面には新たにO−C=Oに由来するピークが認められ、C=O由来のピーク強度も増加した。このことから、プラズマ処理あるいはUV処理により、PEEK基材上にはO−C=OおよびC=O結合が形成されたことが確認された。
[Formation of functional groups on PEEK substrate]
When the X-ray photoelectron spectra before and after plasma treatment or UV treatment were examined for the PEEK substrate, as shown in FIG. 1 and Table 3, on the untreated PEEK substrate (Comparative Example 1), C—C, C— Only peaks derived from O, C = O and π-π bonds were detected.
On the other hand, when the PEEK substrate was subjected to plasma treatment (Examples 1, 3, 4, 5, 6, 7, Comparative Examples 2 and 3) or UV treatment (Example 2) in an oxygen atmosphere, the surface thereof was obtained. , A new peak derived from O—C═O was observed, and the peak intensity derived from C═O also increased. From this, it was confirmed that O—C═O and C═O bonds were formed on the PEEK substrate by plasma treatment or UV treatment.

Figure 2015136553
Figure 2015136553

[酸化チタン層の密着性]
PEEK基材上に酸化チタンの表面層を形成させた試料について、表面層上に粘着テープを一旦貼り付け、次いで剥がした後の表面層の状態をEDXで分析することにより、基材に対する表面層の密着性を評価した(以下、「テープテスト」という。)。評価結果を表4に示す。表中、密着性の欄において「○」は表面層の剥離が認められなかったこと、「×」は剥離が認められたことを表す。
[Adhesion of titanium oxide layer]
For a sample in which a titanium oxide surface layer is formed on a PEEK base material, the surface layer on the base material is analyzed by EDX after the adhesive tape is once applied to the surface layer and then peeled off. Was evaluated (hereinafter referred to as “tape test”). The evaluation results are shown in Table 4. In the table, “◯” indicates that no peeling of the surface layer was observed, and “X” indicates that peeling was observed.

表4に示すように、O2プラズマ処理、ゾル−ゲルコート処理及び酸処理を経て得られた試料(例えば実施例1)においては、テープテスト前後において試料表面のTi量が変化しなかったことから、酸化チタン層の剥離は認められなかった。同様にプラズマ処理の代わりにUV処理を施して得られた試料(実施例2)にも剥離は認められなかった。
一方、プラズマ処理もUV処理も行わず、ゾル−ゲルコート処理及び酸処理を経て得られた試料(比較例1)では、テープテスト前に比べテープテスト後に著しくTi量が減少したことから、酸化チタンの表面層がテープに伴われて剥離されたことがわかる。
As shown in Table 4, in the sample (for example, Example 1) obtained through O 2 plasma treatment, sol-gel coating treatment, and acid treatment, the Ti amount on the sample surface did not change before and after the tape test. The titanium oxide layer was not peeled off. Similarly, no peeling was observed in the sample (Example 2) obtained by performing UV treatment instead of plasma treatment.
On the other hand, in the sample (Comparative Example 1) obtained by performing the sol-gel coating treatment and the acid treatment without performing the plasma treatment or the UV treatment, the amount of Ti was significantly reduced after the tape test as compared with before the tape test. It can be seen that the surface layer of was peeled off with the tape.

また、投射処理及び酸処理を経て得られた試料(例えば実施例8)では、テープテスト前後において試料表面のTi量が変化しなかったことから、表面層の剥離は認められなかった。更にまた、投射処理、ゾル−ゲルコート処理及び酸処理を経て得られた試料(実施例12)でも、テープテスト前後において試料表面のTi量が変化しなかったことから、表面層の剥離は認められなかった。   Moreover, in the sample (for example, Example 8) obtained through the projection treatment and the acid treatment, the Ti amount on the sample surface did not change before and after the tape test, and thus no peeling of the surface layer was observed. Furthermore, even in the sample (Example 12) obtained through the projection treatment, sol-gel coating treatment and acid treatment, the amount of Ti on the sample surface did not change before and after the tape test. There wasn't.

Figure 2015136553
Figure 2015136553

[酸化チタン層のゼータ電位]
実施例1、8、12の試料及び比較例2、4、5の試料について10mMの塩化ナトリウム(NaCl)水溶液中における表面層のゼータ電位を調べると、表5に示すように、表面層の形成手段がO2プラズマ処理及びゾル−ゲルコート処理であろうと、投射処理であろうと、その後に酸処理を経ていない試料は、いずれも負のゼータ電位を示した。
これに対して表面層形成工程の後に酸処理を施した試料は、いずれも正のゼータ電位を示した。
[Zeta potential of titanium oxide layer]
When the zeta potential of the surface layer in the 10 mM sodium chloride (NaCl) aqueous solution was examined for the samples of Examples 1, 8, and 12 and Comparative Examples 2, 4, and 5, formation of the surface layer as shown in Table 5 was performed. Regardless of whether the means was O 2 plasma treatment and sol-gel coating treatment or projection treatment, all samples not subjected to acid treatment thereafter showed a negative zeta potential.
On the other hand, all the samples subjected to the acid treatment after the surface layer forming step showed a positive zeta potential.

Figure 2015136553
Figure 2015136553

[酸化チタン層のアパタイト形成能]
PEEK基材上に形成させた酸化チタン層を擬似体液(SBF)に浸漬し、3日後にその表面におけるアパタイト形成の有無を薄膜X線回折にて、形成されたアパタイトの量を走査型電子顕微鏡観察により調べると、表面層が正に帯電した試料においては、表4に示すように、いずれもSBF浸漬3日以内にその表面全体にアパタイトが析出した。
一方、表面層が負に帯電した試料においては、SBF浸漬3日後にもアパタイトが析出しなかった。
尚、表4において、被覆率は、試料表面の面積に対してアパタイトが析出している部分の面積の割合を示し、「−」が被覆率が10%未満、「+」が10%以上50%未満、「++」が50%以上90%未満、「+++」が90%以上を表す。
[Apatite forming ability of titanium oxide layer]
A titanium oxide layer formed on a PEEK base material is immersed in a simulated body fluid (SBF), and after 3 days, the presence or absence of apatite formation on the surface is determined by thin film X-ray diffraction, and the amount of apatite formed is determined by a scanning electron microscope. When examined by observation, in the samples whose surface layer was positively charged, as shown in Table 4, apatite was deposited on the entire surface within 3 days of SBF immersion.
On the other hand, in the sample whose surface layer was negatively charged, apatite did not precipitate even after 3 days of SBF immersion.
In Table 4, the coverage indicates the ratio of the area where the apatite is deposited with respect to the area of the sample surface, where “−” is less than 10% and “+” is 10% or more and 50%. %, “++” represents 50% or more and less than 90%, and “++” represents 90% or more.

Claims (18)

ポリエーテルエーテルケトン(PEEK)からなる基材と、
酸化チタンからなり、前記基材の表面の所定部位に固着された表面層とを備え、
前記表面層が中性水溶液中で正のゼータ電位を有することを特徴とする骨修復材料。
A substrate made of polyetheretherketone (PEEK);
A surface layer made of titanium oxide and fixed to a predetermined portion of the surface of the substrate;
A bone repair material, wherein the surface layer has a positive zeta potential in a neutral aqueous solution.
前記正のゼータ電位が+3mV以上+20mV以下である請求項1に記載の骨修復材料。   The bone repair material according to claim 1, wherein the positive zeta potential is +3 mV or more and +20 mV or less. 前記酸化チタンと前記ポリエーテルエーテルケトンとが化学結合していることにより、前記表面層が前記所定部位に固着されている請求項1又は2に記載の骨修復材料。   The bone repair material according to claim 1 or 2, wherein the surface layer is fixed to the predetermined site by chemically bonding the titanium oxide and the polyetheretherketone. 前記酸化チタンがゲル状をなし、前記ポリエーテルエーテルケトンが、その分子末端に親水基を有し、前記化学結合がその親水基を介している請求項3に記載の骨修復材料。   The bone repair material according to claim 3, wherein the titanium oxide is in a gel form, the polyether ether ketone has a hydrophilic group at a molecular end thereof, and the chemical bond is interposed through the hydrophilic group. 前記表面層が、0.5μm〜10μmの厚さを有する請求項4に記載の骨修復材料。   The bone repair material according to claim 4, wherein the surface layer has a thickness of 0.5 μm to 10 μm. 前記親水基がオキシカルボニル(−O−C=O)基またはカルボニル(−C=O)基である請求項4又は5に記載の骨修復材料。   The bone repair material according to claim 4 or 5, wherein the hydrophilic group is an oxycarbonyl (-O-C = O) group or a carbonyl (-C = O) group. 前記酸化チタンが粒子状をなし、その粒子が一部前記基材の表面から露出した状態で基材の内部に食い込んでいることにより、前記表面層が前記所定部位に固着されている請求項1又は2に記載の骨修復材料。   2. The surface layer is fixed to the predetermined portion by the titanium oxide having a particulate shape, and the particles are partially biting into the base material in a state of being exposed from the surface of the base material. Or the bone repair material of 2. 前記酸化チタンが、1μm以上1mm以下の平均粒径を有する請求項7に記載の骨修復材料。   The bone repair material according to claim 7, wherein the titanium oxide has an average particle diameter of 1 μm or more and 1 mm or less. 前記表面層が、粒子状の酸化チタンからなる内層と、内層を一様に覆うゲル状の酸化チタンからなる外層との積層構造をなし、前記内層を構成する酸化チタン粒子が一部前記基材の表面から露出した状態で基材の内部に食い込んでいることにより、前記表面層が前記所定部位に固着されている請求項1又は2に記載の骨修復材料。   The surface layer has a laminated structure of an inner layer made of particulate titanium oxide and an outer layer made of gel-like titanium oxide that uniformly covers the inner layer, and part of the titanium oxide particles constituting the inner layer are the base material The bone repair material according to claim 1 or 2, wherein the surface layer is fixed to the predetermined portion by biting into the base material while being exposed from the surface of the base material. 前記内層を構成する酸化チタンが、1μm以上1mm以下の平均粒径を有する請求項9に記載の骨修復材料。   The bone repair material according to claim 9, wherein the titanium oxide constituting the inner layer has an average particle diameter of 1 μm or more and 1 mm or less. 前記外層を構成する酸化チタンが、0.5μm〜10μmの厚さを有する請求項9に記載の骨修復材料。   The bone repair material according to claim 9, wherein the titanium oxide constituting the outer layer has a thickness of 0.5 μm to 10 μm. ポリエーテルエーテルケトンからなる基材を用意し、その基材表面の所定部位に酸化チタンからなる表面層を形成する表面層形成工程と、
前記表面層に酸を接触させる酸処理工程と
を順に経ることを特徴とする骨修復材料の製造方法。
A surface layer forming step of preparing a base material made of polyether ether ketone and forming a surface layer made of titanium oxide at a predetermined portion of the base material surface;
A method for producing a bone repair material, comprising sequentially performing an acid treatment step in which an acid is brought into contact with the surface layer.
前記酸が、塩酸、硝酸及び硫酸のうちから選ばれる一種以上の水溶液であって、0.01M以上5Mの濃度を有する請求項12に記載の製造方法。   The manufacturing method according to claim 12, wherein the acid is one or more aqueous solutions selected from hydrochloric acid, nitric acid, and sulfuric acid, and has a concentration of 0.01M or more and 5M. 前記表面層形成工程が、
前記所定部位に親水基を形成させる工程と、
次いで同部位に酸化チタンのゾルを接触させるとともに、同ゾルをゲル化させる工程とを備える
請求項12又は13に記載の製造方法。
The surface layer forming step includes
Forming a hydrophilic group at the predetermined site;
14. The method according to claim 12, further comprising a step of bringing the sol of titanium oxide into contact with the same portion and gelling the sol.
前記親水基がオキシカルボニル(−O−C=O)基またはカルボニル(−C=O)基である請求項14に記載の製造方法。   The production method according to claim 14, wherein the hydrophilic group is an oxycarbonyl (—O—C═O) group or a carbonyl (—C═O) group. 前記親水基を形成させる工程が、酸素雰囲気下プラズマ処理又は紫外線照射である請求項14に記載の製造方法。   The manufacturing method according to claim 14, wherein the step of forming the hydrophilic group is plasma treatment or ultraviolet irradiation in an oxygen atmosphere. 前記表面層形成工程が、
酸化チタン粒子を前記所定部位に投射する投射工程である請求項12又は13に記載の製造方法。
The surface layer forming step includes
The manufacturing method according to claim 12 or 13, which is a projecting step of projecting titanium oxide particles onto the predetermined part.
前記表面層形成工程が、
酸化チタン粒子を前記所定部位に投射する工程と、
次いで同部位及び/又は投射された酸化チタン粒子に酸化チタンのゾルを接触させるとともに、同ゾルをゲル化させる工程とを備える
請求項12又は13に記載の製造方法。
The surface layer forming step includes
Projecting titanium oxide particles onto the predetermined site;
14. The method according to claim 12, further comprising a step of bringing a titanium oxide sol into contact with the same portion and / or the projected titanium oxide particles and gelling the sol.
JP2014010910A 2014-01-24 2014-01-24 Bone repair material based on PEEK and method for producing the same Expired - Fee Related JP6187975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010910A JP6187975B2 (en) 2014-01-24 2014-01-24 Bone repair material based on PEEK and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014010910A JP6187975B2 (en) 2014-01-24 2014-01-24 Bone repair material based on PEEK and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015136553A true JP2015136553A (en) 2015-07-30
JP6187975B2 JP6187975B2 (en) 2017-08-30

Family

ID=53767968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010910A Expired - Fee Related JP6187975B2 (en) 2014-01-24 2014-01-24 Bone repair material based on PEEK and method for producing the same

Country Status (1)

Country Link
JP (1) JP6187975B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026540A1 (en) 2017-08-01 2019-02-07 学校法人中部大学 Three-dimensional structure with biological activity and production method therefor
WO2019026539A1 (en) 2017-08-01 2019-02-07 石原産業株式会社 Three-dimensional structure, method for manufacturing same, and coating device
CN114230843A (en) * 2022-01-11 2022-03-25 季华实验室 Polyether-ether-ketone surface modification method
CN116672508A (en) * 2023-08-03 2023-09-01 北京德益达美医疗科技有限公司 Medical polyether-ether-ketone composite material and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013476A (en) * 2003-06-26 2005-01-20 Japan Science & Technology Agency Material for bone restoration and bone substitution made of inorganic/organic composite
WO2010087427A1 (en) * 2009-01-30 2010-08-05 学校法人中部大学 Bone-repairing material and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013476A (en) * 2003-06-26 2005-01-20 Japan Science & Technology Agency Material for bone restoration and bone substitution made of inorganic/organic composite
WO2010087427A1 (en) * 2009-01-30 2010-08-05 学校法人中部大学 Bone-repairing material and method for producing same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAN, C.M. ET AL., JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A, vol. Vol.102A、Issue 3, JPN6017025018, 3 June 2013 (2013-06-03), pages 793 - 800 *
KOKUBO, T. ET AL.: "Positive charged bioactive Ti metal prepared by simple chemical and heat treatments", J R SOC INTERFACE, vol. Vol.7, JPN6017014051, 2010, pages p.S503-13 *
TSOU, H.K., ET AL., JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A, vol. Vol.100A, Issune 10, JPN6017025021, 2012, pages 2787 - 92 *
清水考彬,外4名: "生体活性PEEKの研究 −sol-gel + blast法 + 酸処理による酸化チタン表面コーティング−", 第33回整形外科バイオマテリアル研究会プログラム・抄録集, JPN6017014049, 2013, pages p.26 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026540A1 (en) 2017-08-01 2019-02-07 学校法人中部大学 Three-dimensional structure with biological activity and production method therefor
WO2019026539A1 (en) 2017-08-01 2019-02-07 石原産業株式会社 Three-dimensional structure, method for manufacturing same, and coating device
EP3663082A4 (en) * 2017-08-01 2021-04-28 Ishihara Sangyo Kaisha, Ltd. Three-dimensional structure, method for manufacturing same, and coating device
EP3662938A4 (en) * 2017-08-01 2021-04-28 Chubu University Educational Foundation Three-dimensional structure with biological activity and production method therefor
CN114230843A (en) * 2022-01-11 2022-03-25 季华实验室 Polyether-ether-ketone surface modification method
CN116672508A (en) * 2023-08-03 2023-09-01 北京德益达美医疗科技有限公司 Medical polyether-ether-ketone composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP6187975B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
Tsuchiya et al. Hydroxyapatite growth on anodic TiO2 nanotubes
KR101724039B1 (en) Implant having a surface nano-patterned groove and a method of manufacturing the same
JP6187975B2 (en) Bone repair material based on PEEK and method for producing the same
Johnson et al. Nanostructured hydroxyapatite/poly (lactic-co-glycolic acid) composite coating for controlling magnesium degradation in simulated body fluid
CN104451685A (en) Preparation method for forming second-level porous active surface structure on titanium material surface through mixed alkali
KR20150131863A (en) implant forming hydroxyapatite coating layer using RF magnetron sputtering and manufacturing method thereof
CN101311328A (en) Process for preparing titanium-based hydroxylapatite/titanium oxide nanotube composite coating
FR2982620A1 (en) METALLIC MATERIALS WITH SURFACE LAYER OF CALCIUM PHOSPHATE AND METHODS FOR PREPARING THE SAME
JP2005095584A (en) Implantation material compatible with organism and method for preparation thereof
JP4646554B2 (en) Ceramic member for living body implant and manufacturing method thereof
KR101933701B1 (en) Biocompatible ceramics coating layer, titanium substrate comprising coating layer and manufacturing method thereof
KR101137645B1 (en) Bio-implantable Devices and Surface Reforming Method thereof
CN113289057B (en) Tantalum-coated orthopedic implant material, preparation method thereof and orthopedic implant
WO2006043168A2 (en) Method for preparing endosseous implants with zircon dioxide coating
US20190209736A1 (en) Method for the nanometric deposition of calcium phosphate on the surface of an anodized titanium implant
JP5484357B2 (en) Bone repair material and manufacturing method thereof
KR20180137508A (en) Dental prostheses and parts thereof
JP2003235954A (en) Bone conductive biomaterial and manufacturing method therefor
US20100198345A1 (en) Calcium phosphate coated implantable medical devices, and electrophoretic deposition processes for making same
KR101460973B1 (en) Surface coated dental implant with improved biocompatibility and preparation method thereof
KR101460974B1 (en) Surface coated dental implant with improved biocompatibility and preparation method thereof
KR102109949B1 (en) Mehtod of surface treatment of titanium implant material using chloride and pulse power and titanium implant produced by the same
KR101281521B1 (en) Porous implant fixture on which hydroxy apatite is coated and its manufacturing method
JPWO2020100984A1 (en) Manufacturing method of zirconia material
CN105506709B (en) A kind of preparation method of surface of metal titanium bioactivity coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170725

R150 Certificate of patent or registration of utility model

Ref document number: 6187975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees