JP2015136159A - Control method of solid state image sensor - Google Patents

Control method of solid state image sensor Download PDF

Info

Publication number
JP2015136159A
JP2015136159A JP2015049629A JP2015049629A JP2015136159A JP 2015136159 A JP2015136159 A JP 2015136159A JP 2015049629 A JP2015049629 A JP 2015049629A JP 2015049629 A JP2015049629 A JP 2015049629A JP 2015136159 A JP2015136159 A JP 2015136159A
Authority
JP
Japan
Prior art keywords
rows
row
reset
solid
read target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015049629A
Other languages
Japanese (ja)
Other versions
JP5749873B1 (en
Inventor
一樹 藤田
Kazuki Fujita
一樹 藤田
竜次 久嶋
Tatsuji Kushima
竜次 久嶋
治通 森
Harumichi Mori
治通 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2015049629A priority Critical patent/JP5749873B1/en
Application granted granted Critical
Publication of JP5749873B1 publication Critical patent/JP5749873B1/en
Publication of JP2015136159A publication Critical patent/JP2015136159A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of a solid state image sensor capable of suppressing the time required for one imaging frame, when reading the charges accumulated in a pixel in a partial region out of a light-receiving region selectively, while reducing the load on the peripheral circuit.SOLUTION: Charges accumulated in a pixel included in one or a plurality of rows to be read, constituting a partial region of a light-receiving region, are read in each imaging frame of L times (L is an integer of 2 or more), and the charges accumulated in the pixel are discharged at least once between the imaging frame of L times for each of more than one other rows (rows not to be read) excepting the rows to be read. A row not to be read, that is not discharged, exists in each of imaging frame of L times.

Description

本発明は、固体撮像素子の制御方法に関するものである。   The present invention relates to a method for controlling a solid-state imaging device.

特許文献1には、X線検出器を備えるX線診断装置の制御方法が開示されている。この方法では、第1のX線照射を行ってX線検出器から画素データを読み出し、この画素データに基づいてX線検出器から画素データを収集すべき部分領域を選択したのち、第2のX線照射を行ってX線検出器の該部分領域から画素データを読み出している。そして、X線検出器の部分領域から画素データを読み出す際、X線検出器の他の領域の画素データ全てを、各撮像フレームにおいて同時に(或いは、順次に)排出している。   Patent Document 1 discloses a method for controlling an X-ray diagnostic apparatus including an X-ray detector. In this method, the first X-ray irradiation is performed, the pixel data is read from the X-ray detector, the partial region in which the pixel data is to be collected from the X-ray detector is selected based on the pixel data, and then the second X-ray irradiation is performed to read pixel data from the partial area of the X-ray detector. And when reading pixel data from the partial area | region of an X-ray detector, all the pixel data of the other area | region of an X-ray detector are discharged | emitted simultaneously (or sequentially) in each imaging frame.

特開平11−318877号公報JP 11-318877 A

固体撮像素子は、複数の画素が複数行及び複数列にわたって二次元状に配置された受光領域を有する。各画素には、入射した光を電子に変換するためのフォトダイオードが配置される。各画素のフォトダイオードは、各列毎に配設された読出用配線にスイッチを介して接続されており、フォトダイオード内に蓄積された電荷は、スイッチを接続状態とすることによって読出用配線へ流出する。   The solid-state imaging device has a light receiving region in which a plurality of pixels are two-dimensionally arranged over a plurality of rows and a plurality of columns. Each pixel is provided with a photodiode for converting incident light into electrons. The photodiode of each pixel is connected to the readout wiring arranged for each column via a switch, and the charge accumulated in the photodiode is transferred to the readout wiring by setting the switch in a connected state. leak.

このような構成を備える固体撮像素子の動作方法の一つとして、受光領域のうち一部の領域(以下、関心領域という)の画素に蓄積された電荷のみを選択的に読み出す、いわゆる部分読み出し動作がある。この部分読み出し動作において、電荷が読み出される関心領域では、各画素にて電荷が読み出される毎にフォトダイオードがリセットされるので、フォトダイオードに電荷が蓄積し過ぎてオーバーフローが生じることはない。しかし、電荷が読み出されない他の領域(以下、非関心領域という)では、各画素のフォトダイオードに電荷が蓄積され続け、オーバーフローが生じる。オーバーフローが生じると、溢れた電荷が周辺画素に侵入し、周辺画素の撮像データに影響を及ぼしてしまう。従って、非関心領域に含まれる各画素のフォトダイオードをリセットする必要が生じる。例えば、特許文献1に記載された方法では、撮像フレーム毎に、非関心領域に含まれる全画素のフォトダイオードを同時に、或いは順次にリセットしている。   As one of the operation methods of the solid-state imaging device having such a configuration, a so-called partial readout operation that selectively reads out only charges accumulated in pixels in a part of the light receiving region (hereinafter referred to as a region of interest). There is. In this partial readout operation, in the region of interest where charge is read, the photodiode is reset each time the charge is read out in each pixel, so that the charge does not accumulate excessively in the photodiode and overflow does not occur. However, in other areas where charges are not read out (hereinafter referred to as non-interest areas), charges continue to be accumulated in the photodiodes of each pixel, causing overflow. When the overflow occurs, the overflowed charge enters the surrounding pixels and affects the image data of the surrounding pixels. Therefore, it is necessary to reset the photodiode of each pixel included in the non-interest area. For example, in the method described in Patent Document 1, the photodiodes of all the pixels included in the non-interest region are reset simultaneously or sequentially for each imaging frame.

しかしながら、固体撮像素子の制御には、一つの撮像フレームに要する時間(フレームレート)を可能な限り短くすることも要求される。非関心領域に含まれる全画素のフォトダイオードを各撮像フレームにおいて順次にリセットすると、各撮像フレームの所要時間を長引かせる一因となる。特に、受光領域の面積が大きくなり、受光領域を構成する画素の個数が多いほど、非関心領域のフォトダイオードのリセットに長時間を要し、撮像フレームの所要時間が更に長くなってしまう。これに対し、特許文献1には、各撮像フレームにおいて、非関心領域に含まれる全画素のフォトダイオードを同時にリセットする方法も開示されている。しかし、このような方法では、非関心領域のフォトダイオードがリセットされた瞬間、フォトダイオードに接続された配線に大きな電流が流れるので、電源等の周辺回路への負荷が大きくなってしまう。   However, control of the solid-state imaging device also requires that the time required for one imaging frame (frame rate) be as short as possible. If the photodiodes of all the pixels included in the non-interesting region are sequentially reset in each imaging frame, it will contribute to prolonging the time required for each imaging frame. In particular, as the area of the light receiving region increases and the number of pixels constituting the light receiving region increases, it takes a longer time to reset the photodiode in the non-interest region, and the time required for the imaging frame is further increased. On the other hand, Patent Document 1 discloses a method of simultaneously resetting the photodiodes of all the pixels included in the non-interest region in each imaging frame. However, in such a method, since a large current flows through the wiring connected to the photodiode at the moment when the photodiode in the non-interest area is reset, the load on the peripheral circuit such as the power supply increases.

本発明は、このような課題に鑑みてなされたものであって、受光領域のうち一部の領域の画素に蓄積された電荷を選択的に読み出す際に、一つの撮像フレームに要する時間を抑制し、また周辺回路への負荷を低減することができる固体撮像素子の制御方法を提供することを目的とする。   The present invention has been made in view of such problems, and suppresses the time required for one imaging frame when selectively reading out the charges accumulated in the pixels in some of the light receiving areas. It is another object of the present invention to provide a method for controlling a solid-state imaging device capable of reducing a load on peripheral circuits.

上述した課題を解決するために、本発明による固体撮像素子の制御方法は、フォトダイオード、及び該フォトダイオードに一端が接続された読出用スイッチを各々含むM×N個(Mは3以上の整数、Nは2以上の整数)の画素がM行N列に2次元配列されて成る受光領域を備える固体撮像素子の制御方法であって、受光領域のうち一部の領域を構成する一又は複数の行(以下、読出対象行という)に含まれる画素に蓄積された電荷を、L回(Lは2以上の整数)の撮像フレームの各々において読み出すとともに、読出対象行を除く他の二以上の行(以下、非読出対象行という)の各々についてL回の撮像フレームの間に少なくとも一回、画素に蓄積された電荷の排出処理を行い、L回の撮像フレームのそれぞれにおいて、排出処理を行わない非読出対象行が存在することを特徴とする。   In order to solve the above-described problem, a method for controlling a solid-state imaging device according to the present invention includes M × N (M is an integer of 3 or more) each including a photodiode and a readout switch having one end connected to the photodiode. , N is an integer greater than or equal to 2) and is a control method of a solid-state imaging device including a light receiving region in which pixels are two-dimensionally arranged in M rows and N columns, and one or a plurality of portions constituting a part of the light receiving region The charge accumulated in the pixels included in this row (hereinafter referred to as a read target row) is read out in each of L imaging frames (L is an integer of 2 or more), and two or more other than the read target row are excluded. For each of the rows (hereinafter referred to as non-read target rows), the discharge process of the charges accumulated in the pixels is performed at least once during L imaging frames, and the discharging process is performed in each of the L imaging frames. Absent Wherein the read subject row is present.

上述した固体撮像素子の制御方法では、受光領域のうち一部の領域(前述した関心領域に相当)を構成する読出対象行に含まれる画素に蓄積された電荷を、L回の撮像フレームの各々において読み出す、いわゆる部分読み出し動作を行う。更に、この制御方法では、二以上の非読出対象行(前述した非関心領域に相当)の各々について、L回の撮像フレームの間に少なくとも一回、画素に蓄積された電荷の排出処理(リセット)を行う。且つ、L回の撮像フレームのそれぞれにおいて、排出処理(リセット)を行わない非読出対象行が存在する。   In the control method of the solid-state imaging device described above, the charges accumulated in the pixels included in the read target row that constitutes a part of the light receiving region (corresponding to the region of interest described above) are stored in each of the L imaging frames. A so-called partial read operation is performed. Furthermore, in this control method, for each of two or more non-read target rows (corresponding to the above-mentioned non-interesting region), the discharge process (reset) of the charges accumulated in the pixels is performed at least once during L imaging frames )I do. Further, in each of the L imaging frames, there is a non-read target row for which the discharge process (reset) is not performed.

すなわち、上述した制御方法では、一撮像フレームにおいて二以上の非読出対象行の全てをリセットするのではなく、その一部のみをリセットしている。従って、各撮像フレームにおいて複数の非読出対象行を順次にリセットする場合にあっては、この制御方法によって一つの撮像フレームに要する時間を抑制できる。特に、受光領域の面積が大きくなり、受光領域を構成する画素の個数が多いほど、この効果は顕著となる。また、一撮像フレームにおいて、複数の非読出対象行を同時にリセットする場合にあっては、フォトダイオードに接続された配線に流れる電流を少なくし、電源等の周辺回路への負荷を低減することができる。   That is, in the above-described control method, not all of two or more non-read target rows are reset in one imaging frame, but only a part thereof is reset. Therefore, when a plurality of non-read target rows are sequentially reset in each imaging frame, the time required for one imaging frame can be suppressed by this control method. In particular, this effect becomes more remarkable as the area of the light receiving region increases and the number of pixels constituting the light receiving region increases. Further, when simultaneously resetting a plurality of non-read target rows in one imaging frame, it is possible to reduce the current flowing through the wiring connected to the photodiode and reduce the load on the peripheral circuit such as the power supply. it can.

また、固体撮像素子の制御方法は、読出対象行に隣接する一又は複数の非読出対象行の排出処理の頻度が、他の非読出対象行の排出処理の頻度より多いことを特徴としてもよい。これにより、読出対象行への電荷のオーバーフローをより効果的に抑制し、読出対象行の各画素に蓄積された電荷を更に精度良く読み出すことができる。   The solid-state imaging device control method may be characterized in that the frequency of discharge processing of one or a plurality of non-read target rows adjacent to the read target row is higher than the frequency of discharge processing of other non-read target rows. . Thereby, it is possible to more effectively suppress the overflow of charge to the read target row, and to read out the charge accumulated in each pixel of the read target row more accurately.

また、固体撮像素子の制御方法は、少なくとも1回の撮像フレームにおいて、排出処理を行う非読出対象行が複数行存在しており、当該撮像フレームにおいて、複数行の非読出対象行に含まれる画素に蓄積された電荷の排出処理を同時に行うことを特徴としてもよい。上述したように、本発明に係る固体撮像素子の制御方法によれば、複数の非読出対象行の排出処理(リセット)を同時に行う場合であっても、配線に流れる電流を少なくして電源等の周辺回路への負荷を低減することができる。そして、このように複数の非読出対象行の排出処理(リセット)を同時に行うことによって、各撮像フレームの所要時間をより短くすることができる。   The solid-state imaging device control method includes a plurality of non-reading target rows to be ejected in at least one imaging frame, and pixels included in the plurality of non-reading target rows in the imaging frame. It is also possible to perform the discharge process of the charges accumulated in the two simultaneously. As described above, according to the control method of the solid-state imaging device according to the present invention, even when the discharge processing (reset) of a plurality of non-read target rows is performed simultaneously, the current flowing in the wiring is reduced and the power The load on the peripheral circuit can be reduced. Then, by simultaneously performing the discharge processing (reset) of a plurality of non-read target rows in this way, the time required for each imaging frame can be further shortened.

或いは、固体撮像素子の制御方法は、少なくとも1回の撮像フレームにおいて、排出処理を行う非読出対象行が複数行存在しており、当該撮像フレームにおいて、複数行の非読出対象行に含まれる画素に蓄積された電荷の排出処理を逐次に行うことを特徴としてもよい。上述したように、本発明に係る固体撮像素子の制御方法によれば、複数の非読出対象行の排出処理(リセット)を順次に行う場合であっても、一つの撮像フレームに要する時間を抑制できる。そして、このように複数の非読出対象行の排出処理(リセット)を順次に行うことによって、配線に流れる電流をより少なくし、電源等の周辺回路への負荷を格段に低減することができる。   Alternatively, in the solid-state imaging device control method, there are a plurality of non-read target rows to be ejected in at least one imaging frame, and pixels included in the plurality of non-read target rows in the imaging frame. It is also possible to sequentially perform a process of discharging the charges accumulated in the battery. As described above, according to the control method of the solid-state imaging device according to the present invention, the time required for one imaging frame is suppressed even when the discharge processing (reset) of a plurality of non-read target rows is sequentially performed. it can. Further, by sequentially performing the discharge processing (reset) of the plurality of non-read target rows in this manner, the current flowing through the wiring can be further reduced, and the load on the peripheral circuit such as the power supply can be significantly reduced.

また、固体撮像素子の制御方法は、少なくとも1回の撮像フレームにおいて、排出処理を行う非読出対象行が複数行存在しており、当該撮像フレームにおいて、複数行の非読出対象行同士の間隔を1行以上あけることを特徴としてもよい。これにより、当該撮像フレームにおいて排出処理(リセット)が行われる非読出対象行の位置を分散させることができ、読出対象行への電荷のオーバーフローをより効果的に抑制することができる。   The solid-state imaging device control method includes a plurality of non-reading target rows to be ejected in at least one imaging frame, and the interval between the non-reading target rows in the imaging frame is determined. One or more lines may be opened. As a result, the positions of the non-read target rows on which the discharge process (reset) is performed in the imaging frame can be dispersed, and the overflow of charges to the read target rows can be more effectively suppressed.

また、本発明による固体撮像素子の制御方法は、フォトダイオード、及び該フォトダイオードに一端が接続された読出用スイッチを各々含むM×N個(Mは3以上の整数、Nは2以上の整数)の画素がM行N列に2次元配列されて成る受光領域を備える固体撮像素子の制御方法であって、受光領域のうち一部の領域を構成する一又は複数の行(以下、読出対象行という)に含まれる画素に蓄積された電荷を、L回(Lは2以上の整数)の撮像フレームの各々において読み出すとともに、読出対象行を除く他の行(以下、非読出対象行という)に含まれる二以上の行の各々についてL回の撮像フレームの間に少なくとも一回、画素に蓄積された電荷の排出処理を行い、L回の撮像フレームのそれぞれにおいて、二以上の行のうちに排出処理を行わない行が存在することを特徴とする。   The solid-state imaging device control method according to the present invention includes M × N (M is an integer of 3 or more, and N is an integer of 2 or more) each including a photodiode and a readout switch having one end connected to the photodiode. ) Of a solid-state imaging device including a light receiving region in which pixels of M rows and N columns are two-dimensionally arranged, and one or a plurality of rows (hereinafter, read target) constituting a part of the light receiving region The charges accumulated in the pixels included in the row) are read out in each of the L times (L is an integer of 2 or more) imaging frames, and other rows excluding the readout target row (hereinafter referred to as non-readout target rows). In each of the two or more rows, the discharge process of the charge accumulated in the pixels is performed at least once during the L imaging frames for each of two or more rows included in each of the two or more rows. Perform discharge processing Characterized in that no row exists.

上述した固体撮像素子の制御方法では、読出対象行に含まれる画素に蓄積された電荷を、L回の撮像フレームの各々において読み出す。更に、この制御方法では、非読出対象行のうち二以上の行の各々について、L回の撮像フレームの間に少なくとも一回、画素に蓄積された電荷の排出処理(リセット)を行う。且つ、L回の撮像フレームのそれぞれにおいて、二以上の行のうちに排出処理(リセット)を行わない行が存在する。   In the above-described method for controlling the solid-state imaging device, the charge accumulated in the pixels included in the readout target row is read out in each of the L imaging frames. Further, in this control method, the discharge process (reset) of the charges accumulated in the pixels is performed at least once during L imaging frames for each of two or more rows among the non-read target rows. In each of the L imaging frames, there is a row that does not perform the discharge process (reset) among two or more rows.

すなわち、上述した制御方法では、一撮像フレームにおいて非読出対象行に含まれる二以上の行の全てをリセットするのではなく、その一部のみをリセットしている。従って、各撮像フレームにおいて複数の非読出対象行を順次にリセットする場合にあっては、この制御方法によって一つの撮像フレームに要する時間を抑制できる。また、一撮像フレームにおいて、複数の非読出対象行を同時にリセットする場合にあっては、フォトダイオードに接続された配線に流れる電流を少なくし、電源等の周辺回路への負荷を低減することができる。   That is, in the control method described above, not all of two or more rows included in a non-read target row in one imaging frame are reset, but only a part thereof is reset. Therefore, when a plurality of non-read target rows are sequentially reset in each imaging frame, the time required for one imaging frame can be suppressed by this control method. Further, when simultaneously resetting a plurality of non-read target rows in one imaging frame, it is possible to reduce the current flowing through the wiring connected to the photodiode and reduce the load on the peripheral circuit such as the power supply. it can.

また、固体撮像素子の制御方法は、L回の撮像フレームにおいて、非読出対象行のうち二以上の行を除く他の行に含まれる画素に蓄積された電荷の排出処理を行わないことを特徴としてもよい。このように、上述した固体撮像素子の制御方法では、非読出対象行の全てについて電荷の排出処理を行うことは必須ではなく、排出処理の対象である二以上の行を除く他の行について排出処理を行わない場合も含まれる。   The solid-state imaging device control method is characterized in that, in L imaging frames, the discharging process of the charges accumulated in the pixels included in other rows excluding two or more rows among the non-reading target rows is not performed. It is good. As described above, in the method for controlling the solid-state imaging device described above, it is not essential to perform the charge discharging process on all the non-read target rows, and the other rows excluding two or more rows that are the targets of the discharging process are discharged. This includes cases where no processing is performed.

本発明による固体撮像素子の制御方法によれば、受光領域のうち一部の領域の画素に蓄積された電荷を選択的に読み出す際に、一つの撮像フレームに要する時間を抑制し、且つ周辺回路への負荷を低減することができる。   According to the method for controlling a solid-state imaging device according to the present invention, it is possible to suppress the time required for one imaging frame when selectively reading out the charges accumulated in the pixels of a part of the light receiving region, and the peripheral circuit. The load on can be reduced.

固体撮像装置を示す平面図である。It is a top view which shows a solid-state imaging device. 固体撮像装置の一部を拡大した平面図である。It is the top view to which a part of solid-state imaging device was expanded. 図2のI−I線に沿った断面を示す側断面図である。It is a sectional side view which shows the cross section along the II line | wire of FIG. 固体撮像装置の内部構成を示す図である。It is a figure which shows the internal structure of a solid-state imaging device. 固体撮像装置の画素、積分回路、及び保持回路それぞれの回路構成の一例を示す図である。It is a figure which shows an example of each circuit structure of the pixel of an solid-state imaging device, an integration circuit, and a holding circuit. 第1実施形態に係る固体撮像素子の制御方法において固体撮像素子に付与される各信号のタイミングチャートであって、受光領域の全ての画素から電荷を読み出すモード(通常読み出しモード)を示している。FIG. 5 is a timing chart of signals given to the solid-state image sensor in the method for controlling the solid-state image sensor according to the first embodiment, and shows a mode (normal read mode) in which charges are read from all pixels in the light receiving region. 第1実施形態に係る固体撮像素子の制御方法において固体撮像素子に付与される各信号のタイミングチャートであって、受光領域のうち一部の領域(関心領域)の画素のみから電荷を読み出すモード(部分読み出しモード)を示している。FIG. 6 is a timing chart of signals given to the solid-state image sensor in the control method of the solid-state image sensor according to the first embodiment, in which charges are read from only pixels in a part of the light-receiving area (region of interest) ( (Partial read mode). オーバーフローの様子を説明するための図であって、(a)トランジスタを含む切断面により切断された受光領域の断面を示す模式図、(b)トランジスタを含まない切断面により切断された受光領域の断面を示す模式図である。It is a figure for demonstrating the mode of overflow, Comprising: (a) The schematic diagram which shows the cross section of the light reception area | region cut | disconnected by the cut surface containing a transistor, (b) The light reception area | region cut | disconnected by the cut surface which does not contain a transistor It is a schematic diagram which shows a cross section. 非読出対象行に含まれるフォトダイオードの電荷をリセットする過程を含む、固体撮像素子の制御方法の一例を示すタイミングチャートである。It is a timing chart which shows an example of the control method of a solid-state image sensor including the process of resetting the electric charge of the photodiode contained in a non-read object row. 第2実施形態に係る固体撮像素子の制御方法において固体撮像素子に付与される各信号のタイミングチャートであって、受光領域のうち一部の領域(関心領域)の画素のみから電荷を読み出すモード(部分読み出しモード)を示している。FIG. 10 is a timing chart of each signal given to the solid-state image sensor in the method for controlling a solid-state image sensor according to the second embodiment, in which charges are read from only pixels in a part of the light receiving area (region of interest) ( (Partial read mode). 固体撮像素子の制御方法の一比較例を示すタイミングチャートである。It is a timing chart which shows the comparative example of the control method of a solid-state image sensor. 第1実施形態および第2実施形態に係る制御方法における非読出対象行のリセットの様子を模式的に示す図である。It is a figure which shows typically the mode of the reset of the non-read object row | line in the control method which concerns on 1st Embodiment and 2nd Embodiment. 各撮像フレームにおけるリセット対象行の配列の第2の例を示す模式図である。It is a schematic diagram which shows the 2nd example of the arrangement | sequence of the reset object row | line in each imaging frame. 各撮像フレームにおけるリセット対象行の配列の第3の例を示す模式図である。It is a schematic diagram which shows the 3rd example of the arrangement | sequence of the reset object row | line in each imaging frame. 各撮像フレームにおけるリセット対象行の配列の第4の例を示す模式図である。It is a schematic diagram which shows the 4th example of the arrangement | sequence of the reset object row | line in each imaging frame. 図15に示されたリセット対象行の配列を実現するための制御方法を示すタイミングチャートである。FIG. 16 is a timing chart showing a control method for realizing the arrangement of reset target rows shown in FIG. 15. FIG. 各撮像フレームにおけるリセット対象行の配列の第5の例を示す模式図である。It is a schematic diagram which shows the 5th example of the arrangement | sequence of the reset object row | line in each imaging frame. 図17に示されたリセット対象行の配列を実現するための制御方法を示すタイミングチャートである。FIG. 18 is a timing chart showing a control method for realizing the array of reset target rows shown in FIG. 17. FIG. p型単結晶シリコン基板上に受光領域が作成された場合における、部分読み出し時のオーバーフローの様子を説明するための図である。It is a figure for demonstrating the mode of the overflow at the time of the partial reading in case a light reception area | region is created on the p-type single crystal silicon substrate.

以下、添付図面を参照しながら本発明による固体撮像素子の制御方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   Embodiments of a method for controlling a solid-state imaging device according to the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

以下の各実施形態において使用される固体撮像素子は、例えば医療用X線撮像システムに用いられ、特に歯科医療におけるパノラマ撮影、セファロ撮影、CT撮影といった撮像モードによって、被検者の顎部のX線像を撮像するシステムに用いられる。このため、以下の各実施形態に係る固体撮像素子は、大面積のガラス基板上に多結晶シリコンが堆積されて成る薄膜トランジスタや、アモルファスシリコンが堆積されて成るフォトダイオードを備えており、単結晶シリコンウェハから作製される従来の固体撮像素子と比較して、格段に広い受光面積を有する。図1〜図3は、以下に述べる各実施形態に係る制御方法を実現するための装置の一例として、固体撮像装置10の構成を示す図である。図1は固体撮像装置10を示す平面図であり、図2は固体撮像装置10の一部を拡大した平面図である。さらに、図3は、図2のI−I線に沿った断面を示す側断面図である。なお、図1〜図3には、理解を容易にするためXYZ直交座標系が併せて示されている。   A solid-state imaging device used in each of the following embodiments is used in, for example, a medical X-ray imaging system, and in particular, X-rays of a subject's jaw by an imaging mode such as panoramic imaging, cephalometric imaging, and CT imaging in dental medicine. Used in a system that captures line images. For this reason, the solid-state imaging device according to each of the following embodiments includes a thin film transistor in which polycrystalline silicon is deposited on a large-area glass substrate and a photodiode in which amorphous silicon is deposited. Compared with a conventional solid-state imaging device manufactured from a wafer, the light receiving area is significantly wider. 1 to 3 are diagrams illustrating a configuration of a solid-state imaging device 10 as an example of a device for realizing a control method according to each embodiment described below. FIG. 1 is a plan view showing the solid-state imaging device 10, and FIG. 2 is an enlarged plan view of a part of the solid-state imaging device 10. Further, FIG. 3 is a side sectional view showing a section taken along line II of FIG. 1 to 3 also show an XYZ rectangular coordinate system for easy understanding.

図1に示されるように、固体撮像装置10は、固体撮像素子11を備えている。固体撮像素子11は、以下の各実施形態における制御対象であり、ガラス基板12と、ガラス基板12の主面上に作製された受光領域20及び垂直シフトレジスタ部30とを備えている。垂直シフトレジスタ部30は、受光領域20の側辺に沿って配置されている。また、固体撮像装置10は、固体撮像素子11とは別に配置された信号出力部40を更に備えている。信号出力部40は、例えば受光領域20と電気的に接続された複数のC−MOS型ICチップ41によって構成される。信号出力部40は、受光領域20のN列それぞれに設けられたN個の積分回路を含んでおり、これらN個の積分回路は、第1列ないし第N列の画素から出力される電荷の量に応じた電圧値を生成する。信号出力部40は、各積分回路から出力された電圧値を保持し、その保持した電圧値を逐次に出力する。   As shown in FIG. 1, the solid-state imaging device 10 includes a solid-state imaging element 11. The solid-state imaging device 11 is a control target in each of the following embodiments, and includes a glass substrate 12, a light receiving region 20 and a vertical shift register unit 30 that are manufactured on the main surface of the glass substrate 12. The vertical shift register unit 30 is disposed along the side of the light receiving region 20. The solid-state imaging device 10 further includes a signal output unit 40 arranged separately from the solid-state imaging device 11. For example, the signal output unit 40 includes a plurality of C-MOS type IC chips 41 electrically connected to the light receiving region 20. The signal output unit 40 includes N integration circuits provided in each of the N columns of the light receiving region 20, and these N integration circuits are configured to store charges output from the pixels in the first to Nth columns. A voltage value corresponding to the amount is generated. The signal output unit 40 holds the voltage value output from each integrating circuit, and sequentially outputs the held voltage value.

なお、受光領域20及び垂直シフトレジスタ部30は、それぞれ別個のガラス基板12上に設けられてもよい。また、信号出力部40は、受光領域20及び垂直シフトレジスタ部30と並んでガラス基板12上に設けられてもよい。   Note that the light receiving region 20 and the vertical shift register unit 30 may be provided on separate glass substrates 12, respectively. Further, the signal output unit 40 may be provided on the glass substrate 12 along with the light receiving region 20 and the vertical shift register unit 30.

受光領域20は、M×N個の画素がM行N列に2次元配列されることにより構成されている。図2に示される画素Pm,nは、第m行第n列に位置する画素である。ここで、mは1以上M以下の整数であり、nは1以上N以下の整数である。Mは3以上の整数であり、Nは2以上の整数である。なお、図2において、列方向はX軸方向と一致し、行方向はY軸方向と一致する。受光領域20に含まれる複数の画素P1,1〜PM,Nそれぞれは、読出用スイッチとしてのトランジスタ21と、フォトダイオード22とを備えている。トランジスタ21の一方の電流端子は、フォトダイオード22に接続されている。また、トランジスタ21の他方の電流端子は、対応する読出用配線(例えば画素Pm,nの場合、第n列読出用配線R)に接続されている。トランジスタ21の制御端子は、対応する行選択用配線(例えば画素Pm,nの場合、第m行選択用配線Q)に接続されている。 The light receiving region 20 is configured by two-dimensionally arranging M × N pixels in M rows and N columns. The pixel P m, n shown in FIG. 2 is a pixel located in the m-th row and the n-th column. Here, m is an integer from 1 to M, and n is an integer from 1 to N. M is an integer of 3 or more, and N is an integer of 2 or more. In FIG. 2, the column direction coincides with the X-axis direction, and the row direction coincides with the Y-axis direction. Each of the plurality of pixels P 1,1 to PM , N included in the light receiving region 20 includes a transistor 21 as a read switch and a photodiode 22. One current terminal of the transistor 21 is connected to the photodiode 22. The other current terminal of the transistor 21 is connected to a corresponding readout wiring (for example , in the case of the pixel P m, n , the n-th column readout wiring R n ). The control terminal of the transistor 21 is connected to a corresponding row selection wiring (for example , in the case of the pixel P m, n , the m-th row selection wiring Q m ).

図3に示されるように、ガラス基板12上の全面には、多結晶シリコン膜14が設けられている。トランジスタ21、フォトダイオード22、および第n列読出用配線Rは、この多結晶シリコン膜14の表面に形成されている。トランジスタ21、フォトダイオード22、及び第n列読出用配線Rは絶縁層16によって覆われており、絶縁層16の上にはシンチレータ18がガラス基板12の全面を覆うように設けられている。シンチレータ18は、入射したX線に応じてシンチレーション光を発生してX線像を光像へと変換し、この光像を受光領域20へ出力する。第n列読出用配線Rは、金属からなる。 As shown in FIG. 3, a polycrystalline silicon film 14 is provided on the entire surface of the glass substrate 12. Transistors 21, photodiodes 22, and the n-th column readout wiring R n, are formed on the surface of the polycrystalline silicon film 14. Transistors 21, photodiodes 22, and the n-th column readout wiring R n is covered by the insulating layer 16, on the insulating layer 16 is a scintillator 18 is provided so as to cover the entire surface of the glass substrate 12. The scintillator 18 generates scintillation light according to the incident X-ray, converts the X-ray image into an optical image, and outputs this optical image to the light receiving region 20. The n-th column readout wiring R n, made of metal.

フォトダイオード22は、入射光強度に応じた量の電荷を発生し、その発生した電荷を接合容量部に蓄積する。フォトダイオード22は、n型半導体層22a、i型半導体層22b、及びp型半導体層22cを有するPIN型フォトダイオードである。n型半導体層22aは、n型多結晶シリコンからなる半導体層である。i型半導体層22bは、i型(アンドープ)アモルファスシリコンからなる半導体層でありn型半導体層22a上に設けられている。このように、i型半導体層22bがアモルファスシリコンによって形成されることにより、i型半導体層22bを厚くすることができ、フォトダイオード22の光電変換効率を高めて固体撮像装置10の感度を向上させることができる。p型半導体層22cは、p型アモルファスシリコンからなる半導体層でありi型半導体層22b上に設けられている。   The photodiode 22 generates an amount of charge corresponding to the incident light intensity, and accumulates the generated charge in the junction capacitor. The photodiode 22 is a PIN photodiode having an n-type semiconductor layer 22a, an i-type semiconductor layer 22b, and a p-type semiconductor layer 22c. The n-type semiconductor layer 22a is a semiconductor layer made of n-type polycrystalline silicon. The i-type semiconductor layer 22b is a semiconductor layer made of i-type (undoped) amorphous silicon, and is provided on the n-type semiconductor layer 22a. As described above, since the i-type semiconductor layer 22b is formed of amorphous silicon, the i-type semiconductor layer 22b can be thickened, and the photoelectric conversion efficiency of the photodiode 22 is increased to improve the sensitivity of the solid-state imaging device 10. be able to. The p-type semiconductor layer 22c is a semiconductor layer made of p-type amorphous silicon, and is provided on the i-type semiconductor layer 22b.

トランジスタ21は、好適には電界効果トランジスタ(FET)によって構成されるが、バイポーラトランジスタによって構成されてもよい。トランジスタ21がFETである場合、以下の説明において制御端子はゲートを、電流端子はソースまたはドレインをそれぞれ意味する。図3に示されるトランジスタ21はFETの構成を有しており、多結晶シリコンからなる領域を含む。一例としては、トランジスタ21は、それぞれ多結晶シリコンからなるチャネル領域21a、ソース領域21b、及びドレイン領域21cを有する。ソース領域21bは、チャネル領域21aの一方の側面に沿って形成されている。ドレイン領域21cは、チャネル領域21aの他方の側面に沿って形成されている。また、チャネル領域21a上にはゲート電極21eが設けられており、ゲート電極21eとチャネル領域21aとの間にはゲート絶縁膜21dが介在している。   The transistor 21 is preferably a field effect transistor (FET), but may be a bipolar transistor. When the transistor 21 is an FET, in the following description, the control terminal means a gate, and the current terminal means a source or a drain. The transistor 21 shown in FIG. 3 has an FET configuration and includes a region made of polycrystalline silicon. As an example, the transistor 21 includes a channel region 21a, a source region 21b, and a drain region 21c each made of polycrystalline silicon. The source region 21b is formed along one side surface of the channel region 21a. The drain region 21c is formed along the other side surface of the channel region 21a. A gate electrode 21e is provided on the channel region 21a, and a gate insulating film 21d is interposed between the gate electrode 21e and the channel region 21a.

トランジスタ21のチャネル領域21a、ソース領域21b、及びドレイン領域21cを構成する多結晶シリコンは、低温多結晶シリコン(Low Temperature Polycrystalline Silicon;LTPS)であると尚よい。低温多結晶シリコンは100〜600℃といった比較的低温のプロセス温度下において堆積される多結晶シリコンである。このような低温下においては、例えば無アルカリガラスといったガラス基板12を支持基板として利用可能であることから、上記各領域21a、21b及び21cの構成材料を低温多結晶シリコンとすることによって、単結晶シリコンウェハと較べて広い面積を有するガラス基板12を支持基板として用い、そのガラス基板12上に大面積の受光領域20を作製することが可能となる。   The polycrystalline silicon constituting the channel region 21a, the source region 21b, and the drain region 21c of the transistor 21 is more preferably low temperature polycrystalline silicon (LTPS). Low temperature polycrystalline silicon is polycrystalline silicon deposited at relatively low process temperatures, such as 100-600 ° C. Under such a low temperature, for example, a glass substrate 12 such as non-alkali glass can be used as a support substrate. Therefore, by using low-temperature polycrystalline silicon as the constituent material of each of the regions 21a, 21b and 21c, a single crystal A glass substrate 12 having a larger area than a silicon wafer can be used as a support substrate, and a light-receiving region 20 having a large area can be formed on the glass substrate 12.

一実施例では、ガラス基板12の材料として、例えば0.3mm〜1.2mmといった厚さを有する板状の(サブストレート用の)無アルカリガラスが用いられる。無アルカリガラスは、アルカリ分を殆ど含まず、膨張率が低く且つ耐熱性が高く、安定した特性を有している。また、低温多結晶シリコンにおける電子移動度は10〜600cm/Vsであり、アモルファスシリコンにおける電子移動度(0.3〜1.0cm/Vs)より大きいので、トランジスタ21の領域21a、21b及び21cを低温多結晶シリコンによって形成することにより、トランジスタ21のオン抵抗を低減することが可能となる。 In one embodiment, a plate-like (substrate) non-alkali glass having a thickness of, for example, 0.3 mm to 1.2 mm is used as the material of the glass substrate 12. The alkali-free glass contains almost no alkali, has a low expansion coefficient, high heat resistance, and stable characteristics. Further, the electron mobility in low-temperature polycrystalline silicon is 10 to 600 cm 2 / Vs, which is larger than the electron mobility in amorphous silicon (0.3 to 1.0 cm 2 / Vs), so that the regions 21 a and 21 b of the transistor 21 and By forming 21c from low-temperature polycrystalline silicon, the on-resistance of the transistor 21 can be reduced.

図3に示されるような画素Pm,nは、例えば次のような工程によって作製される。まず、ガラス基板12上にアモルファスシリコン膜を形成する。成膜方法としては、例えばプラズマCVDが好適である。次に、レーザビーム(例えばエキシマレーザビーム)をアモルファスシリコン膜の全体に順次照射することにより、アモルファスシリコン膜の全面を多結晶シリコン化する(エキシマレーザアニール)。こうして、多結晶シリコン膜14が形成される。続いて、多結晶シリコン膜14の一部の領域上に、ゲート絶縁膜21dとしてのSiO膜を形成したのち、その上にゲート電極21eを形成する。続いて、ソース領域21b及びドレイン領域21cとなるべき各領域にイオンを注入する。その後、多結晶シリコン膜14のパターニングを実施し、露光およびエッチングを繰り返し実施して、他の電極やコンタクトホール等を形成する。また、多結晶シリコン膜14における画素Pm,nとなるべき領域にイオンを注入してn型としたのち、その上に、i型およびp型のアモルファスシリコン層(すなわちi型半導体層22b及びp型半導体層22c)を順に積層してPIN型フォトダイオード22を形成する。その後、絶縁層16となるパシベーション膜を形成する。 The pixel P m, n as shown in FIG. 3 is manufactured by the following process, for example. First, an amorphous silicon film is formed on the glass substrate 12. As a film forming method, for example, plasma CVD is suitable. Next, a laser beam (for example, excimer laser beam) is sequentially irradiated on the entire amorphous silicon film, thereby converting the entire surface of the amorphous silicon film into polycrystalline silicon (excimer laser annealing). Thus, the polycrystalline silicon film 14 is formed. Subsequently, after a SiO 2 film as a gate insulating film 21d is formed on a partial region of the polycrystalline silicon film 14, a gate electrode 21e is formed thereon. Subsequently, ions are implanted into the regions to be the source region 21b and the drain region 21c. Thereafter, patterning of the polycrystalline silicon film 14 is performed, and exposure and etching are repeatedly performed to form other electrodes and contact holes. Further, after ions are implanted into the region to be the pixel P m, n in the polycrystalline silicon film 14 to make it n-type, i-type and p-type amorphous silicon layers (that is, i-type semiconductor layer 22b and A p-type semiconductor layer 22c) is sequentially stacked to form a PIN photodiode 22. Thereafter, a passivation film to be the insulating layer 16 is formed.

続いて、固体撮像装置10の回路構成について詳細に説明する。図4は、固体撮像装置10の内部構成を示す図である。前述したように、受光領域20は、M×N個の画素P1,1〜PM,NがM行N列に2次元配列されて成る。第m行のN個の画素Pm,1〜Pm,Nは、第m行選択用配線Qを介して垂直シフトレジスタ部30に接続されている。なお、図4において、垂直シフトレジスタ部30は制御部6に含まれている。 Next, the circuit configuration of the solid-state imaging device 10 will be described in detail. FIG. 4 is a diagram illustrating an internal configuration of the solid-state imaging device 10. As described above, the light receiving region 20 is formed by two-dimensionally arranging M × N pixels P 1,1 to P M, N in M rows and N columns. The N pixels P m, 1 to P m, N in the m-th row are connected to the vertical shift register unit 30 via the m-th row selection wiring Q m . In FIG. 4, the vertical shift register unit 30 is included in the control unit 6.

信号出力部40は、各列毎に設けられたN個の積分回路42及びN個の保持回路44を有している。積分回路42及び保持回路44は、各列毎に互いに直列に接続されている。N個の積分回路42は互いに共通の構成を有している。また、N個の保持回路44は互いに共通の構成を有している。   The signal output unit 40 includes N integration circuits 42 and N holding circuits 44 provided for each column. The integrating circuit 42 and the holding circuit 44 are connected to each other in series for each column. The N integration circuits 42 have a common configuration. The N holding circuits 44 have a common configuration.

N個の積分回路42それぞれは、読出用配線R〜Rそれぞれに接続された入力端を有し、読出用配線R〜Rから入力端に入力された電荷を蓄積し、その蓄積電荷量に応じた電圧値を出力端からN個の保持回路44それぞれへ出力する。N個の積分回路42それぞれは、N個の積分回路42に対して共通に設けられたリセット用配線46を介して制御部6に接続されている。N個の保持回路44それぞれは、積分回路42の出力端に接続された入力端を有し、この入力端に入力される電圧値を保持し、その保持した電圧値を出力端から電圧出力用配線48へ出力する。N個の保持回路44それぞれは、N個の保持回路44に対して共通に設けられた保持用配線45を介して制御部6に接続されている。また、N個の保持回路44それぞれは、第1列選択用配線U〜第N列選択用配線Uそれぞれを介して制御部6の水平シフトレジスタ部61に接続されている。 The N integrating circuits 42 each have an input end connected to the respective readout wiring R 1 to R N, accumulates the inputted charge to the input end of the readout wiring R 1 to R N, the accumulated A voltage value corresponding to the amount of charge is output from the output terminal to each of the N holding circuits 44. Each of the N integration circuits 42 is connected to the control unit 6 via a reset wiring 46 provided in common to the N integration circuits 42. Each of the N holding circuits 44 has an input terminal connected to the output terminal of the integrating circuit 42, holds a voltage value input to this input terminal, and uses the held voltage value for voltage output from the output terminal. Output to the wiring 48. Each of the N holding circuits 44 is connected to the control unit 6 via a holding wiring 45 provided in common to the N holding circuits 44. Also, each of the N holding circuits 44 are connected to a horizontal shift register section 61 of the control unit 6 via respective first row selection wiring U 1 ~ N-th column selection wiring U N.

制御部6の垂直シフトレジスタ部30は、第m行選択制御信号VSを、第m行選択用配線Qを介して第m行のN個の画素Pm,1〜Pm,Nそれぞれに提供する。垂直シフトレジスタ部30において、行選択制御信号VS〜VSは順次に有意値とされる。また、制御部6の水平シフトレジスタ部61は、列選択制御信号HS〜HSを、列選択用配線U〜Uを介してN個の保持回路44それぞれに提供する。水平シフトレジスタ部61において、列選択制御信号HS〜HSは順次に有意値とされる。また、制御部6は、リセット制御信号REを、リセット用配線46を介してN個の積分回路42それぞれに提供するとともに、保持制御信号Hdを、保持用配線45を介してN個の保持回路44それぞれに提供する。 The vertical shift register unit 30 of the control unit 6 sends the m-th row selection control signal VS m to the N pixels P m, 1 to P m, N in the m-th row via the m-th row selection wiring Q m. To provide. In the vertical shift register unit 30, the row selection control signals VS 1 to VS M are sequentially set to significant values. The horizontal shift register unit 61 of the control unit 6, the column selection control signal HS 1 ~HS N, provided to each of the N holding circuits 44 via the column selecting wiring U 1 ~U N. In the horizontal shift register unit 61, the column selection control signals HS 1 to HS N are sequentially set to significant values. Further, the control unit 6 provides the reset control signal RE to each of the N integrating circuits 42 via the reset wiring 46, and also supplies the holding control signal Hd via the holding wiring 45 to the N holding circuits. 44 each.

図5は、固体撮像装置10の画素Pm,n、積分回路42、及び保持回路44それぞれの回路構成の一例を示す図である。ここでは、M×N個の画素P1,1〜PM,Nを代表して画素Pm,nの回路図を示している。 FIG. 5 is a diagram illustrating an example of circuit configurations of the pixel P m, n , the integration circuit 42, and the holding circuit 44 of the solid-state imaging device 10. Here, a circuit diagram of the pixel P m, n is shown as a representative of the M × N pixels P 1,1 to P M, N.

図5に示されるように、画素Pm,nのフォトダイオード22のアノード端子は接地され、カソード端子は、トランジスタ21を介して読出用配線Rに接続されている。画素Pm,nのトランジスタ21には、垂直シフトレジスタ部30から第m行選択用配線Qを介して第m行選択制御信号VSが提供される。第m行選択制御信号VSは、第m行のN個の画素Pm,1〜Pm,Nそれぞれに含まれるトランジスタ21の開閉動作を指示する。例えば、第m行選択制御信号VSが非有意値(例えばローレベル)であるときに、トランジスタ21が非導通状態となる。このとき、フォトダイオード22において発生した電荷は、列読出用配線Rへ出力されることなくフォトダイオード22の接合容量部に蓄積される。一方、第m行選択制御信号VSが有意値(例えばハイレベル)であるときに、トランジスタ21が接続状態となる。このとき、フォトダイオード22の接合容量部に蓄積されていた電荷が、トランジスタ21を経て読出用配線Rへ出力される。この電荷は、読出用配線Rを介して積分回路42へ送られる。 As shown in FIG. 5, the anode terminal of the photodiode 22 of the pixel P m, n is grounded, and the cathode terminal is connected to the readout wiring R n via the transistor 21. The transistor 21 of the pixel P m, n is provided with the m-th row selection control signal VS m from the vertical shift register unit 30 via the m-th row selection wiring Q m . The m-th row selection control signal VS m instructs the opening / closing operation of the transistor 21 included in each of the N pixels P m, 1 to P m, N in the m-th row. For example, when the m-th row selection control signal VS m is an insignificant value (for example, low level), the transistor 21 is turned off. At this time, charges generated in the photodiode 22 is accumulated in the junction capacitance section of the photodiode 22 without being output to the wiring R n for column readout. On the other hand, when the m-th row selection control signal VS m is a significant value (for example, high level), the transistor 21 is connected. At this time, the electric charge accumulated in the junction capacitance portion of the photodiode 22 is output to the readout wiring R n via the transistor 21. This charge is transmitted to the integrating circuit 42 via a readout wiring R n.

積分回路42は、アンプ42a、容量素子42b、及び放電用スイッチ42cを含む。容量素子42b及び放電用スイッチ42cは、互いに並列に接続され、且つアンプ42aの入力端子と出力端子との間に接続されている。アンプ42aの入力端子は読出用配線Rに接続されている。放電用スイッチ42cには、制御部6からリセット用配線46を介してリセット制御信号REが提供される。 The integration circuit 42 includes an amplifier 42a, a capacitive element 42b, and a discharge switch 42c. The capacitive element 42b and the discharge switch 42c are connected in parallel to each other and are connected between the input terminal and the output terminal of the amplifier 42a. Input terminal of the amplifier 42a is connected to the readout wiring line R n. The discharge switch 42c is provided with a reset control signal RE from the control unit 6 via the reset wiring 46.

リセット制御信号REは、N個の積分回路42それぞれの放電用スイッチ42cの開閉動作を指示する。例えば、リセット制御信号REが非有意値(例えばハイレベル)であるときに、放電用スイッチ42cが閉じて、容量素子42bが放電され、積分回路42の出力電圧値が初期化される。また、リセット制御信号REが有意値(例えばローレベル)であるときに、放電用スイッチ42cが開いて、積分回路42に入力された電荷が容量素子42bに蓄積され、その蓄積電荷量に応じた電圧値が積分回路42から出力される。   The reset control signal RE instructs the opening / closing operation of the discharge switch 42c of each of the N integration circuits 42. For example, when the reset control signal RE is an insignificant value (for example, high level), the discharging switch 42c is closed, the capacitive element 42b is discharged, and the output voltage value of the integrating circuit 42 is initialized. When the reset control signal RE is a significant value (for example, low level), the discharge switch 42c is opened, and the charge input to the integration circuit 42 is accumulated in the capacitive element 42b. The voltage value is output from the integration circuit 42.

保持回路44は、入力用スイッチ44a、出力用スイッチ44b及び容量素子44cを含む。容量素子44cの一端は接地されている。容量素子44cの他端は、入力用スイッチ44aを介して積分回路42の出力端に接続され、且つ、出力用スイッチ44bを介して電圧出力用配線48と接続されている。入力用スイッチ44aには、制御部6から保持用配線45を介して保持制御信号Hdが与えられる。保持制御信号Hdは、N個の保持回路44それぞれの入力用スイッチ44aの開閉動作を指示する。保持回路44の出力用スイッチ44bには、制御部6から第n列選択用配線Uを通った第n列選択制御信号HSが与えられる。選択制御信号HSは、保持回路44の出力用スイッチ44bの開閉動作を指示する。 The holding circuit 44 includes an input switch 44a, an output switch 44b, and a capacitive element 44c. One end of the capacitive element 44c is grounded. The other end of the capacitive element 44c is connected to the output end of the integrating circuit 42 through the input switch 44a, and is connected to the voltage output wiring 48 through the output switch 44b. The input switch 44 a is supplied with a holding control signal Hd from the control unit 6 via the holding wiring 45. The holding control signal Hd instructs the opening / closing operation of the input switch 44 a of each of the N holding circuits 44. The output switch 44b of the holding circuit 44, the n-th column selection control signal HS n passing through the n-th column selecting wiring U n are supplied from the control unit 6. The selection control signal HS n instructs the opening / closing operation of the output switch 44b of the holding circuit 44.

例えば、保持制御信号Hdがハイレベルからローレベルに転じると、入力用スイッチ44aが閉状態から開状態に転じて、そのときに保持回路44に入力されている電圧値が容量素子44cに保持される。また、第n列選択制御信号HSがローレベルからハイレベルに転じると、出力用スイッチ44bが閉じて、容量素子44cに保持されている電圧値が電圧出力用配線48へ出力される。 For example, when the holding control signal Hd changes from the high level to the low level, the input switch 44a changes from the closed state to the open state, and the voltage value input to the holding circuit 44 at that time is held in the capacitive element 44c. The When the n-th column selection control signal HS n changes from the low level to the high level, the output switch 44b is closed and the voltage value held in the capacitive element 44c is output to the voltage output wiring 48.

(第1の実施の形態)
図6及び図7は、第1実施形態に係る固体撮像素子の制御方法において固体撮像素子11に付与される各信号のタイミングチャートである。図6は、受光領域20の全ての画素から電荷を読み出すモード(通常読み出しモード)を示している。また、図7は、受光領域20のうち一部の領域(関心領域)の画素のみから電荷を読み出すモード(部分読み出しモード)を示している。
(First embodiment)
6 and 7 are timing charts of signals provided to the solid-state image sensor 11 in the method of controlling the solid-state image sensor according to the first embodiment. FIG. 6 shows a mode (normal read mode) in which charges are read from all the pixels in the light receiving region 20. FIG. 7 shows a mode (partial read mode) in which charges are read out only from pixels in a part of the light receiving region 20 (region of interest).

なお、図6には、上から順に、(a)リセット制御信号RE、(b)第1行選択制御信号VS、(c)第2行選択制御信号VS、(d)第3行選択制御信号VS、(e)第4行選択制御信号VS、(f)第5行選択制御信号VS、(g)第M行選択制御信号VS、(h)保持制御信号Hd、及び(i)第1列選択制御信号HS〜第N列選択制御信号HSがそれぞれ示されている。また、図7には、上から順に、(a)リセット制御信号RE、(b)第1行選択制御信号VS、(c)第2行選択制御信号VS、(d)第3行選択制御信号VS、(e)第4行選択制御信号VS、(f)第5行選択制御信号VS、(g)第(mp−2)行選択制御信号VSmp−2、(h)第(mp−1)行選択制御信号VSmp−1、(i)第mp行選択制御信号VSmp、(j)第(mp+1)行選択制御信号VSmp+1、(k)第M行選択制御信号VS、(m)保持制御信号Hd、及び(n)第1列選択制御信号HS〜第N列選択制御信号HSがそれぞれ示されている。 In FIG. 6, in order from the top, (a) reset control signal RE, (b) first row selection control signal VS 1 , (c) second row selection control signal VS 2 , (d) third row selection. Control signal VS 3 , (e) fourth row selection control signal VS 4 , (f) fifth row selection control signal VS 5 , (g) Mth row selection control signal VS M , (h) holding control signal Hd, and (I) First column selection control signal HS 1 to Nth column selection control signal HS N are shown. In FIG. 7, in order from the top, (a) reset control signal RE, (b) first row selection control signal VS 1 , (c) second row selection control signal VS 2 , (d) third row selection. Control signal VS 3 , (e) fourth row selection control signal VS 4 , (f) fifth row selection control signal VS 5 , (g) (mp-2) row selection control signal VS mp-2 , (h) (Mp-1) row selection control signal VS mp-1 , (i) mp row selection control signal VS mp , (j) (mp + 1) row selection control signal VS mp + 1 , (k) Mth row selection control signal VS M , (m) holding control signal Hd, and (n) first column selection control signal HS 1 to Nth column selection control signal HS N are shown.

<第1の制御方法(通常読み出しモード)>
第1の制御方法(通常読み出しモード)では、受光領域20の全ての画素P1,1〜PM,Nに蓄積された電荷を読み出す。図6に示されるように、まず、時刻t10から時刻t11までの期間、制御部6がリセット制御信号REをハイレベルとする。これにより、N個の積分回路42それぞれにおいて、放電用スイッチ42cが閉状態となり、容量素子42bが放電される。
<First Control Method (Normal Read Mode)>
In the first control method (normal readout mode), the charges accumulated in all the pixels P 1,1 to P M, N in the light receiving region 20 are read out. As shown in FIG. 6, firstly, the period of from the time t 10 to the time t 11, the control unit 6 to a reset control signal RE at a high level. As a result, in each of the N integration circuits 42, the discharge switch 42c is closed, and the capacitive element 42b is discharged.

時刻t11より後の時刻t12から時刻t13までの期間、制御部6が第1行選択制御信号VSをハイレベルとする。これにより、第1行の画素P1,1〜P1,Nにおいてトランジスタ21が接続状態となり、画素P1,1〜P1,Nそれぞれのフォトダイオード22において蓄積された電荷が読出用配線R〜Rを通って積分回路42に出力され、容量素子42bに蓄積される。積分回路42からは、容量素子42bに蓄積された電荷量に応じた大きさの電圧値が出力される。なお、時刻t13ののち、第1行の画素P1,1〜P1,Nそれぞれのトランジスタ21は非接続状態とされる。 During a period from the time t 12 after the time t 11 to time t 13, the control unit 6 is a first row selecting control signal VS 1 to high level. As a result, the transistors 21 are connected in the pixels P 1,1 to P 1, N in the first row, and the charges accumulated in the photodiodes 22 of the pixels P 1,1 to P 1, N are read out wiring R is output to the integrating circuit 42 through the 1 to R N, is accumulated in the capacitor 42b. The integration circuit 42 outputs a voltage value having a magnitude corresponding to the amount of charge accumulated in the capacitive element 42b. Incidentally, after the time t 13, the pixel P 1, 1 to P 1 of the first row, the N respective transistor 21 is disconnected.

そして、時刻t13より後の時刻t14から時刻t15までの期間、制御部6が保持制御信号Hdをハイレベルとし、これにより、N個の保持回路44のそれぞれにおいて入力用スイッチ44aが接続状態となり、積分回路42から出力された電圧値が容量素子44cによって保持される。 Then, during a period from time t 14 to time t 15 after time t 13 , the control unit 6 sets the holding control signal Hd to a high level, whereby the input switch 44 a is connected in each of the N holding circuits 44. The voltage value output from the integrating circuit 42 is held by the capacitive element 44c.

続いて、時刻t15より後の時刻t16から時刻t17までの期間、制御部6が第1列選択制御信号HS〜第N列選択制御信号HSを順次ハイレベルとする。これにより、N個の保持回路44の出力用スイッチ44bが順次閉状態となり、容量素子44cに保持されていた電圧値が逐次に電圧出力用配線48へ出力される。また、この間、制御部6がリセット制御信号REをハイレベルとし、積分回路42の容量素子42bが放電される。 Then, the period from the time t 16 after the time t 15 to time t 17, the control unit 6 is a first column selection control signal HS 1 ~ N-th column selection control signal HS N the high level sequentially. As a result, the output switches 44b of the N holding circuits 44 are sequentially closed, and the voltage value held in the capacitive element 44c is sequentially output to the voltage output wiring 48. During this time, the control unit 6 sets the reset control signal RE to high level, and the capacitive element 42b of the integrating circuit 42 is discharged.

続いて、時刻t17より後の時刻t18から時刻t19までの期間、制御部6が第2行選択制御信号VSをハイレベルとする。これにより、第2行の画素P2,1〜P2,Nにおいてトランジスタ21が接続状態となり、画素P2,1〜P2,Nそれぞれのフォトダイオード22において蓄積された電荷が読出用配線R〜Rを通って積分回路42に出力され、容量素子42bに蓄積される。以降、第1行と同様の動作によって、容量素子42bに蓄積された電荷量に応じた大きさの電圧値がN個の保持回路44から逐次に電圧出力用配線48へ出力される。そして、第3行ないし第M行の画素に蓄積された電荷についても、第1行と同様の動作によって電圧値に変換され、逐次に電圧出力用配線48へ出力される。こうして、受光領域20からの一つの撮像フレーム分の画像データの読み出しが完了する。 Then, the period from the time t 18 after the time t 17 to time t 19, the control unit 6 is a second row selecting control signal VS 2 to high level. As a result, the transistors 21 are connected in the pixels P 2,1 to P 2, N in the second row, and the charges accumulated in the photodiodes 22 of the pixels P 2,1 to P 2, N are read out wirings R. is output to the integrating circuit 42 through the 1 to R N, is accumulated in the capacitor 42b. Thereafter, by the same operation as in the first row, a voltage value having a magnitude corresponding to the amount of charge accumulated in the capacitor element 42 b is sequentially output from the N holding circuits 44 to the voltage output wiring 48. The charges accumulated in the pixels in the third to Mth rows are also converted into voltage values by the same operation as in the first row, and sequentially output to the voltage output wiring 48. In this way, reading of image data for one imaging frame from the light receiving region 20 is completed.

<第2の制御方法(部分読み出しモード)>
第2の制御方法(部分読み出しモード)では、受光領域20の画素P1,1〜PM,Nのうち一部の画素、すなわち読出対象行である第mp行から第M行に含まれる画素Pmp,1〜PM,N(但し、ここではmpは3以上(M−1)以下の奇数とする)に蓄積された電荷を読み出し、非読出対象行である残りの第1行から第(mp−1)行に含まれる画素P1,1〜Pmp−1,Nに蓄積された電荷については排出処理(リセット)を行う。
<Second Control Method (Partial Reading Mode)>
In the second control method (partial readout mode), some of the pixels P 1,1 to P M, N of the light receiving region 20, that is, pixels included in the readout target row from the mp-th row to the M-th row. P mp, 1 to P M, N (where mp is an odd number of 3 or more and (M−1) or less) is read, and the remaining first row, which is a non-read target row, is read from the remaining first row. The discharge process (reset) is performed on the charges accumulated in the pixels P 1,1 to P mp-1, N included in the (mp-1) row.

図7に示されるように、まず、時刻t20から時刻t21までの期間、制御部6がリセット制御信号REをハイレベルとする。これにより、N個の積分回路42それぞれにおいて、放電用スイッチ42cが閉状態となる。また、この時刻t20から時刻t21までの期間内に、制御部6は、非読出対象行である第1行から第(mp−1)行のうち、奇数番目の行すなわち第1行選択制御信号VS、第3行選択制御信号VS、・・・、第(mp−2)行選択制御信号VSmp−2を逐次にハイレベルとする。これにより、(mp−1)行の非読出対象行のうち奇数番目の行において逐次に次の動作が行われる。すなわち、当該行に含まれる各画素においてトランジスタ21が順次接続状態となり、フォトダイオード22に蓄積された電荷が読出用配線R〜Rを通って積分回路42に出力される。この間、積分回路42の放電用スイッチ42cが常に閉状態なので、積分回路42に達した電荷は基準電位線(GND線)へ排出される。このような動作により、(mp−1)行の非読出対象行のうち奇数番目の行に含まれる画素のフォトダイオード22がリセットされる。 As shown in FIG. 7, first, a period from time t 20 to the time t 21, the control unit 6 to a reset control signal RE at a high level. As a result, the discharge switch 42c is closed in each of the N integrating circuits 42. Further, during the period from time t 20 to the time t 21, the control unit 6, among the first (mp-1) rows from the first row is a non-read subject line, selected odd row or first row The control signal VS 1 , the third row selection control signal VS 3 ,..., The (mp-2) th row selection control signal VS mp-2 are sequentially set to the high level. As a result, the following operations are sequentially performed in odd-numbered rows among the non-read target rows of (mp−1) rows. In other words, becomes a transistor 21 are sequentially connected state in each pixel included in the line, the electric charge accumulated in the photodiode 22 is output to the integrating circuit 42 through the readout wiring line R 1 to R N. During this time, since the discharging switch 42c of the integrating circuit 42 is always closed, the charge reaching the integrating circuit 42 is discharged to the reference potential line (GND line). By such an operation, the photodiodes 22 of the pixels included in the odd-numbered rows among the (mp−1) rows not to be read are reset.

続いて、時刻t21より後の時刻t22から時刻t23までの期間、制御部6が第mp行選択制御信号VSmpをハイレベルとする。これにより、第mp行の画素Pmp,1〜Pmp,Nにおいてトランジスタ21が接続状態となり、画素Pmp,1〜Pmp,Nそれぞれのフォトダイオード22において蓄積された電荷が読出用配線R〜Rを通って積分回路42に出力され、容量素子42bに蓄積される。積分回路42からは、容量素子42bに蓄積された電荷量に応じた大きさの電圧値が出力される。なお、時刻t23ののち、第mp行の画素Pmp,1〜Pmp,Nそれぞれのトランジスタ21は非接続状態とされる。 Then, the period from the time t 22 after the time t 21 to time t 23, the control unit 6 to the first mp row selection control signal VS mp high. As a result, the transistors 21 are connected in the pixels P mp, 1 to P mp, N in the mp-th row, and the charges accumulated in the photodiodes 22 of the pixels P mp, 1 to P mp, N are read out wiring R is output to the integrating circuit 42 through the 1 to R N, is accumulated in the capacitor 42b. The integration circuit 42 outputs a voltage value having a magnitude corresponding to the amount of charge accumulated in the capacitive element 42b. Incidentally, after the time t 23, the pixel P mp, 1 to P mp of the mp row, N respectively of the transistor 21 is disconnected.

そして、時刻t23より後の時刻t24から時刻t25までの期間、制御部6が保持制御信号Hdをハイレベルとする。これにより、積分回路42から出力された電圧値が容量素子44cによって保持される。 The period from the time t 24 after the time t 23 to time t 25, the control unit 6 to a holding control signal Hd to a high level. Thereby, the voltage value output from the integrating circuit 42 is held by the capacitive element 44c.

続いて、時刻t25より後の時刻t26から時刻t27までの期間、制御部6が第1列選択制御信号HS〜第N列選択制御信号HSを順次ハイレベルとする。これにより、容量素子44cに保持されていた電圧値が逐次に電圧出力用配線48へ出力される。また、この間、制御部6がリセット制御信号REをハイレベルとし、積分回路42の容量素子42bが放電される。 Then, the period from the time t 26 after the time t 25 to time t 27, the control unit 6 is a first column selection control signal HS 1 ~ N-th column selection control signal HS N the high level sequentially. As a result, the voltage value held in the capacitive element 44 c is sequentially output to the voltage output wiring 48. During this time, the control unit 6 sets the reset control signal RE to high level, and the capacitive element 42b of the integrating circuit 42 is discharged.

続いて、時刻t27より後の時刻t28から時刻t29までの期間、制御部6が第(mp+1)行選択制御信号VSmp+1をハイレベルとする。これにより、第(mp+1)行の画素Pmp+1,1〜Pmp+1,Nにおいてトランジスタ21が接続状態となり、画素Pmp+1,1〜Pmp+1,Nそれぞれのフォトダイオード22において蓄積された電荷が読出用配線R〜Rを通って積分回路42に出力され、容量素子42bに蓄積される。以降、第mp行と同様の動作によって、容量素子42bに蓄積された電荷量に応じた大きさの電圧値がN個の保持回路44から逐次に電圧出力用配線48へ出力される。そして、第(mp+2)行ないし第M行の画素に蓄積された電荷についても、第mp行と同様の動作によって電圧値に変換され、逐次に電圧出力用配線48へ出力される。こうして、受光領域20の読出対象行からの一つの撮像フレーム分の画像データの読み出しが完了する。 Subsequently, during a period from time t 28 to time t 29 after time t 27 , the control unit 6 sets the (mp + 1) th row selection control signal VS mp + 1 to the high level. As a result, the transistors 21 are connected in the pixels P mp + 1,1 to P mp + 1, N in the (mp + 1) th row, and the charges accumulated in the photodiodes 22 of the pixels P mp + 1,1 to P mp + 1, N are for reading. wiring through R 1 to R N is output to the integrating circuit 42 is accumulated in the capacitor 42b. Thereafter, by the same operation as that of the mp-th row, a voltage value having a magnitude corresponding to the amount of charge accumulated in the capacitive element 42 b is sequentially output from the N holding circuits 44 to the voltage output wiring 48. The charges accumulated in the pixels in the (mp + 2) th to Mth rows are also converted into voltage values by the same operation as in the mp row and are sequentially output to the voltage output wiring 48. In this way, reading of the image data for one imaging frame from the reading target row of the light receiving region 20 is completed.

続いて、時刻t30から時刻t31までの期間、制御部6がリセット制御信号REをハイレベルとする。これにより、N個の積分回路42それぞれにおいて、放電用スイッチ42cが閉状態となる。また、この時刻t30から時刻t31までの期間内に、制御部6は、非読出対象行である第1行から第(mp−1)行のうち、偶数番目の行すなわち第2行選択制御信号VS、第4行選択制御信号VS、・・・、第(mp−1)行選択制御信号VSmp−1を逐次にハイレベルとする。これにより、(mp−1)行の非読出対象行のうち偶数番目の行において、逐次にフォトダイオード22がリセットされる。その後、上述した時刻t21から時刻t29までの動作を再び繰り返す。こうして、受光領域20の読出対象行からの次の1フレーム分の画像データの読み出しが完了する。 Then, the period from time t 30 to time t 31, the control unit 6 to a reset control signal RE at a high level. As a result, the discharge switch 42c is closed in each of the N integrating circuits 42. Further, within the period from time t 30 to time t 31 , the control unit 6 selects an even-numbered row, that is, a second row among the first to (mp−1) th rows which are non-read target rows. The control signal VS 2 , the fourth row selection control signal VS 4 ,..., The (mp−1) th row selection control signal VS mp−1 are sequentially set to the high level. As a result, the photodiodes 22 are sequentially reset in even-numbered rows among the (mp−1) rows that are not to be read. Then again repeats the operation from the time t 21 as described above until time t 29. Thus, reading of the image data for the next one frame from the reading target row in the light receiving area 20 is completed.

以下、本実施形態に係る固体撮像素子の制御方法によって得られる効果について説明する。撮像領域を部分的に読み出す場合、電荷が読み出されない領域(非読出対象行)では、フォトダイオードに電荷が蓄積され続け、オーバーフローが生じる。オーバーフローが生じると、溢れた電荷が周辺画素に侵入し、周辺画素の撮像データに影響を及ぼしてしまう。ここで、図8は、オーバーフローの様子を説明するための図である。図8(a)は、トランジスタ21を含む切断面により切断された、受光領域20の断面を示す模式図である。また、図8(b)は、トランジスタ21を含まない切断面により切断された、受光領域20の断面を示す模式図である。フォトダイオード22に電荷が過度に蓄積すると、その電荷によってフォトダイオード22のn型半導体層22aの電位が低下する。そして、n型半導体層22aの電位の低下が限度を越えると、トランジスタ21のゲート電極21eに電界が印加されていなくても、ソース領域21bとドレイン領域21cとの電位差によって、非接続状態を維持できずにチャネル領域21aを電荷が移動してしまう(図8(a)に示される矢印E1)。そして、このような電荷の移動によって、読出用配線Rへのオーバーフローが生じることとなる。また、図8(b)に示されるように、フォトダイオード22のうちトランジスタ21に接していない部分では、n型半導体層22aが周囲のフォトダイオード22から独立して存在していることから、隣り合うフォトダイオード22へ電荷が移動することはない。しかし、フォトダイオード22にバイアス電圧を印加する為に、p型半導体層22cは、透明な基準電位線(GND線)23に接続される。したがって、フォトダイオード22において電荷が過剰に蓄積されると、p型半導体層22cを介して基準電位線23の電位が局所的に変動してしまうと考えられる。なお、基準電位線23が有意の抵抗値を有することから、このような電位変動は当該画素の近傍にのみ生じるものと考えられる。 Hereinafter, effects obtained by the control method of the solid-state imaging device according to the present embodiment will be described. When the imaging region is partially read, in the region where the charge is not read (non-read target row), the charge continues to be accumulated in the photodiode, and overflow occurs. When the overflow occurs, the overflowed charge enters the surrounding pixels and affects the image data of the surrounding pixels. Here, FIG. 8 is a diagram for explaining a state of overflow. FIG. 8A is a schematic diagram showing a cross section of the light receiving region 20 cut by a cut surface including the transistor 21. FIG. 8B is a schematic diagram showing a cross section of the light receiving region 20 cut by a cut surface that does not include the transistor 21. When charge is excessively accumulated in the photodiode 22, the potential of the n-type semiconductor layer 22 a of the photodiode 22 decreases due to the charge. When the decrease in the potential of the n-type semiconductor layer 22a exceeds the limit, even if no electric field is applied to the gate electrode 21e of the transistor 21, the non-connected state is maintained due to the potential difference between the source region 21b and the drain region 21c. The charge moves through the channel region 21a without being possible (arrow E1 shown in FIG. 8A). Then, by the movement of such a charge, so that the overflow of the readout wiring R n occurs. Further, as shown in FIG. 8B, in the portion of the photodiode 22 that is not in contact with the transistor 21, the n-type semiconductor layer 22 a exists independently from the surrounding photodiode 22. The charge does not move to the matching photodiode 22. However, in order to apply a bias voltage to the photodiode 22, the p-type semiconductor layer 22 c is connected to a transparent reference potential line (GND line) 23. Therefore, it is considered that when the charge is excessively accumulated in the photodiode 22, the potential of the reference potential line 23 locally varies through the p-type semiconductor layer 22c. Note that, since the reference potential line 23 has a significant resistance value, it is considered that such potential fluctuation occurs only in the vicinity of the pixel.

上記のようなオーバーフロー等を回避する為に、非読出対象行に含まれるフォトダイオード22の電荷を適宜排出(リセット)する必要が生じる。ここで、図9は、非読出対象行に含まれるフォトダイオード22の電荷をリセットする過程を含む、固体撮像素子の制御方法の一例を示すタイミングチャートである。なお、図9において、(a)〜(n)に示された各信号は、前述した図7と同様である。この例では、制御部6がリセット制御信号REをハイレベルとする時刻t20から時刻t21までの期間内に、非読出対象行である第1行から第(mp−1)行に対応する第1行選択制御信号VS、第2行選択制御信号VS、・・・、第(mp−1)行選択制御信号VSmp−1を逐次にハイレベルとする。これにより、(mp−1)行の非読出対象行の全てにおいて、逐次にフォトダイオード22がリセットされる。その後、図7に示された時刻t22から時刻t29までの動作を同様に行うことにより、受光領域20の読出対象行からの一つの撮像フレーム分の画像データの読み出しを完了する。 In order to avoid the overflow or the like as described above, it is necessary to appropriately discharge (reset) the charges of the photodiodes 22 included in the non-read target row. Here, FIG. 9 is a timing chart showing an example of a control method of the solid-state imaging device including a process of resetting the charges of the photodiodes 22 included in the non-read target row. In FIG. 9, the signals shown in (a) to (n) are the same as those in FIG. In this example, the control unit 6 is within a period from the time t 20 to the reset control signal RE at high level until the time t 21, corresponding to the (mp-1) rows from the first row is a non-read subject line The first row selection control signal VS 1 , the second row selection control signal VS 2 ,..., The (mp−1) th row selection control signal VS mp−1 are sequentially set to the high level. As a result, the photodiodes 22 are sequentially reset in all of the (mp−1) non-read target rows. Thereafter, the operation from time t 22 to time t 29 shown in FIG. 7 is performed in the same manner, thereby completing the reading of the image data for one imaging frame from the reading target row in the light receiving region 20.

固体撮像素子11の制御には、一つの撮像フレームに要する時間(フレームレート)を可能な限り短くすることが要求される。しかしながら、上述した例では、全ての非読出対象行のフォトダイオード22を一つの撮像フレームにおいて順次にリセットしているので、各撮像フレームの所要時間が長くなってしまうという問題がある。特に、受光領域20の面積が大きくなり、受光領域20を構成する画素の個数が多いほど、非読出対象行のフォトダイオード22のリセットに長時間を要し、撮像フレームの所要時間が更に長くなってしまう。   In order to control the solid-state imaging device 11, it is required to shorten the time (frame rate) required for one imaging frame as much as possible. However, in the above-described example, since the photodiodes 22 of all the non-read target rows are sequentially reset in one imaging frame, there is a problem that the time required for each imaging frame becomes long. In particular, as the area of the light receiving region 20 increases and the number of pixels constituting the light receiving region 20 increases, it takes a longer time to reset the photodiodes 22 in the non-read target row, and the time required for the imaging frame further increases. End up.

上述した制御方法が有する課題に対し、本実施形態に係る固体撮像素子の制御方法のうち第2の制御方法(部分読み出しモード)では、2回の撮像フレームのそれぞれにおいて、二以上の非読出対象行(第1行〜第(mp−1)行)のうち一部のみについて排出処理(リセット)を行う。言い換えれば、各撮像フレームにおいて、二以上の非読出対象行のうちに電荷のリセットを行わない行が存在する。具体的には、一の撮像フレームにおいて奇数番目の非読出対象行(第1行、第3行、・・・、第(mp−2)行)に含まれる画素に蓄積された電荷のリセットを行い、次の撮像フレームにおいて偶数番目の非読出対象行(第2行、第4行、・・・、第(mp−1)行)に含まれる画素に蓄積された電荷のリセットを行う。そして、このような動作によって、画素に蓄積された電荷のリセットを、二以上の非読出対象行の各々について2回の撮像フレームの間に一回は必ず行うこととなる。   In the second control method (partial readout mode) among the control methods for the solid-state imaging device according to the present embodiment, two or more non-read targets in each of the two imaging frames in response to the problems of the control method described above. The discharge process (reset) is performed for only a part of the rows (the first row to the (mp-1) th row). In other words, in each imaging frame, there is a row in which charge is not reset among two or more non-read target rows. Specifically, the charge accumulated in the pixels included in the odd-numbered non-read target rows (first row, third row,..., (Mp-2) row) in one imaging frame is reset. In the next imaging frame, the charges accumulated in the pixels included in the even-numbered non-read target rows (second row, fourth row,..., (Mp−1) th row) are reset. With such an operation, the charge accumulated in the pixel is always reset once between two imaging frames for each of two or more non-read target rows.

発明者の知見によれば、非読出対象行の画素からのオーバーフロー等を防ぐためには、撮像フレーム毎に全ての非読出対象行の画素をリセットすることは必ずしも必要ではない。そこで、本実施形態に係る制御方法のように、2回の撮像フレームの間に非読出対象行の画素を一回ずつリセットできるように、各撮像フレームにおいて奇数番目及び偶数番目の非読出対象行を交互にリセットすることによって、一つの撮像フレームに要する時間を大幅に抑制することができる。特に、受光領域20の面積が大きくなり、受光領域20を構成する画素P1,1〜PM,Nの個数が多いほど、この効果は顕著となる。 According to the knowledge of the inventor, it is not always necessary to reset all the pixels in the non-read target row for each imaging frame in order to prevent overflow from the pixels in the non-read target row. Therefore, as in the control method according to the present embodiment, the odd-numbered and even-numbered non-reading target rows in each imaging frame are set so that the pixels of the non-reading target row can be reset once every two imaging frames. By alternately resetting, the time required for one imaging frame can be significantly suppressed. In particular, this effect becomes more remarkable as the area of the light receiving region 20 increases and the number of pixels P 1,1 to P M, N constituting the light receiving region 20 increases.

また、本実施形態のように、非読出対象行に含まれる画素に蓄積された電荷のリセットは、逐次に行われることが好ましい。上述したように、本実施形態に係る制御方法によれば、非読出対象行のリセットを逐次に行う場合であっても、一つの撮像フレームに要する時間を抑制できる。そして、非読出対象行のリセットを逐次に行うことによって、配線に流れる電流をより少なくし、電源等の周辺回路への負荷を格段に低減することができる。   Further, as in the present embodiment, it is preferable that the charge accumulated in the pixels included in the non-read target row is reset sequentially. As described above, according to the control method according to the present embodiment, the time required for one imaging frame can be suppressed even when the non-read target row is reset sequentially. Then, by sequentially resetting the non-read target rows, the current flowing through the wiring can be further reduced, and the load on the peripheral circuit such as the power supply can be remarkably reduced.

また、本実施形態では、一つの撮像フレームにおいてリセットされる非読出対象行(第1行、第3行、・・・、及び第(mp−2)行、若しくは第2行、第4行、・・・、及び第(mp−1)行)は、相互の間隔を1行ずつ空けて配置されている。このように、各撮像フレームにおいて、非読出対象行同士の間隔は1行以上あいていることが好ましい。これにより、各撮像フレームにおいてリセットが行われる非読出対象行の位置を分散させることができ、読出対象行(第mp行〜第M行)への電荷のオーバーフローをより効果的に抑制することができる。   Further, in this embodiment, the non-read target rows (first row, third row,..., And (mp-2) rows, or second row, fourth row, which are reset in one imaging frame, ... And (mp-1) line) are arranged with a space between each other. Thus, in each imaging frame, it is preferable that the interval between the non-read target rows is one or more. As a result, the positions of the non-read target rows that are reset in each imaging frame can be dispersed, and the overflow of charges to the read target rows (mp-th to M-th rows) can be more effectively suppressed. it can.

また、本実施形態においては、トランジスタ21のチャネル領域21a、ソース領域21b、及びドレイン領域21cが、多結晶シリコンからなる。近年、例えば医療用途(歯科のX線撮影など)に用いられる2次元フラットパネルイメージセンサといった固体撮像素子には、より広い受光面が求められている。しかし、従前の固体撮像素子のように単結晶シリコンウェハ上に受光部を作製したのでは、最大のものでも直径12インチという単結晶シリコンウェハの大きさに起因して、固体撮像素子の受光面の広さが制限されてしまう。これに対し、例えばガラス基板といった絶縁基板上に多結晶シリコンを成膜し、この多結晶シリコンの表面にフォトダイオードや他のトランジスタ等の電子部品を形成することにより、単結晶シリコンウェハを用いて形成される従来の固体撮像素子と比較して受光面を格段に広くすることが可能となる。   In the present embodiment, the channel region 21a, the source region 21b, and the drain region 21c of the transistor 21 are made of polycrystalline silicon. In recent years, a wider light-receiving surface is required for a solid-state imaging device such as a two-dimensional flat panel image sensor used for medical purposes (such as dental X-ray imaging). However, when the light-receiving portion is formed on the single crystal silicon wafer as in the conventional solid-state image sensor, the light-receiving surface of the solid-state image sensor is caused by the size of the single crystal silicon wafer having a diameter of 12 inches at the maximum. Will be limited. In contrast, a polycrystalline silicon film is formed on an insulating substrate such as a glass substrate, and an electronic component such as a photodiode or other transistor is formed on the surface of the polycrystalline silicon, thereby using a single crystal silicon wafer. Compared with the conventional solid-state imaging device to be formed, the light receiving surface can be remarkably widened.

なお、本実施形態において、トランジスタ21のチャネル領域21a、ソース領域21b、及びドレイン領域21cは、アモルファスシリコンからなってもよく、多結晶シリコン及びアモルファスシリコンの双方からなってもよい。この場合においても、上述した効果を好適に得ることができる。   In the present embodiment, the channel region 21a, the source region 21b, and the drain region 21c of the transistor 21 may be made of amorphous silicon, or may be made of both polycrystalline silicon and amorphous silicon. Even in this case, the above-described effects can be preferably obtained.

但し、フレームレートが速い場合、アモルファスシリコンからなるトランジスタ21では、非接続状態とした際に過渡的に電荷がトラップされてしまうという問題がある(いわゆるメモリ効果)。アモルファスシリコンは非晶質であるため、FETのチャネルに電荷をトラップする順位の密度が高くなるからである。これに対し、多結晶シリコン(特に、低温多結晶シリコン)はトラップ順位の密度が低いので、トランジスタ21を多結晶シリコンによって構成することにより、このようなメモリ効果の発生を抑えることが可能となる。   However, when the frame rate is high, the transistor 21 made of amorphous silicon has a problem that charges are trapped transiently when the transistor 21 is disconnected (so-called memory effect). This is because amorphous silicon is amorphous, so that the density of the order of trapping charges in the channel of the FET increases. On the other hand, since polycrystalline silicon (particularly, low-temperature polycrystalline silicon) has a low trap order density, it is possible to suppress the occurrence of such a memory effect by configuring the transistor 21 with polycrystalline silicon. .

(第2の実施の形態)
続いて、本発明に係る固体撮像素子の制御方法に関する第2実施形態について説明する。なお、本実施形態において、第1の制御方法(通常読み出しモード)は前述した第1実施形態と同様なので、その説明を省略する。
(Second Embodiment)
Next, a second embodiment relating to a method for controlling a solid-state imaging device according to the present invention will be described. In the present embodiment, the first control method (normal read mode) is the same as that in the first embodiment described above, and the description thereof is omitted.

<第2の制御方法(部分読み出しモード)>
図10は、第2実施形態に係る固体撮像素子の制御方法において固体撮像素子11に付与される各信号のタイミングチャートであって、受光領域20のうち一部の領域(関心領域)の画素のみから電荷を読み出すモード(部分読み出しモード)を示している。図10の(a)〜(n)には、第1実施形態の図7の(a)〜(n)に相当する各信号が示されている。
<Second Control Method (Partial Reading Mode)>
FIG. 10 is a timing chart of each signal given to the solid-state image sensor 11 in the control method of the solid-state image sensor according to the second embodiment, and only pixels in a part of the light receiving region 20 (region of interest). 3 shows a mode (partial read mode) in which charges are read out from. 10A to 10N show signals corresponding to FIGS. 7A to 7N of the first embodiment.

本実施形態に係る第2の制御方法(部分読み出しモード)においても、第1実施形態と同様に、受光領域20の画素P1,1〜PM,Nのうち一部の画素、すなわち読出対象行である第mp行から第M行に含まれる画素Pmp,1〜PM,Nに蓄積された電荷を読み出し、非読出対象行である残りの第1行ないし第(mp−1)行に含まれる画素P1,1〜Pmp−1,Nに蓄積された電荷については排出処理(リセット)を行う。 Also in the second control method (partial readout mode) according to the present embodiment, as in the first embodiment , some of the pixels P 1,1 to P M, N of the light receiving region 20, that is, the readout target. The charges accumulated in the pixels Pmp, 1 to PM , N included in the Mth row are read from the mpth row, and the remaining first to (mp-1) th rows which are non-reading rows The charge accumulated in the pixels P 1,1 to P mp−1, N included in is discharged (reset).

まず、第1実施形態と同様にして、時刻t20から時刻t21までの期間、制御部6がリセット制御信号REをハイレベルとする。これにより、N個の積分回路42それぞれにおいて、放電用スイッチ42cが閉状態となる。そして、この時刻t20から時刻t21までの期間内、制御部6が、非読出対象行である第1行ないし第(mp−1)行のうち、奇数番目の行すなわち第1行選択制御信号VS、第3行選択制御信号VS、・・・、第(mp−2)行選択制御信号VSmp−2をハイレベルとする。但し、本実施形態では、これらの行選択制御信号VS、VS、・・・、VSmp−2をハイレベルとするタイミングが第1実施形態と異なる。第1実施形態ではこれらの行選択制御信号VS、VS、・・・、VSmp−2を逐次にハイレベルとしていたが、本実施形態では、これらの行選択制御信号VS、VS、・・・、VSmp−2を同時にハイレベルとする。 First, as in the first embodiment, the period from time t 20 to the time t 21, the control unit 6 to a reset control signal RE at a high level. As a result, the discharge switch 42c is closed in each of the N integrating circuits 42. Then, during the period from time t 20 to time t 21 , the control unit 6 performs odd-numbered row, that is, first row selection control among the first to (mp−1) th rows that are non-read target rows. The signal VS 1 , the third row selection control signal VS 3 ,..., The (mp-2) th row selection control signal VS mp-2 are set to the high level. However, in this embodiment, the timing at which these row selection control signals VS 1 , VS 3 ,..., VS mp-2 are set to the high level is different from that in the first embodiment. In the first embodiment, these row selection control signals VS 1 , VS 3 ,..., VS mp-2 are sequentially set to the high level. However, in this embodiment, these row selection control signals VS 1 , VS 3 are set. ... VS mp-2 is simultaneously set to the high level.

これにより、(mp−1)行の非読出対象行のうち奇数番目の行において同時に次の動作が行われる。すなわち、これらの行に含まれる各画素においてトランジスタ21が一斉に接続状態となり、フォトダイオード22に蓄積された電荷が読出用配線R〜Rを通って積分回路42に出力される。この間、積分回路42の放電用スイッチ42cが常に閉状態なので、積分回路42に達した電荷は基準電位線(GND線)へ排出される。このような動作により、(mp−1)行の非読出対象行のうち奇数番目の行に含まれる画素のフォトダイオード22がリセットされる。 As a result, the next operation is simultaneously performed in odd-numbered rows among the non-read target rows of (mp−1) rows. That is, the transistor 21 in each pixel included in these lines are simultaneously becomes the connected state, the electric charge accumulated in the photodiode 22 is output to the integrating circuit 42 through the readout wiring line R 1 to R N. During this time, since the discharging switch 42c of the integrating circuit 42 is always closed, the charge reaching the integrating circuit 42 is discharged to the reference potential line (GND line). By such an operation, the photodiodes 22 of the pixels included in the odd-numbered rows among the (mp−1) rows not to be read are reset.

続いて、時刻t21より後の時刻t22から時刻t29までの期間、第1実施形態と同様の制御方法によって、受光領域20の読出対象行(第mp行ないし第M行)からの一つの撮像フレーム分の画像データの読み出しを行う。 Subsequently, during a period from time t 22 to time t 29 after time t 21 , one read from the read target row (mpth to Mth rows) of the light receiving region 20 is performed by the same control method as in the first embodiment. Image data for one imaging frame is read out.

続いて、時刻t30から時刻t31までの期間、制御部6がリセット制御信号REをハイレベルとする。これにより、N個の積分回路42それぞれにおいて、放電用スイッチ42cが閉状態となる。そして、この時刻t30から時刻t31までの期間内、制御部6は、非読出対象行である第1行ないし第(mp−1)行のうち、偶数番目の行すなわち第2行選択制御信号VS、第4行選択制御信号VS、・・・、第(mp−1)行選択制御信号VSmp−1をハイレベルとする。このとき、先の撮像フレームと同様に、これらの行選択制御信号VS、VS、・・・、VSmp−2を同時にハイレベルとする。これにより、(mp−1)行の非読出対象行のうち偶数番目の行において、フォトダイオード22が同時にリセットされる。その後、上述した時刻t21から時刻t29までの動作を再び繰り返す。こうして、受光領域20の読出対象行からの次の撮像フレームの画像データの読み出しが完了する。 Then, the period from time t 30 to time t 31, the control unit 6 to a reset control signal RE at a high level. As a result, the discharge switch 42c is closed in each of the N integrating circuits 42. During the period from time t 30 to time t 31 , the control unit 6 controls even-numbered rows, that is, second row selection control among the first to (mp−1) th rows which are non-read target rows. The signal VS 2 , the fourth row selection control signal VS 4 ,..., The (mp−1) th row selection control signal VS mp−1 are set to the high level. At this time, like the previous imaging frame, these row selection control signals VS 1 , VS 3 ,..., VS mp-2 are simultaneously set to the high level. As a result, the photodiodes 22 are simultaneously reset in the even-numbered rows of the (mp−1) rows not to be read. Then again repeats the operation from the time t 21 as described above until time t 29. Thus, the reading of the image data of the next imaging frame from the reading target row of the light receiving region 20 is completed.

以下、本実施形態に係る固体撮像素子の制御方法によって得られる効果について、比較例を示しつつ説明する。図11は、固体撮像素子の制御方法の一比較例を示すタイミングチャートである。図11に示されるように、この比較例では、制御部6がリセット制御信号REをハイレベルとする時刻t20から時刻t21までの期間内に、非読出対象行である第1行ないし第(mp−1)行に対応する第1行選択制御信号VS、第2行選択制御信号VS、・・・、第(mp−1)行選択制御信号VSmp−1を同時にハイレベルとする。これにより、全ての非読出対象行において、フォトダイオード22が同時にリセットされる。その後、図10に示された時刻t22から時刻t29までの動作を同様に行うことにより、受光領域20の読出対象行からの一つの撮像フレーム分の画像データの読み出しを完了する。 Hereinafter, effects obtained by the method for controlling the solid-state imaging device according to the present embodiment will be described with reference to comparative examples. FIG. 11 is a timing chart illustrating a comparative example of a method for controlling the solid-state imaging device. As shown in FIG. 11, in this comparative example, the first to thirty-second rows that are non-read target rows within a period from time t 20 to time t 21 when the control unit 6 sets the reset control signal RE to the high level. The first row selection control signal VS 1 , second row selection control signal VS 2 ,..., (Mp−1) row selection control signal VS mp-1 corresponding to the (mp−1) row are simultaneously set to the high level. To do. As a result, the photodiodes 22 are simultaneously reset in all the non-read target rows. Thereafter, by performing similar operations from the time t 22 shown in FIG. 10 to time t 29, completing the reading of one image data of the image pickup frame from the read subject line of the light receiving region 20.

しかしながら、上述した比較例では、全ての非読出対象行のフォトダイオード22を一つの撮像フレームにおいて同時にリセットするので、リセットされた瞬間、フォトダイオード22に接続された配線に大きな電流が流れる。従って、配線や電源等の周辺回路への負荷が大きくなってしまう。   However, in the above-described comparative example, the photodiodes 22 of all the non-reading target rows are simultaneously reset in one imaging frame, so that a large current flows through the wiring connected to the photodiodes 22 at the moment of reset. Therefore, the load on peripheral circuits such as wiring and power supply becomes large.

具体的に説明すると、全ての非読出対象行に対応する行選択制御信号VSないしVSmp−1が垂直シフトレジスタ部30から一斉に出力されるので、電源の電流供給能力が十分ではない場合には、行選択制御信号VSないしVSmp−1の立ち上がり時間が長くなってしまう。また、垂直シフトレジスタ部30の内部には電源電流を受けるための配線が存在するが、行選択制御信号VSないしVSmp−1を生成するための電源電流がこの配線に一度に流れることとなり、該配線における電圧降下が大きくなることによって行選択制御信号VSないしVSmp−1の立ち上がり時間が更に長くなってしまう。 More specifically, since the row selection control signals VS 1 to VS mp-1 corresponding to all the non-reading target rows are output simultaneously from the vertical shift register unit 30, the current supply capability of the power supply is not sufficient. The rise time of the row selection control signals VS 1 to VS mp-1 becomes long. Further, the inside of the vertical shift register section 30 there are lines for receiving a power supply current, but the power supply current for to no row selection control signal VS 1 generates a VS mp-1 becomes to flow at a time to the wire As the voltage drop in the wiring increases, the rise time of the row selection control signals VS 1 to VS mp−1 becomes further longer.

また、全ての非読出対象行のフォトダイオード22に蓄積されていた電荷が各読出用配線R〜Rに対して一斉に出力されるので、読出用配線R〜Rにおける電圧降下が大きくなることによってフォトダイオード22の素早いリセットが妨げられてしまう。更に、積分回路42に対して、電源は、全ての非読出対象行から一斉に出力された電荷をリセットするための電流を供給しなければならないので、電源の電流供給能力が低い場合、積分回路42のリセット動作に要する時間が長くなってしまう。或いは、積分回路42の動作が不安定になるおそれもある。また、積分回路42の出力インピーダンスが高い場合にも、積分回路42のリセット動作に要する時間が長くなってしまう。 Moreover, since all the charge accumulated in the photodiode 22 of the non-read target row are output simultaneously to each of the readout wiring R 1 to R N, a voltage drop in the readout wiring R 1 to R N The large increase prevents the photodiode 22 from being quickly reset. Furthermore, since the power supply must supply a current for resetting the charges simultaneously output from all the non-reading target rows to the integration circuit 42, the integration circuit has a low current supply capability. The time required for the reset operation 42 becomes long. Alternatively, the operation of the integrating circuit 42 may become unstable. Even when the output impedance of the integrating circuit 42 is high, the time required for the resetting operation of the integrating circuit 42 becomes long.

そして、全ての非読出対象行のフォトダイオード22を同時にリセットすることに起因するこれらの現象を回避するためには、十分な容量を有する電源回路と、出力インピーダンスが十分に小さい積分回路42とが必要になり、製造コストが増加する一因となる。   In order to avoid these phenomena caused by simultaneously resetting the photodiodes 22 of all the non-read target rows, a power supply circuit having a sufficient capacity and an integration circuit 42 having a sufficiently small output impedance are provided. This is necessary and contributes to an increase in manufacturing cost.

上記のような比較例が有する課題に対し、本実施形態に係る固体撮像素子の制御方法のうち第2の制御方法(部分読み出しモード)では、前述した第1実施形態と同様に、二以上の非読出対象行(第1行〜第(mp−1)行)の各々について2回の撮像フレームの間に一回の排出処理(リセット)を確保しつつ、各撮像フレームにおいて、一部の非読出対象行のみに含まれる画素に蓄積された電荷のリセットを行う。言い換えれば、各撮像フレームにおいて、二以上の非読出対象行のうちに電荷のリセットを行わない行が存在する。これにより、垂直シフトレジスタ部30の内部や読出用配線R〜Rに流れる電流を少なくして、電源等の周辺回路への負荷を低減することができる。 In the second control method (partial readout mode) among the control methods of the solid-state imaging device according to the present embodiment, the two or more similar to the first embodiment described above, with respect to the problems of the comparative example as described above. For each of the non-reading rows (the first row to the (mp-1) th row), one non-removal process (reset) is ensured between two imaging frames, and a part of The charge accumulated in the pixels included only in the read target row is reset. In other words, in each imaging frame, there is a row in which charge is not reset among two or more non-read target rows. As a result, the current flowing through the vertical shift register unit 30 and the readout wirings R 1 to R N can be reduced, and the load on the peripheral circuits such as the power supply can be reduced.

また、本実施形態のように、非読出対象行に含まれる画素に蓄積された電荷のリセットは、同時に行われてもよい。上述したように、本実施形態に係る制御方法によれば、非読出対象行のリセットを同時に行う場合であっても、周辺回路への負荷を低減することができる。そして、非読出対象行のリセットを同時に行うことによって、各撮像フレームの所要時間をより短くすることができる。   Further, as in the present embodiment, the charges accumulated in the pixels included in the non-read target row may be reset at the same time. As described above, according to the control method according to the present embodiment, it is possible to reduce the load on the peripheral circuits even when the non-read target rows are reset simultaneously. The time required for each imaging frame can be further shortened by simultaneously resetting the non-read target rows.

また、本実施形態では、第1実施形態と同様に、一つの撮像フレームにおいてリセットされる非読出対象行(第1行、第3行、・・・、及び第(mp−2)行、若しくは第2行、第4行、・・・、及び第(mp−1)行)は、相互の間隔を1行ずつ空けて配置されている。このように、各撮像フレームにおいて、非読出対象行同士の間隔は1行以上あいていることが好ましい。これにより、各撮像フレームにおいてリセットが行われる非読出対象行の位置を分散させることができ、読出対象行(第mp行〜第M行)への電荷のオーバーフローをより効果的に抑制することができる。   Further, in this embodiment, as in the first embodiment, the non-read target rows (first row, third row,..., And (mp-2) rows that are reset in one imaging frame, or The second row, the fourth row,..., And the (mp-1) th row) are arranged with a space between each other. Thus, in each imaging frame, it is preferable that the interval between the non-read target rows is one or more. As a result, the positions of the non-read target rows that are reset in each imaging frame can be dispersed, and the overflow of charges to the read target rows (mp-th to M-th rows) can be more effectively suppressed. it can.

(変形例)
上述した各実施形態では、2回の撮像フレームの間に非読出対象行の画素を一回ずつリセットできるように、各撮像フレームにおいて奇数番目及び偶数番目の非読出対象行を交互にリセットする場合を例示した。図12は、このような制御方法における非読出対象行のリセットの様子を模式的に示す図である。図12(a)〜(d)それぞれは、4つの連続する撮像フレームそれぞれを示しており、各図には、一又は二以上の読出対象行からなる関心領域A1と、二以上の非読出対象行からなる非関心領域A2と、各撮像フレームにおいてリセット対象となる非読出対象行A3とが示されている。図12に示されるように、上述した各実施形態では、第1撮像フレーム(図12(a))及び第3撮像フレーム(図12(c))において奇数番目の非読出対象行A3がリセットされ、第2撮像フレーム(図12(b))及び第4撮像フレーム(図12(d))において偶数番目の非読出対象行A3がリセットされる。
(Modification)
In each of the embodiments described above, the odd-numbered and even-numbered non-reading target rows are alternately reset in each imaging frame so that the pixels of the non-reading target row can be reset once every two imaging frames. Was illustrated. FIG. 12 is a diagram schematically showing how the non-read target row is reset in such a control method. Each of FIGS. 12A to 12D shows four consecutive imaging frames, and each figure shows a region of interest A1 composed of one or more reading target rows and two or more non-reading targets. A non-interest area A2 composed of rows and a non-read target row A3 to be reset in each imaging frame are shown. As shown in FIG. 12, in each of the above-described embodiments, the odd-numbered non-read target row A3 is reset in the first imaging frame (FIG. 12A) and the third imaging frame (FIG. 12C). The even-numbered non-read target row A3 is reset in the second imaging frame (FIG. 12B) and the fourth imaging frame (FIG. 12D).

しかしながら、本発明による固体撮像素子の制御方法において、各撮像フレームにおけるリセット対象行の配列はこれに限られるものではない。図13は、各撮像フレームにおけるリセット対象行の配列の第2の例を示す模式図である。図13に示される例では、非関心領域A2に含まれる複数の行を4行ずつの行群に分け、各行群毎に一フレーム当たり1行ずつ、逐次にリセットを行う。また、図14は、各撮像フレームにおけるリセット対象行の配列の第3の例を示す模式図である。図14に示される例では、非関心領域A2に含まれる複数の行を3行ずつの行群に分け、一フレーム当たり一つの行群を逐次にリセットする。例えばこれらのようにリセット対象行を配列した場合においても、上述した各実施形態と同様の効果を好適に得ることができる。   However, in the solid-state imaging device control method according to the present invention, the arrangement of the reset target rows in each imaging frame is not limited to this. FIG. 13 is a schematic diagram illustrating a second example of the array of reset target rows in each imaging frame. In the example shown in FIG. 13, a plurality of rows included in the non-interest area A2 are divided into four row groups, and one row per frame is sequentially reset for each row group. FIG. 14 is a schematic diagram illustrating a third example of an array of reset target rows in each imaging frame. In the example shown in FIG. 14, a plurality of rows included in the non-interest area A2 are divided into three row groups, and one row group is sequentially reset per frame. For example, even when the reset target rows are arranged as described above, it is possible to preferably obtain the same effects as those of the above-described embodiments.

また、図15は、各撮像フレームにおけるリセット対象行の配列の第4の例を示す模式図である。図15に示される例では、非関心領域A2に含まれる複数の行を4つの行群A21〜A24に分けている。なお、この例では、行群A21は1つの非読出対象行からなり、行群A22は2つの非読出対象行からなり、行群A23は4つの非読出対象行からなり、行群A24は8つの非読出対象行からなるものとする。そして、関心領域A1に隣接する行群A21では、撮像フレーム毎に、全ての非読出対象行A3についてリセットを行う。すなわち、行群A21では、4つの撮像フレームの間に各非読出対象行のリセットが4回ずつ行われる。また、関心領域A1に近い行群A22では、第1撮像フレーム(図15(a))及び第3撮像フレーム(図15(c))において一つの非読出対象行A3をリセットし、第2撮像フレーム(図15(b))及び第4撮像フレーム(図15(d))において他の一つの非読出対象行A3をリセットする。すなわち、行群A22では、4つの撮像フレームの間に各非読出対象行のリセットが2回ずつ行われる。また、関心領域A1からやや離れた行群A23では、第1撮像フレーム(図15(a))ないし第4撮像フレーム(図15(d))のそれぞれにおいて、一つの非読出対象行A3をリセットする。すなわち、行群A23では、4つの撮像フレームの間に各非読出対象行のリセットが1回ずつ行われる。また、関心領域A1から最も離れた行群A24では、第1撮像フレーム(図15(a))ないし第8撮像フレーム(不図示)のそれぞれにおいて、一つの非読出対象行A3をリセットする。すなわち、行群A24では、8つの撮像フレームの間に各非読出対象行のリセットが1回ずつ行われる。   FIG. 15 is a schematic diagram illustrating a fourth example of an array of reset target rows in each imaging frame. In the example shown in FIG. 15, a plurality of rows included in the non-interest area A2 are divided into four row groups A21 to A24. In this example, the row group A21 includes one non-read target row, the row group A22 includes two non-read target rows, the row group A23 includes four non-read target rows, and the row group A24 includes eight non-read target rows. Assume that it consists of two non-read target rows. Then, in the row group A21 adjacent to the region of interest A1, all the non-read target rows A3 are reset for each imaging frame. That is, in the row group A21, each non-read target row is reset four times during the four imaging frames. In the row group A22 close to the region of interest A1, one non-read target row A3 is reset in the first imaging frame (FIG. 15A) and the third imaging frame (FIG. 15C), and the second imaging is performed. In the frame (FIG. 15B) and the fourth imaging frame (FIG. 15D), the other non-read target row A3 is reset. That is, in the row group A22, each non-read target row is reset twice during four imaging frames. Further, in the row group A23 slightly separated from the region of interest A1, one non-read target row A3 is reset in each of the first imaging frame (FIG. 15 (a)) to the fourth imaging frame (FIG. 15 (d)). To do. That is, in the row group A23, each non-read target row is reset once during four imaging frames. In the row group A24 farthest from the region of interest A1, one non-read target row A3 is reset in each of the first imaging frame (FIG. 15A) to the eighth imaging frame (not shown). That is, in the row group A24, each non-read target row is reset once during eight imaging frames.

図16は、図15に示されたリセット対象行の配列を実現するための制御方法を示すタイミングチャートである。図16は、非読出対象行(第1行ないし第15行)それぞれに対するリセット動作を示しており、各撮像フレーム(図には第1撮像フレームから第24撮像フレームまで表示)毎に、リセットが行われる撮像フレームではハイレベルとして示し、リセットが行われない撮像フレームではローレベルとして示している。   FIG. 16 is a timing chart showing a control method for realizing the arrangement of the reset target rows shown in FIG. FIG. 16 shows a reset operation for each non-read target row (first to fifteenth rows), and reset is performed for each imaging frame (displayed from the first imaging frame to the 24th imaging frame in the figure). An imaging frame that is performed is shown as a high level, and an imaging frame that is not reset is shown as a low level.

図15及び図16に示された例のように、関心領域A1に隣接する行群A21のリセットの頻度は、他の行群のリセットの頻度より多いことが好ましい。或いは、関心領域A1に近づくほど非読出対象行のリセットの頻度が多く、関心領域A1から離れるほど非読出対象行のリセットの頻度が少ないことが好ましい。これにより、非読出対象行における電荷のオーバーフロー等による読出対象行(関心領域A1)への影響をより効果的に抑制し、読出対象行(関心領域A1)の各画素に蓄積された電荷を更に精度良く読み出すことができる。   As in the example shown in FIGS. 15 and 16, it is preferable that the frequency of resetting the row group A21 adjacent to the region of interest A1 is higher than the frequency of resetting the other row groups. Alternatively, it is preferable that the non-read target row is reset more frequently as the region of interest A1 is closer and the non-read target row is reset less as the region of interest A1 is further away. This more effectively suppresses the influence on the readout target row (region of interest A1) due to charge overflow in the non-readout subject row, and further increases the charge accumulated in each pixel of the readout target row (region of interest A1). It can be read with high accuracy.

図17は、各撮像フレームにおけるリセット対象行の配列の第5の例を示す模式図である。図17に示される例では、非関心領域A2に含まれる複数の行を4つの行群A21〜A23及びA25に分けている。なお、この例では、行群A21は1つの非読出対象行からなり、行群A22は2つの非読出対象行からなり、行群A23は4つの非読出対象行からなり、行群A25は8つの非読出対象行からなるものとする。そして、行群A21〜A23では、前述した第4の例と同様にして、各非読出対象行のリセットが行われる。一方、行群A25では、リセットが全く行われない。   FIG. 17 is a schematic diagram illustrating a fifth example of an array of rows to be reset in each imaging frame. In the example shown in FIG. 17, a plurality of rows included in the non-interest area A2 are divided into four row groups A21 to A23 and A25. In this example, the row group A21 includes one non-read target row, the row group A22 includes two non-read target rows, the row group A23 includes four non-read target rows, and the row group A25 includes eight rows. Assume that it consists of two non-read target rows. In the row groups A21 to A23, the non-read target rows are reset in the same manner as in the fourth example described above. On the other hand, no reset is performed in the row group A25.

図18は、図17に示されたリセット対象行の配列を実現するための制御方法を示すタイミングチャートである。図18は、非読出対象行(第1行ないし第15行)それぞれに対するリセット動作を示しており、各撮像フレーム(図には第1撮像フレームから第24撮像フレームまで表示)毎に、リセットが行われる撮像フレームではハイレベルとして示し、リセットが行われない撮像フレームではローレベルとして示している。   FIG. 18 is a timing chart showing a control method for realizing the array of reset target rows shown in FIG. FIG. 18 shows the reset operation for each non-read target row (first to fifteenth rows), and reset is performed for each imaging frame (displayed from the first imaging frame to the 24th imaging frame in the figure). An imaging frame that is performed is shown as a high level, and an imaging frame that is not reset is shown as a low level.

図17及び図18に示された例のように、各撮像フレームにおいて、非読出対象行のうち二以上の行(この例では第9行ないし第15行)を除く他の行(この例では第1行ないし第8行)のリセットを行わないことも想定される。このように、本発明による固体撮像素子の制御方法では、非読出対象行の全てについてリセットを行うことは必須ではなく、非読出対象行のうちリセット対象である二以上の行を除く他の行について、リセットが行われない形態も考えられる。また、このような場合、この第5の例のように、リセットを行わない行群は関心領域A1から最も離れた行群A25であることが好ましい。そして、関心領域A1に近い行群ほど非読出対象行のリセットの頻度が多く、関心領域A1から離れた行群ほど非読出対象行のリセットの頻度が少ないことが尚好ましい。これにより、非読出対象行における電荷のオーバーフロー等による読出対象行(関心領域A1)への影響をより効果的に抑制しつつ、周辺回路への負荷を更に低減することができる。   As in the example shown in FIGS. 17 and 18, in each imaging frame, other rows (in this example, the 9th to 15th rows) other than two or more rows (in this example, the 9th to 15th rows) are excluded (in this example). It is also assumed that the reset of the first line to the eighth line) is not performed. As described above, in the control method of the solid-state imaging device according to the present invention, it is not essential to reset all the non-read target rows, and other rows excluding two or more rows to be reset among the non-read target rows. A mode in which reset is not performed is also conceivable. In such a case, as in the fifth example, it is preferable that the row group not reset is the row group A25 farthest from the region of interest A1. It is more preferable that the row group closer to the region of interest A1 has a higher frequency of resetting the non-read target row and the row group farther from the region of interest A1 has a lower frequency of resetting the non-read target row. As a result, it is possible to further reduce the load on the peripheral circuit while more effectively suppressing the influence on the read target row (region of interest A1) due to the charge overflow in the non-read target row.

本発明による固体撮像素子の制御方法は、上述した各実施形態及び変形例に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態及び各変形例ではガラス基板上に多結晶シリコンやアモルファスシリコンが成膜されて成る固体撮像装置に本発明を適用した例を示したが、本発明は、このような構成に限らず、例えば単結晶シリコン基板上に作製される固体撮像素子に対しても適用可能である。   The method for controlling the solid-state imaging device according to the present invention is not limited to the above-described embodiments and modifications, and various other modifications are possible. For example, in the above-described embodiment and each modification, an example in which the present invention is applied to a solid-state imaging device in which a polycrystalline silicon film or an amorphous silicon film is formed on a glass substrate has been shown, but the present invention has such a configuration. For example, the present invention can be applied to a solid-state imaging device manufactured on a single crystal silicon substrate.

図19は、p型単結晶シリコン基板70上に受光領域が作成された場合における、部分読み出し時のオーバーフローの様子を説明するための図である。p型単結晶シリコン基板70上に作成された受光領域は、図2に示されたフォトダイオード22に代えて、フォトダイオード24を各画素毎に有する。図19(a)は、トランジスタ21を含む切断面にてフォトダイオード24を切断して得られる断面を示す模式図であり、図19(b)は、トランジスタ21を含まない切断面にてフォトダイオード24を切断して得られる断面を示す模式図である。図19(a)及び(b)に示されるように、フォトダイオード24は、p型単結晶シリコン基板70に対するイオン注入等によって形成されたn型半導体領域24aを含む。そして、このn型半導体領域24aは、p型単結晶シリコン基板70に対するイオン注入等によって形成されたp型半導体領域24bによって囲まれている。 FIG. 19 is a diagram for explaining an overflow state at the time of partial reading when a light receiving region is formed on p-type single crystal silicon substrate 70. The light-receiving region created on the p-type single crystal silicon substrate 70 has a photodiode 24 for each pixel instead of the photodiode 22 shown in FIG. FIG. 19A is a schematic view showing a cross section obtained by cutting the photodiode 24 at a cut surface including the transistor 21, and FIG. 19B is a photodiode at the cut surface not including the transistor 21. It is a schematic diagram which shows the cross section obtained by cut | disconnecting 24. FIG. As shown in FIGS. 19A and 19B, the photodiode 24 includes an n + type semiconductor region 24 a formed by ion implantation or the like for the p-type single crystal silicon substrate 70. The n + type semiconductor region 24 a is surrounded by a p + type semiconductor region 24 b formed by ion implantation or the like for the p type single crystal silicon substrate 70.

フォトダイオード24に電荷が過度に蓄積すると、その電荷によってフォトダイオード24のn型半導体領域24aの電位が低下する。そして、n型半導体領域24aの電位の低下が限度を越えると、トランジスタ21のゲート電極21eに電界が印加されていなくても、ソース領域21bとドレイン領域21cとの電位差によって、非接続状態を維持できずにチャネル領域21aを電荷が移動してしまう(図19(a)に示される矢印E2)。そして、このような電荷の移動によって、読出用配線Rへのオーバーフローが生じることとなる。また、図19(b)に示されるように、フォトダイオード24のうちトランジスタ21に接していない部分では、n型半導体領域24aの電位の低下が限度を越えると、p型単結晶シリコン基板70を介して隣接画素のフォトダイオード24へ電荷が移動してしまう(図19(b)に示される矢印E3)。 When charge is excessively accumulated in the photodiode 24, the potential of the n-type semiconductor region 24a of the photodiode 24 decreases due to the charge. When the decrease in the potential of the n-type semiconductor region 24a exceeds the limit, even if no electric field is applied to the gate electrode 21e of the transistor 21, the non-connected state is maintained due to the potential difference between the source region 21b and the drain region 21c. Unable to do so, the charge moves through the channel region 21a (arrow E2 shown in FIG. 19A). Then, by the movement of such a charge, so that the overflow of the readout wiring R n occurs. Further, as shown in FIG. 19B, in the portion of the photodiode 24 that is not in contact with the transistor 21, if the potential drop of the n-type semiconductor region 24a exceeds the limit, the p-type single crystal silicon substrate 70 is formed. As a result, the charge moves to the photodiode 24 of the adjacent pixel (arrow E3 shown in FIG. 19B).

上述したように、単結晶シリコン基板上に作製される固体撮像素子においても、部分読み出し時のオーバーフロー等による問題が生じ得る。本発明に係る制御方法によれば、このような固体撮像素子の部分読み出し動作においても、一つの撮像フレームに要する時間を抑制し、且つ周辺回路への負荷を低減することができる。   As described above, even in a solid-state imaging device manufactured on a single crystal silicon substrate, there may be a problem due to overflow or the like during partial reading. According to the control method of the present invention, it is possible to suppress the time required for one imaging frame and reduce the load on the peripheral circuit even in such partial reading operation of the solid-state imaging device.

また、上述した実施形態及び各変形例では各画素が有するトランジスタ21としてFETを例示したが、トランジスタ21はバイポーラトランジスタであってもよい。その場合、制御端子はベースを、電流端子はコレクタまたはエミッタを意味する。また、上述した実施形態では、非読出対象行について、2回の撮像フレームの間に少なくとも一回の排出処理を行っており、上述した各変形例では、最多で8回の撮像フレームの間に少なくとも一回の排出処理を行っている。しかしながら、排出処理の為の撮像フレーム数はこれらに限られるものではなく、任意のL回(Lは2以上の整数)の撮像フレームの間に少なくとも一回の排出処理を行うことにより、各実施形態において述べた効果を好適に奏することができる。   In the above-described embodiment and each modification, an FET is exemplified as the transistor 21 included in each pixel. However, the transistor 21 may be a bipolar transistor. In that case, the control terminal means the base, and the current terminal means the collector or emitter. In the above-described embodiment, at least one ejection process is performed between two imaging frames for a non-read target row. In each of the above-described modified examples, a maximum of eight imaging frames are used. At least one discharge process is performed. However, the number of imaging frames for the discharging process is not limited to these. Each discharging process is performed by performing at least one discharging process during any L imaging frames (L is an integer of 2 or more). The effects described in the embodiments can be suitably achieved.

なお、本発明の一実施形態に係る固体撮像素子の制御方法は、以下の構成を備えてもよい。すなわち、固体撮像素子の制御方法は、フォトダイオード、及び該フォトダイオードに一端が接続された読出用スイッチを各々含むM×N個(Mは3以上の整数、Nは2以上の整数)の画素がM行N列に2次元配列されて成る受光領域を備える固体撮像素子の制御方法であって、受光領域のうち一部の領域を構成する一又は複数の行(以下、読出対象行という)に含まれる画素に蓄積された電荷を、L回(Lは2以上の整数)の撮像フレームの各々において選択的に読み出すとともに、L回の撮像フレームのそれぞれにおいて、読出対象行を除く他の二以上の行(以下、非読出対象行という)のうち一部の非読出対象行に含まれる画素に蓄積された電荷の排出処理を行い、且つ、二以上の非読出対象行の各々についてL回の撮像フレームの間に少なくとも一回、排出処理を行うことを特徴としてもよい。   In addition, the control method of the solid-state image sensor which concerns on one Embodiment of this invention may be equipped with the following structures. That is, the solid-state imaging device control method includes M × N pixels (M is an integer of 3 or more and N is an integer of 2 or more) each including a photodiode and a readout switch having one end connected to the photodiode. Is a method for controlling a solid-state imaging device having a light receiving region arranged two-dimensionally in M rows and N columns, and one or a plurality of rows (hereinafter referred to as read target rows) constituting a part of the light receiving region Are selectively read out in each of the L imaging frames (L is an integer of 2 or more), and the other two except for the readout target row in each of the L imaging frames. Among the above rows (hereinafter, referred to as non-read target rows), the discharging process of the charges accumulated in the pixels included in some of the non-read target rows is performed, and L times are performed for each of the two or more non-read target rows. Between imaging frames At least once, it may be characterized by performing the ejection processing.

上述した固体撮像素子の制御方法では、受光領域のうち一部の領域(前述した関心領域に相当)を構成する読出対象行に含まれる画素に蓄積された電荷を、L回の撮像フレームの各々において選択的に読み出す、いわゆる部分読み出し動作を行う。更に、この制御方法では、L回の撮像フレームのそれぞれにおいて、二以上の非読出対象行(前述した非関心領域に相当)のうち一部に含まれる画素に蓄積された電荷の排出処理(リセット)を行う。且つ、この排出処理(リセット)を、二以上の非読出対象行の各々について、L回の撮像フレームの間に少なくとも一回行う。   In the control method of the solid-state imaging device described above, the charges accumulated in the pixels included in the read target row that constitutes a part of the light receiving region (corresponding to the region of interest described above) are stored in each of the L imaging frames. A so-called partial read operation is carried out selectively. Further, in this control method, in each of the L imaging frames, the discharge process (reset) of charges accumulated in pixels included in a part of two or more non-read target rows (corresponding to the above-described non-interesting region). )I do. In addition, this discharge process (reset) is performed at least once during L imaging frames for each of two or more non-read target rows.

すなわち、上述した制御方法では、各撮像フレームにおいて二以上の非読出対象行の全てをリセットするのではなく、その一部のみをリセットしている。従って、各撮像フレームにおいて複数の非読出対象行を順次にリセットする場合にあっては、この制御方法によって一つの撮像フレームに要する時間を抑制できる。特に、受光領域の面積が大きくなり、受光領域を構成する画素の個数が多いほど、この効果は顕著となる。また、各撮像フレームにおいて、複数の非読出対象行を同時にリセットする場合にあっては、フォトダイオードに接続された配線に流れる電流を少なくし、電源等の周辺回路への負荷を低減することができる。   That is, in the control method described above, not all of the two or more non-read target rows are reset in each imaging frame, but only a part thereof is reset. Therefore, when a plurality of non-read target rows are sequentially reset in each imaging frame, the time required for one imaging frame can be suppressed by this control method. In particular, this effect becomes more remarkable as the area of the light receiving region increases and the number of pixels constituting the light receiving region increases. Also, in each imaging frame, when simultaneously resetting a plurality of non-reading target rows, it is possible to reduce the current flowing in the wiring connected to the photodiode and reduce the load on the peripheral circuit such as the power supply. it can.

また、固体撮像素子の制御方法は、一部の非読出対象行が複数行存在しており、L回の撮像フレームのそれぞれにおいて、一部の非読出対象行に含まれる画素に蓄積された電荷の排出処理を同時に行うことを特徴としてもよい。上述したように、本発明に係る固体撮像素子の制御方法によれば、複数の非読出対象行の排出処理(リセット)を同時に行う場合であっても、配線に流れる電流を少なくして電源等の周辺回路への負荷を低減することができる。そして、このように複数の非読出対象行の排出処理(リセット)を同時に行うことによって、各撮像フレームの所要時間をより短くすることができる。   Further, according to the method for controlling the solid-state imaging device, there are a plurality of non-reading target rows, and the charge accumulated in the pixels included in the non-reading target rows in each of the L imaging frames. The discharge processing may be performed simultaneously. As described above, according to the control method of the solid-state imaging device according to the present invention, even when the discharge processing (reset) of a plurality of non-read target rows is performed simultaneously, the current flowing in the wiring is reduced and the power The load on the peripheral circuit can be reduced. Then, by simultaneously performing the discharge processing (reset) of a plurality of non-read target rows in this way, the time required for each imaging frame can be further shortened.

或いは、固体撮像素子の制御方法は、一部の非読出対象行が複数行存在しており、L回の撮像フレームのそれぞれにおいて、一部の非読出対象行に含まれる画素に蓄積された電荷の排出処理を逐次に行うことを特徴としてもよい。上述したように、本発明に係る固体撮像素子の制御方法によれば、複数の非読出対象行の排出処理(リセット)を順次に行う場合であっても、一つの撮像フレームに要する時間を抑制できる。そして、このように複数の非読出対象行の排出処理(リセット)を順次に行うことによって、配線に流れる電流をより少なくし、電源等の周辺回路への負荷を格段に低減することができる。   Alternatively, in the solid-state imaging device control method, there are a plurality of non-reading target rows, and the charge accumulated in the pixels included in the non-reading target rows in each of the L imaging frames. The discharging process may be performed sequentially. As described above, according to the control method of the solid-state imaging device according to the present invention, the time required for one imaging frame is suppressed even when the discharge processing (reset) of a plurality of non-read target rows is sequentially performed. it can. Further, by sequentially performing the discharge processing (reset) of the plurality of non-read target rows in this manner, the current flowing through the wiring can be further reduced, and the load on the peripheral circuit such as the power supply can be significantly reduced.

また、固体撮像素子の制御方法は、一部の非読出対象行が複数行存在しており、L回の撮像フレームのそれぞれにおいて、一部の非読出対象行同士の間隔を1行以上あけることを特徴としてもよい。これにより、各撮像フレームにおいて排出処理(リセット)が行われる非読出対象行の位置を分散させることができ、読出対象行への電荷のオーバーフローをより効果的に抑制することができる。   In the solid-state image sensor control method, there are a plurality of non-reading target rows, and one or more non-reading target rows are spaced from each other in each of the L imaging frames. May be a feature. This makes it possible to disperse the positions of the non-read target rows where discharge processing (reset) is performed in each imaging frame, and to more effectively suppress the overflow of charge to the read target rows.

また、本発明の一実施形態による固体撮像素子の制御方法は、フォトダイオード、及び該フォトダイオードに一端が接続された読出用スイッチを各々含むM×N個(Mは3以上の整数、Nは2以上の整数)の画素がM行N列に2次元配列されて成る受光領域を備える固体撮像素子の制御方法であって、受光領域のうち一部の領域を構成する一又は複数の行(以下、読出対象行という)に含まれる画素に蓄積された電荷を、L回(Lは2以上の整数)の撮像フレームの各々において選択的に読み出すとともに、L回の撮像フレームのそれぞれにおいて、読出対象行を除く他の行(以下、非読出対象行という)に含まれる二以上の行のうち一部の行に含まれる画素に蓄積された電荷の排出処理を行い、且つ、二以上の行の各々についてL回の撮像フレームの間に少なくとも一回、排出処理を行うことを特徴としてもよい。   In addition, a method for controlling a solid-state imaging device according to an embodiment of the present invention includes M × N (M is an integer of 3 or more, N is an integer) including a photodiode and a readout switch having one end connected to the photodiode. A method for controlling a solid-state imaging device including a light receiving region in which pixels of two or more integers are two-dimensionally arranged in M rows and N columns, and includes one or a plurality of rows (a plurality of rows) that constitute a part of the light receiving region ( Hereinafter, the charges accumulated in the pixels included in the readout target row) are selectively read out in each of the L imaging frames (L is an integer of 2 or more) and read out in each of the L imaging frames. A process of discharging charges accumulated in pixels included in some of the two or more rows included in other rows (hereinafter referred to as non-read target rows) excluding the target row, and two or more rows L times for each of At least once during the frame, it may also be characterized by performing the ejection processing.

上述した固体撮像素子の制御方法では、読出対象行に含まれる画素に蓄積された電荷を、L回の撮像フレームの各々において選択的に読み出す。更に、この制御方法では、L回の撮像フレームのそれぞれにおいて、非読出対象行のうち二以上の行の一部に含まれる画素に蓄積された電荷の排出処理(リセット)を行う。且つ、この排出処理(リセット)を、二以上の行の各々について、L回の撮像フレームの間に少なくとも一回行う。   In the above-described method for controlling the solid-state imaging device, the charges accumulated in the pixels included in the readout target row are selectively read out in each of the L imaging frames. Further, in this control method, in each of the L imaging frames, the discharge process (reset) of charges accumulated in pixels included in a part of two or more rows among the non-reading target rows is performed. In addition, this discharge process (reset) is performed at least once between L imaging frames for each of two or more rows.

すなわち、上述した制御方法では、各撮像フレームにおいて非読出対象行に含まれる二以上の行の全てをリセットするのではなく、その一部のみをリセットしている。従って、各撮像フレームにおいて複数の非読出対象行を順次にリセットする場合にあっては、この制御方法によって一つの撮像フレームに要する時間を抑制できる。また、各撮像フレームにおいて、複数の非読出対象行を同時にリセットする場合にあっては、フォトダイオードに接続された配線に流れる電流を少なくし、電源等の周辺回路への負荷を低減することができる。   That is, in the above-described control method, not all of two or more rows included in the non-read target row are reset in each imaging frame, but only a part thereof is reset. Therefore, when a plurality of non-read target rows are sequentially reset in each imaging frame, the time required for one imaging frame can be suppressed by this control method. Also, in each imaging frame, when simultaneously resetting a plurality of non-reading target rows, it is possible to reduce the current flowing in the wiring connected to the photodiode and reduce the load on the peripheral circuit such as the power supply. it can.

6…制御部、10…固体撮像装置、11…固体撮像素子、12…ガラス基板、14…多結晶シリコン膜、16…絶縁層、18…シンチレータ、20…受光部、21…トランジスタ、22…フォトダイオード、30…垂直シフトレジスタ部、40…信号出力部、41…C−MOS型ICチップ、42…積分回路、42a…アンプ、42b…容量素子、42c…放電用スイッチ、44…保持回路、44a…入力用スイッチ、44b…出力用スイッチ、44c…容量素子、61…水平シフトレジスタ部、A1…関心領域、A2…非関心領域、A3…非読出対象行、A21〜A25…行群、Hd…保持制御信号、HS〜HS…列選択制御信号、P1,1〜PM,N…画素、Q〜Q…行選択用配線、R〜R…読出用配線、RE…リセット制御信号、U〜U…列選択用配線、VS〜VS…行選択制御信号。 DESCRIPTION OF SYMBOLS 6 ... Control part, 10 ... Solid-state imaging device, 11 ... Solid-state image sensor, 12 ... Glass substrate, 14 ... Polycrystalline silicon film, 16 ... Insulating layer, 18 ... Scintillator, 20 ... Light-receiving part, 21 ... Transistor, 22 ... Photo Diode: 30 ... Vertical shift register unit, 40 ... Signal output unit, 41 ... C-MOS type IC chip, 42 ... Integration circuit, 42a ... Amplifier, 42b ... Capacitor element, 42c ... Discharge switch, 44 ... Holding circuit, 44a ... input switch, 44b ... output switch, 44c ... capacitor element, 61 ... horizontal shift register, A1 ... region of interest, A2 ... non-region of interest, A3 ... non-read target rows, A21-A25 ... row groups, Hd ... hold control signal, HS 1 ~HS N ... column selecting control signal, P 1,1 ~P M, N ... pixel, Q 1 ~Q M ... row selecting wiring, R 1 ~R N ... readout wiring, RE ... Reset control signal, U 1 ~U N ... column selecting wiring, VS 1 ~VS M ... row selection control signal.

Claims (7)

フォトダイオード、及び該フォトダイオードに一端が接続された読出用スイッチを各々含むM×N個(Mは3以上の整数、Nは2以上の整数)の画素がM行N列に2次元配列されて成る受光領域を備える固体撮像素子の制御方法であって、
前記受光領域のうち一部の領域を構成する一又は複数の行(以下、読出対象行という)に含まれる前記画素に蓄積された電荷を、L回(Lは2以上の整数)の撮像フレームの各々において読み出すとともに、
前記読出対象行を除く他の二以上の行(以下、非読出対象行という)の各々について前記L回の撮像フレームの間に少なくとも一回、前記画素に蓄積された電荷の排出処理を行い、前記L回の撮像フレームのそれぞれにおいて、前記排出処理を行わない前記非読出対象行が存在することを特徴とする、固体撮像素子の制御方法。
M × N pixels (M is an integer of 3 or more and N is an integer of 2 or more) each including a photodiode and a readout switch connected at one end to the photodiode are two-dimensionally arranged in M rows and N columns. A method for controlling a solid-state imaging device comprising a light receiving region comprising:
The charge accumulated in the pixels included in one or a plurality of rows (hereinafter referred to as readout target rows) constituting a part of the light receiving region is captured L times (L is an integer of 2 or more). In each of the
A process of discharging the charge accumulated in the pixels is performed at least once during the L imaging frames for each of two or more other rows (hereinafter referred to as non-read target rows) excluding the read target row, The method for controlling a solid-state imaging device, wherein the non-read target row that is not subjected to the discharge process exists in each of the L imaging frames.
前記読出対象行に隣接する一又は複数の前記非読出対象行の前記排出処理の頻度が、他の前記非読出対象行の前記排出処理の頻度より多いことを特徴とする、請求項1に記載の固体撮像素子の制御方法。   The frequency of the discharge process of one or a plurality of the non-read target lines adjacent to the read target line is higher than the frequency of the discharge process of the other non-read target lines. Method for controlling a solid-state imaging device. 少なくとも1回の前記撮像フレームにおいて、前記排出処理を行う前記非読出対象行が複数行存在しており、
当該撮像フレームにおいて、前記複数行の非読出対象行に含まれる前記画素に蓄積された電荷の排出処理を同時に行うことを特徴とする、請求項1または2に記載の固体撮像素子の制御方法。
In at least one imaging frame, there are a plurality of non-read target rows for performing the discharge process,
3. The method for controlling a solid-state imaging device according to claim 1, wherein in the imaging frame, discharging processing of the charges accumulated in the pixels included in the plurality of non-reading target rows is simultaneously performed.
少なくとも1回の前記撮像フレームにおいて、前記排出処理を行う前記非読出対象行が複数行存在しており、
当該撮像フレームにおいて、前記複数行の非読出対象行に含まれる前記画素に蓄積された電荷の排出処理を逐次に行うことを特徴とする、請求項1または2に記載の固体撮像素子の制御方法。
In at least one imaging frame, there are a plurality of non-read target rows for performing the discharge process,
The solid-state imaging device control method according to claim 1, wherein in the imaging frame, discharge processing of the charges accumulated in the pixels included in the plurality of non-reading target rows is sequentially performed. .
少なくとも1回の前記撮像フレームにおいて、前記排出処理を行う前記非読出対象行が複数行存在しており、
当該撮像フレームにおいて、前記複数行の非読出対象行同士の間隔を1行以上あけることを特徴とする、請求項1〜4のいずれか一項に記載の固体撮像素子の制御方法。
In at least one imaging frame, there are a plurality of non-read target rows for performing the discharge process,
5. The method of controlling a solid-state imaging device according to claim 1, wherein in the imaging frame, the plurality of non-reading target rows are spaced by one or more rows. 6.
フォトダイオード、及び該フォトダイオードに一端が接続された読出用スイッチを各々含むM×N個(Mは3以上の整数、Nは2以上の整数)の画素がM行N列に2次元配列されて成る受光領域を備える固体撮像素子の制御方法であって、
前記受光領域のうち一部の領域を構成する一又は複数の行(以下、読出対象行という)に含まれる前記画素に蓄積された電荷を、L回(Lは2以上の整数)の撮像フレームの各々において読み出すとともに、
前記読出対象行を除く他の行(以下、非読出対象行という)に含まれる二以上の行の各々について前記L回の撮像フレームの間に少なくとも一回、前記画素に蓄積された電荷の排出処理を行い、前記L回の撮像フレームのそれぞれにおいて、前記二以上の行のうちに前記排出処理を行わない行が存在することを特徴とする、固体撮像素子の制御方法。
M × N pixels (M is an integer of 3 or more and N is an integer of 2 or more) each including a photodiode and a readout switch connected at one end to the photodiode are two-dimensionally arranged in M rows and N columns. A method for controlling a solid-state imaging device comprising a light receiving region comprising:
The charge accumulated in the pixels included in one or a plurality of rows (hereinafter referred to as readout target rows) constituting a part of the light receiving region is captured L times (L is an integer of 2 or more). In each of the
Discharge of charge accumulated in the pixels at least once during the L imaging frames for each of two or more rows included in other rows (hereinafter referred to as non-read target rows) excluding the read target row A method for controlling a solid-state imaging device, characterized in that, in each of the L imaging frames, there is a row in which the discharge processing is not performed among the two or more rows.
前記L回の撮像フレームにおいて、前記非読出対象行のうち前記二以上の行を除く他の行に含まれる前記画素に蓄積された電荷の排出処理を行わないことを特徴とする、請求項6に記載の固体撮像素子の制御方法。   7. The discharge processing of charges accumulated in the pixels included in other rows excluding the two or more rows among the non-reading target rows is not performed in the L imaging frames. The control method of the solid-state image sensor described in 1.
JP2015049629A 2011-02-01 2015-03-12 Control method of solid-state image sensor Active JP5749873B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015049629A JP5749873B1 (en) 2011-02-01 2015-03-12 Control method of solid-state image sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011019988 2011-02-01
JP2011019988 2011-02-01
JP2015049629A JP5749873B1 (en) 2011-02-01 2015-03-12 Control method of solid-state image sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011123574A Division JP5714982B2 (en) 2011-02-01 2011-06-01 Control method of solid-state image sensor

Publications (2)

Publication Number Publication Date
JP5749873B1 JP5749873B1 (en) 2015-07-15
JP2015136159A true JP2015136159A (en) 2015-07-27

Family

ID=53718543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049629A Active JP5749873B1 (en) 2011-02-01 2015-03-12 Control method of solid-state image sensor

Country Status (1)

Country Link
JP (1) JP5749873B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054588A (en) * 2018-10-01 2020-04-09 キヤノン株式会社 Radiation imaging apparatus, control method thereof, and radiation imaging system thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10863114B2 (en) 2016-07-29 2020-12-08 Konica Minolta, Inc. Radiation image capturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054588A (en) * 2018-10-01 2020-04-09 キヤノン株式会社 Radiation imaging apparatus, control method thereof, and radiation imaging system thereof

Also Published As

Publication number Publication date
JP5749873B1 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5714982B2 (en) Control method of solid-state image sensor
KR102158897B1 (en) Solid-state imaging device
US9369643B2 (en) Solid-state imaging device
EP2667591B1 (en) Solid imaging device
KR101916484B1 (en) Solid-state imaging device and solid-state imaging device driving method
JP5749873B1 (en) Control method of solid-state image sensor
KR101821444B1 (en) Solid-state image pickup device and method of driving solid-state image pickup device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250