JP2015134709A - Hydrogen production method, and hydrogen production apparatus - Google Patents

Hydrogen production method, and hydrogen production apparatus Download PDF

Info

Publication number
JP2015134709A
JP2015134709A JP2014255119A JP2014255119A JP2015134709A JP 2015134709 A JP2015134709 A JP 2015134709A JP 2014255119 A JP2014255119 A JP 2014255119A JP 2014255119 A JP2014255119 A JP 2014255119A JP 2015134709 A JP2015134709 A JP 2015134709A
Authority
JP
Japan
Prior art keywords
alkali metal
hydrogen
generation step
hydrogen generation
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014255119A
Other languages
Japanese (ja)
Inventor
小島 由継
Yoshitsugu Kojima
由継 小島
裕樹 宮岡
Hiroki Miyaoka
裕樹 宮岡
市川 貴之
Takayuki Ichikawa
貴之 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2014255119A priority Critical patent/JP2015134709A/en
Publication of JP2015134709A publication Critical patent/JP2015134709A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen production method and a hydrogen production apparatus capable of efficiently producing hydrogen.SOLUTION: A hydrogen production method includes a first hydrogen production step of reacting an alkali metal with an alkali metal hydroxide to produce an alkali metal oxide and a hydrogen molecule, a reduction step of decomposing the alkali metal oxide produced in the first hydrogen production step to produce an alkali metal and an oxygen molecule, and a second hydrogen production step for reacting the alkali metal produced in the reduction step with water to produce an alkali metal hydroxide and a hydrogen molecule. The first hydrogen production step, the reduction step, and the second hydrogen production step are conducted in this order.

Description

本発明は、水素製造方法及び水素製造装置に関する。   The present invention relates to a hydrogen production method and a hydrogen production apparatus.

エネルギーとして、これまで石炭や石油等の化石燃料が広く使用されてきたが、近年では資源の枯渇、地球温暖化等の問題があり、これらに代わる代替エネルギーとして水素エネルギーが注目されている。   Until now, fossil fuels such as coal and oil have been widely used as energy. However, in recent years, there are problems such as depletion of resources and global warming, and hydrogen energy has attracted attention as an alternative energy to replace them.

水素を発生させる方法として、特許文献1、非特許文献1には、アルカリ金属を利用した水素の発生方法が開示されている。この方法は、アルカリ金属水酸化物とアルカリ金属を反応させてアルカリ金属酸化物、水素を生成させる工程(第1工程)、生成したアルカリ金属酸化物を分解し、アルカリ金属過酸化物とアルカリ金属を生成する工程(第2工程)、アルカリ金属過酸化物と水とを反応させ、アルカリ金属水酸化物と酸素を生成する工程(第3工程)から構成されている。そして、第2工程で生成したアルカリ金属、及び、第3工程で生成したアルカリ金属水酸化物を第1工程に用いることで、第1工程、第2工程、第3工程の順に繰り返し、水から水素を発生させる方法である。   As a method for generating hydrogen, Patent Document 1 and Non-Patent Document 1 disclose a method for generating hydrogen using an alkali metal. In this method, an alkali metal hydroxide and an alkali metal are reacted to generate an alkali metal oxide and hydrogen (first step), the generated alkali metal oxide is decomposed, and an alkali metal peroxide and an alkali metal are decomposed. The second step is a step of reacting an alkali metal peroxide with water to generate an alkali metal hydroxide and oxygen (third step). And by using the alkali metal produced | generated at the 2nd process and the alkali metal hydroxide produced | generated at the 3rd process for the 1st process, it repeats in order of a 1st process, a 2nd process, and a 3rd process, from water. This is a method for generating hydrogen.

特開昭49−64589号公報JP 49-64589 A

Hiroki Miyaoka, Takayuki Ichikawa, Naoya Nakamura, Yoshitsugu Kojima; Low-temperature water-splitting by sodium redox reaction; INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 37(2012), p.17709-17714Hiroki Miyaoka, Takayuki Ichikawa, Naoya Nakamura, Yoshitsugu Kojima; Low-temperature water-splitting by sodium redox reaction; INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 37 (2012), p.17709-17714

特許文献1、非特許文献1では、第1工程、第2工程、第3工程の1サイクルで、2モルのアルカリ金属水酸化物と2モルのアルカリ金属を用いて1モルの水素を製造するものであり、効率がよいものとは言えない。   In Patent Document 1 and Non-Patent Document 1, 1 mol of hydrogen is produced using 2 mol of alkali metal hydroxide and 2 mol of alkali metal in one cycle of the first step, the second step, and the third step. It is a thing and cannot be said to be efficient.

本発明は上記事項に鑑みてなされたものであり、その目的とするところは、効率的に水素を製造することが可能な水素製造方法及び水素製造装置を提供することにある。   The present invention has been made in view of the above matters, and an object of the present invention is to provide a hydrogen production method and a hydrogen production apparatus capable of efficiently producing hydrogen.

本発明の第1の態様に係る水素製造方法は、
アルカリ金属とアルカリ金属水酸化物とを反応させて、アルカリ金属酸化物と水素分子を生成させる第1水素発生工程と、
前記第1水素発生工程で生成したアルカリ金属酸化物を分解させて、アルカリ金属と酸素分子を生成させる還元工程と、
前記還元工程で生成したアルカリ金属と水とを反応させて、アルカリ金属水酸化物と水素分子を生成させる第2水素発生工程と、を有し、
前記第1水素発生工程、前記還元工程、前記第2水素発生工程の順に行う、
ことを特徴とする。
The hydrogen production method according to the first aspect of the present invention includes:
A first hydrogen generation step in which an alkali metal and an alkali metal hydroxide are reacted to generate an alkali metal oxide and a hydrogen molecule;
A reduction step of decomposing the alkali metal oxide produced in the first hydrogen generation step to produce an alkali metal and oxygen molecules;
A second hydrogen generation step of reacting the alkali metal produced in the reduction step with water to produce an alkali metal hydroxide and hydrogen molecules,
The first hydrogen generation step, the reduction step, and the second hydrogen generation step are performed in this order.
It is characterized by that.

また、前記第2水素発生工程では、前記還元工程で生成したアルカリ金属の一部と水とを反応させ、
前記第1水素発生工程では、前記還元工程で生成したアルカリ金属の残りと前記第2水素発生工程で生成したアルカリ金属水酸化物を用い、
前記第1水素発生工程、前記還元工程、前記第2水素発生工程の順に行うことが好ましい。
In the second hydrogen generation step, a part of the alkali metal generated in the reduction step is reacted with water,
In the first hydrogen generation step, the remaining alkali metal generated in the reduction step and the alkali metal hydroxide generated in the second hydrogen generation step are used.
Preferably, the first hydrogen generation step, the reduction step, and the second hydrogen generation step are performed in this order.

また、前記アルカリ金属がリチウム、ナトリウム又はカリウムであることが好ましい。   Moreover, it is preferable that the said alkali metal is lithium, sodium, or potassium.

本発明の第2の態様に係る水素製造装置は、
アルカリ金属とアルカリ金属水酸化物とを反応させて、アルカリ金属酸化物と水素分子を生成させる第1水素発生工程、前記第1水素発生工程で生成したアルカリ金属酸化物を分解させて、アルカリ金属と酸素分子を生成させる還元工程、及び、前記還元工程で生成したアルカリ金属と水とを反応させて、アルカリ金属水酸化物と水素分子を生成させる第2水素発生工程のそれぞれの反応が行われる反応容器と、
前記反応容器に接続しアルカリ金属を貯留するアルカリ金属貯留容器と、
前記反応容器に水を導入する導入口と、
前記反応容器の内部で生成した水素分子及び酸素分子を排出する排出口と、
前記反応容器を加熱する加熱装置と、
前記アルカリ金属貯留容器を加熱、冷却する加熱冷却装置と、を備える、
ことを特徴とする。
The hydrogen production apparatus according to the second aspect of the present invention comprises:
A first hydrogen generation step of reacting an alkali metal with an alkali metal hydroxide to generate an alkali metal oxide and hydrogen molecules; an alkali metal oxide generated in the first hydrogen generation step is decomposed; And a reduction step for generating oxygen molecules, and a second hydrogen generation step for generating alkali metal hydroxide and hydrogen molecules by reacting the alkali metal generated in the reduction step with water. A reaction vessel;
An alkali metal storage container connected to the reaction container and storing alkali metal;
An inlet for introducing water into the reaction vessel;
A discharge port for discharging hydrogen molecules and oxygen molecules generated inside the reaction vessel;
A heating device for heating the reaction vessel;
A heating and cooling device for heating and cooling the alkali metal storage container,
It is characterized by that.

本発明に係る水素製造方法では、第1水素発生工程、還元工程、第2水素発生工程の1サイクルで、2モルのアルカリ金属水酸化物と2モルのアルカリ金属を用いた場合、2モルの水素を製造することができる。   In the hydrogen production method according to the present invention, when 2 mol of alkali metal hydroxide and 2 mol of alkali metal are used in one cycle of the first hydrogen generation step, the reduction step, and the second hydrogen generation step, Hydrogen can be produced.

水素製造方法を示すブロック図である。It is a block diagram which shows the hydrogen production method. 水素製造装置の概略図である。It is the schematic of a hydrogen production apparatus.

水素製造方法は、図1に示すように、第1水素発生工程、還元工程、第2水素発生工程を有している。そして、第1水素発生工程、還元工程、第2水素発生工程の順に繰り返し行うことで水素を製造する方法である。   As shown in FIG. 1, the hydrogen production method has a first hydrogen generation step, a reduction step, and a second hydrogen generation step. And it is the method of manufacturing hydrogen by repeating in order of a 1st hydrogen generating process, a reduction process, and a 2nd hydrogen generating process.

(第1水素発生工程)
第1水素発生工程では、式1に示すように、アルカリ金属水酸化物とアルカリ金属とを反応させ、アルカリ金属酸化物と水素とを発生させる。なお、式1及び後述する式2,3中、Mはアルカリ金属を示し、また、式1−4中、g、l、sはそれぞれ気体、液体、固体状態であることを表す。
2MOH(s)+2M(l)→2MO(s)+H(g)・・・(式1)
なお、式1に記載の気体、液体、固体の各状態は、各種態様のうちの例示のひとつである。
(First hydrogen generation process)
In the first hydrogen generation step, as shown in Formula 1, an alkali metal hydroxide and an alkali metal are reacted to generate an alkali metal oxide and hydrogen. In Formula 1 and Formulas 2 and 3 described later, M represents an alkali metal, and in Formula 1-4, g, l, and s represent a gas, a liquid, and a solid state, respectively.
2MOH (s) + 2M (l) → 2M 2 O (s) + H 2 (g) (Formula 1)
In addition, each state of gas, liquid, and solid described in Formula 1 is one of the examples of various aspects.

第1水素発生工程における好ましい反応温度は200〜800℃、より好ましくは300〜600℃である。また、好ましい圧力は0.001〜0.1MPa、より好ましくは0.01〜0.1MPaである。また、アルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。   A preferable reaction temperature in the first hydrogen generation step is 200 to 800 ° C, more preferably 300 to 600 ° C. Moreover, a preferable pressure is 0.001-0.1 MPa, More preferably, it is 0.01-0.1 MPa. Moreover, it is preferable to carry out in inert gas atmosphere, such as argon gas.

また、アルカリ金属は、水や酸素と反応しやすいため、水分濃度及び酸素濃度はそれぞれ1体積ppm以下であることが好ましい。   In addition, since alkali metals easily react with water and oxygen, the water concentration and the oxygen concentration are each preferably 1 ppm by volume or less.

生成したアルカリ金属酸化物と水素とを分離した後、アルカリ金属酸化物を還元工程に用いる。アルカリ金属酸化物と水素との分離方法は、特に限定されず、例えば、反応容器の外へ水素分子を排出するか、または、水素貯蔵材料の利用などの方法を適用して分離することができる。   After separating the produced alkali metal oxide and hydrogen, the alkali metal oxide is used in the reduction step. The method for separating the alkali metal oxide and hydrogen is not particularly limited, and can be separated by, for example, discharging hydrogen molecules out of the reaction vessel or applying a method such as using a hydrogen storage material. .

(還元工程)
還元工程では、式2に示すように、アルカリ金属酸化物を加熱することで還元し、アルカリ金属と酸素に分解する。ここでのアルカリ金属酸化物は第1水素発生工程にて生成したものを用いることができる。
2MO(s)→4M(s)+O(g)・・・(式2)
(Reduction process)
In the reduction step, as shown in Formula 2, the alkali metal oxide is reduced by heating to decompose into alkali metal and oxygen. The alkali metal oxide here can use what was produced | generated at the 1st hydrogen generating process.
2M 2 O (s) → 4M (s) + O 2 (g) (Formula 2)

還元工程における反応温度は、好ましくは400〜1000℃、より好ましくは600〜900℃である。また、圧力は0.1MPa以下であることが好ましい。なお、式2のエンタルピー変化は1266kJと大きな吸熱反応である。反応を進行させるためには酸素圧力を固体の蒸気圧である1Pa以下で行うことがより好ましく、0.01Pa以下で行うことが更に好ましい。また、アルゴンガス等、不活性ガス雰囲気下で行うことが好ましい。   The reaction temperature in the reduction step is preferably 400 to 1000 ° C, more preferably 600 to 900 ° C. The pressure is preferably 0.1 MPa or less. In addition, the enthalpy change of Formula 2 is 1266 kJ and a big endothermic reaction. In order to advance the reaction, the oxygen pressure is preferably 1 Pa or less, more preferably 0.01 Pa or less, which is the solid vapor pressure. Moreover, it is preferable to carry out in inert gas atmosphere, such as argon gas.

生成するアルカリ金属は水や酸素と反応しやすいため、水分濃度、酸素濃度はそれぞれ1ppm以下で行うことが好ましい。   Since the produced alkali metal easily reacts with water and oxygen, the water concentration and the oxygen concentration are each preferably 1 ppm or less.

生成したアルカリ金属は蒸発させた後、吸着などの手法により、アルカリ金属固体として生成する。また、生成した酸素は反応容器外に排出することが望ましい。   The produced alkali metal is evaporated and then produced as an alkali metal solid by a technique such as adsorption. In addition, it is desirable to discharge the produced oxygen out of the reaction vessel.

(第2水素発生工程)
第2水素発生工程では、式(3)に示すように、アルカリ金属と水を反応させ、加水分解によってアルカリ金属水酸化物と水素を生成する。
2M(s)+2HO(l)→2MOH(s)+H(g)・・・(式3)
なお、式1に記載の気体、液体、固体の各状態は、各種態様のうちの例示のひとつである。
(Second hydrogen generation process)
In the second hydrogen generation step, as shown in the formula (3), an alkali metal and water are reacted to generate an alkali metal hydroxide and hydrogen by hydrolysis.
2M (s) + 2H 2 O (l) → 2MOH (s) + H 2 (g) (Formula 3)
In addition, each state of gas, liquid, and solid described in Formula 1 is one of the examples of various aspects.

第2水素発生工程における反応温度は、好ましくは室温(25℃)〜300℃、より好ましくは室温(25℃)〜100℃である。また、反応圧力は、好ましくは0.1MPa程度である。また、アルゴンガス等の不活性ガス雰囲気下で行うことが好ましい。   The reaction temperature in the second hydrogen generation step is preferably room temperature (25 ° C.) to 300 ° C., more preferably room temperature (25 ° C.) to 100 ° C. The reaction pressure is preferably about 0.1 MPa. Moreover, it is preferable to carry out in inert gas atmosphere, such as argon gas.

第2水素発生工程においては、還元工程で生成したアルカリ金属の全てではなく一部を使用してもよい。そして、還元工程で生成したアルカリ金属の残りと第2水素発生工程で生じたアルカリ金属水素化物とを第1水素発生工程に用いてもよい。   In the second hydrogen generation step, a part of the alkali metal generated in the reduction step may be used instead of all. The remaining alkali metal generated in the reduction step and the alkali metal hydride generated in the second hydrogen generation step may be used in the first hydrogen generation step.

例えば、第1水素発生工程において、2モルのアルカリ金属水酸化物と2モルのアルカリ金属を用い、2モルのアルカリ金属酸化物と1モルの水素を発生させる。そして、還元工程において、2モルのアルカリ金属酸化物を還元し、4モルのアルカリ金属及び1モルの酸素を生成させる。ここで生成した4モルのアルカリ金属うち、1/2(2モル)のアルカリ金属を第2水素発生工程で利用する。第2水素発生工程で2モルのアルカリ金属と2モルの水との反応により、2モルのアルカリ金属水酸化物及び1モルの水素が生成する。そして、還元工程で生成したアルカリ金属の残り(2モル)と第2水素発生工程で生成した2モルのアルカリ金属水酸化物を第1水素発生工程に利用する。   For example, in the first hydrogen generation step, 2 mol of alkali metal hydroxide and 2 mol of alkali metal are used to generate 2 mol of alkali metal oxide and 1 mol of hydrogen. In the reduction step, 2 mol of alkali metal oxide is reduced to generate 4 mol of alkali metal and 1 mol of oxygen. Of the 4 moles of alkali metal produced here, 1/2 (2 moles) of alkali metal is used in the second hydrogen generation step. In the second hydrogen generation step, 2 moles of alkali metal hydroxide and 1 mole of hydrogen are produced by the reaction of 2 moles of alkali metal with 2 moles of water. And the remainder (2 mol) of the alkali metal produced | generated at the reduction process and 2 mol alkali metal hydroxide produced | generated at the 2nd hydrogen generation process are utilized for a 1st hydrogen generation process.

このように、還元工程で生成したアルカリ金属の一部を第2水素発生工程に利用して行うことにより、水のみの供給で、上述した第1水素発生工程、還元工程、第2水素発生工程の順に繰り返し行うことができる。即ち、上記の工程を1サイクル行うことにより、例えば、2モルのアルカリ金属と2モルのアルカリ金属水酸化物を用いて、式4に示すように、水を2モル分解し水素を2モル製造することができる。
2HO(l)→2H(g)+O(g)・・・(式4)
As described above, by performing a part of the alkali metal generated in the reduction process in the second hydrogen generation process, the first hydrogen generation process, the reduction process, and the second hydrogen generation process described above can be performed by supplying only water. It can be repeated in this order. That is, by performing the above-mentioned process for one cycle, for example, using 2 mol of alkali metal and 2 mol of alkali metal hydroxide, 2 mol of water is decomposed to produce 2 mol of hydrogen as shown in Formula 4. can do.
2H 2 O (l) → 2H 2 (g) + O 2 (g) (Formula 4)

特許文献1、非特許文献1では、2モルのアルカリ金属水酸化物と2モルのアルカリ金属を用いて、1サイクルで1モルの水素しか製造できないが、本願では、1サイクルで2モルの水素を製造でき、2倍量の水素を製造できるので効率に優れる。   In Patent Document 1 and Non-Patent Document 1, only 1 mole of hydrogen can be produced in 1 cycle using 2 moles of alkali metal hydroxide and 2 moles of alkali metal. Since it can produce twice as much hydrogen, it is excellent in efficiency.

なお、アルカリ金属として、リチウム(Li)、ナトリウム(Na)又はカリウム(K)が挙げられる。したがって、アルカリ金属水酸化物として、水酸化リチウム、水酸化ナトリウム又は水酸化カリウムが挙げられ、アルカリ金属酸化物として、酸化リチウム(LiO)、酸化ナトリウム(NaO)又は酸化カリウム(KO)が挙げられる。各反応の熱力学特性、高い蒸気圧、比較的低い腐食性といった観点から、アルカリ金属としてナトリウムが最も好ましい。 In addition, lithium (Li), sodium (Na), or potassium (K) is mentioned as an alkali metal. Therefore, lithium hydroxide, sodium hydroxide, or potassium hydroxide is used as the alkali metal hydroxide, and lithium oxide (Li 2 O), sodium oxide (Na 2 O), or potassium oxide (K) is used as the alkali metal oxide. 2 O). From the viewpoint of the thermodynamic properties of each reaction, high vapor pressure, and relatively low corrosivity, sodium is most preferable as the alkali metal.

上述した水素の製造は、例えば、図2に示す水素製造装置1を用いて行い得る。水素製造装置1は、第1水素発生工程、還元工程、第2水素発生工程におけるそれぞれの反応が行われる反応容器10、水やアルゴンガス等の不活性ガスが導入される導入口20、生成した水素、酸素が排出される排出口30、還元工程で生成したアルカリ金属が貯留されるアルカリ金属貯留容器40、反応容器10を加熱する加熱装置50、アルカリ金属貯留容器40を加熱、冷却する加熱冷却装置60を備えている。   The above-described hydrogen production can be performed using, for example, the hydrogen production apparatus 1 shown in FIG. The hydrogen production apparatus 1 has produced a reaction vessel 10 in which the respective reactions in the first hydrogen generation step, the reduction step, and the second hydrogen generation step are performed, an introduction port 20 into which an inert gas such as water or argon gas is introduced. A discharge port 30 through which hydrogen and oxygen are discharged, an alkali metal storage container 40 in which alkali metal generated in the reduction process is stored, a heating device 50 for heating the reaction container 10, and heating and cooling for heating and cooling the alkali metal storage container 40 A device 60 is provided.

第1水素発生工程では、反応容器10にはアルカリ金属水酸化物が入れられており、アルカリ金属貯留容器40にはアルカリ金属が入れられている。また、不図示の吸引装置等で、反応容器10内の圧力を上述した圧力条件に調節する。そして、アルカリ金属貯留容器40からアルカリ金属が反応容器10内に滴下され、反応容器10内が上述した温度条件になるよう加熱装置50が反応容器10を加熱する。これにより、アルカリ金属水酸化物とアルカリ金属が反応し、アルカリ金属酸化物と水素が生成する。生成した水素は排出口30から排出される。   In the first hydrogen generation step, an alkali metal hydroxide is placed in the reaction vessel 10, and an alkali metal is placed in the alkali metal storage vessel 40. Further, the pressure in the reaction vessel 10 is adjusted to the above-described pressure condition with a suction device (not shown) or the like. Then, the alkali metal is dropped into the reaction vessel 10 from the alkali metal storage vessel 40, and the heating device 50 heats the reaction vessel 10 so that the inside of the reaction vessel 10 is in the above-described temperature condition. Thereby, an alkali metal hydroxide and an alkali metal react, and an alkali metal oxide and hydrogen are generated. The generated hydrogen is discharged from the discharge port 30.

還元工程では、加熱装置50にて反応容器10内を上述した温度条件になるように調節し、第1水素発生工程で生成したアルカリ金属酸化物を還元する。アルカリ金属酸化物が分解され、気体状のアルカリ金属及び酸素が生成する。気体状のアルカリ金属はアルカリ金属貯留容器40に入る。加熱冷却装置60によりアルカリ金属貯留容器40が冷却されることにより、アルカリ金属貯留容器40に入ったアルカリ金属は固化され貯留される。あるいは、アルカリ金属は流体状態を保持したままで次のサイクルに使用してもよい。また、酸素は排出口30から排出される。なお、気化したアルカリ金属が排出口30から排出されないように、排出口30にはアルカリ金属を通過させず酸素を通過させる分離膜等が設置されることが好ましい。   In the reduction step, the inside of the reaction vessel 10 is adjusted by the heating device 50 so as to satisfy the above-described temperature condition, and the alkali metal oxide generated in the first hydrogen generation step is reduced. The alkali metal oxide is decomposed to produce gaseous alkali metal and oxygen. The gaseous alkali metal enters the alkali metal storage container 40. When the alkali metal storage container 40 is cooled by the heating / cooling device 60, the alkali metal contained in the alkali metal storage container 40 is solidified and stored. Alternatively, the alkali metal may be used in the next cycle while maintaining the fluid state. Further, oxygen is discharged from the discharge port 30. In order to prevent vaporized alkali metal from being discharged from the discharge port 30, it is preferable to install a separation membrane or the like that allows oxygen to pass through the discharge port 30 without passing through the alkali metal.

第2水素発生工程では、導入口20から水が反応容器10内に導入される。更に、加熱冷却装置60によってアルカリ金属貯留容器40内のアルカリ金属が固体であった場合は液化され、反応容器10内に滴下される。そして、加熱装置50により反応容器10内が上述した温度条件になるように調節され、アルカリ金属と水が反応してアルカリ金属水酸化物及び水素が生成する。生成した水素は排出口30から排出される。   In the second hydrogen generation step, water is introduced into the reaction vessel 10 from the introduction port 20. Furthermore, when the alkali metal in the alkali metal storage container 40 is solid by the heating / cooling device 60, it is liquefied and dropped into the reaction container 10. And it adjusts so that the inside of reaction container 10 may become the temperature conditions mentioned above with the heating apparatus 50, an alkali metal and water react, and an alkali metal hydroxide and hydrogen produce | generate. The generated hydrogen is discharged from the discharge port 30.

なお、反応容器10とアルカリ金属貯留容器40とをつなぐ通路にはバルブが設置され、第2水素発生工程においては、アルカリ金属貯留容器40から一部のアルカリ金属が滴下されるよう行う。これにより、アルカリ金属貯留容器40に残ったアルカリ金属を第1水素発生工程に利用することができ、アルカリ金属、アルカリ金属水酸化物、アルカリ金属酸化物を反応系内に残存させたまま、第1水素発生工程、還元工程、第2水素発生工程を順に繰り返し行い、水素を製造できる。したがって、水のみを原料とし、水を分解して水素を製造することが可能である。   In addition, a valve is installed in a passage connecting the reaction vessel 10 and the alkali metal storage container 40, and in the second hydrogen generation step, part of the alkali metal is dropped from the alkali metal storage vessel 40. Thereby, the alkali metal remaining in the alkali metal storage container 40 can be used in the first hydrogen generation step, and the alkali metal, alkali metal hydroxide, and alkali metal oxide remain in the reaction system while remaining in the reaction system. Hydrogen can be produced by repeating the first hydrogen generation step, the reduction step, and the second hydrogen generation step in order. Therefore, it is possible to produce hydrogen by decomposing water using only water as a raw material.

(第一水素発生工程)
NaOHとNa(1モル/1モル)を350℃で20時間加熱して、水素とNaOを生成した。生成物の同定及び発生した水素の定量評価を行った。定量評価には、室温で速やかに水素を吸蔵可能なNbを添加したMgを用いた。つまり、このNb添加Mgを用い、生成した水素をMgHとして吸蔵分離した。得られた水素量から反応率を求め、X線回折により生成物の分析を行った。その結果、反応率は約80%であり、NaOとHが生成したことを確認した。
(First hydrogen generation process)
NaOH and Na (1 mol / 1 mol) were heated at 350 ° C. for 20 hours to produce hydrogen and Na 2 O. The product was identified and the generated hydrogen was quantitatively evaluated. For quantitative evaluation, Mg added with Nb 2 O 5 capable of quickly absorbing hydrogen at room temperature was used. That is, using this Nb 2 O 5 -added Mg, the produced hydrogen was occluded and separated as MgH 2 . The reaction rate was determined from the amount of hydrogen obtained, and the product was analyzed by X-ray diffraction. As a result, the reaction rate was about 80%, and it was confirmed that Na 2 O and H 2 were produced.

(還元工程)
NaO加熱部上方に冷却部を設け金属蒸気を凝集(固化)させて回収する実験システムを作製して、NaOの還元を行った。NaOを実験システムの反応容器に入れ、真空下(0.01Pa)、650℃の閉鎖系において熱処理を20時間行った。そして、反応生成物の同定を行うことで反応が進行し得るかどうか検討した。その結果、金属Naが生成することが確認された。また、反応後に容器内のガス分析を行い、酸素が生成していることを確認した。NaOのX線回折ピーク強度の変化から反応率は約80%であると見積もられた。以上の結果から、NaOがNaとOに分解されたことを確認した。NaOの還元工程におけるエンタルピー変化は1266kJと大きな吸熱反応である。酸素圧力を0.01Paにすることで反応が進行した。
(Reduction process)
A cooling unit was provided above the Na 2 O heating unit to produce an experimental system for aggregating (solidifying) and recovering the metal vapor to reduce Na 2 O. Na 2 O was placed in a reaction vessel of the experimental system, and heat treatment was performed for 20 hours in a closed system at 650 ° C. under vacuum (0.01 Pa). And it was investigated whether reaction could advance by identifying a reaction product. As a result, it was confirmed that metal Na was generated. Moreover, the gas analysis in a container was performed after reaction and it confirmed that oxygen was producing | generating. From the change in the intensity of the X-ray diffraction peak of Na 2 O, the reaction rate was estimated to be about 80%. From the above results, it was confirmed that Na 2 O was decomposed into Na and O 2 . The enthalpy change in the reduction process of Na 2 O is an endothermic reaction as large as 1266 kJ. The reaction proceeded by setting the oxygen pressure to 0.01 Pa.

(第二水素発生工程)
加水分解反応は発熱反応であり、熱力学的には自発的に進行する反応である。本実験においては、還元工程で生成した金属ナトリウムに水を加えて100℃まで加熱し、反応生成物の同定を行った。その結果、反応率は95%以上であり、NaOHとHが生成したことを確認した。
(Second hydrogen generation process)
The hydrolysis reaction is an exothermic reaction and is a reaction that proceeds spontaneously thermodynamically. In this experiment, water was added to sodium metal produced in the reduction step and heated to 100 ° C. to identify the reaction product. As a result, the reaction rate was 95% or more, and it was confirmed that NaOH and H 2 were produced.

(第一水素発生工程)
LiOHとLi(1モル/1モル)を500℃の温度で20時間加熱した。そして、生成物の同定及び発生したガスの評価を行った。ガス分析により、反応後には水素が生成していることが確認された。またX線回折ピーク強度から反応率はほぼ100%と見積もられ、LiOとHが生成したことを確認した。
(First hydrogen generation process)
LiOH and Li (1 mol / 1 mol) were heated at a temperature of 500 ° C. for 20 hours. Then, the product was identified and the generated gas was evaluated. Gas analysis confirmed that hydrogen was produced after the reaction. The reaction rate was estimated to be almost 100% from the X-ray diffraction peak intensity, and it was confirmed that Li 2 O and H 2 were formed.

(還元工程)
LiOを実施例1の実験システムの反応容器に入れ、真空下(0.01Pa)、800℃の温度で閉鎖系において20時間熱処理を行い、反応生成物の同定を行うことで反応が進行し得るかどうか検討した。X線回折ピークの強度から反応率は50%と見積もられ、LiOがLiとOに分解したことを確認した。
(Reduction process)
Li 2 O is placed in the reaction vessel of the experimental system of Example 1, and heat treatment is performed in a closed system at a temperature of 800 ° C. under vacuum (0.01 Pa) for 20 hours, and the reaction proceeds by identifying the reaction product. We examined whether it could be done. The reaction rate was estimated to be 50% from the intensity of the X-ray diffraction peak, and it was confirmed that Li 2 O was decomposed into Li and O 2 .

(第二水素発生工程)
Liに水を加え、300℃まで加熱した後反応生成物の同定を行った。反応率はほぼ100%であり、LiOHとHが生成したことを確認した。
(Second hydrogen generation process)
After adding water to Li and heating to 300 ° C., the reaction product was identified. The reaction rate was almost 100%, and it was confirmed that LiOH and H 2 were formed.

以上のように、第1水素発生工程、還元工程、第2水素発生工程における反応はそれぞれ可能であることから、第1水素発生工程、還元工程、第2水素発生工程の順に繰り返し水素を製造することが実現可能であることがわかる。   As described above, since the reactions in the first hydrogen generation step, the reduction step, and the second hydrogen generation step are possible, hydrogen is repeatedly produced in the order of the first hydrogen generation step, the reduction step, and the second hydrogen generation step. It can be seen that this is feasible.

上述したように、水素製造方法では、効率よく水素を製造することができ、これまでの化石燃料の代替エネルギーとして利用可能である。   As described above, in the hydrogen production method, hydrogen can be produced efficiently, and can be used as an alternative energy for conventional fossil fuels.

1 水素製造装置
10 反応容器
20 導入口
30 排出口
40 アルカリ金属貯留容器
50 加熱装置
60 加熱冷却装置
DESCRIPTION OF SYMBOLS 1 Hydrogen production apparatus 10 Reaction container 20 Inlet 30 Discharge 40 Alkali metal storage container 50 Heating device 60 Heating and cooling device

Claims (4)

アルカリ金属とアルカリ金属水酸化物とを反応させて、アルカリ金属酸化物と水素分子を生成させる第1水素発生工程と、
前記第1水素発生工程で生成したアルカリ金属酸化物を分解させて、アルカリ金属と酸素分子を生成させる還元工程と、
前記還元工程で生成したアルカリ金属と水とを反応させて、アルカリ金属水酸化物と水素分子を生成させる第2水素発生工程と、を有し、
前記第1水素発生工程、前記還元工程、前記第2水素発生工程の順に行う、
ことを特徴とする水素製造方法。
A first hydrogen generation step in which an alkali metal and an alkali metal hydroxide are reacted to generate an alkali metal oxide and a hydrogen molecule;
A reduction step of decomposing the alkali metal oxide produced in the first hydrogen generation step to produce an alkali metal and oxygen molecules;
A second hydrogen generation step of reacting the alkali metal produced in the reduction step with water to produce an alkali metal hydroxide and hydrogen molecules,
The first hydrogen generation step, the reduction step, and the second hydrogen generation step are performed in this order.
A method for producing hydrogen.
前記第2水素発生工程では、前記還元工程で生成したアルカリ金属の一部と水とを反応させ、
前記第1水素発生工程では、前記還元工程で生成したアルカリ金属の残りと前記第2水素発生工程で生成したアルカリ金属水酸化物を用い、
前記第1水素発生工程、前記還元工程、前記第2水素発生工程の順に行う、
ことを特徴とする請求項1に記載の水素製造方法。
In the second hydrogen generation step, a part of the alkali metal generated in the reduction step is reacted with water,
In the first hydrogen generation step, the remaining alkali metal generated in the reduction step and the alkali metal hydroxide generated in the second hydrogen generation step are used.
The first hydrogen generation step, the reduction step, and the second hydrogen generation step are performed in this order.
The hydrogen production method according to claim 1, wherein:
前記アルカリ金属がリチウム、ナトリウム又はカリウムである、
ことを特徴とする請求項1又は2に記載の水素製造方法。
The alkali metal is lithium, sodium or potassium;
The method for producing hydrogen according to claim 1 or 2, wherein:
アルカリ金属とアルカリ金属水酸化物とを反応させて、アルカリ金属酸化物と水素分子を生成させる第1水素発生工程、前記第1水素発生工程で生成したアルカリ金属酸化物を分解させて、アルカリ金属と酸素分子を生成させる還元工程、及び、前記還元工程で生成したアルカリ金属と水とを反応させて、アルカリ金属水酸化物と水素分子を生成させる第2水素発生工程のそれぞれの反応が行われる反応容器と、
前記反応容器に接続しアルカリ金属を貯留するアルカリ金属貯留容器と、
前記反応容器に水を導入する導入口と、
前記反応容器の内部で生成した水素分子及び酸素分子を排出する排出口と、
前記反応容器を加熱する加熱装置と、
前記アルカリ金属貯留容器を加熱、冷却する加熱冷却装置と、を備える、
ことを特徴とする水素製造装置。
A first hydrogen generation step of reacting an alkali metal with an alkali metal hydroxide to generate an alkali metal oxide and hydrogen molecules; an alkali metal oxide generated in the first hydrogen generation step is decomposed; And a reduction step for generating oxygen molecules, and a second hydrogen generation step for generating alkali metal hydroxide and hydrogen molecules by reacting the alkali metal generated in the reduction step with water. A reaction vessel;
An alkali metal storage container connected to the reaction container and storing alkali metal;
An inlet for introducing water into the reaction vessel;
A discharge port for discharging hydrogen molecules and oxygen molecules generated inside the reaction vessel;
A heating device for heating the reaction vessel;
A heating and cooling device for heating and cooling the alkali metal storage container,
This is a hydrogen production apparatus.
JP2014255119A 2013-12-20 2014-12-17 Hydrogen production method, and hydrogen production apparatus Pending JP2015134709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255119A JP2015134709A (en) 2013-12-20 2014-12-17 Hydrogen production method, and hydrogen production apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013264030 2013-12-20
JP2013264030 2013-12-20
JP2014255119A JP2015134709A (en) 2013-12-20 2014-12-17 Hydrogen production method, and hydrogen production apparatus

Publications (1)

Publication Number Publication Date
JP2015134709A true JP2015134709A (en) 2015-07-27

Family

ID=53402891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255119A Pending JP2015134709A (en) 2013-12-20 2014-12-17 Hydrogen production method, and hydrogen production apparatus

Country Status (2)

Country Link
JP (1) JP2015134709A (en)
WO (1) WO2015093547A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2580864A (en) * 2018-10-22 2020-08-05 Ouadi Miloud Apparatus to generate hydrogen from water splitting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2189108B1 (en) * 1972-06-22 1974-10-25 Gaz De France
JP2004182496A (en) * 2002-11-29 2004-07-02 Toshiba Corp Hydrogen-generating apparatus
JP5124728B2 (en) * 2005-03-18 2013-01-23 国立大学法人東京工業大学 Hydrogen generator, laser reduction device, energy conversion device, hydrogen generation method and power generation system

Also Published As

Publication number Publication date
WO2015093547A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5900992B2 (en) Hydrogen gas generation method and apparatus
RU2592794C2 (en) Method and system for production of high-purity hydrogen chloride
Zhong et al. Sodium borohydride regeneration via direct hydrogen transformation of sodium metaborate tetrahydrate
KR20220038076A (en) Alkaline Removal of CO2 from Gas Streams with Simultaneous Generation of Chemicals
Castilla-Martinez et al. Amidoboranes and hydrazinidoboranes: State of the art, potential for hydrogen storage, and other prospects
Huang et al. Efficient regeneration of sodium borohydride via ball milling dihydrate sodium metaborate with magnesium and magnesium silicide
Figen et al. Microwave assisted green chemistry approach of sodium metaborate dihydrate (NaBO2· 2H2O) synthesis and use as raw material for sodium borohydride (NaBH4) thermochemical production
Zhu et al. Efficient synthesis of sodium borohydride: balancing reducing agents with intrinsic hydrogen source in hydrated borax
DEMİRCİ Sodium borohydride for the near-future energy: a''rough diamond''for Turkey
JP2007145680A (en) Hydrogen generating material and hydrogen generating method
WO2015093547A1 (en) Method for generating hydrogen and hydrogen generator
Kayacan et al. Effect of magnesium on sodium borohydride synthesis from anhydrous borax
WO2001087769A1 (en) Hydrogen gas generating method
Kalidindi et al. Dehydrogenation of ammonia borane in fluoro alcohols
JP6202715B2 (en) Hydrogen compound decomposition hydrogen recovery apparatus and method
US9199844B2 (en) Two step novel hydrogen system using additives to enhance hydrogen release from the hydrolysis of alane and activated aluminum
Tsubota et al. Reaction between magnesium ammine complex compound and lithium hydride
KR20120066534A (en) Preparation of lithium hydroxide monohydrate from lithium carbonate
CN108698817B (en) Method for producing metal borohydrides and molecular hydrogen
KR101356630B1 (en) Hybrid HI decomposer for Nuclear Hydrogen Production and the continuous sepatation process using the same
CN106542497B (en) Hydrogen storage material and method for producing the same
Sato et al. Hydrogen storage and transportation system through lithium hydride using molten salt technology
JP2005289733A (en) Method for decomposing hydrogen iodide in thermochemical-process hydrogen manufacturing
JP5839337B1 (en) Method and apparatus for producing sodium borohydride
WO2017094603A1 (en) Method for producing high-pressure hydrogen