JP2015133284A - Negative electrode material for nonaqueous electrolyte secondary battery - Google Patents

Negative electrode material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015133284A
JP2015133284A JP2014004926A JP2014004926A JP2015133284A JP 2015133284 A JP2015133284 A JP 2015133284A JP 2014004926 A JP2014004926 A JP 2014004926A JP 2014004926 A JP2014004926 A JP 2014004926A JP 2015133284 A JP2015133284 A JP 2015133284A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
electrolyte secondary
secondary battery
organosiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014004926A
Other languages
Japanese (ja)
Other versions
JP6079651B2 (en
Inventor
敦雄 川田
Atsuo Kawada
敦雄 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2014004926A priority Critical patent/JP6079651B2/en
Publication of JP2015133284A publication Critical patent/JP2015133284A/en
Application granted granted Critical
Publication of JP6079651B2 publication Critical patent/JP6079651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for a nonaqueous electrolyte secondary battery, having the excellent long term cycle durability, while having a large capacity in comparison with a conventional graphite-based material and keeping a high initial efficiency which has been difficult in a conventional silicon-based material.SOLUTION: There is disclosed a negative electrode material used for a nonaqueous electrolyte secondary battery, which is obtained by that liquid organosiloxane is evaporated, and it is heated in the vapor phase at a temperature of 1,000°C or more to be thermally decomposed, then the thermal decomposition product is solidified on a substrate cooled to a temperature of 950°C or less.

Description

本発明は、非水電解質二次電池に用いられる負極材及びその製造方法、ならびに負極、非水電解質二次電池及び電気化学キャパシタに関するものである。   The present invention relates to a negative electrode material used for a non-aqueous electrolyte secondary battery, a method for producing the same, and a negative electrode, a non-aqueous electrolyte secondary battery, and an electrochemical capacitor.

従来、携帯型の電子機器、通信機器等には、機器の小型化、軽量化、経済性の観点から、非水電解質二次電池、特にリチウムイオン二次電池が使用されてきた。このような非水電解質二次電池の負極材には、容量が大きく、初回効率が高く、サイクル耐久性が良好な黒鉛系材料が使われてきたが、近年、機器の高機能化とともに消費電力が大きくなり、より容量の大きな負極材が求められている。このような要求に対する一つの解決手段として、Si単体、SiO化合物、SiCO化合物等の珪素系負極材料が提案されている。   Conventionally, non-aqueous electrolyte secondary batteries, in particular lithium ion secondary batteries, have been used for portable electronic devices, communication devices, and the like from the viewpoints of miniaturization, weight reduction, and economy. As a negative electrode material for such non-aqueous electrolyte secondary batteries, graphite-based materials with large capacity, high initial efficiency, and good cycle durability have been used. Therefore, there is a demand for a negative electrode material having a larger capacity. As one solution to such a demand, silicon-based negative electrode materials such as Si simple substance, SiO compound, and SiCO compound have been proposed.

例えば、特許第2997741号公報(特許文献1)には、負極材料に酸化珪素を用いる方法、特許第3072223号公報(特許文献2)には、銅箔上に化学蒸着法により珪素層を堆積する方法が開示されている。また、特許3060077号公報(特許文献3)には、負極の活物質が有機珪素化合物を100〜3,000℃の熱処理により得られた珪素と炭素又は珪素と炭素及び酸素を有する珪素化合物である非水電解質二次電池、特開平10−74506号公報(特許文献4)には、シロキサンポリマーを含む組成物を熱分解してセラミック材料を形成し、前記セラミック材料中にリチウムイオンを導入して電極材料を形成することを含むリチウムイオン電池用の電極材料を形成する方法が開示されている。さらに、特開2006−62949号公報(特許文献5)には、付加反応等によって高度に架橋させたシラン及び/又はシロキサン化合物を、不活性気流下で加熱することによって得られる焼結物を粉砕して得られるSiCO系コンポジットが開示されている。しかしながら、これらは、従来の黒鉛系材料に比べると容量は大きいものの、300サイクル以上の長期サイクル耐久性が悪いという欠点があった。   For example, Japanese Patent No. 2999741 (Patent Document 1) discloses a method using silicon oxide as a negative electrode material, and Japanese Patent No. 3072223 (Patent Document 2) deposits a silicon layer on a copper foil by chemical vapor deposition. A method is disclosed. In Japanese Patent No. 3060077 (Patent Document 3), the active material of the negative electrode is a silicon compound containing silicon and carbon or silicon, carbon, and oxygen obtained by heat treatment of an organic silicon compound at 100 to 3,000 ° C. In a non-aqueous electrolyte secondary battery, JP-A-10-74506 (Patent Document 4), a composition containing a siloxane polymer is thermally decomposed to form a ceramic material, and lithium ions are introduced into the ceramic material. A method of forming an electrode material for a lithium ion battery that includes forming the electrode material is disclosed. Furthermore, JP-A-2006-62949 (Patent Document 5) pulverizes a sintered product obtained by heating a silane and / or siloxane compound highly crosslinked by an addition reaction or the like under an inert air stream. A SiCO composite obtained as described above is disclosed. However, these have a drawback that long-term cycle durability of 300 cycles or more is poor, although the capacity is larger than that of conventional graphite-based materials.

特許第2997741号公報Japanese Patent No. 2999741 特許第3072223号公報Japanese Patent No. 3072223 特許3060077号公報Japanese Patent No. 3060077 特開平10−74506号公報JP-A-10-74506 特開2006−62949号公報JP 2006-62949 A

本発明は上記事情に鑑みなされたもので、従来の黒鉛系材料に比べ容量が大きく、かつ従来の珪素系材料では困難であった、高い初回効率を保ちつつ、良好な長期サイクル耐久性を有する非水電解質二次電池用負極材を提供することを目的とする。   The present invention has been made in view of the above circumstances, has a large capacity compared to conventional graphite-based materials, and has good long-term cycle durability while maintaining high initial efficiency, which was difficult with conventional silicon-based materials. It aims at providing the negative electrode material for nonaqueous electrolyte secondary batteries.

本発明者は、上記目的を達成するため鋭意検討した結果、液状オルガノシロキサンを気化させ、気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を、950℃以下に冷却された基体上に凝固させ、固体のSiCO系コンポジットを基体上に形成させることにより、高容量で高い初回効率を保ちつつ、良好な長期サイクル耐久性を有する非水電解質二次電池用負極材が得られることを知見し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventor has vaporized liquid organosiloxane, heated to 1,000 ° C. or higher in the gas phase and thermally decomposed, and then reduced the thermal decomposition product to 950 ° C. or lower. By solidifying on a cooled substrate and forming a solid SiCO-based composite on the substrate, a negative electrode material for a non-aqueous electrolyte secondary battery having good long-term cycle durability while maintaining high capacity and high initial efficiency Has been found to yield the present invention.

従って、本発明は下記を提供する。
[1].非水電解質二次電池に用いられる負極材であって、液状オルガノシロキサンを気化させ、これを気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を950℃以下に冷却された基体上に凝固させて得られる非水電解質二次電池用負極材。
[2].液状オルガノシロキサンが、1分子中の珪素数が2〜6であるオルガノシロキサンである[1]記載の非水電解質二次電池用負極材。
[3].液状オルガノシロキサンが、1分子中の珪素数が4〜6である環状のオルガノシロキサンである[1]又は[2]記載の非水電解質二次電池用負極材。
[4].熱分解の圧力雰囲気が10Pa〜10kPaである、[1]〜[3]のいずれかに記載の非水電解質二次電池用負極材。
[5].珪素含有量が50〜70質量%、結合炭素含有量が1質量%以上、全炭素含有量が1〜20質量%、及び酸素含有量が25〜40質量%である、[1]〜[4]のいずれかに記載の非水電解質二次電池用負極材。
[6].[1]〜[5]のいずれかに記載の非水電解質二次電池用負極材を含む非水電解質二次電池用負極。
[7].液状オルガノシロキサンを気化させ、これを気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を950℃以下に冷却された金属箔上に凝固させ、金属箔上に凝固膜が形成された非水電解質二次電池用負極。
[8].[6]又は[7]記載の負極、正極、及び電解液を有する非水電解質二次電池。
[9].負極材を含む負極、正極及び電解液を有する電気化学キャパシタであって、上記負極材が、液状オルガノシロキサンを気化させ、これを気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を950℃以下に冷却された基体上に凝固させて得られる負極材であることを特徴とする電気化学キャパシタ。
[10].液状オルガノシロキサンを気化させ、気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を950℃以下に冷却された基体上に凝固させることを特徴とする、非水電解質二次電池用負極材の製造方法。
Accordingly, the present invention provides the following.
[1]. A negative electrode material used for a non-aqueous electrolyte secondary battery, in which liquid organosiloxane is vaporized, heated to 1,000 ° C. or higher in the gas phase and thermally decomposed, and then the pyrolyzed product is reduced to 950 ° C. or lower. A negative electrode material for a non-aqueous electrolyte secondary battery obtained by solidifying on a cooled substrate.
[2]. The negative electrode material for a nonaqueous electrolyte secondary battery according to [1], wherein the liquid organosiloxane is an organosiloxane having 2 to 6 silicon atoms in one molecule.
[3]. The negative electrode material for a nonaqueous electrolyte secondary battery according to [1] or [2], wherein the liquid organosiloxane is a cyclic organosiloxane having 4 to 6 silicon atoms in one molecule.
[4]. The negative electrode material for nonaqueous electrolyte secondary batteries according to any one of [1] to [3], wherein the pressure atmosphere for thermal decomposition is 10 Pa to 10 kPa.
[5]. The silicon content is 50 to 70 mass%, the bonded carbon content is 1 mass% or more, the total carbon content is 1 to 20 mass%, and the oxygen content is 25 to 40 mass%, [1] to [4] ] The negative electrode material for nonaqueous electrolyte secondary batteries in any one of.
[6]. A negative electrode for a nonaqueous electrolyte secondary battery, comprising the negative electrode material for a nonaqueous electrolyte secondary battery according to any one of [1] to [5].
[7]. After vaporizing the liquid organosiloxane and heating it in the gas phase to 1,000 ° C or higher and thermally decomposing it, the pyrolyzate is solidified on the metal foil cooled to 950 ° C or lower and solidified on the metal foil. A negative electrode for a non-aqueous electrolyte secondary battery having a film formed thereon.
[8]. A nonaqueous electrolyte secondary battery comprising the negative electrode according to [6] or [7], a positive electrode, and an electrolytic solution.
[9]. An electrochemical capacitor having a negative electrode including a negative electrode material, a positive electrode, and an electrolytic solution, wherein the negative electrode material vaporizes liquid organosiloxane and is thermally decomposed by heating it to a temperature of 1,000 ° C. or higher in the gas phase. An electrochemical capacitor, which is a negative electrode material obtained by solidifying the pyrolyzate on a substrate cooled to 950 ° C. or lower.
[10]. A non-aqueous electrolyte characterized in that liquid organosiloxane is vaporized, heated to 1,000 ° C. or higher in the gas phase and thermally decomposed, and then the pyrolyzed product is solidified on a substrate cooled to 950 ° C. or lower. A method for producing a negative electrode material for a secondary battery.

なお、本発明において、「SiCO化合物」とは、組成式がSiCxOy(0<x<1,0<y<2)で表される純物質をいう。また、「SiCO系コンポジット」とは、SiCO化合物を含む混合物(例えば、SiCO化合物とカーボンの混合物)をいう。   In the present invention, the “SiCO compound” refers to a pure substance whose composition formula is represented by SiCxOy (0 <x <1, 0 <y <2). The “SiCO composite” refers to a mixture containing a SiCO compound (for example, a mixture of a SiCO compound and carbon).

本発明の非水電解質二次電池用負極材を用いることにより、高容量でかつ長期サイクル耐久性に優れた非水電解質二次電池及び電気化学キャパシタを得ることができる。   By using the negative electrode material for a non-aqueous electrolyte secondary battery of the present invention, a non-aqueous electrolyte secondary battery and an electrochemical capacitor having a high capacity and excellent long-term cycle durability can be obtained.

本発明の一実施例に係る製造装置概略図である。It is a manufacturing apparatus schematic diagram concerning one example of the present invention. 本発明の一実施例に係る製造装置の冷却チャンバー概略図である。It is the cooling chamber schematic of the manufacturing apparatus which concerns on one Example of this invention. 実施例1で得られた粉末のX線回折(Cu−Kα)のチャートである。3 is an X-ray diffraction (Cu—Kα) chart of the powder obtained in Example 1. FIG. 実施例2で得られた粉末のX線回折(Cu−Kα)のチャートである。4 is an X-ray diffraction (Cu—Kα) chart of the powder obtained in Example 2. FIG. 実施例3で得られた粉末のX線回折(Cu−Kα)のチャートである。4 is an X-ray diffraction (Cu—Kα) chart of the powder obtained in Example 3. FIG. 実施例4で得られた粉末のX線回折(Cu−Kα)のチャートである。4 is an X-ray diffraction (Cu—Kα) chart of the powder obtained in Example 4. FIG.

以下、本発明について詳細に説明する。
〔負極材〕
本発明は、液状オルガノシロキサンを気化させ、これを気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を950℃以下に冷却された基体上に凝固させて得られる、固体のSiCO系コンポジットであり、負極材(負極活物質)として用いるものである。
Hereinafter, the present invention will be described in detail.
[Negative electrode material]
The present invention is obtained by vaporizing a liquid organosiloxane, heating it in the gas phase to 1,000 ° C. or higher, and thermally decomposing it, and then coagulating the pyrolyzate on a substrate cooled to 950 ° C. or lower. It is a solid SiCO composite and is used as a negative electrode material (negative electrode active material).

[I]液状オルガノシロキサンを気化させ、これを気相中で1,000℃以上に加熱し熱分解する。
本発明の第1の特徴として、液状オルガノシロキサンを気化し、この気化したオルガノシロキサンを、気相中で1,000℃以上に加熱し熱分解することが不可欠である。従来公知のオルガノシロキサンの固体を固相のまま熱分解する方法では、低温で熱分解すると分解が不十分なため、充放電時に副反応を生じる部分が残存し初回効率が低下する。このため、1,000℃以上の高温で分解する必要があるが、高温で熱分解すると長期サイクル耐久性が低下してしまうという問題が生じる。その主な原因として、高温で熱分解すると結晶化が進むため不完全な格子による膨張収縮の緩和作用が減少し長期サイクル耐久性を低下させることが考えられる。本発明の液状オルガノシロキサンを気化してから、気相中で熱分解する方法では、高温にしても気相では結晶化が起こらないため、十分に分解が進む1,000℃以上の高温で熱分解することができ、高い初回効率を保ちつつ、良好な長期サイクル耐久性を持った非水電解質二次電池用負極材が得られる。
[I] Liquid organosiloxane is vaporized and heated to 1000 ° C. or higher in the gas phase for thermal decomposition.
As the first feature of the present invention, it is indispensable to vaporize the liquid organosiloxane and heat the vaporized organosiloxane to 1000 ° C. or higher in the gas phase for thermal decomposition. In the conventionally known method of thermally decomposing organosiloxane solids in the solid phase, if pyrolysis is performed at a low temperature, the decomposition is insufficient, so that a portion causing a side reaction during charge and discharge remains and the initial efficiency is lowered. For this reason, although it is necessary to decompose at a high temperature of 1,000 ° C. or higher, there is a problem that long-term cycle durability is deteriorated when pyrolysis is performed at high temperature. As the main cause, it is conceivable that the thermal decomposition at a high temperature leads to crystallization, so that the relaxation action of expansion and contraction due to an incomplete lattice is reduced, and the long-term cycle durability is lowered. In the method in which the liquid organosiloxane of the present invention is vaporized and then thermally decomposed in the gas phase, crystallization does not occur in the gas phase even at high temperatures. A negative electrode material for a non-aqueous electrolyte secondary battery having good long-term cycle durability while maintaining high initial efficiency can be obtained.

液状オルガノシロキサンとしては特に限定されず、1種単独で又は2種以上を適宜選択して用いることができる。1分子中の珪素数が2〜6のオルガノシロキサンが好ましい。オルガノシロキサンの1分子中の珪素数が6より大きいと気化が難しくなるおそれがある。1分子中の珪素数が2〜6のオルガノシロキサンは、得られるSiCO化合物の収率が高くなり、常温で化学的に安定であり、取り扱いや定量供給が容易であるという工業規模生産での利点もある。具体的には、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)、テトラメチルシクロテトラシロキサン(H4)、オクタメチルトリシロキサン(MDM)、ヘキサメチルジシロキサン(M2)等が挙げられ、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロヘキサシロキサン(D6)等の環状のオルガノシロキサン、特に珪素数4〜6の環状のオルガノシロキサンが好ましい。 It does not specifically limit as liquid organosiloxane, It can use individually by 1 type or selecting 2 or more types suitably. An organosiloxane having 2 to 6 silicon atoms in one molecule is preferred. If the number of silicon atoms in the organosiloxane molecule is greater than 6, vaporization may be difficult. Organosiloxanes with 2 to 6 silicon atoms in one molecule have advantages in industrial scale production in that the yield of the obtained SiCO compound is increased, it is chemically stable at room temperature, and handling and quantitative supply are easy. There is also. Specifically, octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), dodecamethylcyclohexasiloxane (D 6 ), tetramethylcyclotetrasiloxane (H 4 ), octamethyltrisiloxane ( MDM), hexamethyldisiloxane (M 2 ), etc., and cyclic organos such as octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), dodecamethylcyclohexasiloxane (D 6 ), etc. Siloxane, particularly cyclic organosiloxane having 4 to 6 silicon atoms is preferred.

液状オルガノシロキサンを気化させる条件は、使用する液状オルガノシロキサンにより適宜選定され、1,000℃未満であれば特に限定されないが、30〜300℃が好ましく、圧力は10Pa〜0.1MPaの範囲が好ましい。   The conditions for vaporizing the liquid organosiloxane are appropriately selected depending on the liquid organosiloxane to be used, and are not particularly limited as long as the temperature is less than 1,000 ° C. However, 30 to 300 ° C is preferable, and the pressure is preferably in the range of 10 Pa to 0.1 MPa. .

気相中で1,000℃以上に加熱し熱分解するが、1,000〜1,500℃が好ましく、1,100〜1,400℃がより好ましい。1,000℃未満では熱分解が不十分となり初回効率が低下し、1,500℃を超えるとSi−C結合が多量に生成し容量が低下する。   Although it heats to 1,000 degreeC or more and thermally decomposes in a gaseous phase, 1,000-1500 degreeC is preferable and 1,100-1,400 degreeC is more preferable. If it is less than 1,000 ° C., thermal decomposition is insufficient and the initial efficiency is lowered, and if it exceeds 1,500 ° C., a large amount of Si—C bonds are produced and the capacity is lowered.

熱分解の圧力雰囲気は、10Pa〜110kPaが好ましく、10Pa〜10kPaの減圧雰囲気がより好ましい。反応性の点から10Pa以上が好ましく、気相中で微粉体が生成し、基体上の堆積物中に取り込まれ、長期サイクル耐久性を低下させるおそれがあるため、110kPa以下が好ましい。   The pressure atmosphere for thermal decomposition is preferably 10 Pa to 110 kPa, and more preferably a reduced pressure atmosphere of 10 Pa to 10 kPa. 10 Pa or more is preferable from the viewpoint of reactivity, and 110 kPa or less is preferable because fine powder is generated in the gas phase and taken into the deposit on the substrate, which may reduce long-term cycle durability.

気化したオルガノシロキサンはキャリアガスに同伴させて熱分解することができる。キャリアガスとしてはアルゴンガス等の不活性ガス、水素ガス等の還元性ガスを用いることが好ましい。   The vaporized organosiloxane can be thermally decomposed by being accompanied by a carrier gas. As the carrier gas, it is preferable to use an inert gas such as argon gas or a reducing gas such as hydrogen gas.

[II]熱分解した後、950℃以下に冷却された基体上に凝固させる。
本発明の第2の特徴として、熱分解物を、950℃以下に冷却された基体上に凝固させることが不可欠である。冷却された基体により気体の熱分解物の温度を下げ、過飽和にして基体上の表面に凝固させることで、固体のSiCO系コンポジットとして回収することができる。さらに熱分解物を950℃以下にすることで、凝固後の結晶成長を抑制することがき、長期サイクル耐久性に優れた非水電解質二次電池用負極材を得ることができる。冷却された基体温度の下限は、50サイクルまでの初期サイクル耐久性の点から、100℃以上が好ましく、基体温度は200〜900℃がより好ましい。なお、基体温度は基体に設置された温度計により測定することができる。
[II] After pyrolysis, solidify on a substrate cooled to 950 ° C. or lower.
As a second feature of the present invention, it is essential to solidify the pyrolyzate on a substrate cooled to 950 ° C. or lower. The temperature of the gaseous pyrolyzate is lowered by the cooled substrate, is supersaturated and solidified on the surface of the substrate, and can be recovered as a solid SiCO-based composite. Furthermore, by making a pyrolyzate into 950 degrees C or less, the crystal growth after solidification can be suppressed and the negative electrode material for nonaqueous electrolyte secondary batteries excellent in long-term cycle durability can be obtained. The lower limit of the cooled substrate temperature is preferably 100 ° C. or more from the viewpoint of initial cycle durability up to 50 cycles, and the substrate temperature is more preferably 200 to 900 ° C. The substrate temperature can be measured with a thermometer installed on the substrate.

本発明の負極材の製造装置としては、図1に示す装置が例示される。以下、図1を用いてさらに詳細に説明する。原料タンク1は液体マスフローコントローラー2を介して、気化部3に接続し、別に、気体マスフローコントローラー4が気化部3に接続している。気化部3には、気化部ヒーター5が配置され、所定温度に気化部3を調整する。気化部3は炉芯管6の炉入口側に接続し、炉芯管6の炉出口側には冷却チャンバー7Aが接続されている。炉芯管6には炉芯管ヒーター8が配置され、所定温度に炉芯管6を調整する。冷却チャンバー7Aの内部には、回転可能な円柱状基体9、スクレーパー10、下方に回収容器11が配設されていて、円柱状基体9はモーター12により所定の速度で回転するとともに、冷媒循環(図示せず)により所定の温度に冷却されている。炉芯管6と冷却チャンバー7Aの内部は、メカニカルブースターポンプ13と油回転真空ポンプ14により減圧され、バタフライ弁15で所定の圧力に調節されている。   As an apparatus for producing a negative electrode material of the present invention, an apparatus shown in FIG. 1 is exemplified. Hereinafter, it will be described in more detail with reference to FIG. The raw material tank 1 is connected to the vaporizing unit 3 via the liquid mass flow controller 2, and separately, the gas mass flow controller 4 is connected to the vaporizing unit 3. The vaporizer 3 is provided with a vaporizer heater 5 to adjust the vaporizer 3 to a predetermined temperature. The vaporizing unit 3 is connected to the furnace inlet side of the furnace core tube 6, and a cooling chamber 7 </ b> A is connected to the furnace outlet side of the furnace core tube 6. A furnace core tube heater 8 is disposed in the furnace core tube 6 to adjust the furnace core tube 6 to a predetermined temperature. Inside the cooling chamber 7A, a rotatable columnar substrate 9, a scraper 10, and a recovery container 11 are disposed below. The columnar substrate 9 is rotated by a motor 12 at a predetermined speed, and a refrigerant circulation ( (Not shown). The interior of the furnace core tube 6 and the cooling chamber 7A is decompressed by a mechanical booster pump 13 and an oil rotary vacuum pump 14, and is adjusted to a predetermined pressure by a butterfly valve 15.

原料である液状オルガノシロキサンは、原料タンク1に入れられており、液体マスフローコントローラー2により一定速度で原料タンク1から気化部3に供給される。気化部3は液状オルガノシロキサンが完全に気化するように気化部ヒーター5によって所定の気化温度まで加熱されている。一方、気化部3にはキャリアガスが気体マスフローコントローラー4によって一定速度で供給されている。気化部3で気化した液状オルガノシロキサンはキャリアガスに同伴し、気化部3に接続する炉芯管6の炉入口側に供給される。炉芯管6の内部は炉芯管ヒーター8により所定の温度に加熱されている。気化した液状オルガノシロキサンは、炉芯管6の内部で熱分解され、熱分解ガスが炉心管6の炉出口側を通り、冷却チャンバー7A内の冷却された円柱状基体9に到達し、冷却されて凝固し、円柱状基体9上に堆積する。円柱状基体9上に堆積した固体のSiCO系コンポジットは、円柱状基体9が回転すると共に回転し、スクレーパー10により掻き落とされ、回収容器11中に回収される。   The liquid organosiloxane which is a raw material is put in the raw material tank 1 and is supplied from the raw material tank 1 to the vaporization unit 3 at a constant speed by the liquid mass flow controller 2. The vaporization section 3 is heated to a predetermined vaporization temperature by the vaporization section heater 5 so that the liquid organosiloxane is completely vaporized. On the other hand, a carrier gas is supplied to the vaporizing unit 3 by a gas mass flow controller 4 at a constant speed. The liquid organosiloxane vaporized in the vaporization section 3 is accompanied by the carrier gas and supplied to the furnace inlet side of the furnace core tube 6 connected to the vaporization section 3. The interior of the furnace core tube 6 is heated to a predetermined temperature by a furnace core tube heater 8. The vaporized liquid organosiloxane is thermally decomposed inside the furnace core tube 6, and the pyrolysis gas passes through the furnace outlet side of the furnace core tube 6, reaches the cooled cylindrical substrate 9 in the cooling chamber 7 </ b> A, and is cooled. Solidify and deposit on the cylindrical substrate 9. The solid SiCO composite deposited on the columnar substrate 9 is rotated when the columnar substrate 9 is rotated, scraped off by the scraper 10, and collected in the collection container 11.

得られた凝固物(以下、SiCO系コンポジット)の組成は、原料である液状オルガノシロキサンの組成、熱分解温度、熱分解雰囲気圧力を変えることによって調節することができる。例えば、熱分解温度が1,300℃未満では、温度が高くなると全炭素量は減少するが、1,300℃以上では、温度が高くなると全炭素量は増加する。また、圧力が高いと全炭素量は増加する。具体的には、珪素含有量が50〜70質量%、結合炭素含有量が1質量%以上、好適には1〜15質量%であり、全炭素含有量が1〜20質量%以下、及び酸素含有量が25〜40質量%が好ましい。珪素含有量が50質量%より小さいと容量が低下するおそれがあり、70質量%より大きいと長期サイクル耐久性が低下するおそれがある。結合炭素量が1質量%より小さいと、長期サイクル耐久性が低下するおそれがあり、全炭素量が20質量%より大きいと容量が低下するおそれがある。酸素量が25質量%より小さいと、長期サイクル耐久性が低下するおそれがあり、40質量%より大きいと初回効率が低下するおそれがある。なお、珪素量は蛍光X線分析方法、酸素量は不活性ガス中黒鉛るつぼ内融解−赤外線吸収法で測定する。また、結合炭素量、全炭素量は、酸素気流中燃焼−赤外線吸収法で測定する。結合炭素量は全炭素量から遊離炭素量を差し引いて求める。全炭素量の測定では、燃焼温度を高温とし、遊離炭素量の測定では燃焼温度を低温とする。具体的な例としては、全炭素量の測定はSn触媒を添加して炉温1,350℃で行い、遊離炭素量の測定は触媒なし、炉温850℃で行う。   The composition of the obtained solidified product (hereinafter referred to as SiCO-based composite) can be adjusted by changing the composition of the liquid organosiloxane as a raw material, the thermal decomposition temperature, and the thermal decomposition atmosphere pressure. For example, if the thermal decomposition temperature is less than 1,300 ° C., the total carbon amount decreases as the temperature increases, but if it exceeds 1,300 ° C., the total carbon amount increases as the temperature increases. Moreover, when the pressure is high, the total amount of carbon increases. Specifically, the silicon content is 50 to 70 mass%, the bound carbon content is 1 mass% or more, preferably 1 to 15 mass%, the total carbon content is 1 to 20 mass% or less, and oxygen The content is preferably 25 to 40% by mass. If the silicon content is less than 50% by mass, the capacity may decrease, and if it is greater than 70% by mass, the long-term cycle durability may decrease. If the amount of bonded carbon is less than 1% by mass, the long-term cycle durability may be reduced, and if the total amount of carbon is more than 20% by mass, the capacity may be reduced. If the amount of oxygen is less than 25% by mass, the long-term cycle durability may decrease, and if it exceeds 40% by mass, the initial efficiency may decrease. The amount of silicon is measured by a fluorescent X-ray analysis method, and the amount of oxygen is measured by melting in a graphite crucible in an inert gas-infrared absorption method. Further, the amount of bonded carbon and the total amount of carbon are measured by combustion in an oxygen stream-infrared absorption method. The amount of bonded carbon is determined by subtracting the amount of free carbon from the total amount of carbon. In the measurement of the total carbon content, the combustion temperature is set to a high temperature, and in the measurement of the free carbon content, the combustion temperature is set to a low temperature. As a specific example, the total carbon amount is measured at a furnace temperature of 1,350 ° C. by adding an Sn catalyst, and the free carbon amount is measured at a furnace temperature of 850 ° C. without a catalyst.

SiCO系コンポジットは、例えば、銅を対陰極としたX線回折(Cu−Kα)の回析パターンが、2θ=25°付近のピークと、50〜70°に現れるブロードなピークがあることから確認できる。後者のピーク位置は組成によって変わり、xが大きいほど高角度寄りになる傾向である。   Confirmed from the fact that the diffraction pattern of X-ray diffraction (Cu-Kα) using, for example, copper as the counter cathode has a peak near 2θ = 25 ° and a broad peak appearing at 50 to 70 ° for the SiCO composite. it can. The latter peak position varies depending on the composition, and tends to be closer to a higher angle as x increases.

得られたSiCO系コンポジットは、非水電解質二次電池用負極材(負極活物質)として用いることができる。必要に応じてボールミルやジェットミル等公知の手段で粉砕し、粉末状の負極材にすることが好ましい。粉末の平均粒径は0.1〜100μmが好ましく、0.5〜20μmがより好ましい。なお、平均粒径は、レーザー光回折法による粒度分布測定における重量平均値D50(即ち、累積重量が50%となる時の粒子径(メジアン径)として測定した値である。 The obtained SiCO-based composite can be used as a negative electrode material (negative electrode active material) for non-aqueous electrolyte secondary batteries. If necessary, it is preferably pulverized by a known means such as a ball mill or a jet mill to form a powdered negative electrode material. The average particle size of the powder is preferably from 0.1 to 100 μm, more preferably from 0.5 to 20 μm. The average particle diameter is a value measured as a weight average value D 50 (that is, a particle diameter (median diameter) when the cumulative weight is 50%) in the particle size distribution measurement by the laser light diffraction method.

さらに、導電性を付与するために、得られた粉末SiCO系コンポジットに対して、化学蒸着処理あるいはメカニカルアロイングによって炭素被覆を行うことが好ましい。なお、炭素被覆を行う場合、炭素被覆量は、炭素被覆された粉末の総質量に占める割合が1〜50質量%が好ましく、1〜20質量%がより好ましい。   Furthermore, in order to impart conductivity, it is preferable to perform carbon coating on the obtained powdered SiCO composite by chemical vapor deposition or mechanical alloying. In addition, when carbon coating is performed, the ratio of the carbon coating amount to the total mass of the carbon-coated powder is preferably 1 to 50% by mass, and more preferably 1 to 20% by mass.

化学蒸着処理は、常圧下又は減圧下で、600℃〜950℃の温度範囲、より好ましくは800℃〜900℃の温度範囲で、炭化水素系化合物ガス及び/又は蒸気を蒸着用反応炉内に導入して、公知の熱化学蒸着処理等を施すことにより行うことができる。この炭化水素系化合物としては、上記の熱処理温度範囲内で熱分解して炭素を生成するものが選択される。例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の他、エチレン、プロピレン、ブチレン、アセチレン等の炭化水素の単独もしくは混合物、あるいは、メタノール、エタノール等のアルコール化合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環ないし3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も、単独もしくは混合物として用いることができる。   In the chemical vapor deposition treatment, hydrocarbon compound gas and / or steam is introduced into the vapor deposition reactor in a temperature range of 600 ° C. to 950 ° C., more preferably in a temperature range of 800 ° C. to 900 ° C. under normal pressure or reduced pressure. It can be carried out by introducing a known thermal chemical vapor deposition process or the like. As this hydrocarbon compound, a compound that generates carbon by pyrolysis within the above heat treatment temperature range is selected. For example, in addition to methane, ethane, propane, butane, pentane, hexane, etc., hydrocarbons such as ethylene, propylene, butylene, acetylene, etc., or alcohol compounds such as methanol, ethanol, benzene, toluene, xylene, styrene 1- to 3-ring aromatic hydrocarbons such as ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, or a mixture thereof. Gas gas oil, creosote oil, anthracene oil, and naphtha cracked tar oil obtained in the tar distillation step can be used alone or as a mixture.

〔負極〕
得られたSiCO系コンポジットからなる非水電解質二次電池用負極材を含む非水電解質二次電池用負極を得ることができる。例えば、負極(成型体)の製造方法としては、上記粉末状負極材と、ポリイミド樹脂等の結着剤と、必要に応じて導電剤と、その他の添加剤とに、N−メチルピロリドン又は水等の結着剤の溶解・分散に適した溶剤を混練してペースト状の合剤とし、この合剤を金属箔等の集電体に塗布し、乾燥させることにより負極を得ることができる。本発明の負極材の含有量は、負極(成型体(集電体を除く))に対して30〜90質量%が好ましい。
[Negative electrode]
A negative electrode for a non-aqueous electrolyte secondary battery including the obtained negative electrode material for a non-aqueous electrolyte secondary battery made of a SiCO-based composite can be obtained. For example, as a manufacturing method of a negative electrode (molded body), N-methylpyrrolidone or water may be used for the powdered negative electrode material, a binder such as a polyimide resin, a conductive agent as necessary, and other additives. A negative electrode can be obtained by kneading a solvent suitable for dissolving and dispersing the binder into a paste-like mixture, applying the mixture to a current collector such as a metal foil, and drying. The content of the negative electrode material of the present invention is preferably 30 to 90% by mass with respect to the negative electrode (molded body (excluding the current collector)).

導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよい。具体的には、Al、Ti、Fe、Ni、Cu、Zn、Ag、Sn、Si等の金属粉末や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。本発明の負極材の導電剤は、負極(成型体(集電体)を除く)に対して0〜50質量%が好ましい。   The type of the conductive agent is not particularly limited as long as it is an electron-conductive material that does not decompose or change in the configured battery. Specifically, metal powder such as Al, Ti, Fe, Ni, Cu, Zn, Ag, Sn, Si, metal fiber or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, Graphite such as pitch-based carbon fiber, PAN-based carbon fiber, and various resin fired bodies can be used. The conductive agent of the negative electrode material of the present invention is preferably 0 to 50% by mass with respect to the negative electrode (excluding the molded body (current collector)).

金属箔としては、導電性が高く、強度が高く、耐酸化性がある材質として銅、SUS、ニッケルが好ましく、銅が最も好ましい。金属箔の厚さは3〜30μmが好ましい。3μmより薄いと電極としての強度が不足し、30μmより厚いと電池容量密度が低下するので好ましくない。   As the metal foil, copper, SUS, or nickel is preferable as the material having high conductivity, high strength, and oxidation resistance, and copper is most preferable. The thickness of the metal foil is preferably 3 to 30 μm. If it is thinner than 3 μm, the strength as an electrode is insufficient, and if it is thicker than 30 μm, the battery capacity density is lowered.

また、本発明の一つの実施形態として、上記SiCO系コンポジットを、負極の集電体である金属箔上に直接凝固させ、SiCO系コンポジットの薄膜を金属箔上に形成させることもできる。つまり、液状オルガノシロキサンを気化させ、これを気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を、950℃以下に冷却された金属箔上に凝固させ、金属箔上に凝固膜が形成された非水電解質二次電池用負極とすることもできる。この方法により、負極活物質であるSiCO系コンポジットと集電体である金属箔との接合を強固なものとすることができ、短期及び長期サイクル耐久性とレート特性に優れた非水電解質二次電池用負極が得られる。金属箔の表面は、SiCO系コンポジットの薄膜との密着性を向上させるため、機械的又は化学的方法等公知の方法によって粗面化処理することが好ましい。   Further, as one embodiment of the present invention, the SiCO composite can be directly solidified on a metal foil which is a negative electrode current collector, and a thin film of the SiCO composite can be formed on the metal foil. That is, liquid organosiloxane is vaporized, heated to 1,000 ° C. or higher in the gas phase and thermally decomposed, and then the pyrolyzed product is solidified on a metal foil cooled to 950 ° C. or lower to form a metal foil. A negative electrode for a non-aqueous electrolyte secondary battery having a solidified film formed thereon can also be used. By this method, it is possible to strengthen the bonding between the SiCO composite as the negative electrode active material and the metal foil as the current collector, and the non-aqueous electrolyte secondary excellent in short-term and long-term cycle durability and rate characteristics. A negative electrode for a battery is obtained. The surface of the metal foil is preferably roughened by a known method such as a mechanical or chemical method in order to improve adhesion with the thin film of the SiCO-based composite.

この場合に用いられる装置としては、図1に示す製造装置の冷却チャンバー7Aを図2に示す冷却チャンバー7Bに置き換えたものが挙げられる。以下、図2を用いてさらに詳細に説明する。冷却チャンバー7Bの内部には、冷媒循環により冷却された冷却ドラム16、繰出ロール17、巻取ロール18が配設されており、金属箔19が繰出ロール17から繰出され冷却ドラム16表面を経由して巻取ロール18で巻取られるように設置されている。冷却ドラム16、繰出ロール17、巻取ロール18にはそれぞれモーター20、ブレーキ21、クラッチ付モーター22が取り付けられ、これらにより金属箔19は一定の速度とテンションで走行すると共に、冷却ドラム16により所定の温度に冷却されている。熱分解物(ガス)は冷却チャンバー7B内の冷却ドラム16表面の金属箔19に到達し、冷却されて凝固し、金属箔19上の表面に薄膜として堆積する。   As an apparatus used in this case, an apparatus in which the cooling chamber 7A of the manufacturing apparatus shown in FIG. 1 is replaced with a cooling chamber 7B shown in FIG. Hereinafter, it will be described in more detail with reference to FIG. Inside the cooling chamber 7B, a cooling drum 16, a feed roll 17, and a take-up roll 18 cooled by refrigerant circulation are arranged, and a metal foil 19 is fed from the feed roll 17 and passes through the surface of the cooling drum 16. It is installed so that it can be wound by the winding roll 18. A motor 20, a brake 21, and a motor 22 with a clutch are attached to the cooling drum 16, the feeding roll 17, and the take-up roll 18, respectively, so that the metal foil 19 travels at a constant speed and tension and is predetermined by the cooling drum 16. Is cooled to a temperature of The pyrolyzate (gas) reaches the metal foil 19 on the surface of the cooling drum 16 in the cooling chamber 7B, is cooled and solidifies, and is deposited as a thin film on the surface of the metal foil 19.

金属箔は950℃以下に冷却することが必要であり、900℃以下がより好ましい。金属箔が銅箔の場合は、銅の結晶が成長し銅箔の強度が低下するおそれがあるため、500℃以下が好ましい。下限は100℃以上が好ましく、200℃以上がより好ましい。   The metal foil needs to be cooled to 950 ° C. or lower, and more preferably 900 ° C. or lower. In the case where the metal foil is a copper foil, the temperature is preferably 500 ° C. or lower because copper crystals may grow and the strength of the copper foil may decrease. The lower limit is preferably 100 ° C. or higher, and more preferably 200 ° C. or higher.

SiCO系コンポジットの薄膜の厚さは、電気容量の点から1μm以上が好ましく、金属箔が裂けることを防ぐ点から50μm以下が好ましい。さらに、3〜40μmが好ましい。   The thickness of the thin film of the SiCO-based composite is preferably 1 μm or more from the viewpoint of electric capacity, and preferably 50 μm or less from the viewpoint of preventing the metal foil from tearing. Furthermore, 3-40 micrometers is preferable.

〔非水電解質二次電池〕
本発明の非水電解質二次電池は、上記負極、正極及び電解液を有するものであり、本発明の負極を用いる点に特徴を有し、その他の正極、電解質、セパレータ等の材料及び電池形状等は公知のものを用いることができ限定されない。例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn24、LiCo1/3Ni1/3Mn1/32、LiFePO4、V25、MnO2、TiS2、MoS2等の遷移金属の酸化物、リチウム及びカルコゲン化合物等が用いられる。電解質としては、六フッ化リン酸リチウム、過塩素リチウム、ホウフッ化リチウム、六フッ化砒素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の単体又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
[Nonaqueous electrolyte secondary battery]
The non-aqueous electrolyte secondary battery of the present invention has the above-described negative electrode, positive electrode, and electrolytic solution, and is characterized in that the negative electrode of the present invention is used. Other positive electrode, electrolyte, separator and other materials and battery shape Etc. can use well-known things and are not limited. For example, as the positive electrode active material, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiFePO 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2, etc. These transition metal oxides, lithium and chalcogen compounds are used. As the electrolyte, a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate, lithium perchlorate, lithium borofluoride, lithium hexafluoroarsenate is used, and propylene carbonate, ethylene carbonate, dimethyl is used as the non-aqueous solvent. A single substance such as carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran, or a combination of two or more kinds is used. Various other non-aqueous electrolytes and solid electrolytes can also be used.

〔電気化学キャパシタ〕
また、液状オルガノシロキサンを気化させ、これを気相中で1,000℃以上に加熱し熱分解した後、950℃以下に冷却された基体上に凝固させて得る負極材を含む負極、正極及び電解液を有する電気化学キャパシタを製造することもできる。負極材の好適な範囲等は上記と同様である。この場合、製造する電気化学キャパシタは、本発明の負極を用いる点に特徴を有し、その他の正極、電解質、セパレータ等の材料及びキャパシタ形状等は公知のものを用いることができ、限定されない。例えば、正極活物質としては、活性炭、カーボンナノファイバー、カーボンナノチューブ等が用いられ、電解質としては、六フッ化リン酸リチウム、過塩素リチウム、ホウフッ化リチウム、六フッ化砒素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の単体又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
[Electrochemical capacitor]
In addition, a liquid organosiloxane is vaporized, heated to 1,000 ° C. or higher in the gas phase, thermally decomposed, and then solidified on a substrate cooled to 950 ° C. or lower, and a negative electrode including a negative electrode material, a positive electrode, An electrochemical capacitor having an electrolytic solution can also be manufactured. The preferred range of the negative electrode material is the same as described above. In this case, the electrochemical capacitor to be manufactured is characterized in that the negative electrode of the present invention is used, and other materials such as positive electrode, electrolyte, separator, and capacitor shape can be used, and are not limited. For example, activated carbon, carbon nanofibers, carbon nanotubes and the like are used as the positive electrode active material, and lithium electrolytes such as lithium hexafluorophosphate, lithium perchlorate, lithium borofluoride, and lithium hexafluoroarsenate are used as the electrolyte. A non-aqueous solution containing is used. As the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran and the like are used alone or in combination of two or more. Various other non-aqueous electrolytes and solid electrolytes can also be used.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
図1に示す製造装置を用いた。内径120mm、長さ1,800mmのアルミナ製炉芯管6の内部を、油回転真空ポンプ14で10Paに排気しながら、炉芯管6中央部が1,200℃(分解温度)になるように加熱した。液状のオクタメチルシクロテトラシロキサン(D4)を、気化部3内で100Pa減圧下・250℃に加熱し気化させた後、キャリアガスであるアルゴンガス2NL/minに同伴させ、炉口側から炉芯管6内に1g/minの速度で供給した。この時の炉芯管6内の圧力が100Paになるようにバタフライ弁を調整した。オクタメチルシクロテトラシロキサンは炉芯管6中央部で熱分解された後、炉出口側に接続された冷却チャンバー7A内で、900℃(基体温度)に冷却された円柱状基体9上に堆積した。この堆積物を回収し、ボールミルで平均粒径が10μmになるように粉砕した。この粉末を、銅を対陰極としたX線回折(Cu−Kα)したところ、図3に示す回折パターンが得られ、SiCO系コンポジットであることを示すピークが確認された。蛍光X線分析装置(PHILIPS X−ray spectrometer MagiX PRO)で珪素量、炭素分析装置(Horiba carbon analyzer EMIA−110)で結合炭素量と全炭素量、酸素分析装置(Horiba oxygen/nitrogen analyzer EMGA−2800)で酸素量を測定した結果を表1に示す。
[Example 1]
The manufacturing apparatus shown in FIG. 1 was used. While the inside of the alumina furnace core tube 6 having an inner diameter of 120 mm and a length of 1,800 mm is evacuated to 10 Pa by the oil rotary vacuum pump 14, the center part of the furnace core tube 6 becomes 1,200 ° C. (decomposition temperature). Heated. Liquid octamethylcyclotetrasiloxane (D 4 ) was vaporized by heating to 250 ° C. under a reduced pressure of 100 Pa in the vaporizing section 3, and then entrained with 2 NL / min of argon gas as a carrier gas. It was supplied into the core tube 6 at a rate of 1 g / min. The butterfly valve was adjusted so that the pressure in the furnace core tube 6 at this time was 100 Pa. Octamethylcyclotetrasiloxane was thermally decomposed at the center of the furnace core tube 6 and then deposited on the cylindrical substrate 9 cooled to 900 ° C. (substrate temperature) in the cooling chamber 7A connected to the furnace outlet side. . This deposit was collected and pulverized with a ball mill to an average particle size of 10 μm. When this powder was subjected to X-ray diffraction (Cu-Kα) using copper as the counter cathode, the diffraction pattern shown in FIG. 3 was obtained, and a peak indicating that it was a SiCO-based composite was confirmed. Silicon content with a fluorescent X-ray analyzer (PHILIPS X-ray spectrometer MagiX PRO), carbon content with a carbon analyzer (Horiba carbon analyzer EMIA-110), total carbon content, oxygen analyzer (Horiba oxygen / nitrogen analyzer-2) Table 1 shows the results of measuring the amount of oxygen in).

次に、得られた粉末45質量部に、人造黒鉛(平均粒子径10μm)を45質量部、ポリイミド樹脂(商標名:U−ワニスA、固形分18質量%)56質量部を加え、更にN−メチル−2−ピロリドンを加え、撹拌してスラリーとした。このスラリーをドクターブレードで厚さ12μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより加圧成形し、更に350℃で1時間真空乾燥した。これを面積2cm2の円形に打ち抜き、負極を作製した。 Next, 45 parts by mass of artificial graphite (average particle size 10 μm) and 56 parts by mass of polyimide resin (trade name: U-varnish A, solid content 18% by mass) are added to 45 parts by mass of the obtained powder, and N -Methyl-2-pyrrolidone was added and stirred to a slurry. This slurry was applied to a copper foil having a thickness of 12 μm with a doctor blade, dried at 80 ° C. for 1 hour, then pressure-formed by a roller press, and further vacuum dried at 350 ° C. for 1 hour. This was punched into a circle with an area of 2 cm 2 to produce a negative electrode.

[実施例2]
分解温度を1,500℃とした以外は実施例1と同様に負極材粉末を作製した。この粉末をX線回折装置で分析したところ図4に示す回折パターンが得られ、SiCO系コンポジットであることを示すピークが確認された。実施例1と同様に珪素量、結合炭素量、全炭素量、酸素量を測定した結果を表1に示す。次に、この粉末から実施例1と同様に負極を作製した。
[Example 2]
A negative electrode material powder was prepared in the same manner as in Example 1 except that the decomposition temperature was 1,500 ° C. When this powder was analyzed with an X-ray diffractometer, the diffraction pattern shown in FIG. 4 was obtained, and a peak indicating a SiCO composite was confirmed. Table 1 shows the results of measuring the silicon amount, the bound carbon amount, the total carbon amount, and the oxygen amount in the same manner as in Example 1. Next, a negative electrode was produced from this powder in the same manner as in Example 1.

[実施例3]
分解温度を1,000℃とした以外は実施例1と同様に負極材粉末を作製した。この粉末をX線回折装置で分析したところ図5に示す回折パターンが得られ、SiCO系コンポジットであることを示すピークが確認された。実施例1と同様に珪素量、結合炭素量、全炭素量、酸素量を測定した結果を表1に示す。次に、この粉末から実施例1と同様に負極を作製した。
[Example 3]
A negative electrode material powder was produced in the same manner as in Example 1 except that the decomposition temperature was 1,000 ° C. When this powder was analyzed with an X-ray diffractometer, the diffraction pattern shown in FIG. 5 was obtained, and a peak indicating a SiCO composite was confirmed. Table 1 shows the results of measuring the silicon amount, the bound carbon amount, the total carbon amount, and the oxygen amount in the same manner as in Example 1. Next, a negative electrode was produced from this powder in the same manner as in Example 1.

[実施例4]
雰囲気圧力を9,000Paとした以外は実施例1と同様に負極材粉末を作製した。この粉末をX線回折装置で分析したところ図6に示す回折パターンが得られ、SiCO系コンポジットであることを示すピークが確認された。実施例1と同様に珪素量、結合炭素量、全炭素量、酸素量を測定した結果を表1に示す。次に、この粉末から実施例1と同様に負極を作製した。
[Example 4]
A negative electrode material powder was prepared in the same manner as in Example 1 except that the atmospheric pressure was 9,000 Pa. When this powder was analyzed with an X-ray diffractometer, the diffraction pattern shown in FIG. 6 was obtained, and a peak indicating that it was a SiCO composite was confirmed. Table 1 shows the results of measuring the silicon amount, the bound carbon amount, the total carbon amount, and the oxygen amount in the same manner as in Example 1. Next, a negative electrode was produced from this powder in the same manner as in Example 1.

[実施例5]
キャリアガスを水素ガスとした以外は実施例1と同様に負極材粉末を作製した。この粉末をX線回折装置で分析したところ、SiCO系コンポジットであることを示すピークが確認された。実施例1と同様に珪素量、結合炭素量、全炭素量、酸素量を測定した結果を表1に示す。次に、この粉末から実施例1と同様に負極を作製した。
[Example 5]
A negative electrode material powder was prepared in the same manner as in Example 1 except that the carrier gas was hydrogen gas. When this powder was analyzed with an X-ray diffractometer, a peak indicating a SiCO composite was confirmed. Table 1 shows the results of measuring the silicon amount, the bound carbon amount, the total carbon amount, and the oxygen amount in the same manner as in Example 1. Next, a negative electrode was produced from this powder in the same manner as in Example 1.

[実施例6]
液状オルガノシロキサンをデカメチルシクロペンタシロキサン(D5)とした以外は実施例1と同様に負極材粉末を作製した。この粉末をX線回折装置で分析したところ、SiCO系コンポジットであることを示すピークが確認された。実施例1と同様に珪素量、結合炭素量、全炭素量、酸素量を測定した結果を表1に示す。次に、この粉末から実施例1と同様に負極を作製した。
[Example 6]
A negative electrode material powder was prepared in the same manner as in Example 1 except that the liquid organosiloxane was decamethylcyclopentasiloxane (D 5 ). When this powder was analyzed with an X-ray diffractometer, a peak indicating a SiCO composite was confirmed. Table 1 shows the results of measuring the silicon amount, the bound carbon amount, the total carbon amount, and the oxygen amount in the same manner as in Example 1. Next, a negative electrode was produced from this powder in the same manner as in Example 1.

[実施例7]
液状オルガノシロキサンをドデカメチルシクロヘキサシロキサン(D6)とした以外は実施例1と同様に負極材粉末を作製した。この粉末をX線回折装置で分析したところ、SiCO系コンポジットであることを示すピークが確認された。実施例1と同様に珪素量、結合炭素量、全炭素量、酸素量を測定した結果を表1に示す。次に、この粉末から実施例1と同様に負極を作製した。
[Example 7]
A negative electrode material powder was prepared in the same manner as in Example 1 except that the liquid organosiloxane was changed to dodecamethylcyclohexasiloxane (D 6 ). When this powder was analyzed with an X-ray diffractometer, a peak indicating a SiCO composite was confirmed. Table 1 shows the results of measuring the silicon amount, the bound carbon amount, the total carbon amount, and the oxygen amount in the same manner as in Example 1. Next, a negative electrode was produced from this powder in the same manner as in Example 1.

[実施例8]
液状オルガノシロキサンをテトラメチルシクロテトラシロキサン(H4)とした以外は実施例1と同様に負極材粉末を作製した。この粉末をX線回折装置で分析したところ、SiCO系コンポジットであることを示すピークが確認された。実施例1と同様に珪素量、結合炭素量、全炭素量、酸素量を測定した結果を表1に示す。次に、この粉末から実施例1と同様に負極を作製した。
[Example 8]
A negative electrode material powder was prepared in the same manner as in Example 1 except that tetramethylcyclotetrasiloxane (H 4 ) was used as the liquid organosiloxane. When this powder was analyzed with an X-ray diffractometer, a peak indicating a SiCO composite was confirmed. Table 1 shows the results of measuring the silicon amount, the bound carbon amount, the total carbon amount, and the oxygen amount in the same manner as in Example 1. Next, a negative electrode was produced from this powder in the same manner as in Example 1.

[実施例9]
液状オルガノシロキサンをオクタメチルトリシロキサン(MDM)とした以外は実施例1と同様に負極材粉末を作製した。この粉末をX線回折装置で分析したところ、SiCO系コンポジットであることを示すピークが確認された。実施例1と同様に珪素量、結合炭素量、全炭素量、酸素量を測定した結果を表1に示す。次に、この粉末から実施例1と同様に負極を作製した。
[Example 9]
A negative electrode material powder was prepared in the same manner as in Example 1 except that octamethyltrisiloxane (MDM) was used as the liquid organosiloxane. When this powder was analyzed with an X-ray diffractometer, a peak indicating a SiCO composite was confirmed. Table 1 shows the results of measuring the silicon amount, the bound carbon amount, the total carbon amount, and the oxygen amount in the same manner as in Example 1. Next, a negative electrode was produced from this powder in the same manner as in Example 1.

[実施例10]
液状オルガノシロキサンをヘキサメチルジシロキサン(M2)とした以外は実施例1と同様に負極材粉末を作製した。この粉末をX線回折装置で分析したところ、SiCO系コンポジットであることを示すピークが確認された。実施例1と同様に珪素量、結合炭素量、全炭素量、酸素量を測定した結果を表1に示す。次に、この粉末から実施例1と同様に負極を作製した。
[Example 10]
A negative electrode material powder was prepared in the same manner as in Example 1 except that hexamethyldisiloxane (M 2 ) was used as the liquid organosiloxane. When this powder was analyzed with an X-ray diffractometer, a peak indicating a SiCO composite was confirmed. Table 1 shows the results of measuring the silicon amount, the bound carbon amount, the total carbon amount, and the oxygen amount in the same manner as in Example 1. Next, a negative electrode was produced from this powder in the same manner as in Example 1.

[実施例11]
図1に示す製造装置の冷却チャンバー7Aを図2に示す冷却チャンバー7Bに置き換えた装置を用い、表面を粗面化した厚さ12μmの銅箔を、繰出ロール17から繰出され、冷却ドラム16表面を経由して巻取ロール18で巻取られるように走行させながら、実施例1と同様に1,200℃(分解温度)でオクタメチルシクロテトラシロキサン(D4)の熱分解を行い、400℃(基体温度)に冷却された銅箔表面に堆積させた。この堆積物をX線回折装置で分析したところ、SiCO系コンポジットであることを示すピークが確認された。この堆積物を掻き落として回収し、珪素量、結合炭素量、全炭素量、酸素量を測定した結果を表1に示す。次に、堆積物が銅箔に密着した状態(膜厚32μm(銅箔含む))のままで面積2cm2の円形に打ち抜き、負極を作製した。
[Example 11]
Using the apparatus in which the cooling chamber 7A of the manufacturing apparatus shown in FIG. 1 is replaced with the cooling chamber 7B shown in FIG. 2, a 12 μm thick copper foil whose surface has been roughened is fed from the feeding roll 17 and the surface of the cooling drum 16 The octamethylcyclotetrasiloxane (D 4 ) is thermally decomposed at 1,200 ° C. (decomposition temperature) in the same manner as in Example 1 while traveling so as to be wound by the winding roll 18 via It was deposited on the surface of the copper foil cooled to (substrate temperature). When this deposit was analyzed with an X-ray diffractometer, a peak indicating a SiCO composite was confirmed. Table 1 shows the results obtained by scraping and collecting the deposit and measuring the silicon content, the bound carbon content, the total carbon content, and the oxygen content. Next, the deposit was punched into a circle with an area of 2 cm 2 while the deposit was in close contact with the copper foil (film thickness 32 μm (including copper foil)) to produce a negative electrode.

[比較例1]
特開2006−62949号公報の実施例1に記載の方法でSiCO系コンポジット粉末を得た。即ち、テトラメチルテトラビニルシクロテトラシロキサン〔信越化学工業(株)製、LS−8670〕120g、メチル水素シロキサン〔信越化学工業(株)製、KF−99〕80gからなる硬化性シロキサン混合物に塩化白金酸触媒〔塩化白金酸1%溶液〕0.1gを添加して、よく混合した。その後、60℃で一昼夜プレキュアした。塊状のまま、ガラス容器に入れて、雰囲気コントロール可能な温度プログラム付マッフル炉で窒素雰囲気下にて、200℃で2時間加熱して、完全に硬化させた。この硬化物をボールミルにより平均粒子径が10μmになるように微粉砕した。その後、蓋付のアルミナ製容器に入れて、雰囲気コントロール可能な温度プログラム付マッフル炉で窒素雰囲気下にて、1,000℃で3時間焼成を行った。冷却後、クリアランスを20μmに設定した粉砕機(マスコロイダー)で粉砕し、平均粒径約10μmのSiCO系コンポジット粉末を得た。次に、この粉末を用いること以外は実施例1と同じ方法で円形(面積2cm2)の負極を作製した。
[Comparative Example 1]
A SiCO composite powder was obtained by the method described in Example 1 of JP-A-2006-62949. That is, platinum chloride was added to a curable siloxane mixture consisting of 120 g of tetramethyltetravinylcyclotetrasiloxane [manufactured by Shin-Etsu Chemical Co., Ltd., LS-8670] and 80 g of methyl hydrogen siloxane [manufactured by Shin-Etsu Chemical Co., Ltd., KF-99]. 0.1 g of acid catalyst [chloroplatinic acid 1% solution] was added and mixed well. Then, it was pre-cured at 60 ° C. all day and night. It was put in a glass container as it was, and heated at 200 ° C. for 2 hours in a muffle furnace with a temperature program capable of controlling the atmosphere in a nitrogen atmosphere to be completely cured. This cured product was finely pulverized by a ball mill so that the average particle size became 10 μm. Then, it put into the alumina container with a lid | cover, and baked at 1,000 degreeC for 3 hours by the muffle furnace with a temperature program which can control atmosphere in nitrogen atmosphere. After cooling, the mixture was pulverized by a pulverizer (mass colloider) having a clearance of 20 μm to obtain a SiCO composite powder having an average particle size of about 10 μm. Next, a circular negative electrode (area 2 cm 2 ) was produced in the same manner as in Example 1 except that this powder was used.

[電池評価]
リチウムイオン二次電池負極活物質としての評価はすべての実施例、比較例ともに同一で、以下の方法・手順にて行った。
《初期充放電特性評価》
得られた負極の初期充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用ハーフセルを作製した。
作製したハーフセルは、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、セル電圧が5mVに達するまで1.5mAの定電流で充電を行い、5mVに達した後は、セル電圧を5mVに保つように電流を減少させて充電を行い、電流値が200μAを下回った時点で充電を終了し、充電容量を求めた。放電は0.6mAの定電流で行い、セル電圧が2.0V上回った時点で放電を終了し、放電容量を求めた。求めた放電容量を充電容量で割り初回効率とした。これらの結果を表2に示した。なお、表2中の放電容量及び充電容量は、導電性付与のために添加した黒鉛分を除いたSiOC系コンポジット1g当りの容量である。
[Battery evaluation]
The evaluation as the negative electrode active material of the lithium ion secondary battery was the same in all Examples and Comparative Examples, and was performed by the following methods and procedures.
<Evaluation of initial charge / discharge characteristics>
In order to evaluate the initial charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluorophosphate was used as a non-aqueous electrolyte in a 1/1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate. A non-aqueous electrolyte solution dissolved at a concentration of mol / L was used, and a half cell for evaluation using a microporous polyethylene film having a thickness of 30 μm as a separator was produced.
The prepared half cell was left overnight at room temperature, and then charged using a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) at a constant current of 1.5 mA until the cell voltage reached 5 mV. After reaching the value, charging was performed by decreasing the current so as to keep the cell voltage at 5 mV, and when the current value fell below 200 μA, the charging was terminated and the charging capacity was determined. The discharge was performed at a constant current of 0.6 mA, and when the cell voltage exceeded 2.0 V, the discharge was terminated and the discharge capacity was determined. The obtained discharge capacity was divided by the charge capacity to obtain the initial efficiency. These results are shown in Table 2. In addition, the discharge capacity and the charge capacity in Table 2 are the capacity per 1 g of the SiOC composite excluding the graphite added for imparting conductivity.

《長期サイクル耐久性評価》
得られた負極のサイクル耐久性を評価するために、正極材料としてコバルト酸リチウム94質量部に、アセチレンブラック3質量部、ポリフッ化ビニリデン3質量部を加え、更にN−メチル−2−ピロリドンを加え、撹拌してスラリーとした。このスラリーをドクターブレードで厚さ16μmのアルミ箔に塗布し、100℃で1時間乾燥後、ローラープレスにより加圧成形し、更に120℃で5時間真空乾燥した。これを面積2cm2の円形に打ち抜き、正極を作製した。この正極と上記負極を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用フルセルを作製した。
<< Long-term cycle durability evaluation >>
In order to evaluate the cycle durability of the obtained negative electrode, 3 parts by mass of acetylene black and 3 parts by mass of polyvinylidene fluoride were added to 94 parts by mass of lithium cobaltate as a positive electrode material, and N-methyl-2-pyrrolidone was further added. The slurry was stirred. This slurry was applied to an aluminum foil having a thickness of 16 μm with a doctor blade, dried at 100 ° C. for 1 hour, pressure-formed with a roller press, and further dried in vacuo at 120 ° C. for 5 hours. This was punched into a circle with an area of 2 cm 2 to produce a positive electrode. Using this positive electrode and the above negative electrode, a nonaqueous electrolyte solution in which lithium hexafluorophosphate was dissolved in a 1/1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate at a concentration of 1 mol / L as a nonaqueous electrolyte was used. A full cell for evaluation using a polyethylene microporous film having a thickness of 30 μm as a separator was prepared.

Figure 2015133284
Figure 2015133284

Figure 2015133284
Figure 2015133284

1 原料タンク
2 液体マスフローコントローラー
3 気化部
4 気体マスフローコントローラー
5 気化部ヒーター
6 炉芯管
7A,7B 冷却チャンバー
8 炉芯管ヒーター
9 円柱状基体
10 スクレーパー
11 回収容器
12 モーター
13 メカニカルブースターポンプ
14 油回転真空ポンプ
15 バタフライ弁
16 冷却ドラム
17 繰出ロール
18 巻取ロール
19 金属箔
20 モーター
21 ブレーキ
22 クラッチ付モーター
DESCRIPTION OF SYMBOLS 1 Raw material tank 2 Liquid mass flow controller 3 Vaporization part 4 Gas mass flow controller 5 Vaporization part heater 6 Furnace core pipe 7A, 7B Cooling chamber 8 Furnace core pipe heater 9 Cylindrical base | substrate 10 Scraper 11 Recovery container 12 Motor 13 Mechanical booster pump 14 Oil rotation Vacuum pump 15 Butterfly valve 16 Cooling drum 17 Feeding roll 18 Winding roll 19 Metal foil 20 Motor 21 Brake 22 Motor with clutch

Claims (10)

非水電解質二次電池に用いられる負極材であって、液状オルガノシロキサンを気化させ、これを気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を950℃以下に冷却された基体上に凝固させて得られる非水電解質二次電池用負極材。   A negative electrode material used for a non-aqueous electrolyte secondary battery, in which liquid organosiloxane is vaporized, heated to 1,000 ° C. or higher in the gas phase and thermally decomposed, and then the pyrolyzed product is reduced to 950 ° C. or lower. A negative electrode material for a non-aqueous electrolyte secondary battery obtained by solidifying on a cooled substrate. 液状オルガノシロキサンが、1分子中の珪素数が2〜6であるオルガノシロキサンである請求項1記載の非水電解質二次電池用負極材。   The negative electrode material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the liquid organosiloxane is an organosiloxane having 2 to 6 silicon atoms in one molecule. 液状オルガノシロキサンが、1分子中の珪素数が4〜6である環状のオルガノシロキサンである請求項1又は2記載の非水電解質二次電池用負極材。   The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the liquid organosiloxane is a cyclic organosiloxane having 4 to 6 silicon atoms in one molecule. 熱分解の圧力雰囲気が10Pa〜10kPaである、請求項1〜3のいずれか1項記載の非水電解質二次電池用負極材。   The negative electrode material for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the pressure atmosphere for thermal decomposition is 10 Pa to 10 kPa. 珪素含有量が50〜70質量%、結合炭素含有量が1質量%以上、全炭素含有量が1〜20質量%、及び酸素含有量が25〜40質量%である、請求項1〜4のいずれか1項記載の非水電解質二次電池用負極材。   The silicon content is 50 to 70 mass%, the bonded carbon content is 1 mass% or more, the total carbon content is 1 to 20 mass%, and the oxygen content is 25 to 40 mass%. The negative electrode material for a nonaqueous electrolyte secondary battery according to any one of the preceding claims. 請求項1〜5のいずれか1項記載の非水電解質二次電池用負極材を含む非水電解質二次電池用負極。   The negative electrode for nonaqueous electrolyte secondary batteries containing the negative electrode material for nonaqueous electrolyte secondary batteries of any one of Claims 1-5. 液状オルガノシロキサンを気化させ、これを気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を950℃以下に冷却された金属箔上に凝固させ、金属箔上に凝固膜が形成された非水電解質二次電池用負極。   After vaporizing the liquid organosiloxane and heating it in the gas phase to 1,000 ° C or higher and thermally decomposing it, the pyrolyzate is solidified on the metal foil cooled to 950 ° C or lower and solidified on the metal foil. A negative electrode for a non-aqueous electrolyte secondary battery having a film formed thereon. 請求項6又は7記載の負極、正極、及び電解液を有する非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising the negative electrode according to claim 6 or 7, a positive electrode, and an electrolytic solution. 負極材を含む負極、正極及び電解液を有する電気化学キャパシタであって、上記負極材が、液状オルガノシロキサンを気化させ、これを気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を950℃以下に冷却された基体上に凝固させて得られる負極材であることを特徴とする電気化学キャパシタ。   An electrochemical capacitor having a negative electrode including a negative electrode material, a positive electrode, and an electrolytic solution, wherein the negative electrode material vaporizes liquid organosiloxane and is thermally decomposed by heating it to a temperature of 1,000 ° C. or higher in the gas phase. An electrochemical capacitor, which is a negative electrode material obtained by solidifying the pyrolyzate on a substrate cooled to 950 ° C. or lower. 液状オルガノシロキサンを気化させ、気相中で1,000℃以上に加熱し熱分解した後、この熱分解物を950℃以下に冷却された基体上に凝固させることを特徴とする、非水電解質二次電池用負極材の製造方法。   A non-aqueous electrolyte characterized in that liquid organosiloxane is vaporized, heated to 1,000 ° C. or higher in the gas phase and thermally decomposed, and then the pyrolyzed product is solidified on a substrate cooled to 950 ° C. or lower. A method for producing a negative electrode material for a secondary battery.
JP2014004926A 2014-01-15 2014-01-15 Method for producing negative electrode material for non-aqueous electrolyte secondary battery Active JP6079651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014004926A JP6079651B2 (en) 2014-01-15 2014-01-15 Method for producing negative electrode material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014004926A JP6079651B2 (en) 2014-01-15 2014-01-15 Method for producing negative electrode material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015133284A true JP2015133284A (en) 2015-07-23
JP6079651B2 JP6079651B2 (en) 2017-02-15

Family

ID=53900332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014004926A Active JP6079651B2 (en) 2014-01-15 2014-01-15 Method for producing negative electrode material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6079651B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106830A (en) * 2016-12-22 2018-07-05 Dic株式会社 Method for manufacturing active material for non-aqueous secondary battery negative electrode, active material for non-aqueous secondary battery negative electrode, and method for manufacturing non-aqueous secondary battery negative electrode
JP2020525648A (en) * 2017-06-27 2020-08-27 ペーエスツェー テクノロジーズ ゲーエムベーハー Method for producing fibers and foams containing silicon carbide and use thereof
JP2021506085A (en) * 2018-03-14 2021-02-18 エルジー・ケム・リミテッド Amorphous silicon-carbon composite, this manufacturing method and lithium secondary battery containing it
WO2023070668A1 (en) * 2021-11-01 2023-05-04 宁德新能源科技有限公司 Negative electrode active material, electrochemical device, and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074506A (en) * 1996-06-11 1998-03-17 Dow Corning Corp Electrode for lithium ion battery using polysiloxane
JP2006062949A (en) * 2004-07-30 2006-03-09 Shin Etsu Chem Co Ltd Si-c-o-based composite and its manufacturing method as well as negative electrode material for non-aqueous electrolyte secondary battery
JP2009176603A (en) * 2008-01-25 2009-08-06 Tokai Carbon Co Ltd Carbon minute sphere powder for negative electrode material of lithium ion secondary battery and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074506A (en) * 1996-06-11 1998-03-17 Dow Corning Corp Electrode for lithium ion battery using polysiloxane
JP2006062949A (en) * 2004-07-30 2006-03-09 Shin Etsu Chem Co Ltd Si-c-o-based composite and its manufacturing method as well as negative electrode material for non-aqueous electrolyte secondary battery
JP2009176603A (en) * 2008-01-25 2009-08-06 Tokai Carbon Co Ltd Carbon minute sphere powder for negative electrode material of lithium ion secondary battery and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106830A (en) * 2016-12-22 2018-07-05 Dic株式会社 Method for manufacturing active material for non-aqueous secondary battery negative electrode, active material for non-aqueous secondary battery negative electrode, and method for manufacturing non-aqueous secondary battery negative electrode
JP2020525648A (en) * 2017-06-27 2020-08-27 ペーエスツェー テクノロジーズ ゲーエムベーハー Method for producing fibers and foams containing silicon carbide and use thereof
JP2021506085A (en) * 2018-03-14 2021-02-18 エルジー・ケム・リミテッド Amorphous silicon-carbon composite, this manufacturing method and lithium secondary battery containing it
JP7062212B2 (en) 2018-03-14 2022-05-06 エルジー エナジー ソリューション リミテッド Amorphous silicon-carbon composite, this manufacturing method and lithium secondary battery containing it
US11616233B2 (en) 2018-03-14 2023-03-28 Lg Energy Solution, Ltd. Amorphous silicon-carbon composite, preparation method therefor, and lithium secondary battery comprising same
WO2023070668A1 (en) * 2021-11-01 2023-05-04 宁德新能源科技有限公司 Negative electrode active material, electrochemical device, and electronic device

Also Published As

Publication number Publication date
JP6079651B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106537659B (en) Negative active material for non-aqueous electrolyte rechargeable battery
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
TWI572082B (en) A method for producing a negative electrode active material for a nonaqueous electrolyte secondary battery, a negative electrode material for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery
JP5500047B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5379026B2 (en) Non-aqueous electrolyte secondary battery negative electrode silicon oxide, non-aqueous electrolyte secondary battery negative electrode manufacturing method of silicon oxide, lithium ion secondary battery and electrochemical capacitor
JP5454353B2 (en) Non-aqueous electrolyte secondary battery negative electrode silicon oxide and method for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
JP5406799B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
CN107624202B (en) Composite powder for use in anode of lithium ion battery, method for manufacturing composite powder, and lithium ion battery
JP5675546B2 (en) Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP2017506413A (en) Si / G / C composite for lithium ion battery
JP2010225494A (en) Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP2010272411A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor
JP6685557B2 (en) Organic sulfur material and method for producing the same
JP6079651B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP5910479B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor
TWI692904B (en) Negative electrode active material for lithium ion secondary battery and manufacturing method thereof
JP5320890B2 (en) Method for producing negative electrode material
JP6299248B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP2013258135A (en) Silicon oxide particle, manufacturing method thereof, lithium ion secondary battery, and electrochemical capacitor
Gao et al. In Situ Synthesis of ZnO/Porous Carbon Microspheres and Their High Performance for Lithium‐Ion Batteries
JP2010177070A (en) Method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R150 Certificate of patent or registration of utility model

Ref document number: 6079651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150