JP2015133174A - Transmission electron microscope and liquid observation environment cell device for localized plasmon resonance expression and manufacturing method therefor - Google Patents

Transmission electron microscope and liquid observation environment cell device for localized plasmon resonance expression and manufacturing method therefor Download PDF

Info

Publication number
JP2015133174A
JP2015133174A JP2014002407A JP2014002407A JP2015133174A JP 2015133174 A JP2015133174 A JP 2015133174A JP 2014002407 A JP2014002407 A JP 2014002407A JP 2014002407 A JP2014002407 A JP 2014002407A JP 2015133174 A JP2015133174 A JP 2015133174A
Authority
JP
Japan
Prior art keywords
layer
plasmon resonance
metal layer
electron microscope
transmission electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014002407A
Other languages
Japanese (ja)
Other versions
JP6238066B2 (en
Inventor
工 三宮
Takumi Sannomiya
工 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terabase Inc
Tokyo Institute of Technology NUC
Original Assignee
Terabase Inc
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terabase Inc, Tokyo Institute of Technology NUC filed Critical Terabase Inc
Priority to JP2014002407A priority Critical patent/JP6238066B2/en
Publication of JP2015133174A publication Critical patent/JP2015133174A/en
Application granted granted Critical
Publication of JP6238066B2 publication Critical patent/JP6238066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a liquid observation environment cell device, which allows for high resolution observation when used in a transmission electron microscope, and expresses localized plasmon resonance, at a low manufacturing cost.SOLUTION: A liquid observation environment cell C consists of a lower sealing layer 1 of 10 nm thick composed of carbon, an adhesive layer 2 of 10 nm thick composed of ceramics, a metal layer 3 of 10 nm thick for adsorbing a molecule M, and an adhesive layer 4 of 10 nm thick composed of ceramics. In order to express plasmon resonance, the metal layer 3 is composed of Au, Ag, Cu or Al, and the diameter D of the opening OP in the adhesive layer 2, metal layer 3 and adhesive layer 4 is from several tens nm to 500 nm ((A) of Fig. 3). The molecule M is adsorbed to the wall surface of the metal layer 3. On the adhesive layer 4, an upper sealing layer 5 of 10 nm thick composed of carbon is formed ((B) of Fig. 3). An electron beam EB proceeds from the upper sealing layer 5 toward the lower sealing layer 1, and a TEM image is obtained. Cross-sectional observation of solid (wall surface of the metal layer 3)/liquid interface, and cross-sectional observation of the molecule M are possible ((C) of Fig. 3).

Description

本発明は透過型電子顕微鏡(TEM)及び局在プラズモン共鳴発現用液体観察環境セル(EC)装置及びその製造方法に関する。   The present invention relates to a transmission electron microscope (TEM), a liquid observation environment cell (EC) device for expressing localized plasmon resonance, and a manufacturing method thereof.

生体材料・医薬品の開発、生物等における組織成長メカニズムの理解、これらの潤滑性能向上化等の分野においては、固体・液体界面の構造、界面に吸着した分子の形態、挙動の解明は重要である。   In the fields of development of biomaterials / pharmaceuticals, understanding of tissue growth mechanisms in living organisms, improvement of lubrication performance, etc., it is important to elucidate the structure of the solid / liquid interface, the morphology of the molecules adsorbed on the interface, and the behavior. .

固体・液体の界面及び界面の吸着分子の観察は、最近、液体観察環境セル(EC)と呼ばれる容器を用いた透過型電子顕微鏡によって行われている。すなわち、液体観察環境セルにおいて試料である吸着分子の付近のみを液体に浸すことにより、試料を真空から遮断すると共に、電子線が通過する液体の距離を最小限として電子線の散乱吸収を抑制している。   The observation of the solid-liquid interface and the adsorbed molecules at the interface has recently been performed by a transmission electron microscope using a container called a liquid observation environment cell (EC). In other words, by immersing only the vicinity of the adsorbed molecule that is the sample in the liquid observation environment cell, the sample is cut off from the vacuum, and the scattering distance of the electron beam is suppressed by minimizing the distance of the liquid through which the electron beam passes. ing.

第1の従来の液体観察環境セルは試料ホールダに組込んでいる。この液体観察環境セルは上下シーリング層間に試料と共に異なる液体を導入でき、また、電気化学測定等にも用いることができる(参照:特許文献1)。   The first conventional liquid observation environment cell is incorporated in the sample holder. This liquid observation environment cell can introduce different liquids with the sample between the upper and lower sealing layers, and can also be used for electrochemical measurements and the like (see Patent Document 1).

第2の従来の液体観察環境セルは、試料自体に液体を内包させ、この試料を汎用ホールダに入れたものである。この液体観察環境セルは、汎用ホールダを用いるので、利便性に優れている。   In the second conventional liquid observation environment cell, a liquid is contained in a sample itself, and the sample is put in a general-purpose holder. Since this liquid observation environment cell uses a general-purpose holder, it is excellent in convenience.

特表2013−535795号公報Special table 2013-535795 gazette

Seung-Man Yang et al., “Nanomachining by Colloidal Lithography”, Colloidal Lithography, small 2006, 2, No.4, pp.458-475Seung-Man Yang et al., “Nanomachining by Colloidal Lithography”, Colloidal Lithography, small 2006, 2, No.4, pp.458-475

しかしながら、上述の第1の従来の液体観察環境セルにおいては、液体観察環境セルは唯一であるので、液体観察環境セルが劣化もしくは破壊した場合には、試料ホールダと共に交換しなければならず、製造コストが高くなるという課題がある。また、試料の上下シーリング層の間隔をOリング等で機械的に維持しているので、その上下シーリング層の間隔が大きくなり、従って、液体観察環境セルの厚さが大きくなり、この結果、電子線の散乱吸収が大きくなり、高分解能観察が不可能であるという課題がある。さらに、液体観察環境セルには、壁面がほとんど存在しないので、試料(吸着分子)のほとんどは上下シーリング層に垂直に吸着され、固体(シーリング層)・液体界面の垂直方向及び吸着分子の長手方向から断面観察されるが、固体(シーリング層)・液体界面の断面観察及び吸着分子の短手方向断面観察が不可能であるという課題がある。   However, in the first conventional liquid observation environment cell described above, since the liquid observation environment cell is unique, if the liquid observation environment cell deteriorates or breaks down, it must be replaced together with the sample holder. There is a problem that the cost becomes high. In addition, since the distance between the upper and lower sealing layers of the sample is mechanically maintained by an O-ring or the like, the distance between the upper and lower sealing layers is increased, thus increasing the thickness of the liquid observation environment cell. There is a problem that the scattered absorption of the line becomes large and high-resolution observation is impossible. Furthermore, since the liquid observation environment cell has almost no wall surface, most of the sample (adsorbed molecules) is adsorbed vertically to the upper and lower sealing layers, and the vertical direction of the solid (sealing layer) / liquid interface and the longitudinal direction of the adsorbed molecules. However, there is a problem that it is impossible to observe the cross section of the solid (sealing layer) / liquid interface and the cross section of the adsorbed molecules in the short direction.

上述の第2の従来の液体観察環境セルは、試料(分子)の厚さ及びサイズが十分に制御できず、従って、やはり、固体・液体界面の断面観察及び吸着分子の短手方向断面観察が不可能であるという課題がある。   The above-described second conventional liquid observation environment cell cannot sufficiently control the thickness and size of the sample (molecule). Therefore, the cross-section observation of the solid / liquid interface and the cross-section observation of the adsorbed molecule are also possible. There is a problem that it is impossible.

さらに、上述の第1、第2の従来の液体観察環境セルは、共に、金属層を有していないので、プラズモン共鳴検出による分子の吸着過程の観察が不可能であるという課題がある。すなわち、液体観察環境セルを透過型電子顕微鏡による観察と局在プラズモン共鳴による観察とに併用することは不可能であるという課題もある。   Furthermore, since the above-described first and second conventional liquid observation environment cells do not have a metal layer, there is a problem that it is impossible to observe the adsorption process of molecules by plasmon resonance detection. That is, there is a problem that it is impossible to use the liquid observation environment cell in combination with observation using a transmission electron microscope and observation using localized plasmon resonance.

上述の課題を解決するために、本発明に係る透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置液体観察環境セル装置は、厚さがナノメートルオーダの炭素よりなる下シーリング層と、下シーリング層上に配置された厚さがナノメートルオーダの金属層とを具備し、金属層にサイズがナノメートルオーダの複数の開口が少なくとも部分的に規則的に形成されたものである。これにより、厚さが小さいかつ壁面が広い液体観察環境セルが多数設けられる。また、開口に液体を収容して分子を開口の壁面である金属層に吸着させることにより、固体(特に、壁面)・液体界面の断面観察及び吸着分子の短手方向断面観察が可能となる。さらに、少なくとも部分的に規則的な開口によって部分的分離された薄い金属層は局在表面プラズモン共鳴を発現する。   In order to solve the above-mentioned problems, a transmission electron microscope and a localized plasmon resonance expression liquid observation environment cell apparatus according to the present invention include a lower sealing layer made of carbon having a thickness of nanometer order, A metal layer having a thickness on the order of nanometers disposed on the lower sealing layer, and a plurality of openings having a size on the order of nanometers formed at least partially regularly in the metal layer. Thereby, a large number of liquid observation environment cells having a small thickness and a wide wall surface are provided. Further, by accommodating the liquid in the opening and adsorbing the molecule to the metal layer which is the wall surface of the opening, it is possible to observe the cross section of the solid (particularly the wall surface) / liquid interface and the cross section of the adsorbed molecule in the short direction. Furthermore, thin metal layers that are at least partially separated by regular openings exhibit localized surface plasmon resonance.

また、本発明に係る透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の製造方法は、基板上に犠牲層を形成する工程と、犠牲層上に厚さがナノメートルオーダの炭素よりなる下シーリング層を形成する工程と、下シーリング層上にサイズがナノメートルオーダの複数のコロイドを少なくとも部分的に規則的に堆積する工程と、コロイド及び犠牲層上に厚さがナノメートルオーダの金属層を形成する工程と、金属層の形成後に、コロイドを除去する工程と、コロイドの除去後に、犠牲層を除去することにより基板を剥離する工程とを具備するものである。   In addition, the manufacturing method of the transmission electron microscope and the localized plasmon resonance expression liquid observation environment cell device according to the present invention includes a step of forming a sacrificial layer on a substrate, and a carbon having a thickness on the order of nanometers on the sacrificial layer. Forming a lower sealing layer comprising: at least partially regularly depositing a plurality of colloids having a size on the order of nanometers on the lower sealing layer; and a thickness on the order of nanometers on the colloid and the sacrificial layer The step of forming the metal layer, the step of removing the colloid after the formation of the metal layer, and the step of peeling off the substrate by removing the sacrificial layer after the removal of the colloid are provided.

本発明によれば、液体観察環境セルの一部が劣化もしくは破壊しても、交換する必要はなく、従って、製造コストを低減できる。また、液体観察環境セルの厚さが小さくなるので、電子線の散乱吸収は小さくなり、高分解能観察が可能となる。さらに、壁面が広くなるので、固体(壁面)・液体界面の断面観察及び吸着分子の短手方向断面観察も可能となる。さらにまた、局在プラズモン共鳴の発現により吸着分子の屈折率(あるいは誘電率)を観察でき、従って、吸着過程を観察できる。   According to the present invention, even if a part of the liquid observation environment cell is deteriorated or destroyed, it is not necessary to replace it, and therefore the manufacturing cost can be reduced. In addition, since the thickness of the liquid observation environment cell is reduced, the scattering absorption of the electron beam is reduced, and high-resolution observation is possible. Furthermore, since the wall surface becomes wider, cross-sectional observation of the solid (wall surface) / liquid interface and cross-sectional observation of adsorbed molecules in the short direction are possible. Furthermore, the refractive index (or dielectric constant) of adsorbed molecules can be observed by the expression of localized plasmon resonance, and therefore the adsorption process can be observed.

本発明に係る透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の実施の形態を示す上面図である。1 is a top view showing an embodiment of a transmission electron microscope and a liquid observation environment cell device for local plasmon resonance expression according to the present invention. FIG. 図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置を示す電子顕微鏡写真であり、(A)は走査型電子顕微鏡(SEM)写真、(B)は(A)より高倍率のSEM写真、(C)は(B)より高倍率の透過型電子顕微鏡(TEM)写真である。FIG. 2 is an electron micrograph showing a transmission electron microscope and a liquid observation environment cell device for local plasmon resonance expression in FIG. 1, (A) is a scanning electron microscope (SEM) photo, and (B) is a higher magnification than (A). (C) is a transmission electron microscope (TEM) photograph at a higher magnification than (B). 図1の液体観察環境セルの断面図であり、(A)は液体及び分子の封入前の状態、(B)は液体及び分子の封入後の状態、(C)は透過型電子顕微鏡内に載置された状態を示す。FIG. 2 is a cross-sectional view of the liquid observation environment cell of FIG. 1, (A) is a state before enclosing liquid and molecules, (B) is a state after enclosing liquids and molecules, and (C) is placed in a transmission electron microscope. The placed state is shown. 図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the transmission electron microscope of FIG. 1, and the liquid observation environment cell apparatus for localized plasmon resonance expression. 図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置を用いて透過型電子顕微鏡で得られたその場(in situ)TEM像である。2 is an in situ TEM image obtained with a transmission electron microscope using the transmission electron microscope and the liquid observation environment cell device for local plasmon resonance expression of FIG. 図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の吸光スペクトル特性を示すグラフである。It is a graph which shows the absorption spectrum characteristic of the liquid electron observation environment cell apparatus for a transmission electron microscope and localized plasmon resonance expression of FIG. 図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置のその場(in situ)局在プラズモン共鳴ピーク値シフト量を示すタイミング図である。FIG. 2 is a timing diagram showing an in-situ localized plasmon resonance peak value shift amount of the transmission electron microscope and the liquid observing environmental cell device for expressing localized plasmon resonance of FIG. 1.

図1は本発明に係る透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の実施の形態を示す上面図、図2は図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置を示す電子顕微鏡写真であり、(A)は走査型電子顕微鏡(SEM)写真、(B)は(A)より高倍率のSEM写真、(C)は(B)より高倍率の透過型電子顕微鏡(TEM)写真である。尚、図1、図2においては、後述の上シーリング層は形成されておらず、また、液体も吸着分子も存在しない。   FIG. 1 is a top view showing an embodiment of a transmission electron microscope and localized plasmon resonance expression liquid observation environment cell apparatus according to the present invention, and FIG. 2 is a transmission electron microscope and localized plasmon resonance expression liquid of FIG. It is an electron micrograph which shows an observation environment cell apparatus, (A) is a scanning electron microscope (SEM) photograph, (B) is a SEM photograph of higher magnification than (A), (C) is higher magnification of (B). It is a transmission electron microscope (TEM) photograph. In FIGS. 1 and 2, the upper sealing layer described later is not formed, and neither liquid nor adsorbed molecules exist.

図1に示すように、透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置には、複数の液体観察環境セルCが少なくとも規則的範囲Rにおいてつまり部分的に規則的に配置されている。たとえば、図2の(A)に示すように、50μm×50μmのサイズの透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置に、図2の(B)、(C)に示す数100から数1000個の100nm×100nmのサイズの液体観察環境セルCが配置されている。   As shown in FIG. 1, the transmission electron microscope and the localized plasmon resonance-expressing liquid observation environment cell apparatus have a plurality of liquid observation environment cells C at least in a regular range R, that is, partially regularly arranged. Yes. For example, as shown in FIG. 2 (A), a transmission electron microscope having a size of 50 μm × 50 μm and a liquid observation environment cell device for local plasmon resonance expression are used in the numbers shown in FIG. 2 (B) and (C). 100 to several thousand liquid observation environment cells C having a size of 100 nm × 100 nm are arranged.

図3は図1の液体観察環境セルCの断面図であり、(A)は液体及び分子の封入前の状態、(B)は液体及び分子の封入後の状態、(C)は透過型電子顕微鏡内に載置された状態を示す。   3 is a cross-sectional view of the liquid observation environment cell C of FIG. 1, in which (A) is a state before enclosing the liquid and molecules, (B) is a state after enclosing the liquid and molecules, and (C) is a transmission electron. The state mounted in the microscope is shown.

図3の(A)に示すように、液体及び分子の封入前の液体観察環境セルCは、炭素よりなる厚さ約5〜500nmたとえば10nmの下シーリング層1、セラミックスたとえばAlNよりなる厚さ約5〜500nmたとえば10nmの接着層2、分子を吸着するための厚さ約5〜500nmたとえば10nmの金属層3、及びセラミックスたとえばAlNよりなる厚さ約5〜500nmたとえば10nmの接着層4よりなる。この場合、接着層2は下シーリング層1と金属層3との接着作用をなし、また、接着層4は後述の上シーリング層5と金属層3との接着作用をなす。従って、下シーリング層1と金属層3との接着作用が強い場合には、接着層2は省略でき、また、上シーリング層5と金属層3との接着作用が強い場合には、接着層4は省略できる。尚、接着層2、4は金属層3を安定化する作用も有する。   As shown in FIG. 3A, the liquid observation environment cell C before enclosing the liquid and the molecules has a thickness of about 5 to 500 nm, for example, 10 nm, made of carbon, and a thickness of about ceramic, for example, AlN. An adhesive layer 2 having a thickness of 5 to 500 nm, for example 10 nm, a metal layer 3 having a thickness of about 5 to 500 nm, for example 10 nm, for adsorbing molecules, and an adhesive layer 4 having a thickness of about 5 to 500 nm, for example 10 nm, made of ceramics such as AlN. In this case, the adhesive layer 2 has an adhesive action between the lower sealing layer 1 and the metal layer 3, and the adhesive layer 4 has an adhesive action between an upper sealing layer 5 and the metal layer 3 described later. Accordingly, the adhesive layer 2 can be omitted when the adhesive action between the lower sealing layer 1 and the metal layer 3 is strong, and the adhesive layer 4 when the adhesive action between the upper sealing layer 5 and the metal layer 3 is strong. Can be omitted. The adhesive layers 2 and 4 also have an effect of stabilizing the metal layer 3.

また、図3の(A)においては、後述の局在プラズモン共鳴を発現するために、金属層3はたとえば金(Au)、銀(Ag)、銅(Cu)あるいはアルミニウム(Al)よりなり、接着層2、金属層3及び接着層4の開口OPの直径Dは5〜500nmとする。この場合、さらに、金属層3は上述の金属のうち後述の分子Mとの吸着性がよいものを選択する。   In FIG. 3A, the metal layer 3 is made of, for example, gold (Au), silver (Ag), copper (Cu), or aluminum (Al) in order to express the localized plasmon resonance described later. The diameter D of the opening OP of the adhesive layer 2, the metal layer 3, and the adhesive layer 4 is 5 to 500 nm. In this case, further, the metal layer 3 is selected from the above-described metals having good adsorptivity with the molecule M described later.

図3の(B)においては、図3の(A)の接着層2、金属層3及び接着層4の開口OPに液体L及び分子Mを封入し、この結果、分子Mは金属層3の壁面に吸着する。その後、接着層4上に炭素よりなる厚さ約5〜500nmたとえば10nmの上シーリング層5を形成する。   3B, the liquid L and the molecule M are sealed in the openings OP of the adhesive layer 2, the metal layer 3 and the adhesive layer 4 in FIG. Adsorb to the wall. Thereafter, an upper sealing layer 5 made of carbon and having a thickness of about 5 to 500 nm, for example, 10 nm, is formed on the adhesive layer 4.

図3の(C)においては、電子線EBが上シーリング層5から下シーリング層1へ向かって進む。この結果、TEM像が得られる。この場合、電子ビームEBは固体特に金属層3の壁面と液体Lとの界面の断面及び分子Mの断面を通過するので、TEM像にて固体(金属層3の壁面)・液体界面の断面観察及び分子Mの短手方向断面観察ができる。   In FIG. 3C, the electron beam EB travels from the upper sealing layer 5 toward the lower sealing layer 1. As a result, a TEM image is obtained. In this case, since the electron beam EB passes through the cross section of the solid, particularly the wall surface of the metal layer 3 and the liquid L, and the cross section of the molecule M, the cross section of the solid (wall surface of the metal layer 3) / liquid interface is observed in the TEM image. In addition, cross-sectional observation of molecule M can be performed.

次に、図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の製造方法を図4を参照して説明する。   Next, a method for manufacturing the transmission electron microscope and the liquid observation environment cell device for local plasmon resonance expression in FIG. 1 will be described with reference to FIG.

始めに、図4の(A)を参照すると、シリコンあるいはガラスよりなる基板101上にたとえばアルミニウムよりなる犠牲層102をスパッタリング法、蒸着法等によって形成する。ここで、基板101は後述の下シーリング層1の平坦性を担保するためであり、また、基板101と下シーリング層1とが直接接着すると下シーリング層1が剥離しにくいために、犠牲層102を基板101と下シーリング層1との間に介在させる。   First, referring to FIG. 4A, a sacrificial layer 102 made of, for example, aluminum is formed on a substrate 101 made of silicon or glass by sputtering, vapor deposition, or the like. Here, the substrate 101 is for ensuring the flatness of the lower sealing layer 1 which will be described later, and when the substrate 101 and the lower sealing layer 1 are directly bonded, the lower sealing layer 1 is difficult to peel off. Is interposed between the substrate 101 and the lower sealing layer 1.

次に、図4の(B)を参照すると、犠牲層102上に下シーリング層1としての炭素層をスパッタリング法、蒸着法、化学的気相成長(CVD)法、分子線ビームエピタキシャル(MBE)法、スプレー法等によって堆積する。   Next, referring to FIG. 4B, a carbon layer as the lower sealing layer 1 is formed on the sacrificial layer 102 by sputtering, vapor deposition, chemical vapor deposition (CVD), molecular beam epitaxial (MBE). It is deposited by the spraying method, etc.

次に、図4の(C)を参照すると、大きさが同一のコロイド103を部分的に規則的に堆積する。コロイド103は5〜500nmの金属、有機物、無機物、生体物質であり、たとえば、有機物としてポリスチレンよりなる。コロイド103の大きさ及び分布は、溶液濃度、堆積時間、イオン強度等によって調整可能であるが(参照:非特許文献2)、コロイド103は、通常、帯電されているので、分布を図1の規則的範囲Rにおいて規則的にできる。尚、コロイド103は全範囲に規則的に配置されてもよい。   Next, referring to FIG. 4C, colloids 103 having the same size are partially and regularly deposited. The colloid 103 is a metal of 5 to 500 nm, an organic material, an inorganic material, or a biological material, and is made of, for example, polystyrene as the organic material. The size and distribution of the colloid 103 can be adjusted by the solution concentration, deposition time, ionic strength, etc. (see Non-Patent Document 2), but since the colloid 103 is normally charged, the distribution is shown in FIG. Can be regular in regular range R. The colloid 103 may be regularly arranged in the entire range.

次いで、図示しないが、必要に応じてエッチング法によってコロイド103の大きさを上述の開口OPの直径Dに合わせて縮小させる。エッチング法は、たとえば、反応性イオンエッチング(RIE)法、プラズマエッチング法、紫外線照射法、化学的エッチング法、オゾン照射法である。   Next, although not shown, the size of the colloid 103 is reduced according to the diameter D of the opening OP by an etching method as necessary. Examples of the etching method include a reactive ion etching (RIE) method, a plasma etching method, an ultraviolet irradiation method, a chemical etching method, and an ozone irradiation method.

次に、図4の(D)を参照すると、セラミックスたとえばAlNよりなる厚さ10nmの接着層2、たとえばAuよりなる厚さ10nmの金属層3及びセラミックスたとえばAlNよりなる厚さ10nmの接着層4をスパッタリング法、蒸着法等を用いて順次形成する。   Next, referring to FIG. 4D, a 10 nm thick adhesive layer 2 made of ceramic, for example, AlN, a 10 nm thick metal layer 3 made of, for example, Au, and a 10 nm thick adhesive layer 4 made of ceramic, for example, AlN. Are sequentially formed by sputtering, vapor deposition or the like.

次に、図4の(E)を参照すると、コロイド103をたとえば物理的リフトオフ法により除去する。これにより、直径Dの開口OPが接着層2、金属層3及び接着層4によって形成される。   Next, referring to FIG. 4E, the colloid 103 is removed by, for example, a physical lift-off method. Thus, an opening OP having a diameter D is formed by the adhesive layer 2, the metal layer 3, and the adhesive layer 4.

次に、図4の(F)を参照すると、犠牲層102をエッチング法によって除去することにより、ガラス基板101を物理的に剥離する。   Next, referring to FIG. 4F, the glass substrate 101 is physically peeled by removing the sacrificial layer 102 by an etching method.

この段階で、図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置はユーザに出荷され、以下の図4の(G)、(H)の工程はそのユーザによって実行されることになる。   At this stage, the transmission electron microscope and the localized plasmon resonance expression liquid observation environment cell apparatus of FIG. 1 are shipped to the user, and the following steps (G) and (H) of FIG. 4 are executed by the user. It will be.

図4の(G)を参照すると、図4の(F)に示す透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置をグリットに載せて移動し、液体Lに浸して分子Mを金属層3の壁面に吸着させる。   Referring to FIG. 4G, the transmission electron microscope and the localized plasmon resonance expression liquid observation environment cell device shown in FIG. Adsorbed on the wall surface of the metal layer 3.

最後に、図4の(H)を参照すると、さらにグリッドを移動させて液体Lに浮かんだ炭素よりなる厚さ10nmの上シーリング層5を接着させながら液体Lから引き上げることにより透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置が完成する。   Finally, referring to FIG. 4H, the transmission electron microscope and the grid are moved and pulled up from the liquid L while adhering the 10-nm thick upper sealing layer 5 made of carbon floating in the liquid L. A liquid observation environment cell device for expressing localized plasmon resonance is completed.

図5は図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置を用いて透過型電子顕微鏡で得られたその場(in situ)TEM像である。図5における液体Lは金コロイド溶液であり、金属層3はAuよりなる。図5の(A)、(B)、(C)、(D)に示すごとく、Auの変化が観察される。   FIG. 5 is an in situ TEM image obtained with a transmission electron microscope using the transmission electron microscope and the liquid observation environment cell device for local plasmon resonance expression of FIG. The liquid L in FIG. 5 is a gold colloid solution, and the metal layer 3 is made of Au. As shown in (A), (B), (C), and (D) of FIG. 5, changes in Au are observed.

図6は図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の吸光スペクトル特性を示すグラフである。すなわち、接着層2、金属層3及び接着層4よりなる3層構造の可視光及び赤外光の吸光スペクトルによれば、局在プラズモン共鳴の発現を示すピーク値P1、P2、P3が発生している。尚、Iは3層構造が空気中に存在する場合、IIは3層構造が水に浸されている場合、IIIは3層構造の上部も水に浸されている場合である。このように、厚さがナノメートルオーダの金属層3が少なくとも部分的に規則的に形成された開口OPによって部分的に分離されているので、局在プラズモン共鳴の発現によりピーク値P1、P2、P3が発生する。   FIG. 6 is a graph showing the absorption spectrum characteristics of the transmission electron microscope and the local plasmon resonance expression liquid observation environment cell device of FIG. That is, according to the absorption spectrum of visible light and infrared light having a three-layer structure including the adhesive layer 2, the metal layer 3, and the adhesive layer 4, peak values P1, P2, and P3 indicating the expression of localized plasmon resonance are generated. ing. Here, I is a case where a three-layer structure exists in the air, II is a case where the three-layer structure is immersed in water, and III is a case where the upper part of the three-layer structure is also immersed in water. Thus, since the metal layer 3 having a thickness on the order of nanometers is partially separated by the openings OP formed at least partially regularly, the peak values P1, P2, P3 occurs.

図7は図1の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置のその場(in situ)局在プラズモン共鳴ピーク値シフト量を示すタイミング図である。図7においては、透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置に蛋白質アビジンを水と共に投入し、その後、水を除去した場合、局在プラズモン共鳴ピーク値シフト量が変化することが認められた。このシフト量は透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置に吸着して蛋白質アビジンの吸着量に応じた屈折率(あるいは誘電率)を示す。従って、蛋白質アビジンの吸着過程を観察できる。   FIG. 7 is a timing chart showing the in-situ localized plasmon resonance peak value shift amount of the transmission electron microscope and the liquid observing environmental cell device for expressing localized plasmon resonance of FIG. In FIG. 7, when the protein avidin is put together with water into a transmission electron microscope and a liquid observation environment cell device for local plasmon resonance expression, and then the water is removed, the local plasmon resonance peak value shift amount changes. Was recognized. This shift amount is adsorbed on a transmission electron microscope and a liquid observation environment cell device for local plasmon resonance expression and shows a refractive index (or dielectric constant) corresponding to the adsorption amount of protein avidin. Therefore, the adsorption process of protein avidin can be observed.

尚、本発明におけるナノメートルオーダは、5〜500nmを意味する。   In addition, the nanometer order in this invention means 5-500 nm.

また、本発明は上述の実施の形態の自明の範囲内のいかなる変更も適用し得る。   Further, the present invention can be applied with any modification within the obvious range of the above-described embodiment.

1...下シーリング層
2...接着層
3...金属層
4...接着層
5...上シーリング層
101...基板
102...犠牲層
C...液体観察環境セル
R...規則的範囲
OP...開口
L...液体
M...分子
1. . . Lower sealing layer . . 2. Adhesive layer . . Metal layer 4. . . 4. Adhesive layer . . Upper sealing layer 101. . . Substrate 102. . . Sacrificial layer
C. . . Liquid observation environment cell
R. . . Regular scope
OP. . . Opening
L. . . liquid
M. . . molecule

Claims (8)

厚さがナノメートルオーダの炭素よりなる下シーリング層と、
前記下シーリング層上に配置された厚さがナノメートルオーダの金属層と
を具備し、
前記金属層にサイズがナノメートルオーダの複数の開口が少なくとも部分的に規則的に形成された透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置。
A lower sealing layer made of nanometer-thick carbon,
A metal layer having a thickness on the order of nanometers disposed on the lower sealing layer,
A transmission electron microscope and a liquid observation environment cell device for expressing localized plasmon resonance, wherein a plurality of openings having a size on the order of nanometers are at least partially regularly formed in the metal layer.
さらに、
前記下シーリング層と前記金属層との間に配置された厚さがナノメートルオーダの第1の接着層と、
前記金属層上に配置された厚さがナノメートルオーダの第2の接着層と
を具備し、
前記第1、第2の接着層に前記金属層の開口に通じる開口が形成された請求項1に記載の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置。
further,
A first adhesive layer having a thickness on the order of nanometers disposed between the lower sealing layer and the metal layer;
A second adhesive layer having a thickness on the order of nanometers disposed on the metal layer;
The transmission electron microscope and the liquid observation environment cell device for local plasmon resonance expression according to claim 1, wherein the first and second adhesive layers are formed with openings that communicate with the openings of the metal layer.
前記金属層は、金、銀、銅及びアルミニウムのいずれか1つよりなる請求項1に記載の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置。   2. The transmission electron microscope and the liquid observation environment cell device for local plasmon resonance expression according to claim 1, wherein the metal layer is made of any one of gold, silver, copper, and aluminum. 前記第1、第2の接着層はセラミックスよりなる請求項2に記載の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置。   The transmission electron microscope and the liquid observation environment cell device for local plasmon resonance expression according to claim 2, wherein the first and second adhesive layers are made of ceramics. 基板上に犠牲層を形成する工程と、
前記犠牲層上に厚さがナノメートルオーダの炭素よりなる下シーリング層を形成する工程と、
前記下シーリング層上にサイズがナノメートルオーダの複数のコロイドを少なくとも部分的に規則的に堆積する工程と、
前記コロイド及び前記犠牲層上に厚さがナノメートルオーダの金属層を形成する工程と、
前記金属層の形成後に、前記コロイドを除去する工程と、
前記コロイドの除去後に、前記犠牲層を除去することにより前記基板を剥離する工程と
を具備する透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の製造方法。
Forming a sacrificial layer on the substrate;
Forming a lower sealing layer of carbon having a thickness on the order of nanometers on the sacrificial layer;
Depositing a plurality of colloids on the order of nanometers on the lower sealing layer at least partially regularly;
Forming a metal layer with a thickness on the order of nanometers on the colloid and the sacrificial layer;
Removing the colloid after forming the metal layer;
A method of manufacturing a transmission electron microscope and a liquid observation environment cell device for local plasmon resonance expression, comprising: removing the sacrificial layer after removing the colloid; and removing the substrate.
さらに、
前記金属層の形成前に、前記コロイド及び前記犠牲層上に厚さがナノメートルオーダの第1の接着層を形成する工程と、
前記金属層の形成後かつ前記コロイドの除去前に、厚さがナノメートルオーダの第2の接着層を形成する工程と
を具備する請求項5に記載の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の製造方法。
further,
Forming a first adhesion layer having a thickness on the order of nanometers on the colloid and the sacrificial layer before forming the metal layer;
Forming a second adhesive layer having a thickness on the order of nanometers after the formation of the metal layer and before the removal of the colloid. 6. Transmission electron microscope and localized plasmon resonance expression according to claim 5 Of manufacturing a liquid observation environment cell device for medical use.
前記金属層は、金、銀、銅及びアルミニウムのいずれか1つよりなる請求項5に記載の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の製造方法。   6. The method of manufacturing a transmission electron microscope and a liquid observation environment cell device for local plasmon resonance expression according to claim 5, wherein the metal layer is made of any one of gold, silver, copper, and aluminum. 前記第1、第2の接着層はセラミックスよりなる請求項6に記載の透過型電子顕微鏡及び局在プラズモン共鳴発現用液体観察環境セル装置の製造方法。
The method of manufacturing a transmission electron microscope and a liquid observation environment cell device for local plasmon resonance expression according to claim 6, wherein the first and second adhesive layers are made of ceramics.
JP2014002407A 2014-01-09 2014-01-09 Transmission electron microscope, liquid observation environment cell device for local plasmon resonance expression, and manufacturing method thereof Active JP6238066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014002407A JP6238066B2 (en) 2014-01-09 2014-01-09 Transmission electron microscope, liquid observation environment cell device for local plasmon resonance expression, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014002407A JP6238066B2 (en) 2014-01-09 2014-01-09 Transmission electron microscope, liquid observation environment cell device for local plasmon resonance expression, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015133174A true JP2015133174A (en) 2015-07-23
JP6238066B2 JP6238066B2 (en) 2017-11-29

Family

ID=53900240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014002407A Active JP6238066B2 (en) 2014-01-09 2014-01-09 Transmission electron microscope, liquid observation environment cell device for local plasmon resonance expression, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6238066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324000A (en) * 2016-08-16 2017-01-11 中国科学院化学研究所 Liquid packaging chip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120298883A1 (en) * 2011-05-24 2012-11-29 The Trustees Of The University Of Pennsylvania Flow Cells for Electron Microscope Imaging With Multiple Flow Streams

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120298883A1 (en) * 2011-05-24 2012-11-29 The Trustees Of The University Of Pennsylvania Flow Cells for Electron Microscope Imaging With Multiple Flow Streams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324000A (en) * 2016-08-16 2017-01-11 中国科学院化学研究所 Liquid packaging chip
CN106324000B (en) * 2016-08-16 2018-11-16 中国科学院化学研究所 Liquid-packing chip

Also Published As

Publication number Publication date
JP6238066B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
AU2018203346B2 (en) Method for cleaning a graphene surface
Meyer et al. Direct imaging of lattice atoms and topological defects in graphene membranes
Cun et al. Centimeter-sized single-orientation monolayer hexagonal boron nitride with or without nanovoids
Kim et al. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate
Krueger et al. Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples
Bachmatiuk et al. Low voltage transmission electron microscopy of graphene
Kim et al. Centimeter-scale green integration of layer-by-layer 2D TMD vdW heterostructures on arbitrary substrates by water-assisted layer transfer
Ghodsi et al. Advances in graphene‐based liquid cell electron microscopy: working principles, opportunities, and challenges
US8623227B2 (en) Transmission electron microscope grid and method for making same
Yu et al. Simultaneous visualization of graphene grain boundaries and wrinkles with structural information by gold deposition
Barinov et al. Imaging and spectroscopy of multiwalled carbon nanotubes during oxidation: defects and oxygen bonding
Stoll et al. Electron transparent graphene windows for environmental scanning electron microscopy in liquids and dense gases
Pan et al. Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology
Ghosh et al. Insights on defect-mediated heterogeneous nucleation of graphene on copper
Bandarenka et al. Comparative study of initial stages of copper immersion deposition on bulk and porous silicon
US11885011B2 (en) Infiltrating carbon nanotubes with carbon to prevent delamination from a substrate
JP6238066B2 (en) Transmission electron microscope, liquid observation environment cell device for local plasmon resonance expression, and manufacturing method thereof
Fang et al. Protein retention on plasma-treated hierarchical nanoscale gold-silver platform
JP2007113952A (en) Sample preparing method for electron microscope observation, micro vessel for electron microscope observation, and electron microscope observation method
JP6153856B2 (en) Biomolecule characterization chip and manufacturing method thereof
Atrashchenko et al. Wire metamaterial based on semiconductor matrices
KR101648895B1 (en) Residue free transfer method of graphene/metal samples pasted by limited polymer line
TWI413150B (en) Transmission electron microscope grid and method for making same
Lai et al. Direct-writing of Cu nano-patterns with an electron beam
Miro et al. 3D and 2D structural characterization of 1D Al/Al2O3 biphasic nanostructures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171018

R150 Certificate of patent or registration of utility model

Ref document number: 6238066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250