JP2015129501A - engine - Google Patents

engine Download PDF

Info

Publication number
JP2015129501A
JP2015129501A JP2014012793A JP2014012793A JP2015129501A JP 2015129501 A JP2015129501 A JP 2015129501A JP 2014012793 A JP2014012793 A JP 2014012793A JP 2014012793 A JP2014012793 A JP 2014012793A JP 2015129501 A JP2015129501 A JP 2015129501A
Authority
JP
Japan
Prior art keywords
ignition
combustion chamber
chamber
piston
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014012793A
Other languages
Japanese (ja)
Inventor
木野 正人
Masato Kino
正人 木野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014012793A priority Critical patent/JP2015129501A/en
Publication of JP2015129501A publication Critical patent/JP2015129501A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which a conventional premixing and compression ignition type engine generates a loud engine sound, and needs to be switched to another ignition mode to operate for large output and thereby has effects on high efficiency limited so as to have a narrow operable region on a large-output side.SOLUTION: There is provided a four-cycle, two-axial horizontally-opposed piston, opposed-cylinder engine, and a free piston 117 is provided in a combustion chamber, which is divided into two chambers 103, 109. When ignition is performed with an ignition plug 113 of one combustion chamber, the free piston 117 moves toward the other combustion chamber 103 through expansion, and a mixed gas in the other combustion chamber is compressed by the free piston 117 and exceeds an ignition temperature to be ignited. The ignition is performed at the point of time when a crank angle is 10°, and delay angle effect can be obtained. An exhaust emission of high temperature need not be mixed with the mixed gas, so a mixed air temperature at the start of compression is low and the delay angle effect is further added so as to efficiently convert momentary large output into motion.

Description

エンジンの圧縮着火に関する技術分野。  Technical field related to engine compression ignition.

予混合圧縮着火(HCCI)エンジンは、断熱圧縮により混合気の大部分が同時に着火温度になり瞬時に着火することで外部への熱損失が少ない上、高圧縮比での着火・膨張であるため点火プラグ式(SI)エンジンに比べて燃焼効率が高く、化石燃料の枯渇やCO2排出による地球温暖化を抑制するためにも、実用化が望まれている。従来のHCCI方式では、燃焼室内の圧力や温度をセンサーで計測し、マイコンで計算して燃焼済み排気ガスを最適混合量給気に混入させて、上死点で着火温度となるように比熱比を調整していた。また、吸気温度を下げることで遅角させることが可能な事が知られている。
また、特許文献1では、フリーピストン付対向ピストン対向シリンダ(OPOC)エンジンが開示されている。フリーピストンは主に流体を圧縮又は加圧して発電機を廻して発電する発電用エンジンに用いられる。
The premixed compression ignition (HCCI) engine is ignited and expanded at a high compression ratio because most of the air-fuel mixture reaches the ignition temperature simultaneously due to adiabatic compression and instantly ignites, resulting in less heat loss to the outside. Combustion efficiency is higher than that of a spark plug type (SI) engine, and practical use is also desired to suppress global warming due to depletion of fossil fuels and CO2 emissions. In the conventional HCCI method, the pressure and temperature in the combustion chamber are measured by a sensor, and the specific heat ratio is calculated so that the combustion exhaust gas is mixed into the optimal mixture amount supply air and the ignition temperature is reached at the top dead center. Was adjusting. It is also known that the intake angle can be retarded by lowering the intake air temperature.
Patent Document 1 discloses an opposed piston facing cylinder (OPOC) engine with a free piston. The free piston is mainly used in a power generation engine that generates power by rotating a generator by compressing or pressurizing a fluid.

特許4901659号 公報  Japanese Patent No. 4901659

従来提案されているHCCIエンジンは、ピストン上死点で瞬時にほぼ全ての混合気が爆発するため、音が大きいことと大出力時にエンジンが破壊されるため、HCCIモードは低出力時のみの運転で、出力を上げる場合には他の点火モードに切り替えて運転する必要があり、高効率運転の幅が狭く実用化が困難であった。
また、特許文献1のようなフリーピストン付OPOCエンジンでは、直接機械的にエンジンのクランクに接続することができなかったため、自動車エンジン用としては実用に困難があった。別の文献では機械的接続においては、フライホイール経由での間接的な接続が開示されているが、フライホイールを用いる場合は、重量の問題や摩擦による回転数の低下などがあり、限られたエンジンルーム内に収納するには困難があった。そこで、クランクと機械的に同期して接続し、しかも大出力にも対応する静音性の高いHCCIエンジンが求められている。
実用化のための最大の課題は、HCCIモードでの運転可能領域が狭い、特に、大出力側に運転可能領域を広げる必要がある。
In the HCCI engine that has been proposed in the past, almost all of the air-fuel mixture explodes instantly at the top dead center of the piston, so the sound is loud and the engine is destroyed at high output. In order to increase the output, it is necessary to switch to another ignition mode for operation, and the range of high-efficiency operation is narrow, making it difficult to put it to practical use.
Moreover, since the OPOC engine with a free piston as in Patent Document 1 cannot be directly mechanically connected to the crank of the engine, it has been practically difficult for an automobile engine. Another document discloses an indirect connection via a flywheel in mechanical connection. However, when a flywheel is used, there is a problem of weight or a decrease in rotational speed due to friction. It was difficult to store in the engine room. Therefore, there is a demand for a highly silent HCCI engine that is mechanically synchronized with the crank and that can handle a large output.
The biggest problem for practical use is that the operable range in the HCCI mode is narrow, and in particular, it is necessary to widen the operable range to the high output side.

第一の手段では、点火手段を設けた燃焼室(以下、「SI側燃焼室」という。)と連接する別の燃焼室(以下、「HCCI側燃焼室」という。)を設け、連接部に設けた外部に機械的に接続されずにシリンダ内を摺動可能なフリーピストンにより両燃焼室のガスが隔離され、SI側燃焼室のプラグ点火、膨張により、フリーピストンのHCCI側燃焼室方向へ動くことでHCCI側燃焼室の混合気を圧縮着火させるエンジンにおいて、フリーピストンを除く両燃焼室のピストンが互いに機械的機構で連結したことを特徴とする。  In the first means, another combustion chamber (hereinafter referred to as “HCCI side combustion chamber”) connected to the combustion chamber provided with the ignition means (hereinafter referred to as “SI side combustion chamber”) is provided, and the connection portion is provided. Gas in both combustion chambers is isolated by a free piston that is slidable in the cylinder without being mechanically connected to the outside provided, and by plug ignition and expansion of the SI side combustion chamber toward the HCCI side combustion chamber of the free piston In an engine that compresses and ignites an air-fuel mixture in the HCCI side combustion chamber by moving, the pistons of both combustion chambers except the free piston are connected to each other by a mechanical mechanism.

本手段では、複数の燃焼室を連接部で連接し、連接部に各燃焼室のガスを隔離するフリーピストンが設けられている。複数の燃焼室の内少なくとも1つは点火プラグにより点火するSI燃焼室が設けられ、他の燃焼室では、SI燃焼室の点火手段による点火で膨張したガスにより連接部のフリーピストンで圧縮されてHCCI燃焼室混合ガスが着火する。SI側点火時期を遅らせることでHCCI側の着火に遅角効果を与えることができ、大出力を効率良く運動エネルギーに変換することができる。  In this means, a plurality of combustion chambers are connected at the connecting portion, and a free piston for isolating the gas in each combustion chamber is provided at the connecting portion. At least one of the plurality of combustion chambers is provided with an SI combustion chamber that is ignited by an ignition plug. In the other combustion chambers, the combustion is compressed by the free piston at the connecting portion by the gas expanded by ignition by the ignition means of the SI combustion chamber. The HCCI combustion chamber mixture gas ignites. By delaying the SI side ignition timing, a retarding effect can be given to the ignition on the HCCI side, and a large output can be efficiently converted into kinetic energy.

第二の手段では、SI側燃焼室のピストンとフリーピストンの間に隔壁を設け、フリーピストンと隔壁間の空間(以下、「燃焼着火室」という。)に排気弁と点火手段を設け、隔壁とピストン間の空間(以下、「圧縮室」という。)には給気弁を設け、隔壁には燃焼着火室と圧縮室を結ぶ穴を設け、圧縮室圧力が燃焼着火室圧力よりも高い時に開き、低いときに閉じる弁が設けられたことを特徴とする。  In the second means, a partition wall is provided between the piston of the SI side combustion chamber and the free piston, and an exhaust valve and ignition means are provided in a space between the free piston and the partition wall (hereinafter referred to as “combustion ignition chamber”). A space between the piston and the piston (hereinafter referred to as the “compression chamber”) is provided with an air supply valve, and a partition wall is provided with a hole connecting the combustion ignition chamber and the compression chamber so that the compression chamber pressure is higher than the combustion ignition chamber pressure. A valve is provided that opens and closes when it is low.

本手段では、圧縮室で圧縮された混合気が燃焼着火室に一時的に貯められてHCCI側の任意の遅れ角で点火プラグによってSI側混合気に点火され、フリーピストンを押すことで、HCCI側を圧縮着火させる。本手段では、燃焼着火室容積を一定にすることができるため、失火を防止して広い範囲で遅角制御することができる。  In this means, the air-fuel mixture compressed in the compression chamber is temporarily stored in the combustion ignition chamber, and the SI-side air-fuel mixture is ignited by the spark plug at an arbitrary delay angle on the HCCI side, and the free piston is pushed. Let the side ignite compression. In this means, since the combustion ignition chamber volume can be made constant, misfire can be prevented and retarding control can be performed over a wide range.

ピストンが遅れ位置にあるときに着火させることで、圧縮着火の急激な圧力上昇を効率良く運動エネルギーに変換することができ、音も静かで幅広い出力特性を実現できる。また、着火に筒内センサーやマイコン及び排気還流機構が不要なため、安価でしかも、マイコン故障時の危険を回避することができ、信頼性及び安全性が高い。また、単一ピストン同燃焼室容積の気筒に比較するとフリーピストンを挟んで一つと見なせる混合気を2本のピストンで膨張させるため、大きな遅角効果が得られる。  By igniting when the piston is in the delayed position, it is possible to efficiently convert the sudden pressure rise of compression ignition into kinetic energy, and the sound is quiet and a wide range of output characteristics can be realized. In addition, since an in-cylinder sensor, a microcomputer, and an exhaust gas recirculation mechanism are not required for ignition, it is inexpensive and can avoid danger at the time of failure of the microcomputer, and has high reliability and safety. In addition, compared with a cylinder having the same combustion chamber volume with a single piston, the air-fuel mixture that can be regarded as one with a free piston is expanded by two pistons, so that a large retardation effect is obtained.

HCCIエンジンを説明する側面断面説明図Side cross-sectional explanatory drawing explaining the HCCI engine HCCIエンジンの行程を説明する説明図Explanatory drawing explaining the stroke of HCCI engine 他のHCCIエンジンを説明する側面断面説明図Side cross-sectional explanatory drawing explaining another HCCI engine 他のHCCIエンジンを説明する側面断面説明図Side cross-sectional explanatory drawing explaining another HCCI engine

本発明の第一の形態を図1及び図2に示す。図1は本発明のHCCIエンジンを説明する側面断面説明図である。101はシリンダ、102はピストンリング、103はHCCI燃焼室、104は給気弁1、105は摺動制限凸部、106は安定板、107は摺動制限凸部、108は給気弁2、109はSI燃焼室、110はピストン2、111はコンロッド、112はピストンリング、113は点火プラグ、114は排気弁2、115は油含浸メタル、116はピストンリング、117はフリーピストン、118は排気弁1、119はガイド溝、120はグラスファイバー、121はピストン1、122はコンロッドである。図2は本発明のHCCIエンジンの行程を説明する説明図である。  A first embodiment of the present invention is shown in FIGS. FIG. 1 is a side sectional view for explaining an HCCI engine of the present invention. 101 is a cylinder, 102 is a piston ring, 103 is an HCCI combustion chamber, 104 is an air supply valve 1, 105 is a sliding restriction convex part, 106 is a stabilizer, 107 is a sliding restriction convex part, 108 is an air supply valve 2, 109 is an SI combustion chamber, 110 is a piston 2, 111 is a connecting rod, 112 is a piston ring, 113 is a spark plug, 114 is an exhaust valve 2, 115 is an oil-impregnated metal, 116 is a piston ring, 117 is a free piston, 118 is exhaust Valves 1 and 119 are guide grooves, 120 is a glass fiber, 121 is a piston 1 and 122 is a connecting rod. FIG. 2 is an explanatory diagram illustrating the stroke of the HCCI engine of the present invention.

図1に示す如く、4サイクル2軸水平OPOCガソリンエンジンの燃焼室にフリーピストン(117)を設け、対向ピストンは位相差を設けてクランクに接続されている構成となっている。行程は図2に示す。SI側ボア・ストローク積対HCCI側ボア・ストローク積の比は1:2とした。両燃焼室のピストンは2本の軸を歯車で連結して回転軸に動力を伝える構造となっている。SI側点火時期は、HCCI側ピストンが遅角位置で行う。吸気開始時期はSI側及びHCCI側の両燃焼室容積の和(S)が最小となるクランク角で行われる。排気開始時期及び圧縮開始時期は両燃焼室容積の和(S)が最大になるクランク角で行われる。  As shown in FIG. 1, a free piston (117) is provided in the combustion chamber of a four-cycle two-axis horizontal OPOC gasoline engine, and the opposing piston is connected to the crank with a phase difference. The process is shown in FIG. The ratio of the SI side bore / stroke product to the HCCI side bore / stroke product was 1: 2. The pistons in both combustion chambers have a structure in which two shafts are connected by a gear to transmit power to the rotating shaft. The SI-side ignition timing is performed at the retarded position of the HCCI-side piston. The intake start timing is performed at a crank angle at which the sum (S) of both the combustion chamber volumes on the SI side and the HCCI side is minimized. The exhaust start timing and the compression start timing are performed at a crank angle at which the sum (S) of both combustion chamber volumes is maximized.

Figure 2015129501
S:両燃焼室ピストンの各クランク角におけるストローク和
(HCCI側ストロークを1としたときの値)
a:両燃焼室ピストンのストローク比で小さい方
b:両燃焼室ピストンのストローク比で大きい方
θ:クランク角
Figure 2015129501
S: Sum of strokes at each crank angle of both combustion chamber pistons
(Value when HCCI side stroke is 1)
a: Smaller stroke ratio of both combustion chamber pistons b: Larger stroke ratio of both combustion chamber pistons θ: Crank angle

例えばクランク角10°の時点でSI側の点火プラグ(113)でSI燃焼室(109)内混合気に点火すると、膨張してフリーピストン(117)をHCCI側に押しやることでHCCI側燃焼室(103)混合気が圧縮されて着火し、再びフリーピストン(117)をSIに押すことでクランク角の大きいピストンを押下げる。フリーピストン(117)には、ガイド溝(119)を摺動する安定板(106)が直角に交わるように取り付けられたピストンリング(116)が設けられている。更に、フリーピストン(117)は、弁(104,108,118,114)の手前にある摺動制限凸部(105,107)で摺動が制限されている。摺動部には油含浸メタル(115)が設けられている。フリーピストンには摺動方向への力が加わるだけで、シリンダ壁を押す方向へは力が掛からないため、油含浸メタル(115)を使用することができる。材質は熱伝達の良い銅系のものが望ましい。更に、フリーピストン(117)形状は、圧縮比を落とさないように、両燃焼室(103,109)方向に長い形状とし、軽量化して応答性を良くするために内部にグラスファイバー(120)を設けた。
本発明では、単一ピストン同燃焼室容積の気筒に比較するとフリーピストンを挟んで一つと見なせる混合気を2本のピストンで膨張させるため、1.5倍の遅角効果がある。燃焼済み排気ガスを必ずしも混合する必要はないため、排気ガスを混合しない場合は、圧縮開始時の混合気温度が低いため大きな遅角効果を得ることができる。更に本発明の機械的遅角に加えることでより更に大きな遅角効果を得ることができ、大出力側に大きく運転可能領域を広げることができる。また、点火時期を変えることで、失火しない範囲で遅角効果を変更することができる。
For example, when the air-fuel mixture in the SI combustion chamber (109) is ignited by the SI-side ignition plug (113) at a crank angle of 10 °, it expands and pushes the free piston (117) toward the HCCI side, thereby causing the HCCI-side combustion chamber ( 103) The air-fuel mixture is compressed and ignited, and the piston with a large crank angle is pushed down by pushing the free piston (117) to SI again. The free piston (117) is provided with a piston ring (116) attached so that a stabilizing plate (106) sliding in the guide groove (119) intersects at a right angle. Furthermore, sliding of the free piston (117) is restricted by a sliding restriction convex part (105, 107) in front of the valve (104, 108, 118, 114). An oil impregnated metal (115) is provided on the sliding portion. An oil impregnated metal (115) can be used because only the force in the sliding direction is applied to the free piston and no force is applied in the direction of pushing the cylinder wall. The material is preferably a copper-based material with good heat transfer. Furthermore, the free piston (117) has a long shape in the direction of both combustion chambers (103, 109) so as not to reduce the compression ratio, and a glass fiber (120) is provided inside to reduce weight and improve responsiveness. Provided.
In the present invention, the air-fuel mixture that can be regarded as one across the free piston is expanded by the two pistons as compared with a cylinder having the same combustion chamber volume with a single piston, so that there is a 1.5 times retarding effect. Since it is not always necessary to mix the burned exhaust gas, when the exhaust gas is not mixed, a large retardation effect can be obtained because the mixture temperature at the start of compression is low. Furthermore, by adding to the mechanical retardation of the present invention, a larger retardation effect can be obtained, and the operable range can be greatly expanded on the large output side. Further, by changing the ignition timing, the retarding effect can be changed within a range where no misfire occurs.

本発明の第二の形態を図3に示す。図3は本発明のHCCIエンジンを説明する側面断面説明図である。301はシリンダ、302はHCCI燃焼室、303は給気弁1、304はフリーピストン、305は排気弁2、306は燃焼着火室、307は給気弁2、308はピストン2、309は圧縮室、310は隔壁、311は逆止弁、312は点火プラグ、313は排気弁1、314はピストン1である。  A second embodiment of the present invention is shown in FIG. FIG. 3 is a side sectional view for explaining the HCCI engine of the present invention. 301 is a cylinder, 302 is an HCCI combustion chamber, 303 is an intake valve 1, 304 is a free piston, 305 is an exhaust valve 2, 306 is a combustion ignition chamber, 307 is an intake valve 2, 308 is a piston 2, 309 is a compression chamber , 310 is a partition wall, 311 is a check valve, 312 is a spark plug, 313 is an exhaust valve 1, and 314 is a piston 1.

本発明は、前述第一の形態のエンジンに、フリーピストン(304)とピストン2(308)に挟まれた空間に隔壁(310)を設け、燃焼着火室(306)には排気弁2(305)と点火プラグ(312)が設けられ、隔壁には圧縮室(309)内の圧力が燃焼着火室(306)の圧力よりも高い時に開き、低いときに閉じる逆止弁(311)を設けた構造とした。  According to the present invention, a partition wall (310) is provided in a space between the free piston (304) and the piston 2 (308) in the engine of the first embodiment, and an exhaust valve 2 (305) is provided in the combustion ignition chamber (306). ) And a spark plug (312), and a check valve (311) that opens when the pressure in the compression chamber (309) is higher than the pressure in the combustion ignition chamber (306) and closes when the pressure is low is provided in the partition wall. The structure.

上記の構造から、ピストン2(308)はHCCI側のピストン1(314)と機械的に連結されおり、給気ポートからの混合気を圧縮する。圧縮された混合気圧力が燃焼着火室(306)内圧力よりも大きくなると、逆止弁(311)が開き混合気が燃焼着火室(306)内に給気される。ピストン2(308)が下降を開始すると圧縮室(309)内の圧力が低下して逆止弁(311)が閉じ、HCCI側ピストン1(314)のクランク角が上死点(0°)よりも大きいクランク角において点火フラグ(312)で混合気に点火する。燃焼着火室(306)内の圧力が上昇してフリーピストン(304)を押してHCCI燃焼室(302)内の混合気を着火させる。排気弁2(305)はHCCI側排気弁1(313)と同期させて開閉する。
本発明では、燃焼着火室(306)容積が一定のため、大遅角時での燃焼着火室(306)の失火が防止できるため、比較的広範囲で着火時期を制御することができる。
From the above structure, the piston 2 (308) is mechanically connected to the HCCI-side piston 1 (314), and compresses the air-fuel mixture from the air supply port. When the compressed air-fuel mixture pressure becomes larger than the pressure in the combustion ignition chamber (306), the check valve (311) is opened and the air-fuel mixture is supplied into the combustion ignition chamber (306). When the piston 2 (308) starts to descend, the pressure in the compression chamber (309) decreases, the check valve (311) closes, and the crank angle of the HCCI side piston 1 (314) starts from the top dead center (0 °). Is ignited by the ignition flag (312) at a larger crank angle. The pressure in the combustion ignition chamber (306) rises and pushes the free piston (304) to ignite the air-fuel mixture in the HCCI combustion chamber (302). The exhaust valve 2 (305) opens and closes in synchronization with the HCCI side exhaust valve 1 (313).
In the present invention, since the combustion ignition chamber (306) has a constant volume, it is possible to prevent misfiring of the combustion ignition chamber (306) at the time of a large delay angle, so that the ignition timing can be controlled in a relatively wide range.

第一及び第二の形態において、暖気運転中は、HCCI側で点火プラグ(図示せず)を用いて点火してもよい。また、図2に示すクランク角は、点火から膨張までの遅延時間、フリーピストンによる圧力伝達の遅延時間、また、SI側での高速回転時の点火時期進角等は、説明の簡便化のためにクランク角に反映させていない。更に本発明は、複数の燃焼室を連接する連接部にフリーピストンと点火手段を設ければ良いので、水平OPOC型である必要はなく、例えば、倒立V型であっても良い。更に他の一例では、図4に示すような並列2筒の構成であっても良い。401は排気弁、402は給気弁、403はHCCI燃焼室、404はフリーピストン、405は点火プラグ、406は給気弁、407は排気弁、408はコンロッド、409はコンロッド、410はピストン、411はピストン、412はSI燃焼室である。  In the first and second embodiments, during the warm-up operation, ignition may be performed using a spark plug (not shown) on the HCCI side. The crank angle shown in FIG. 2 is a delay time from ignition to expansion, a delay time of pressure transmission by the free piston, an ignition timing advance angle at high speed rotation on the SI side, etc. Is not reflected in the crank angle. Furthermore, in the present invention, since a free piston and ignition means may be provided at a connecting portion connecting a plurality of combustion chambers, the horizontal OPOC type is not necessary, and an inverted V type, for example, may be used. In still another example, a parallel two-tube configuration as shown in FIG. 4 may be used. 401 is an exhaust valve, 402 is an intake valve, 403 is an HCCI combustion chamber, 404 is a free piston, 405 is a spark plug, 406 is an intake valve, 407 is an exhaust valve, 408 is a connecting rod, 409 is a connecting rod, 410 is a piston, 411 is a piston, and 412 is an SI combustion chamber.

自動車、航空機、船舶、発電等に用いる動力機関に応用できる。  It can be applied to power engines used in automobiles, aircraft, ships, power generation, etc.

S ストローク和
a、b ストローク比
θ クランク角
101、301 シリンダ
102、112、116 ピストンリング
103、302、403 HCCI燃焼室
104、303 給気弁1
105、107 摺動制限凸部
106 安定板
108、307 給気弁2
109、412 SI燃焼室
110、308 ピストン2
111、122、408 コンロッド
113、312、405 点火プラグ
114、305 排気弁2
115 油含浸メタル
117、304、404 フリーピストン
118、313 排気弁1
119 ガイド溝
120 グラスファイバー
121、314 ピストン1
306 燃焼着火室
309 圧縮室
310 隔壁
311 逆止弁
401、407 排気弁
402、406 給気弁
410、411 ピストン
S Stroke sum a, b Stroke ratio θ Crank angle 101, 301 Cylinder 102, 112, 116 Piston ring 103, 302, 403 HCCI combustion chamber 104, 303 Air supply valve 1
105, 107 Sliding restriction convex portion 106 Stabilizing plate 108, 307 Air supply valve 2
109, 412 SI combustion chamber 110, 308 Piston 2
111, 122, 408 Connecting rod 113, 312, 405 Spark plug 114, 305 Exhaust valve 2
115 Oil impregnated metal 117, 304, 404 Free piston 118, 313 Exhaust valve 1
119 Guide groove 120 Glass fiber 121, 314 Piston 1
306 Combustion ignition chamber 309 Compression chamber 310 Partition 311 Check valve 401, 407 Exhaust valve 402, 406 Supply valve 410, 411 Piston

Claims (2)

点火手段を設けた燃焼室(以下、「SI側燃焼室」という。)と連接する別の燃焼室(以下、「HCCI側燃焼室」という。)を設け、連接部に設けた外部に機械的に接続されずにシリンダ内を摺動可能なフリーピストンにより両燃焼室のガスが隔離され、SI側燃焼室のプラグ点火、膨張により、フリーピストンのHCCI側燃焼室方向へ動くことでHCCI側燃焼室の混合気を圧縮着火させるエンジンにおいて、フリーピストンを除く両燃焼室のピストンが互いに機械的機構で連結したことを特徴とするエンジン。  Another combustion chamber (hereinafter referred to as “HCCI side combustion chamber”) connected to the combustion chamber provided with the ignition means (hereinafter referred to as “SI side combustion chamber”) is provided, and mechanically provided outside the connection portion. Gas in both combustion chambers is isolated by a free piston that is slidable in the cylinder without being connected to the cylinder, and the HCCI side combustion is performed by moving the free piston toward the HCCI side combustion chamber by plug ignition and expansion of the SI side combustion chamber An engine for compressing and igniting an air-fuel mixture in a chamber, wherein the pistons of both combustion chambers excluding the free piston are connected to each other by a mechanical mechanism. SI側燃焼室のピストンとフリーピストンの間に隔壁を設け、フリーピストンと隔壁間の空間(以下、「燃焼着火室」という。)に排気弁と点火手段を設け、隔壁とピストン間の空間(以下、「圧縮室」という。)には吸気弁を設け、隔壁には燃焼着火室と圧縮室を結ぶ穴を設け、圧縮室圧力が燃焼着火室圧力よりも高い時に開き、低いときに閉じる弁が設けられたことを特徴とする請求項1のエンジン。  A partition is provided between the piston and free piston of the SI side combustion chamber, an exhaust valve and ignition means are provided in the space between the free piston and the partition (hereinafter referred to as “combustion ignition chamber”), and the space between the partition and the piston ( (Hereinafter referred to as “compression chamber”) is provided with an intake valve, and a partition wall is provided with a hole connecting the combustion ignition chamber and the compression chamber. The valve opens when the compression chamber pressure is higher than the combustion ignition chamber pressure and closes when the pressure is low. The engine according to claim 1, further comprising:
JP2014012793A 2014-01-08 2014-01-08 engine Pending JP2015129501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012793A JP2015129501A (en) 2014-01-08 2014-01-08 engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012793A JP2015129501A (en) 2014-01-08 2014-01-08 engine

Publications (1)

Publication Number Publication Date
JP2015129501A true JP2015129501A (en) 2015-07-16

Family

ID=53760386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012793A Pending JP2015129501A (en) 2014-01-08 2014-01-08 engine

Country Status (1)

Country Link
JP (1) JP2015129501A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119498A (en) * 2017-01-26 2018-08-02 株式会社石川エナジーリサーチ Opposite piston type engine
JP2019090424A (en) * 2019-03-19 2019-06-13 株式会社石川エナジーリサーチ Opposite piston type engine
CN111365122A (en) * 2018-12-26 2020-07-03 株式会社石川能源研究 Piston engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119498A (en) * 2017-01-26 2018-08-02 株式会社石川エナジーリサーチ Opposite piston type engine
CN111365122A (en) * 2018-12-26 2020-07-03 株式会社石川能源研究 Piston engine
JP2020105919A (en) * 2018-12-26 2020-07-09 株式会社石川エナジーリサーチ Opposed-piston type engine
CN111365122B (en) * 2018-12-26 2022-03-29 株式会社石川能源研究 Piston engine
JP2019090424A (en) * 2019-03-19 2019-06-13 株式会社石川エナジーリサーチ Opposite piston type engine

Similar Documents

Publication Publication Date Title
JP6588900B2 (en) Spool shuttle crossover valve in split cycle engine
JP2022136136A (en) Engine cylinder assembly and counter-rotating combustion engine constructed using the same
RU2584769C1 (en) Free-piston engine
US20120291572A1 (en) Baker Torcor motion conversion mechanism
JP2015129501A (en) engine
JP2010285977A (en) Built-in compressor type six-stroke engine exclusive for hydrogen
US20120312273A1 (en) Internal combustion engine with torsional element
JPH05156954A (en) Continuously combustion type positive-displacement internal combustion engine
RU2656537C1 (en) Internal combustion engine control method
US20110162599A1 (en) Counterpoise engine
JP2013083199A (en) Inverted v-shape substantially-opposing engine of biaxial output type
US11078836B1 (en) System and method of reciprocating piston engine, multi-fuel piston engine
JP4951143B1 (en) Three-output shaft type internal combustion engine
JP2003194172A (en) Dual piston crank connecting rod power transmission mechanism
US9920685B2 (en) Mesh anchored combustion internal combustion engine
US808336A (en) Internal-combustion heat-engine.
JP2009197737A (en) Internal combustion engine
GB2374903A (en) An engine having a doughnut shaped cylinder
RU2698383C9 (en) Piston internal combustion engine
KR101208053B1 (en) Internal combustion engine with double piston head
RU121866U1 (en) INTERNAL COMBUSTION ENGINE
US10202894B2 (en) Internal combustion rotary engine
WO2018151689A1 (en) Telescopic piston configuration for internal combustion engines
US1361390A (en) Internal-combustion engine
CN103410622A (en) KR gasoline internal combustion engine