JP2015127187A - Hollow rack bar, steering device, and method of manufacturing hollow rack bar - Google Patents

Hollow rack bar, steering device, and method of manufacturing hollow rack bar Download PDF

Info

Publication number
JP2015127187A
JP2015127187A JP2013273594A JP2013273594A JP2015127187A JP 2015127187 A JP2015127187 A JP 2015127187A JP 2013273594 A JP2013273594 A JP 2013273594A JP 2013273594 A JP2013273594 A JP 2013273594A JP 2015127187 A JP2015127187 A JP 2015127187A
Authority
JP
Japan
Prior art keywords
hollow
rack bar
tube
resin
resin tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013273594A
Other languages
Japanese (ja)
Other versions
JP6312301B2 (en
Inventor
崇 山脇
Takashi Yamawaki
崇 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2013273594A priority Critical patent/JP6312301B2/en
Publication of JP2015127187A publication Critical patent/JP2015127187A/en
Application granted granted Critical
Publication of JP6312301B2 publication Critical patent/JP6312301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a hollow rack bar that becomes lighter than ever while securing sufficient flexural strength, a steering device using the hollow rack bar, and a method of manufacturing the hollow rack bar.SOLUTION: A hollow rack bar 1 is formed of a hollow metallic tube 2 with a denture mold, and a hollow resin tube 3 for forming a shank. A protruding end 22 of the hollow metallic tube is brought into intimate contact with and fitted into an inner wall surface of the hollow resin tube 3. Thus, the hollow metallic tube and the hollow resin tube are connected together. A surface of the protruding end 22 assumes a serration shape, a knurled shape or a telescopic shape.

Description

本発明は、中空ラックバー、この中空ラックバーを使用したステアリング装置及びこの中空ラックバーの製造方法に関する。   The present invention relates to a hollow rack bar, a steering device using the hollow rack bar, and a method for manufacturing the hollow rack bar.

ラックバーは、歯部と、歯部に隣接する軸部とを備える。ラックバーは、移動体、例えば、自動車のステアリング(操舵)装置に使用される場合、自動車のハンドルと連動するピニオン部を備えるステアリングシャフトの回転運動を、ピニオン部と噛合して連動するラックバーの歯部を介して直線運動に変換して、タイヤ等の方向を変えるための機構を構成する。   The rack bar includes a tooth portion and a shaft portion adjacent to the tooth portion. When the rack bar is used in a moving body, for example, an automobile steering (steering) device, the rack bar is engaged with the rotational movement of a steering shaft provided with a pinion portion interlocked with the handle of the automobile and interlocked with the pinion portion. A mechanism for changing the direction of the tire or the like is configured by converting into linear motion via the tooth portion.

自動車のような移動体は、省エネルギー化による燃費の低減、炭酸ガス等の環境負荷の高いガスの排出量の低減等の観点から、部品の軽量化が要請されており、ステアリング装置を構成するラックバーも軽量化が検討されている。ラックバーの軽量化は、例えば、中実のラックバーの軸部の外周の一部を炭素繊維強化樹脂製のプリプレグを巻き付けて置き換える方式(特許文献1)、ラックバー全体を中空化する方式(特許文献2)等が検討されてきた。   The moving body such as an automobile is required to reduce the weight of parts from the viewpoint of reducing fuel consumption by energy saving and reducing the discharge of carbon dioxide and other high environmental loads. The bar is also being considered for weight reduction. The weight reduction of the rack bar is, for example, a method of replacing a part of the outer periphery of the shaft portion of a solid rack bar by wrapping a prepreg made of carbon fiber reinforced resin (Patent Document 1), a method of hollowing the entire rack bar ( Patent Document 2) and the like have been studied.

特開2009−292180号公報JP 2009-292180 A 特開2001−009554号公報JP 2001-009554 A

しかし、ステアリグ機構において、ラックバーは全体として十分な曲げ強度を有することが求められる。
中実ラックバーでは、この十分な曲げ強度を、歯部から軸部の中心軸に、金属材料でなる芯部を設けて確保していることから、炭素繊維強化樹脂製のプリプレグを巻き付ける程度では、ラックバー全体の軽量化には限界がある。中空ラックバーでは、軸部の金属材料の肉厚が薄いため、軸部の外周の金属材料の一部を、軽量の樹脂材料に置き換えるだけでは、やはり軽量化に限界がある。
However, in the steering mechanism, the rack bar is required to have sufficient bending strength as a whole.
In a solid rack bar, this sufficient bending strength is secured by providing a core made of a metal material from the tooth part to the central axis of the shaft part, so that the prepreg made of carbon fiber reinforced resin can be wound around There is a limit to reducing the weight of the entire rack bar. In the hollow rack bar, since the thickness of the metal material of the shaft portion is thin, there is a limit to reducing the weight by simply replacing a part of the metal material on the outer periphery of the shaft portion with a lightweight resin material.

本発明は、従来以上に軽量化したラックバー、このラックバーに十分な曲げ強度を確保させるためのラックバーの製造方法、これらのラックバーを使用したステアリング装置及びそのステアリング装置を備える移動体を提供することを目的とする。   The present invention relates to a rack bar that is lighter than before, a method of manufacturing the rack bar for ensuring sufficient bending strength of the rack bar, a steering device using these rack bars, and a movable body including the steering device. The purpose is to provide.

本発明は、
〔1〕歯部と、前記歯部に隣接する軸部とを備える中空ラックバーであって、前記歯部が、歯型を備える中空金属管で形成され、前記軸部が、中空樹脂管で形成されている中空ラックバー、
〔2〕前項〔1〕記載の中空ラックバーを使用したステアリング装置、及び、
〔3〕歯部と、前記歯部に隣接する軸部とを備える中空ラックバーの製造方法であって、
前記中空ラックバーは、前記歯部が歯型を備える中空金属管で形成され、前記軸部が中空樹脂管で形成され、前記中空金属管と前記中空樹脂管との隣接部において、前記中空金属管の表面に前記中空樹脂管が密着した接続部を有し、前記中空樹脂管が、繊維強化樹脂でなり、前記中空金属管と前記中空樹脂管とを嵌合させ、前記接続部を誘導加熱して前記中空樹脂管を構成する樹脂を溶融して、前記中空金属管の表面に前記中空樹脂管が密着した接続部を形成する工程を有する、中空ラックバーの製造方法、である。
The present invention
[1] A hollow rack bar including a tooth portion and a shaft portion adjacent to the tooth portion, wherein the tooth portion is formed of a hollow metal tube including a tooth mold, and the shaft portion is a hollow resin tube. Formed hollow rack bar,
[2] A steering device using the hollow rack bar according to [1], and
[3] A method for producing a hollow rack bar comprising a tooth portion and a shaft portion adjacent to the tooth portion,
The hollow rack bar is formed of a hollow metal tube having a tooth portion having a tooth shape, the shaft portion is formed of a hollow resin tube, and the hollow metal is disposed in an adjacent portion between the hollow metal tube and the hollow resin tube. The hollow resin tube has a connection portion in close contact with the surface of the tube, the hollow resin tube is made of a fiber reinforced resin, the hollow metal tube and the hollow resin tube are fitted, and the connection portion is induction-heated Then, a method of manufacturing a hollow rack bar, comprising a step of melting a resin constituting the hollow resin tube to form a connection portion in which the hollow resin tube is in close contact with the surface of the hollow metal tube.

本発明によれば、従来以上に軽量化したラックバー、このラックバーに十分な曲げ強度を確保させるためのラックバーの製造方法、これらのラックバーを使用したステアリング装置及びそのステアリング装置を備える移動体を提供することができる。   According to the present invention, a rack bar that is lighter than before, a rack bar manufacturing method for ensuring sufficient bending strength of the rack bar, a steering apparatus using these rack bars, and a movement including the steering apparatus The body can be provided.

中空ラックバーの実施形態の一例の模式図である。It is a schematic diagram of an example of embodiment of a hollow rack bar. 中空金属管の突端の外周面の表面形状の好適例を示す。図2(a)及び図2(b)の左半分は断面図、突端22を含む右半分は外側面図、図(c)は断面図である。The suitable example of the surface shape of the outer peripheral surface of the protrusion of a hollow metal pipe is shown. 2A and 2B are sectional views, the right half including the protruding end 22 is an outer side view, and FIG. 2C is a sectional view.

以下、本発明の実施の形態を図面を参照して詳細に説明する。
〔中空ラックバー〕
本発明のラックバー1(以下、中空ラックバーともいう。)は、歯型21を備える歯部と、この歯部に隣接する軸部3とを備え、歯部が中空金属管2で形成され、これに対し、前記軸部3は中空樹脂管で形成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Hollow rack bar)
The rack bar 1 of the present invention (hereinafter also referred to as a hollow rack bar) includes a tooth portion including a tooth mold 21 and a shaft portion 3 adjacent to the tooth portion, and the tooth portion is formed of a hollow metal tube 2. On the other hand, the shaft portion 3 is formed of a hollow resin tube.

図1に示すように、中空ラックバー1は全体が中空の管であり、ステアリングシャフトのピニオン部に噛合する歯型21を管の表面に備える金属材料かなる中空金属管である歯部2と、この歯部2に隣接し、表面に歯型21を備えない樹脂材料からなる中空樹脂管である軸部3とで形成されている。
中空ラックバー1は、前記歯部2との隣接部でない側の軸部3の端部が、金属製のジョイント等を備えるキャップ4と隣接していてもよいし、他の歯部と隣接して、ダブルピニオン式中空ラックバーとなっていてもよい。
As shown in FIG. 1, the hollow rack bar 1 is a hollow tube as a whole, and a tooth portion 2 that is a hollow metal tube made of a metal material having a tooth mold 21 that meshes with a pinion portion of a steering shaft on the surface of the tube; The shaft portion 3 is a hollow resin tube made of a resin material which is adjacent to the tooth portion 2 and does not have the tooth mold 21 on the surface.
In the hollow rack bar 1, the end portion of the shaft portion 3 on the side that is not adjacent to the tooth portion 2 may be adjacent to the cap 4 provided with a metal joint or the like, or may be adjacent to other tooth portions. In addition, a double pinion type hollow rack bar may be used.

軸部3を中空樹脂管にした場合であっても、歯部2と軸部3とを後述するような方法等で適切に接合(好ましくは嵌合して、より好ましくは嵌合部が密着して接合)した上で、歯部の断面係数Zaと軸部の断面係数Zbとをほぼ同程度にすることで、ラックバー全体の曲げ強度を確保できる。   Even when the shaft portion 3 is a hollow resin tube, the tooth portion 2 and the shaft portion 3 are appropriately joined by a method as described later (preferably fitted, more preferably the fitting portion is in close contact). Then, the bending strength of the entire rack bar can be ensured by making the section modulus Za of the tooth portion and the section modulus Zb of the shaft portion substantially the same.

例えば、歯型21の歯底の歯部のA−A’断面(図1(b)、最大外径26mm、最小外径18.9mm)の断面係数Zaが、
Za=Ia/Sa=8210.9/9.876=831.4
(式中、Iaは断面二次モーメント、Saは中立軸から最遠の端部までの距離である)である場合、このZaと同程度の軸部の断面(外径26mm、内径22mm)の断面係数Zbは、
Zb=Ib/Sb=10932.74/13=841.0
(式中、Ibは断面二次モーメント、Sbは中立軸から最遠の端部までの距離である)となる。
For example, the section coefficient Za of the AA ′ cross section (FIG. 1B, the maximum outer diameter 26 mm, the minimum outer diameter 18.9 mm) of the tooth portion of the root of the tooth mold 21 is
Za = Ia / Sa = 8210.9 / 9.876 = 831.4
(Where, Ia is the moment of inertia of the cross section and Sa is the distance from the neutral axis to the farthest end) of the cross section of the shaft portion (outer diameter 26 mm, inner diameter 22 mm) comparable to this Za The section modulus Zb is
Zb = Ib / Sb = 10932.74 / 13 = 841.0
(Where, Ib is the moment of inertia of the cross section and Sb is the distance from the neutral axis to the farthest end).

本発明の中空ラックバーによれば、軸部3を全て中空樹脂管で構成することによって、従来に比べてラックバーを飛躍的に軽量化できる。例えば、比重8の鋼管で形成された軸部が全長の2/3を占めるラックバーについて、その軸部を同一肉厚の比重2の中空樹脂管で置き換えると、ラックバーの重量を半減できる。   According to the hollow rack bar of the present invention, the rack bar can be greatly reduced in weight compared to the prior art by configuring the shaft portion 3 entirely with a hollow resin tube. For example, for a rack bar formed by a steel pipe having a specific gravity of 8 and occupying 2/3 of the total length, the weight of the rack bar can be halved by replacing the shaft with a hollow resin pipe having a specific gravity of 2 of the same thickness.

中空ラックバー1に十分な曲げ強度を与える観点から、中空金属管2と中空樹脂管3とは嵌合して接合していることが好ましい。そのため、中空金属管2の好ましくは端部に、中空樹脂管3の内壁面を被せて嵌合させるための、好ましくは円筒状の突端(以下、図1の記号を使用して突端22ともいう)が形成されている。   From the viewpoint of giving sufficient bending strength to the hollow rack bar 1, the hollow metal tube 2 and the hollow resin tube 3 are preferably fitted and joined. For this reason, the hollow metal tube 2 is preferably fitted with an inner wall surface of the hollow resin tube 3 on the end thereof, preferably a cylindrical protruding end (hereinafter also referred to as a protruding end 22 using the symbols in FIG. 1). ) Is formed.

嵌合部の外径を、嵌合部以外の軸部3の外径と同程度にする観点から、突端22の外径は、軸部3の外径と内径の間の大きさに設定することが好ましい。   From the viewpoint of making the outer diameter of the fitting portion approximately the same as the outer diameter of the shaft portion 3 other than the fitting portion, the outer diameter of the protrusion 22 is set to a size between the outer diameter and the inner diameter of the shaft portion 3. It is preferable.

中空樹脂管2を中空金属管2の突端22に嵌合させた後、突端22を誘導加熱して中空樹脂管2の少なくとも内壁面を溶融して、中空金属管2の突端22の表面と中空樹脂管3の内壁面との間に界面を形成して、中空金属管2と中空樹脂管3を密着させて接合することが好ましい。   After fitting the hollow resin tube 2 to the projecting end 22 of the hollow metal tube 2, the projecting end 22 is induction-heated to melt at least the inner wall surface of the hollow resin tube 2, and the surface of the projecting end 22 of the hollow metal tube 2 is hollow. It is preferable to form an interface between the inner wall surface of the resin tube 3 and to bond the hollow metal tube 2 and the hollow resin tube 3 in close contact with each other.

界面の面積を広く確保することと、界面でのアンカー効果を確保して、所望の接合力を設計する観点から、中空金属管2の突端22の表面は、凹凸形状を備えることが好ましい。凹凸形状は、複数の筋状凸部が周方向に隣接配置されることで形成され、複数の筋状凸部の高さが1mm以下で、互いに隣接する筋状凸部間の間隙が2mm以下であることが好ましい。さらに、筋状凸部の両端側にそれぞれ平坦部を備え、複数の筋状凸部は平坦部より外側に1mm以下の高さで突出して設けられていることがより好ましい。
具体的には、図2に示すように、例えば、セレーション形状(図2(a))、ローレット形状(図2(b))又は竹の子形状(図2(c))であることが更に好ましい。
From the viewpoint of securing a large area of the interface and securing an anchor effect at the interface and designing a desired joining force, the surface of the projecting end 22 of the hollow metal tube 2 is preferably provided with an uneven shape. The concavo-convex shape is formed by arranging a plurality of streaky convex portions adjacent to each other in the circumferential direction, the height of the plurality of streaky convex portions is 1 mm or less, and the gap between adjacent streaky convex portions is 2 mm or less. It is preferable that Further, it is more preferable that flat portions are provided on both end sides of the streaky convex portions, and the plurality of streaky convex portions are provided to protrude outward from the flat portion at a height of 1 mm or less.
Specifically, as shown in FIG. 2, for example, a serrated shape (FIG. 2A), a knurled shape (FIG. 2B), or a bamboo shoot shape (FIG. 2C) is more preferable.

接続部については、更に好ましくは、中空金属管2の端部に形成された突端22を中空樹脂管3の内壁面に嵌合し、突端22の表面に中空金属管3の内壁面を密着させ、中空金属管2と中空樹脂管3とが密接に接続され、さらに突端22の表面が、セレーション形状、ローレット形状又は竹の子形状であることである。   As for the connecting portion, more preferably, the protruding end 22 formed at the end of the hollow metal tube 2 is fitted to the inner wall surface of the hollow resin tube 3, and the inner wall surface of the hollow metal tube 3 is brought into close contact with the surface of the protruding end 22. The hollow metal tube 2 and the hollow resin tube 3 are intimately connected, and the surface of the protrusion 22 has a serration shape, a knurled shape or a bamboo shape.

中空樹脂管3は、ステアリング装置が作動する間に強い負荷が加わることから、それ自体の強度が強い樹脂か、繊維が混在する繊維強化樹脂で構成されていることが好ましい。   Since the hollow resin tube 3 is subjected to a strong load while the steering device is operated, the hollow resin tube 3 is preferably made of a resin having a strong strength or a fiber reinforced resin in which fibers are mixed.

高強度樹脂としては、アラミド等の芳香族ポリアミド、ケプラー(デュポン)等のパラ型芳香族ポリアミド、ノメックス(デュポン)等のメタ型芳香族ポリアミド、テクノーラ(帝人)等のコポリマー型芳香族ポリアミド、カプトン(デュポン)等の芳香族ポリイミド、ダイニーマ(東洋紡)等の高強度ポリエチレンを挙げることができる。   High-strength resins include aromatic polyamides such as aramid, para-type aromatic polyamides such as Kepler (DuPont), meta-type aromatic polyamides such as Nomex (DuPont), copolymer-type aromatic polyamides such as Technora (Teijin), Kapton Examples thereof include aromatic polyimides such as (DuPont) and high-strength polyethylenes such as Dyneema (Toyobo).

繊維強化樹脂としては、上述した高強度樹脂からなる繊維、ガラス等のセラミックス繊維及び炭素繊維からなる群から選ばれる少なくとも1種の繊維を、樹脂に混在させたものが好ましく、曲げ強度の観点から、炭素繊維を、樹脂に混在させた炭素繊維強化樹脂がより好ましい。   As the fiber reinforced resin, it is preferable to mix at least one fiber selected from the group consisting of the above-described high-strength resin fiber, ceramic fiber such as glass, and carbon fiber in the resin, from the viewpoint of bending strength. Carbon fiber reinforced resin in which carbon fiber is mixed with resin is more preferable.

繊維強化樹脂、好ましくは炭素繊維強化樹脂に使用する樹脂としては、不飽和ポリエステル、エポキシ樹脂、ポリアミド樹脂及びフェノール樹脂等の熱硬化性樹脂、或いは、ナイロン66、ポリアセタール、ポリカーボネート、PET、メチルメタアクリレートなどの熱可塑性樹脂が使用できるが、軽量化と曲げ強度の確保の観点から、エポキシ樹脂が好ましい。   Resins used for fiber reinforced resins, preferably carbon fiber reinforced resins, are thermosetting resins such as unsaturated polyester, epoxy resin, polyamide resin and phenol resin, or nylon 66, polyacetal, polycarbonate, PET, methyl methacrylate. A thermoplastic resin such as the above can be used, but an epoxy resin is preferable from the viewpoint of weight reduction and securing of bending strength.

繊維強化樹脂、好ましくは炭素繊維強化樹脂は、上述の好適な繊維、好ましくは炭素繊維及び樹脂を使用して、曲げ強度と、中空ラックバーを製造する過程での加熱に対する寸法安定性、ステアリング装置の作動時の振動減衰の観点から、強度が900〜3000MPa、剛性が55〜350GPa、膨張率3ppm以下、熱伝導率2〜300W・m/℃、比剛性100GPa/(Mg/m)以上であることが好ましい。 Fiber reinforced resin, preferably carbon fiber reinforced resin, is made of the above-mentioned preferred fiber, preferably carbon fiber and resin, to provide bending strength and dimensional stability against heating in the process of manufacturing a hollow rack bar, steering device From the viewpoint of vibration attenuation during operation, the strength is 900 to 3000 MPa, the rigidity is 55 to 350 GPa, the expansion coefficient is 3 ppm or less, the thermal conductivity is 2 to 300 W · m / ° C., and the specific rigidity is 100 GPa / (Mg / m 3 ) or more. Preferably there is.

繊維強化樹脂、好ましくは炭素繊維強化樹脂は、繊維シートに樹脂を含浸して製造するが、繊維シートの繊維の配向性を調整することによっても、繊維強化樹脂全体の強度、剛性又は弾性等の力学的物性を調整できる。   A fiber reinforced resin, preferably a carbon fiber reinforced resin, is produced by impregnating a resin into a fiber sheet. By adjusting the orientation of the fiber of the fiber sheet, the strength, rigidity, elasticity, etc. of the entire fiber reinforced resin can also be adjusted. Mechanical properties can be adjusted.

また、繊維強化樹脂の繊維の配向性は、中空ラックバーの軸部の各部位の所望の物性に応じて、中空樹脂管3の各部位で繊維の配向性が異なるように設計してもよい。例えば、前述したように、歯部2と軸部の嵌合部を誘導加熱によって溶融接合する場合、中空樹脂管3の嵌合部に相当する部分の配向性(例えば、配向が等方的)と他の部分の配向性(例えば、配向が柱軸方向)とが異なっていてもよい。
例えば、ステアリング操作をする際に、中空ラックバーに由来する異音や振動を抑制できるように、中空樹脂管の各部位で、弾性が異なるように、繊維の配向性を調整して中空樹脂管を設計してもよい。
Further, the fiber orientation of the fiber reinforced resin may be designed so that the fiber orientation is different in each part of the hollow resin tube 3 according to the desired physical properties of each part of the shaft portion of the hollow rack bar. . For example, as described above, when the fitting portion between the tooth portion 2 and the shaft portion is melt-bonded by induction heating, the orientation of the portion corresponding to the fitting portion of the hollow resin tube 3 (for example, the orientation is isotropic) And the orientation of other portions (for example, the orientation may be in the column axis direction) may be different.
For example, when steering operation, the hollow resin tube is adjusted by adjusting the fiber orientation so that the elasticity is different at each part of the hollow resin tube so that abnormal noise and vibration originating from the hollow rack bar can be suppressed. May be designed.

中空ラックバー1の軸部3は、樹脂製のブッシュで受ける構造に組み込まれる場合があり、その際に、中空樹脂管の表面とブッシュの間にグリースが配置されるので、中空樹脂管の表面がグリースを保持できるように、中空樹脂管の表面には適度な粗さを有する、好ましくはRaが0.4以下であるか、適度な凹凸が形成されている。   The shaft portion 3 of the hollow rack bar 1 may be incorporated in a structure that is received by a resin bush. In this case, since grease is disposed between the surface of the hollow resin tube and the bush, the surface of the hollow resin bar Therefore, the surface of the hollow resin tube has an appropriate roughness, preferably Ra is 0.4 or less, or appropriate irregularities are formed.

中空金属管を構成する金属材料は、ステアリング操作時に受ける負荷の程度に応じて選択すればよいが、成形性及び耐久性の観点から、鉄鋼製であることが好ましい。   The metal material constituting the hollow metal tube may be selected according to the degree of load received during the steering operation, but is preferably made of steel from the viewpoint of formability and durability.

種々の異なる繊維強化樹脂シートを積層して中空樹脂管を成形できるという観点から、繊維強化樹脂シートを、シートワインディング工法を適用して、軸部の中空樹脂管を成形することが好ましい。   From the viewpoint that a hollow resin tube can be formed by laminating various different fiber reinforced resin sheets, it is preferable to form the hollow resin tube of the shaft portion by applying a sheet winding method to the fiber reinforced resin sheet.

シートワインディング工法によれば、例えば、まず、熱可塑性樹脂ベースの繊維強化樹脂シートでワインディングして、その上から熱硬化性樹脂ベースの繊維強化樹脂シートでワインディングすれば、内層が熱可塑性樹脂ベースで、外層が熱硬化性樹脂ベースの2層構造の中空樹脂管を得ることができる。
このような中空樹脂管は、後述するように、中空金属管2の突端22に中空樹脂管3を嵌合させて誘導加熱したときに、内層の突端22近傍が溶融して互いに密着して接続部を形成する一方で、熱硬化性樹脂ベースの外層は、内層の加熱による温度上昇の影響を受け難いという効果を奏する。
According to the sheet winding method, for example, first, winding is performed using a thermoplastic resin-based fiber reinforced resin sheet, and then winding is performed using a thermosetting resin-based fiber reinforced resin sheet. A hollow resin tube having a two-layer structure in which the outer layer is a thermosetting resin base can be obtained.
As will be described later, when such a hollow resin tube is induction-heated by fitting the hollow resin tube 3 to the protruding end 22 of the hollow metal tube 2, the vicinity of the protruding end 22 of the inner layer is melted and closely connected to each other. While forming the portion, the outer layer of the thermosetting resin base has an effect that it is hardly affected by the temperature rise due to the heating of the inner layer.

シートワインディング工法によれば、例えば、繊維配向が管軸に対して90°に配向した繊維強化樹脂シートをワインディングして、その上から、繊維配向が管軸に対して45°に配向した繊維強化シートをワインディングすれば、内層と外層とで繊維配向の異なる2層構造の中空樹脂管3を得ることができる。このような中空樹脂管3は、中空樹脂管に加わる多モードの振動に対して安定した耐久性を有することができる。   According to the sheet winding method, for example, a fiber reinforced resin sheet whose fiber orientation is oriented at 90 ° with respect to the tube axis is wound, and then fiber reinforced with the fiber orientation oriented at 45 ° with respect to the tube axis. If the sheet is wound, a hollow resin tube 3 having a two-layer structure in which the fiber orientation is different between the inner layer and the outer layer can be obtained. Such a hollow resin tube 3 can have stable durability against multi-mode vibration applied to the hollow resin tube.

シートワインディング工法によれば、金型を選べば、その他、円形、矩形、楕円、長円形等の多様な断面形状の中空樹脂管を成形でき、また、管軸方向の内径及び/又は外径を、均一にしたり、テーパー状に変化させたり、段違いに変化させたりすることができ、それぞれ、管軸方向の内径及び/又は外径が、均一な、テーパー状に変化又は段違いに変化した中空樹脂管を得ることができる。このような中空樹脂管は、中空ラックバーと他の器具との接続態様に応じて、選択することができる。   According to the sheet winding method, a hollow resin tube having various cross-sectional shapes such as a circle, a rectangle, an ellipse, and an oval can be formed by selecting a die, and an inner diameter and / or an outer diameter in the tube axis direction can be formed. Hollow resin that can be made uniform, tapered, or stepped, and the inner diameter and / or outer diameter in the tube axis direction is uniform, tapered, or stepped, respectively. A tube can be obtained. Such a hollow resin tube can be selected according to the connection mode between the hollow rack bar and another instrument.

〔中空ラックバーの好適な製造方法〕
中空ラックバーに備わる中空金属管2は、中空金属管素材を準備する工程1と、中空金属管素材の所望の歯型形状を成形する外表面部分に対する背面部を焼き入れ硬化させる工程2と、背面部を焼き入れ硬化させた中空金属管素材の内部空洞に芯金を挿入した状態で、前記歯型の形状に対応する転写型面を有する鍛造型を用いて歯型形状を、好ましくは100〜600℃で鍛造成形して歯部を構成する中空金属管2を形成する工程3と、を経て製造することができる。特開2007−253190号公報には、その詳細な製造条件が開示されている。
[Preferred manufacturing method of hollow rack bar]
The hollow metal tube 2 provided in the hollow rack bar includes a step 1 for preparing a hollow metal tube material, a step 2 for quenching and hardening the back surface portion of the outer surface portion for forming a desired tooth shape of the hollow metal tube material, In a state where the cored bar is inserted into the internal cavity of the hollow metal tube material whose back surface is quenched and hardened, the tooth shape is preferably 100 using a forging die having a transfer die surface corresponding to the shape of the tooth shape. It can be manufactured through a step 3 of forming a hollow metal tube 2 constituting a tooth portion by forging at ˜600 ° C. Japanese Patent Laid-Open No. 2007-253190 discloses detailed manufacturing conditions.

さらに、前記工程2において、前記背面部の焼入れ硬化を高周波加熱により行うことが好ましい。また、前記工程3において、中空金属管素材は、冷間状態で鍛造成形することが好ましい。   Furthermore, in the said process 2, it is preferable to quench-harden the said back part by high frequency heating. In the step 3, the hollow metal tube material is preferably forged in a cold state.

なお、ステアリング装置のステアリングギア比(ハンドル回転角/タイヤ切れ角)は、中空ラックバーの歯部の間隔及び形状等によって定まる比ストローク特性に依存している。そのため、例えば、中空ラックバーのストローク中央付近では、ピニオン回転角に対し比ストロークを低めに設定することで、ハンドルの中央付近ではタイヤの切れ角の変化を少ないものとして直進時のふらつきを防止するため、比ストローク特性はストローク中央部付近において緩やかに変化するVGR領域とするのが一般的である。
前記工程3によれば、このようなVGR領域を鋳造型として用意すればよいだけなので、VGR領域を容易に成形できる。
The steering gear ratio (steering wheel rotation angle / tire cutting angle) of the steering device depends on the specific stroke characteristics determined by the spacing and shape of the teeth of the hollow rack bar. Therefore, for example, by setting the specific stroke lower than the pinion rotation angle near the center of the stroke of the hollow rack bar, the change in the tire turning angle is reduced near the center of the steering wheel to prevent wobbling during straight travel. For this reason, the specific stroke characteristic is generally a VGR region that gradually changes near the center of the stroke.
According to the step 3, since it is only necessary to prepare such a VGR region as a casting mold, the VGR region can be easily formed.

中空樹脂管3は、例えば、所望の外径と肉厚を有する市販の炭素繊維強化樹脂管を購入して使用することができる。   As the hollow resin tube 3, for example, a commercially available carbon fiber reinforced resin tube having a desired outer diameter and wall thickness can be purchased and used.

例えば、上記工程1〜3を経て得られた中空金属管2と、この中空金属管2の突端22に前記中空樹脂管3を挿入して嵌合させて、中空金属管と中空樹脂管との接続部を形成した後、前記接続部を誘導加熱して中空樹脂管3を構成する樹脂を溶融して、中空金属管2と中空樹脂管3とが密着した接続部を形成する工程を経て、中空ラックバー1を製造することができる。   For example, the hollow metal tube 2 obtained through the above steps 1 to 3 and the hollow resin tube 3 is inserted and fitted into the projecting end 22 of the hollow metal tube 2 so that the hollow metal tube and the hollow resin tube After forming the connection portion, the connection portion is induction-heated to melt the resin constituting the hollow resin tube 3, and through a step of forming a connection portion in which the hollow metal tube 2 and the hollow resin tube 3 are in close contact with each other, The hollow rack bar 1 can be manufactured.

中空金属管2と中空樹脂管3との嵌合は、例えば、中空金属管3の突端22を被覆するように中空樹脂管3の内壁面を嵌合させて行うことができる。中空樹脂管3を構成する樹脂が熱可塑性樹脂であれば、中空金属管2と中空樹脂管3の接続部を誘導加熱すると、突端22の表面が高温になり、接続部を形成する中空樹脂管の少なくとも内壁面を構成する樹脂を溶融して、突端22の表面と中空樹脂管の内壁面とが密着する。   The fitting of the hollow metal tube 2 and the hollow resin tube 3 can be performed, for example, by fitting the inner wall surface of the hollow resin tube 3 so as to cover the protruding end 22 of the hollow metal tube 3. If the resin constituting the hollow resin tube 3 is a thermoplastic resin, when the connecting portion between the hollow metal tube 2 and the hollow resin tube 3 is induction-heated, the surface of the projecting end 22 becomes hot, and the hollow resin tube forms the connecting portion. The resin constituting at least the inner wall surface is melted, and the surface of the protrusion 22 and the inner wall surface of the hollow resin tube are brought into close contact with each other.

また、中空樹脂管3を構成する樹脂が極性の高い熱可塑性樹脂であれば、誘導加熱によって樹脂自体を高温にして溶融させて、突端22の表面と密着させてもよい。   Further, if the resin constituting the hollow resin tube 3 is a thermoplastic resin having a high polarity, the resin itself may be melted at a high temperature by induction heating, and may be brought into close contact with the surface of the protrusion 22.

中空樹脂管3を構成する樹脂が熱硬化性樹脂であれば、中空樹脂管を成形できる程度に柔らかい状態で、中空金属管の突端22を被覆して嵌合させて圧力を加えて、突端22の表面に中空樹脂管3の内壁面を密着させた後に、接続部を誘導加熱して中空樹脂管の内壁面を硬化させてもよい。   If the resin constituting the hollow resin tube 3 is a thermosetting resin, the protruding end 22 of the hollow metal tube is covered and fitted so as to be soft enough to mold the hollow resin tube, and pressure is applied to the protruding end 22. After the inner wall surface of the hollow resin tube 3 is brought into close contact with the surface, the connection portion may be induction-heated to cure the inner wall surface of the hollow resin tube.

突端22を構成する金属と中空樹脂管を構成する樹脂との結合力を高める観点から、突端22と中空樹脂管の嵌合した部分、好ましくは突端22の外周面には、誘導加熱する前にシランカップリング剤を配置、好ましくは塗布しておくことが好ましい。   From the viewpoint of increasing the bonding force between the metal constituting the projecting end 22 and the resin constituting the hollow resin tube, the portion where the projecting end 22 and the hollow resin tube are fitted, preferably the outer peripheral surface of the projecting end 22, is preferably subjected to induction heating. It is preferable to arrange, preferably apply, a silane coupling agent.

中空金属管と中空樹脂管とを嵌合させる際、例えば、中空樹脂管を加熱炉等で加熱して膨張させたり弾性を持たせたりして、突端22の外径に対応した内径の状態にして、中空樹脂管を突端22に容易に挿入することが可能である。上記加熱は、50℃から、中空樹脂管を構成する樹脂の耐熱温度(例えば、耐熱温度が110〜250℃程度のエポキシ樹脂の場合は110℃)の間で行うことが好ましい。   When the hollow metal tube and the hollow resin tube are fitted, for example, the hollow resin tube is heated in a heating furnace or the like to expand or have elasticity so as to have an inner diameter corresponding to the outer diameter of the protrusion 22. Thus, the hollow resin tube can be easily inserted into the protruding end 22. The heating is preferably performed between 50 ° C. and the heat resistant temperature of the resin constituting the hollow resin tube (for example, 110 ° C. in the case of an epoxy resin having a heat resistant temperature of about 110 to 250 ° C.).

中空樹脂管3の加熱温度は、突端22の外径に対する中空樹脂管の内径、熱可塑性樹脂の種類、軟化点や膨張率などによって設定できる。例えばポリアミドの場合は、好ましくは130〜150℃程度にする。中空樹脂管の精度を維持、中空樹脂管の突端22への挿入効率を考慮して、加熱温度の好適な下限及び上限が設計できる。   The heating temperature of the hollow resin tube 3 can be set according to the inner diameter of the hollow resin tube with respect to the outer diameter of the protrusion 22, the type of thermoplastic resin, the softening point, the expansion coefficient, and the like. For example, in the case of polyamide, the temperature is preferably about 130 to 150 ° C. A suitable lower limit and upper limit of the heating temperature can be designed in consideration of maintaining the accuracy of the hollow resin tube and considering the insertion efficiency of the hollow resin tube into the protruding end 22.

以上の好適な製造条件を組み合わせると、歯部と、歯部に隣接する軸部とを備える中空ラックバーの製造方法のより好ましい態様は、例えば、歯部が歯型を備える中空金属管2で形成され、軸部が中空樹脂管3で形成され、中空金属管と中空樹脂管との隣接部において、中空金属管と中空樹脂管とが密着した接続部を有し、中空樹脂管が、繊維強化樹脂でなり、中空金属管と中空樹脂管とを嵌合させ、接続部を誘導加熱して中空樹脂管を構成する樹脂を溶融して、中空金属管と中空樹脂管とが密着した接続部を形成する工程を有することである。   When the above preferable manufacturing conditions are combined, a more preferable aspect of the manufacturing method of the hollow rack bar including the tooth portion and the shaft portion adjacent to the tooth portion is, for example, a hollow metal tube 2 in which the tooth portion has a tooth shape. The shaft portion is formed of a hollow resin tube 3 and has a connecting portion in which the hollow metal tube and the hollow resin tube are in close contact with each other in the adjacent portion of the hollow metal tube and the hollow resin tube. A connection portion made of reinforced resin, in which the hollow metal tube and the hollow resin tube are fitted together, the connection portion is induction-heated to melt the resin constituting the hollow resin tube, and the hollow metal tube and the hollow resin tube are in close contact with each other Forming a step.

〔ステアリング装置と移動体〕
本発明の中空ラックバーとステアリングシャフトを組み合わせた構成を有する本発明のステアリング装置と、このステアリング装置を備える本発明の移動体は、以下の有用な効果が期待される。
(1)中空ラックバーの大幅な軽量化により、ステアリング装置が軽量化され、結果として移動体が軽量化され、移動体の燃費が向上する。
(2)中空ラックバーの軸部が、金属製では有しえない樹脂材料に由来する弾性を有するため、ステアリング装置の作動時の異音・振動が低減される。
(3)中空ラックバーの軸部への、熱処理、研削等の仕上げなどの加工が不要となるため製造効率が向上する。
(4)軸部を受ける樹脂製ブッシュ等の軸部と接触する部材の摩耗が低減する。
[Steering device and moving body]
The following useful effects are expected from the steering device of the present invention having a configuration in which the hollow rack bar and the steering shaft of the present invention are combined, and the moving body of the present invention including the steering device.
(1) The weight of the hollow rack bar is significantly reduced, so that the steering device is reduced in weight. As a result, the movable body is reduced in weight, and the fuel efficiency of the movable body is improved.
(2) Since the shaft portion of the hollow rack bar has elasticity derived from a resin material that cannot be made of metal, abnormal noise and vibration during operation of the steering device are reduced.
(3) Since the processing such as heat treatment and finishing such as grinding is not required for the shaft portion of the hollow rack bar, the manufacturing efficiency is improved.
(4) Wear of a member that comes into contact with a shaft portion such as a resin bush that receives the shaft portion is reduced.

本発明の中空ラックバーは、近年普及が著しい電動パワーステアリング装置、例えば、コラム式(C−EPS)、ピニオン式(P−EPS)、デュアルピニオン式(DP−EPS)等に対して好適に使用できる。   The hollow rack bar of the present invention is suitably used for an electric power steering apparatus that has been widely used in recent years, for example, a column type (C-EPS), a pinion type (P-EPS), a dual pinion type (DP-EPS), etc. it can.

本発明の移動体は、上記効果(1)〜(4)において顕著であるという観点から、本発明のステアリング装置を備える船、自動車、飛行機が好ましく、本発明のステアリング装置を備える自動車がより好ましく、本発明のステアリング装置を備えるトレーラー、トラック等の大型車が更に好ましい。   From the viewpoint that the movable body of the present invention is remarkable in the above effects (1) to (4), a ship, an automobile, and an airplane including the steering device of the present invention are preferable, and an automobile including the steering device of the present invention is more preferable. Large vehicles such as trailers and trucks equipped with the steering device of the present invention are more preferable.

1 中空ラックバー
2 歯部(中空金属管)
21 歯型
22 突端
3 軸部(中空樹脂管)
4 キャップ
1 Hollow rack bar 2 Teeth (hollow metal tube)
21 Tooth type 22 Protrusion 3 Shaft (hollow resin tube)
4 Cap

Claims (6)

歯部と、前記歯部に隣接する軸部とを備える中空ラックバーであって、
前記歯部が、歯型を備える中空金属管で形成され、
前記軸部が、中空樹脂管で形成されている中空ラックバー。
A hollow rack bar comprising a tooth portion and a shaft portion adjacent to the tooth portion,
The tooth portion is formed of a hollow metal tube having a tooth shape;
A hollow rack bar in which the shaft portion is formed of a hollow resin tube.
前記中空金属管と前記中空樹脂管との隣接部において、
前記中空金属管と前記中空樹脂管とが密着した接続部を有する、請求項1記載の中空ラックバー。
In the adjacent part of the hollow metal tube and the hollow resin tube,
The hollow rack bar according to claim 1, further comprising a connection portion in which the hollow metal tube and the hollow resin tube are in close contact with each other.
前記中空金属管の端部に突端が形成され、
前記接続部において、前記中空金属管の突端と、前記中空樹脂管の内壁面とが嵌合して、前記突端の表面に前記中空樹脂管の内壁面が密着して、前記中空金属管と前記中空樹脂管が接続しており、
前記突端の表面が、セレーション形状、ローレット形状又は竹の子形状である、請求項2記載の中空ラックバー。
A protruding end is formed at the end of the hollow metal tube,
In the connecting portion, the protruding end of the hollow metal tube and the inner wall surface of the hollow resin tube are fitted, and the inner wall surface of the hollow resin tube is in close contact with the surface of the protruding end, and the hollow metal tube and the Hollow resin pipe is connected,
The hollow rack bar according to claim 2, wherein a surface of the tip has a serration shape, a knurled shape, or a bamboo shoot shape.
前記中空樹脂管が、繊維強化樹脂でなる、請求項1〜3のいずれか1項記載の中空ラックバー。   The hollow rack bar according to claim 1, wherein the hollow resin tube is made of a fiber reinforced resin. 請求項1〜4記載のいずれか1項記載の中空ラックバーを使用したステアリング装置。   A steering device using the hollow rack bar according to any one of claims 1 to 4. 歯部と、前記歯部に隣接する軸部とを備える中空ラックバーの製造方法であって、
前記中空ラックバーが、
前記歯部が歯型を備える中空金属管で形成され、前記軸部が中空樹脂管で形成され、
前記中空金属管と前記中空樹脂管との隣接部において、
前記中空金属管の表面に前記中空樹脂管が密着した接続部を有し、
前記中空樹脂管が、繊維強化樹脂でなり、
前記中空金属管と前記中空樹脂管とを嵌合させ、
前記接続部を誘導加熱して前記中空樹脂管を構成する樹脂を溶融して、前記中空金属管の表面に前記中空樹脂管が密着した接続部を形成する工程を有する、中空ラックバーの製造方法。
A method for producing a hollow rack bar comprising a tooth portion and a shaft portion adjacent to the tooth portion,
The hollow rack bar is
The tooth portion is formed of a hollow metal tube having a tooth shape, the shaft portion is formed of a hollow resin tube,
In the adjacent part of the hollow metal tube and the hollow resin tube,
Having a connection part where the hollow resin tube is in close contact with the surface of the hollow metal tube;
The hollow resin tube is made of fiber reinforced resin,
Fitting the hollow metal tube and the hollow resin tube,
A method for manufacturing a hollow rack bar, comprising the step of melting the resin constituting the hollow resin tube by induction heating the connection portion to form a connection portion in which the hollow resin tube is in close contact with the surface of the hollow metal tube. .
JP2013273594A 2013-12-27 2013-12-27 Hollow rack bar, steering device, and method of manufacturing hollow rack bar Active JP6312301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013273594A JP6312301B2 (en) 2013-12-27 2013-12-27 Hollow rack bar, steering device, and method of manufacturing hollow rack bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013273594A JP6312301B2 (en) 2013-12-27 2013-12-27 Hollow rack bar, steering device, and method of manufacturing hollow rack bar

Publications (2)

Publication Number Publication Date
JP2015127187A true JP2015127187A (en) 2015-07-09
JP6312301B2 JP6312301B2 (en) 2018-04-18

Family

ID=53837397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013273594A Active JP6312301B2 (en) 2013-12-27 2013-12-27 Hollow rack bar, steering device, and method of manufacturing hollow rack bar

Country Status (1)

Country Link
JP (1) JP6312301B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068784A1 (en) * 2015-10-22 2017-04-27 Neturen Co., Ltd. Rack bar and rack bar manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058583U (en) * 1983-09-30 1985-04-23 株式会社 山田製作所 Rack shaft in rack and pinion steering system for vehicles
JPH01101140A (en) * 1987-10-15 1989-04-19 Toa Nenryo Kogyo Kk Fiber reinforced composite resin tube and production thereof
JP2003065316A (en) * 2001-08-27 2003-03-05 Toyota Industries Corp Joining structure between two members and propeller shaft
US20080184833A1 (en) * 2005-03-23 2008-08-07 Juergen Dohmann Steering Rack and Method of Manufacture Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058583U (en) * 1983-09-30 1985-04-23 株式会社 山田製作所 Rack shaft in rack and pinion steering system for vehicles
JPH01101140A (en) * 1987-10-15 1989-04-19 Toa Nenryo Kogyo Kk Fiber reinforced composite resin tube and production thereof
JP2003065316A (en) * 2001-08-27 2003-03-05 Toyota Industries Corp Joining structure between two members and propeller shaft
US20080184833A1 (en) * 2005-03-23 2008-08-07 Juergen Dohmann Steering Rack and Method of Manufacture Thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068784A1 (en) * 2015-10-22 2017-04-27 Neturen Co., Ltd. Rack bar and rack bar manufacturing method
JP2017082811A (en) * 2015-10-22 2017-05-18 高周波熱錬株式会社 Rack bar and manufacturing method of rack bar
CN108136483A (en) * 2015-10-22 2018-06-08 高周波热錬株式会社 The manufacturing method of rack bar and rack bar
US20180306303A1 (en) * 2015-10-22 2018-10-25 Neturen Co., Ltd. Rack bar and rack bar manufacturing method

Also Published As

Publication number Publication date
JP6312301B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6286411B2 (en) Method for manufacturing vehicle skeleton member
JP4846103B2 (en) Fiber reinforced resin pipe and power transmission shaft using the same
US20180306303A1 (en) Rack bar and rack bar manufacturing method
WO2012128213A1 (en) Manufacturing method for drive shaft and vehicle steering device
WO2005068284A1 (en) Crank for bicycle and method of producing the same
US9365077B2 (en) Lightweight hub bearing assembly and processes for assembling it
JP2011213312A (en) Chassis frame
JP6603463B2 (en) Shaft-shaped composite member and manufacturing method thereof
TWI276448B (en) A surface-modified golf club head
JP2007090794A (en) Tubular member made from fiber reinforced resin and manufacturing method of it
JP6312301B2 (en) Hollow rack bar, steering device, and method of manufacturing hollow rack bar
JP2014529029A (en) Camshaft and method for manufacturing the camshaft
WO2005121582A1 (en) Spline joint part
JP6286754B2 (en) Manufacturing method of core metal for resin gear and composite member for resin gear
JP5092884B2 (en) Rack and pinion type electric power steering apparatus and manufacturing method thereof
JP5581580B2 (en) Manufacturing method of rack and pinion type electric power steering apparatus
JP5206125B2 (en) Rack and pinion type electric power steering system
JP2018126932A (en) Axial composite member
JP5686582B2 (en) Axle case manufacturing method
JP2012153314A (en) Rack for rack and pinion type steering unit
KR20120047713A (en) Propeller shaft for vehicle and manufacturing method thereof
JP2011080557A (en) Constant velocity universal joint and outside joint member of constant velocity universal joint
JP2011132986A (en) Constant velocity universal joint, and outer joint member for the same
CN104343806A (en) Roller bearing mounted shaft
JP2011106568A (en) Constant velocity universal joint, and outside joint member of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180206

TRDD Decision of grant or rejection written
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R150 Certificate of patent or registration of utility model

Ref document number: 6312301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250