JP2015124651A - Vehicle driving operation evaluation device - Google Patents

Vehicle driving operation evaluation device Download PDF

Info

Publication number
JP2015124651A
JP2015124651A JP2013268486A JP2013268486A JP2015124651A JP 2015124651 A JP2015124651 A JP 2015124651A JP 2013268486 A JP2013268486 A JP 2013268486A JP 2013268486 A JP2013268486 A JP 2013268486A JP 2015124651 A JP2015124651 A JP 2015124651A
Authority
JP
Japan
Prior art keywords
vehicle
driving
standard deviation
evaluation
fuel consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013268486A
Other languages
Japanese (ja)
Inventor
田邊 圭樹
Yoshiki Tanabe
圭樹 田邊
近藤 暢宏
Nobuhiro Kondo
暢宏 近藤
山田 純一
Junichi Yamada
純一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to JP2013268486A priority Critical patent/JP2015124651A/en
Publication of JP2015124651A publication Critical patent/JP2015124651A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle driving operation evaluation device capable of making evaluation standard data becoming a rule through an easy and convenient method, reducing the number of steps required for preparation in advance and performing it.SOLUTION: Driving pattern information including elements of road surface graduation during driving of a vehicle is acquired while being associated with its driving distance and a standard deviation σ is calculated on the basis of histogram obtained through the driving pattern information. In turn, the best consumption cost when the vehicle is driven in compliance with information on several driving patterns expressed by a different standard deviation σ is calculated to make a characteristic figure expressing a relation between these best consumption cost and the standard deviation σ and the characteristic figure is stored in advance. The best consumption cost corresponding to the standard deviation σ acquired through information on driving patterns during driving of the vehicle is derived in reference to the characteristic figure and a result of evaluation in which the best consumption cost and an actual consumption cost are compared with each other is displayed for a driver.

Description

本発明は車両の運転操作評価装置に関する。   The present invention relates to a vehicle driving operation evaluation apparatus.

車両の走行燃費は運転者の運転操作によって大きく変動するため、適切な運転操作を促すために、車両の走行中に運転操作を評価して運転席の表示装置に表示するようにした運転操作評価装置が提案されている(例えば、特許文献1参照)。
特許文献1の技術では、予め車両の走行試験を実施して、運転パターン毎に理想的な運転操作を行ったときの規範となる試験走行燃費データを導き出して記憶装置に記憶させている。そして、車両の走行中に実燃費走行データを測定し、このときの運転パターンと対応する試験走行燃費データと比較して、走行燃費の低下の程度から実走行での運転操作を評価・表示している。
Since driving fuel efficiency of a vehicle varies greatly depending on the driving operation of the driver, the driving operation is evaluated during driving of the vehicle and displayed on the driver's seat display device in order to encourage appropriate driving operation. An apparatus has been proposed (see, for example, Patent Document 1).
In the technique of Patent Document 1, a running test of a vehicle is performed in advance, and test running fuel consumption data that is a standard when an ideal driving operation is performed for each driving pattern is derived and stored in a storage device. Then, the actual fuel consumption travel data is measured while the vehicle is traveling, and compared with the test travel fuel consumption data corresponding to the driving pattern at this time, the driving operation in the actual travel is evaluated and displayed from the degree of decrease in the travel fuel consumption. ing.

特開2007−210487号公報JP 2007-210487 A

しかしながら、特許文献1の技術では、具体的な運転パターン毎の試験走行燃費データに基づき運転操作を評価しているため、実走行で可能性がある様々な運転パターン(例えば走行パターンや走行経路等)に対し、洩れなく走行試験を実施して試験走行燃費データを導出する必要がある。よって、運転操作評価装置の準備のために多大な工数を要してしまうという問題があった。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、簡易的な手法により規範となる評価基準データを導出でき、もって事前の準備に必要な工数を削減して容易に実施することができる車両の運転操作評価装置を提供することにある。
However, in the technique of Patent Document 1, since the driving operation is evaluated based on the test driving fuel consumption data for each specific driving pattern, various driving patterns (for example, the driving pattern, the driving route, etc.) that are possible in actual driving. However, it is necessary to carry out a driving test without omission and to derive test driving fuel consumption data. Therefore, there is a problem that a great amount of man-hours are required for preparation of the driving operation evaluation device.
The present invention has been made to solve such problems, and the object of the present invention is to derive normative evaluation reference data by a simple method, thereby reducing the number of man-hours required for preparation in advance. An object of the present invention is to provide a vehicle operation evaluation device that can be easily implemented.

上記の目的を達成するため、本発明の車両の運転操作評価装置は、車両の走行中に路面勾配の要素を含む走行パターン情報を走行距離と関連付けて取得する走行パターン情報取得手段と、走行パターン取得手段により取得された走行パターン情報に基づき、車両が走行した路面勾配を所定領域毎に区分して各領域の積算距離を表すヒストグラムを作成し、ヒストグラムに基づき標準偏差を算出する偏差算出手段と、異なる複数の走行パターン情報に倣って車両を走行させたときの最良燃費と標準偏差との関係を評価基準データとして予め記憶する評価基準データ記憶手段と、車両の走行中に偏差算出手段により算出された標準偏差に対応する最良燃費を評価基準データ記憶手段から導出し、最良燃費を車両の実燃費と比較して評価結果を運転者に報知する運転操作評価・報知手段とを備えていることを特徴とする。   In order to achieve the above object, a vehicle driving operation evaluation apparatus according to the present invention includes a traveling pattern information acquisition unit that acquires traveling pattern information including an element of a road surface gradient in association with a traveling distance during traveling of the vehicle, and a traveling pattern. Deviation calculating means for creating a histogram representing the accumulated distance of each area by dividing the road surface gradient traveled by the vehicle into predetermined areas based on the running pattern information obtained by the obtaining means, and calculating a standard deviation based on the histogram; Evaluation criteria data storage means for preliminarily storing, as evaluation reference data, the relationship between the best fuel efficiency and standard deviation when the vehicle is driven according to a plurality of different driving pattern information, and calculated by the deviation calculation means while the vehicle is running The best fuel consumption corresponding to the standard deviation is derived from the evaluation reference data storage means, and the evaluation result is compared with the actual fuel consumption of the vehicle. Characterized in that it comprises a driving operation evaluation and informing means for informing the.

本発明によれば、簡易的な手法により規範となる評価基準データを導出でき、もって事前の準備に必要な工数を削減して容易に実施することができる。   According to the present invention, standard evaluation reference data can be derived by a simple method, and therefore, the number of steps required for advance preparation can be reduced and implemented easily.

実施形態の運転操作評価装置が搭載されたハイブリッド型トラックを示す全体構成図である。1 is an overall configuration diagram showing a hybrid truck on which a driving operation evaluation device of an embodiment is mounted. 車両の走行パターン情報から標準偏差σを求める手順を示す説明図である。It is explanatory drawing which shows the procedure which calculates | requires standard deviation (sigma) from the running pattern information of a vehicle. 各走行条件での標準偏差σと燃料消費量との関係を示す特性図である。It is a characteristic view which shows the relationship between the standard deviation (sigma) in each driving | running | working condition, and fuel consumption. 同一走行条件に換算したときの標準偏差σと燃料消費量との関係を示す特性図である。FIG. 6 is a characteristic diagram showing the relationship between standard deviation σ and fuel consumption when converted to the same running conditions. ECUが実行する運転操作評価・表示ルーチンを示すフローチャートである。It is a flowchart which shows the driving operation evaluation and display routine which ECU performs.

以下、本発明をハイブリッド型トラックの運転操作評価装置に具体化した一実施形態を説明する。
図1は本実施形態の運転操作評価装置が搭載されたハイブリッド型トラックを示す全体構成図である。
ハイブリッド型トラック(以下、車両10という)は、走行用動力源としてエンジン1及びモータ2を搭載している。エンジン1の出力軸にはクラッチ3を介してモータ2の回転軸が連結され、モータ2の回転軸は変速機4を介して駆動輪5に連結されている。これらのエンジン1及びモータ2が発生する駆動力が任意に変速機により変速され、その後に駆動輪に伝達されて車両を走行させる。モータ2にはインバータ6を介してバッテリ7が接続されている。モータ2の運転状態はインバータ6により制御され、力行制御時にはバッテリ7からの放電電力によりモータ2が駆動力を発生し、回生制御時にはモータ2が発電した電力がバッテリ7に充電される。
Hereinafter, an embodiment in which the present invention is embodied in a driving operation evaluation apparatus for a hybrid truck will be described.
FIG. 1 is an overall configuration diagram showing a hybrid truck on which a driving operation evaluation device of this embodiment is mounted.
A hybrid type truck (hereinafter referred to as a vehicle 10) is equipped with an engine 1 and a motor 2 as a driving power source. A rotation shaft of the motor 2 is connected to the output shaft of the engine 1 via the clutch 3, and the rotation shaft of the motor 2 is connected to the drive wheels 5 via the transmission 4. The driving force generated by the engine 1 and the motor 2 is arbitrarily shifted by a transmission, and then transmitted to driving wheels to drive the vehicle. A battery 7 is connected to the motor 2 via an inverter 6. The operating state of the motor 2 is controlled by the inverter 6, the motor 2 generates a driving force by the discharged power from the battery 7 during power running control, and the battery 7 is charged with the power generated by the motor 2 during regenerative control.

エンジン1及びインバータ6にはECU8が接続され、ECU8からの指令に基づき、エンジン1の運転状態及びインバータ6を介したモータ2の運転状態が制御される。このような制御を実行するために、図示はしないがECU8には種々のセンサ類やデバイス類が接続されている。   An ECU 8 is connected to the engine 1 and the inverter 6, and an operation state of the engine 1 and an operation state of the motor 2 via the inverter 6 are controlled based on a command from the ECU 8. In order to execute such control, although not shown, various sensors and devices are connected to the ECU 8.

一方、ECU8は、車両の走行中に運転者による運転操作を評価して運転席に設けられた表示装置9に表示する運転操作評価機能を備えている。[発明が解決しようとする課題]で述べたように、特許文献1に記載された運転操作評価装置は、具体的な運転パターン毎の試験走行燃費データに基づき運転操作を評価しているため、実走行で可能性がある様々な運転パターンに対して洩れなく走行試験を実施する必要があった。   On the other hand, the ECU 8 has a driving operation evaluation function for evaluating a driving operation performed by the driver during traveling of the vehicle and displaying it on the display device 9 provided in the driver's seat. As described in [Problems to be Solved by the Invention], the driving operation evaluation device described in Patent Document 1 evaluates driving operation based on test driving fuel consumption data for each specific driving pattern. It was necessary to carry out running tests without omission for various driving patterns that could be possible in actual driving.

このような不具合を鑑みて本発明者は、車両の走行経路の勾配情報から求めた標準偏差σと走行燃費との間に相関性があることに着目した。
図2は車両の走行パターン情報から標準偏差σを求める手順を示す説明図である。
本実施形態が想定している走行パターン情報とは、車両の走行に伴って刻々と変化する路面勾配の要素を含む情報であり、当該情報を車両の走行中に走行距離と関連付けて逐次取得する。路面勾配の要素を含む情報としては、図2の上段に示すような標高情報、或いは図2の下段に示すような路面勾配情報の何れであってもよい。
In view of such problems, the present inventor has focused on the correlation between the standard deviation σ obtained from the gradient information of the travel route of the vehicle and the travel fuel consumption.
FIG. 2 is an explanatory diagram showing a procedure for obtaining the standard deviation σ from the running pattern information of the vehicle.
The travel pattern information assumed in the present embodiment is information including an element of a road gradient that changes every time the vehicle travels, and the information is sequentially acquired in association with the travel distance during the travel of the vehicle. . The information including the element of the road surface gradient may be any of altitude information as shown in the upper part of FIG. 2 or road surface gradient information as shown in the lower part of FIG.

そして、所定の走行距離分だけの標高情報または路面勾配情報に基づき、図2に示すようにヒストグラムを作成する。ヒストグラムの横軸(階級)は、車両が走行した様々な路面勾配を平坦路=0を中心として所定領域毎に区分したものであり、縦軸(度数)は、それぞれの路面勾配の各領域が連続した積算距離である。なお、標高情報と路面勾配情報とは表現形態が異なるだけで内容は同一であるため、何れに基づいても図2に示すヒストグラムが導き出される。   Then, a histogram is created as shown in FIG. 2 based on altitude information or road surface gradient information corresponding to a predetermined travel distance. The horizontal axis (class) of the histogram is obtained by dividing various road gradients on which the vehicle has traveled into predetermined areas centering on flat road = 0, and the vertical axis (frequency) indicates each area of each road gradient. It is a continuous accumulated distance. Note that the altitude information and the road surface gradient information are the same except for the expression form, and therefore the histogram shown in FIG. 2 is derived based on either.

このようにして作成したヒストグラムから標準偏差σを算出すると共に、このときの走行で費やした燃料消費量を算出する。種々の走行条件の下に標準偏差σ及び燃料消費量を算出し、それらのデータをまとめたものが図3である。この図では、4種の走行距離(25,50,75,100km)を走行したときの標準偏差σと燃料消費量との関係を表しているが、走行距離毎に標準偏差σと燃料消費量との間に相関関係があることが判る。
なお、標準偏差σを算出する方法は上記方法に限定されず、公知の算出方法が適用できる。例えば、ヒストグラムを作成せずに、走行距離と関連付けられた標高情報から標準偏差σを直接算出してもよい。
The standard deviation σ is calculated from the histogram created in this way, and the amount of fuel consumed in traveling at this time is calculated. FIG. 3 shows the standard deviation σ and fuel consumption calculated under various driving conditions and the data collected. This figure shows the relationship between the standard deviation σ and the fuel consumption when the vehicle travels over four types of travel distances (25, 50, 75, 100 km). It can be seen that there is a correlation.
The method for calculating the standard deviation σ is not limited to the above method, and a known calculation method can be applied. For example, the standard deviation σ may be directly calculated from the altitude information associated with the travel distance without creating a histogram.

各走行距離での燃料消費量を同一走行距離当たりの燃料消費量に換算すると、図4の特性図が得られる。この図に示すように、図3における各走行距離での試験ポイント(□印、○印、◇印、△印)は特定のライン上に集約され、走行距離に関係なく標準偏差σと燃料消費量との間に相関関係があることが判る。   When the fuel consumption at each mileage is converted into the fuel consumption per mileage, the characteristic diagram of FIG. 4 is obtained. As shown in this figure, the test points (□ mark, ○ mark, ◇ mark, △ mark) at each travel distance in FIG. 3 are collected on a specific line, and the standard deviation σ and the fuel consumption regardless of the travel distance. It can be seen that there is a correlation with the quantity.

以上のように、路面勾配の要素を含む走行パターン情報から求めた標準偏差σと燃料消費量との間には、固有の相関関係が成立している。よって、異なる標準偏差σで表現される複数の走行パターン情報に倣って理想的な運転で車両を走行させる試験を実施し、各標準偏差σに対応して燃料消費量をそれぞれ算出する。これにより図4に示すような、標準偏差σ(=走行パターン情報)とその走行パターン情報に倣って走行したときの最小の燃料消費量(即ち、最良燃費)との関係が判明し、標準偏差σから最良燃費を導出する図4の特性図が得られる。後述するように、この特性図は、例えば特許文献1の技術等に比較してごく僅かの工数を要するだけで簡単に特定できる。   As described above, a unique correlation is established between the standard deviation σ obtained from the travel pattern information including the road surface gradient element and the fuel consumption. Therefore, a test is performed in which the vehicle travels in an ideal manner following a plurality of travel pattern information expressed by different standard deviations σ, and the fuel consumption is calculated corresponding to each standard deviation σ. As a result, as shown in FIG. 4, the relationship between the standard deviation σ (= travel pattern information) and the minimum fuel consumption (that is, the best fuel consumption) when traveling according to the travel pattern information is found. The characteristic diagram of FIG. 4 for deriving the best fuel efficiency from σ is obtained. As will be described later, this characteristic diagram can be easily specified with a very small number of man-hours as compared with the technique of Patent Document 1, for example.

本実施形態では、図4の特性図が、運転者の運転操作を評価するための規範となる評価基準データとして機能し、この特性図が予めECUに記憶されている(評価基準データ記憶手段)。そして、車両の走行中には所定の走行距離毎に実燃費を算出する一方、このときの走行パターン情報から得られた標準偏差σから、図4の特性図に基づき最良燃費を導出し、実燃費と最良燃費との比較に基づく評価結果を運転席の表示装置9に表示する。   In the present embodiment, the characteristic diagram of FIG. 4 functions as evaluation reference data serving as a standard for evaluating the driving operation of the driver, and this characteristic diagram is stored in advance in the ECU (evaluation reference data storage means). . While the vehicle is traveling, the actual fuel consumption is calculated for each predetermined travel distance, while the best fuel consumption is derived from the standard deviation σ obtained from the travel pattern information at this time based on the characteristic diagram of FIG. An evaluation result based on the comparison between the fuel consumption and the best fuel consumption is displayed on the driver's seat display device 9.

具体的な評価・表示処理は、図5に示す運転操作評価・表示ルーチンに従ってECU8により実施され、以下に説明する。
ECU8は、車両の走行中に図5のルーチンを所定の制御インターバルで実行する。まずステップS2で燃費及び走行パターン情報(即ち、標高または路面勾配)の計測を開始し(走行パターン情報取得手段)、続くステップS4で所定距離(例えば10km)だけ走行したか否かを判定し、判定がNo(否定)のときには一旦ルーチンを終了する。
The specific evaluation / display processing is performed by the ECU 8 according to the driving operation evaluation / display routine shown in FIG. 5 and will be described below.
The ECU 8 executes the routine of FIG. 5 at a predetermined control interval while the vehicle is traveling. First, measurement of fuel consumption and travel pattern information (that is, altitude or road surface gradient) is started in step S2 (travel pattern information acquisition means), and it is determined whether or not the vehicle has traveled a predetermined distance (for example, 10 km) in subsequent step S4. When the determination is No (negative), the routine is temporarily terminated.

ステップS4の判定がYes(肯定)になると、ステップS6で燃費及び走行パターン情報の計測を終了し、その後にステップS8で走行パターンの分析処理を実行し、ステップS10で標準偏差σの算出処理を実行する(偏差算出手段)。即ち、ステップS8では、図2に示すように所定距離の走行中において走行距離に関連付けて取得された標高または路面勾配に基づきヒストグラムを導き出し、そのヒストグラムに基づきステップS10で標準偏差σを算出する。   If the determination in step S4 is Yes (positive), the measurement of fuel consumption and travel pattern information is terminated in step S6, and then the travel pattern analysis process is executed in step S8, and the standard deviation σ is calculated in step S10. Execute (deviation calculation means). That is, in step S8, as shown in FIG. 2, a histogram is derived based on the altitude or road gradient acquired in association with the travel distance during travel of a predetermined distance, and the standard deviation σ is calculated in step S10 based on the histogram.

続くステップS12では、算出した標準偏差σから図4の特性図に基づいて最良燃費を求めた上で、この最良燃費をステップS2〜6の処理で計測した実燃費と比較して、所定距離の走行中に行われた運転操作に対する評価を行う(運転操作評価・報知手段)。そして、続くステップS14で表示装置9に評価結果を表示した後にルーチンを終了する(運転操作評価・報知手段)。評価結果の表現は、運転者が直感的に把握可能なものであればどのような形態でもよい。例えば、100点を満点とした点数表示、或いは最良燃費と実燃費とを並べた棒グラフの形態で表示すればよい。また、表示装置9による表示に代えて、音声で評価結果を運転者に報知するようにしてもよい。   In the following step S12, the best fuel consumption is obtained from the calculated standard deviation σ based on the characteristic diagram of FIG. 4, and the best fuel consumption is compared with the actual fuel consumption measured in the processing of steps S2 to S6. Evaluation of driving operations performed during traveling is performed (driving operation evaluation / notification means). Then, after the evaluation result is displayed on the display device 9 in the subsequent step S14, the routine is terminated (driving operation evaluation / notification means). The expression of the evaluation result may be in any form as long as the driver can intuitively grasp it. For example, it may be displayed in the form of a bar graph in which the best fuel efficiency and the actual fuel efficiency are arranged in a score display with 100 points being a perfect score. Further, the evaluation result may be notified to the driver by voice instead of the display by the display device 9.

本実施形態の運転操作評価装置では、以上の手順で運転者の運転操作に対する評価・表示が行われる。そして、本実施形態でも、評価基準データとして機能する図4の特性図を生成するために事前に車両の走行試験を行うが、その際の工数は、具体的な運転パターン毎の試験走行燃費データを導出する特許文献1の技術に比較して格段に少なくなる。
即ち、図4の特性図上のラインを特定するには、そのラインが直線の場合でも曲線の場合でも最低限3つの試験ポイントが判明すれば特定可能である。このため実際の車両走行の試験は最小の場合には3回で済み、様々な運転パターンに対して洩れなく走行試験が必要な特許文献1の技術に比較すると、極めて簡易な手法により規範となる評価基準データを導出できる。結果として、事前の準備に必要な工数を大幅に削減して容易に実施することができる。
In the driving operation evaluation apparatus of the present embodiment, evaluation / display for the driving operation of the driver is performed by the above procedure. Also in the present embodiment, a vehicle running test is performed in advance in order to generate the characteristic diagram of FIG. 4 that functions as evaluation reference data, and the man-hour at that time is the test running fuel consumption data for each specific driving pattern. As compared with the technique of Patent Document 1 for deriving
That is, in order to specify the line on the characteristic diagram of FIG. 4, it is possible to specify at least three test points if the line is a straight line or a curved line. For this reason, the actual vehicle driving test is required only three times in the minimum, and it becomes a norm by a very simple method compared to the technique of Patent Document 1 which requires a driving test without omission for various driving patterns. Evaluation criteria data can be derived. As a result, the number of man-hours required for advance preparation can be greatly reduced and implemented easily.

また、トラック等の商用車では積載量によって燃料消費量、ひいては評価基準データが相違することになる。しかし、その場合でも、最大積載量及び空荷でそれぞれ異なる標準偏差σの3回の走行試験を実施すれば、図4中に示すような最大積載量(重)と空荷(軽)とのラインを特定でき、中間の積載量の場合には補間処理により標準偏差σから最良燃費を算出できる。よって、このような積載量が変化する商用車等を想定した場合でも、事前の準備に要する工数を大幅に削減できる。この点は、車両のモデルチェンジやエンジン仕様の変更等があった場合でも同様であり、簡単に対応できる。   Further, in a commercial vehicle such as a truck, the fuel consumption amount and thus the evaluation standard data differ depending on the loading amount. However, even in that case, if three running tests with different standard deviations σ for the maximum load and empty load are performed, the maximum load (heavy) and empty (light) as shown in FIG. The line can be specified, and in the case of an intermediate load, the best fuel consumption can be calculated from the standard deviation σ by interpolation processing. Therefore, even when a commercial vehicle or the like with such a load amount is assumed, the number of man-hours required for advance preparation can be greatly reduced. This point is the same even when there is a vehicle model change or engine specification change, and can be easily handled.

また、評価基準データの容量が極めて小さいため、ECU8に要求される記憶容量も格段に低減される。例えば特許文献1の技術では、試験走行燃費データに関するデータ量が膨大なものとなり、大容量の記憶装置が必要であると共に、場合によっては車載の記憶装置ではデータを保存しきれずに、データを中央サーバーに保存して通信装置を介してデータのやり取りを行う必要が生じる。本実施形態によれば、車載のECU8だけで処理できる上に必要な記憶容量も小さいため、コストアップを伴うことなく実施できる。
なお、言うまでもないが、運転者への評価の表示により適切な運転操作を促すことができる点については、特許文献1の技術と遜色のない効果が得られる。
Further, since the capacity of the evaluation reference data is extremely small, the storage capacity required for the ECU 8 is also greatly reduced. For example, in the technique of Patent Document 1, the amount of data related to test driving fuel consumption data becomes enormous, and a large-capacity storage device is required. In some cases, the in-vehicle storage device cannot store the data, and the data is stored in the center. There is a need to store data in the server and exchange data via the communication device. According to the present embodiment, the processing can be performed only by the in-vehicle ECU 8 and the necessary storage capacity is small, so that the present invention can be implemented without increasing the cost.
Needless to say, an effect comparable to the technique of Patent Document 1 can be obtained in that an appropriate driving operation can be promoted by displaying an evaluation to the driver.

一方、図2に基づき説明したように、走行パターン情報は標高情報として取得することも、路面勾配情報として取得することもできる。標高情報は、ナビゲーションシステムのGPS機能による自車の位置情報、及び予め記憶された地図情報(標高情報を含む)に基づき、自車位置の標高のデータを逐次算出することにより特定できる。よって、元々ナビゲーションシステムを備えた車両の場合には、走行パターン情報を標高情報として取得することで、新たな装備を追加することなく一層容易に実施することができる。   On the other hand, as described based on FIG. 2, the traveling pattern information can be acquired as altitude information or road surface gradient information. The altitude information can be specified by sequentially calculating altitude data of the own vehicle position based on the position information of the own vehicle by the GPS function of the navigation system and map information (including altitude information) stored in advance. Therefore, in the case of a vehicle originally provided with a navigation system, the travel pattern information can be acquired as altitude information, which can be implemented more easily without adding new equipment.

また路面勾配情報は、例えば特開2003−97945号公報等に記載されているように、車両に搭載された加速度センサの出力値Gsから車輪速センサによる実前後加速度Gvを減算して勾配に起因して発生した加速度Grを割り出し、この加速度Grから特定できる。このような路面勾配の推定処理は、例えば登坂路や降坂路で適切な発進変速段を選択するために利用されている。よって、このような機能を備えた車両の場合には、走行パターン情報を路面勾配情報として取得することで、新たな装備を追加することなく一層容易に実施することができる。   Further, as described in, for example, Japanese Patent Application Laid-Open No. 2003-97945, road surface gradient information is derived from the gradient by subtracting the actual longitudinal acceleration Gv by the wheel speed sensor from the output value Gs of the acceleration sensor mounted on the vehicle. Thus, the generated acceleration Gr can be determined and specified from the acceleration Gr. Such road surface gradient estimation processing is used, for example, to select an appropriate start gear position on an uphill road or a downhill road. Therefore, in the case of a vehicle having such a function, it is possible to more easily carry out without adding new equipment by acquiring travel pattern information as road surface gradient information.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、ハイブリッド型トラックの運転操作評価装置に具体化したが、車両の種別はこれに限定されるものではなく、例えば走行用動力源としてモータのみを搭載した電気自動車、或いはエンジンのみを搭載したエンジン車両に適用してもよい。
また、上記実施形態では図4の特性図を生成するために事前に車両の走行試験を行うと具体化したが、試験の種別はこれに限定されるものではなく、例えばHILSやSILSなどの燃費シミュレーション、或いはエンジンベンチを用いたベンチ試験を適用してもよい。
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above-described embodiment, the present invention has been embodied in a hybrid truck driving operation evaluation device, but the type of vehicle is not limited to this, and for example, only an electric vehicle equipped with only a motor as a driving power source, or only an engine You may apply to the engine vehicle which mounts.
Further, in the above embodiment, the vehicle driving test is performed in advance in order to generate the characteristic diagram of FIG. 4, but the type of the test is not limited to this, for example, fuel consumption such as HILS and SILS. A simulation or a bench test using an engine bench may be applied.

8 ECU(走行パターン情報取得手段、偏差算出手段、評価基準データ記憶手段、
運転操作評価・報知手段)
9 表示装置(運転操作評価・報知手段)
8 ECU (running pattern information acquisition means, deviation calculation means, evaluation reference data storage means,
Driving operation evaluation / notification means)
9 Display device (Driving operation evaluation / notification means)

Claims (1)

車両の走行中に路面勾配の要素を含む走行パターン情報を走行距離と関連付けて取得する走行パターン情報取得手段と、
上記走行パターン取得手段により取得された走行パターン情報に基づき、上記車両が走行した路面勾配を所定領域毎に区分して各領域の積算距離を表すヒストグラムを作成し、該ヒストグラムに基づき標準偏差を算出する偏差算出手段と、
上記異なる複数の走行パターン情報に倣って上記車両を走行させたときの最良燃費と上記標準偏差との関係を評価基準データとして予め記憶する評価基準データ記憶手段と、
上記車両の走行中に上記偏差算出手段により算出された標準偏差に対応する最良燃費を上記評価基準データ記憶手段から導出し、該最良燃費を上記車両の実燃費と比較して評価結果を運転者に報知する運転操作評価・報知手段と
を備えたことを特徴とする車両の運転操作評価装置。
Travel pattern information acquisition means for acquiring travel pattern information including an element of a road surface gradient in association with a travel distance during travel of the vehicle;
Based on the travel pattern information acquired by the travel pattern acquisition means, a road surface gradient traveled by the vehicle is divided into predetermined regions to create a histogram representing the accumulated distance of each region, and a standard deviation is calculated based on the histogram. Deviation calculating means for
Evaluation reference data storage means for preliminarily storing, as evaluation reference data, the relationship between the best fuel consumption and the standard deviation when the vehicle is driven following the plurality of different driving pattern information;
The best fuel consumption corresponding to the standard deviation calculated by the deviation calculation means during driving of the vehicle is derived from the evaluation reference data storage means, and the evaluation result is compared with the actual fuel consumption of the vehicle. A driving operation evaluation device for a vehicle, comprising: a driving operation evaluation / notification means for informing the vehicle.
JP2013268486A 2013-12-26 2013-12-26 Vehicle driving operation evaluation device Pending JP2015124651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013268486A JP2015124651A (en) 2013-12-26 2013-12-26 Vehicle driving operation evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268486A JP2015124651A (en) 2013-12-26 2013-12-26 Vehicle driving operation evaluation device

Publications (1)

Publication Number Publication Date
JP2015124651A true JP2015124651A (en) 2015-07-06

Family

ID=53535547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268486A Pending JP2015124651A (en) 2013-12-26 2013-12-26 Vehicle driving operation evaluation device

Country Status (1)

Country Link
JP (1) JP2015124651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173223A (en) * 2017-03-31 2018-11-08 三菱重工サーマルシステムズ株式会社 Refrigerator, hot water heat pump, operation method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173223A (en) * 2017-03-31 2018-11-08 三菱重工サーマルシステムズ株式会社 Refrigerator, hot water heat pump, operation method, and program

Similar Documents

Publication Publication Date Title
KR101294087B1 (en) Eco Driving Driver Feedback System For Electric Vehicle And Feedback Method Threreof
US9286737B2 (en) Method of determining an eco-driving indicator for the travel of a vehicle
EP2172740B1 (en) Map display device, map display method, and computer readable tangible medium
CN101590832B (en) Travel energy learning device and method
CN111670340A (en) Method for acquiring remaining driving mileage of vehicle, electronic equipment and vehicle
CN104842797A (en) Method and system for estimating future average power consumption and remaining driving range of electric automobile
US9527502B1 (en) Method and apparatus for controlling plug-in hybrid electric vehicle
US8996290B2 (en) Model-based efficiency scoring in automotive engineering
JP2011102801A (en) Method of estimating travelable distance of motor vehicle
JP2013140057A (en) Information system for vehicle, on-vehicle device, and server device
US11656086B2 (en) Electricity consumption rate predicting device
CN109117438A (en) Vehicles remaining mileage evaluation method and device with power supply system
WO2013183764A1 (en) Energy estimation device, vehicle information system, server device
US20160001658A1 (en) Energy consumption rate in distance domain
CN103863119A (en) Display device for vehicle
WO2016184497A1 (en) System and method for estimating energy usage
CN108327632B (en) Regenerative and frictional power indicator for vehicle braking system
US20220041169A1 (en) System and Method for Providing an Indication of Driving Performance
CN110015159B (en) Selection of a range of electrical devices with rechargeable energy storage units
CN104105630B (en) Deceleration parameter estimating device
JP5387152B2 (en) Vehicle travel control device
JP5929695B2 (en) Driving diagnosis device, driving diagnosis method, program and medium
JP2015124651A (en) Vehicle driving operation evaluation device
JP2015123822A (en) Control device of hybrid electric automobile
JP2019108014A (en) Cruising distance estimation device