JP2015123383A - Continuous reaction unit, and method for continuous crystallization reaction of inorganic particle - Google Patents

Continuous reaction unit, and method for continuous crystallization reaction of inorganic particle Download PDF

Info

Publication number
JP2015123383A
JP2015123383A JP2013267998A JP2013267998A JP2015123383A JP 2015123383 A JP2015123383 A JP 2015123383A JP 2013267998 A JP2013267998 A JP 2013267998A JP 2013267998 A JP2013267998 A JP 2013267998A JP 2015123383 A JP2015123383 A JP 2015123383A
Authority
JP
Japan
Prior art keywords
pressure
reactor
liquid
reaction
treatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013267998A
Other languages
Japanese (ja)
Other versions
JP6255648B2 (en
Inventor
陽 銅谷
Akira Dotani
陽 銅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2013267998A priority Critical patent/JP6255648B2/en
Publication of JP2015123383A publication Critical patent/JP2015123383A/en
Application granted granted Critical
Publication of JP6255648B2 publication Critical patent/JP6255648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized processing unit having a sufficient throughput with uniform contact processing characteristics.SOLUTION: In a reactor 10, a swirling flow of liquid is created. Injection liquids A and B are injected into a contact field in the reactor 10 at a position away from the inner surface of the reactor 10 toward the center, so as to be subjected to contact processing.

Description

本発明は、接触処理液を循環させ、反応を行う連続反応装置及び無機粒子の連続反応晶析方法に関する。   The present invention relates to a continuous reaction apparatus for circulating a contact treatment liquid and performing a reaction, and a continuous reaction crystallization method for inorganic particles.

液液反応、気液反応又は触媒反応などの反応によって、あるいは晶析処理により粒子を生成させるなど、工業的な処理を経て製品又は中間品を得る操作としては限りなく多くある。   There are an unlimited number of operations for obtaining a product or an intermediate product through industrial treatment such as liquid-liquid reaction, gas-liquid reaction, catalytic reaction, or the like, or generation of particles by crystallization treatment.

代表的な処理は、たとえば図13に示すように、A成分、B成分あるいはC成分を撹拌接触処理槽1内に投入し、攪拌モータ2付き攪拌羽根3により攪拌し、各成分の反応を促進させるのが一般的である。適宜の時点で、排出口5から成品液を抜き出し、その後、たとえば濾過、洗浄及び乾燥により目的の晶析粒子を得る。4はバッフルである。   For example, as shown in FIG. 13, for example, A component, B component or C component is put into stirring contact processing tank 1 and stirred by stirring blade 3 with stirring motor 2 to promote reaction of each component. It is common to make it. At an appropriate time, the product liquid is withdrawn from the discharge port 5, and then target crystallized particles are obtained by, for example, filtration, washing and drying. 4 is a baffle.

しかし、この処理形態では、接触処理槽1として大きなものを必要とし、均一な反応や処理のために攪拌羽根3により攪拌しているが、高い均一性を期待するのに限界がある。
他方、処理方法として、各成分の接触処理槽1内への投入及びその後の撹拌をバッチ式で処理する場合には、生産効率が悪い。したがって、撹拌中に連続的に各成分を投入する連続生産方式が高い効率が得られるが、接触処理の条件設定(対時間での投入量コントロールなど)が難しく、必ずしも均一な製品を効率良く得ることができるものでもない。
これらを改善する試みとして、流路を1mm以下にしたマイクロリアクターが提唱されているが、生産量が乏しく流路の閉塞による連続生産の不具合が指摘されており、工業規模での実用化事例は少ない。
However, in this processing mode, a large contact processing tank 1 is required and stirring is performed by the stirring blade 3 for uniform reaction and processing, but there is a limit to expecting high uniformity.
On the other hand, as a processing method, when each component is charged into the contact processing tank 1 and then stirred, the production efficiency is poor. Therefore, the continuous production method in which each component is continuously added during stirring can provide high efficiency, but it is difficult to set the conditions for contact treatment (such as controlling the amount of input over time), and a uniform product can always be obtained efficiently. It is not something that can be done.
As an attempt to improve these, a microreactor with a flow path of 1 mm or less has been proposed, but the production volume is low and problems with continuous production due to blockage of the flow path have been pointed out. Few.

成分をサイクロン方式で移動させる過程で他の成分と接触させる技術は、特許文献1に記載されている。   Patent Document 1 discloses a technique for bringing a component into contact with another component in the process of moving the component in a cyclone system.

特開平4−240288JP-A-4-240288

しかし、先行技術は、成分の分離技術であって、反応や処理を目的にしたものではない。   However, the prior art is a component separation technique and is not intended for reaction or treatment.

化学工業界をはじめとする接触処理分野において、小型の処理装置でありながら、十分な処理量を発揮し、しかも均一な接触処理性を示す反応装置が求める要望は大きい。   In the contact processing field including the chemical industry, there is a great demand for a reaction apparatus that exhibits a sufficient throughput while exhibiting a uniform contact processability even though it is a small processing apparatus.

したがって、本発明の主たる課題は、小型の処理装置でありながら、十分な処理量を発揮し、しかも均一な接触処理性を示す反応装置及び無機粒子の連続反応晶析方法を提供することにある。   Therefore, a main problem of the present invention is to provide a reactor and a continuous reaction crystallization method for inorganic particles that exhibit a sufficient throughput while exhibiting a uniform contact processability even though they are small processing apparatuses. .

この課題を解決した本発明は、次の通りである。
〔請求項1記載の発明〕
一方端部及び他方端部を有する反応器と、この反応器内に反応液を注入する注入手段と、前記反応器の前記他方端部から接触処理液を抜き出して、抜き出した接触処理液の少なくとも一部を前記反応器の前記一方端部へ返送する循環手段とを有し、
前記反応器内の液流れを前記接触処理液の返送により旋回流とし、この旋回流に対して前記注入手段により注入した反応液を接触させるよう構成されており、
前記反応器内の圧力を常圧より高める昇圧手段を有することを特徴とする連続反応装置。
The present invention that has solved this problem is as follows.
[Invention of Claim 1]
A reactor having one end and the other end; injection means for injecting the reaction liquid into the reactor; and extracting the contact treatment liquid from the other end of the reactor, and at least the extracted contact treatment liquid Circulating means for returning a part to the one end of the reactor,
The liquid flow in the reactor is swirled by returning the contact treatment liquid, and the swirl is configured to contact the reaction liquid injected by the injection means.
A continuous reaction apparatus comprising pressure increasing means for increasing the pressure in the reactor from normal pressure.

〔請求項2記載の発明〕
前記反応器の内表面より中心側位置において前記反応液を注入するようにした請求項1記載の連続反応装置。
[Invention of Claim 2]
The continuous reaction apparatus according to claim 1, wherein the reaction liquid is injected at a position closer to the center than the inner surface of the reactor.

(作用効果)
液流れとして旋回流を示す場においては、竜巻のように中心の渦部分あるいは中心の空洞部分近傍の内周部分の流れは、反応を左右する物質移動・攪拌混合効果が高いなど流れの乱れが大きい。この部分は、注入する反応物質もしくはガスを含む注入液の急激な拡散場となり、均質な反応が可能となる。
さらに、流路の壁面には旋回流の外周部分が接しているので、外周の旋回流が反応物質の供給体となり、物質・熱の急激な変化を和らげている。注入した注入物質(液・ガス・固形物)の反応物質に対してバリヤー(障壁)として機能するために、反応物質の反応器内面及び流路内面への付着が防止され、長時間にわたり安定した運転が可能となるものと考えられる
当初、本発明者は、小型の処理装置でありながら、十分な処理量を発揮する装置として、チューブリアクターを使用する反応処理装置の開発を試みた。しかし、ある種の反応処理材料系では、流路の壁面に微細なシャワー(一次核)が付着し、その後にこれを核として結晶が成長し、流れを阻害し、長時間の安定した運転ができ難いケースが散見された。
(Function and effect)
In a field that shows a swirling flow as a liquid flow, the flow in the central vortex part or the inner peripheral part in the vicinity of the central cavity part like a tornado has a disturbed flow such as high mass transfer / stirring mixing effect that affects the reaction. large. This portion becomes an abrupt diffusion field of the injection solution containing the reactant or gas to be injected, and a homogeneous reaction is possible.
Furthermore, since the outer peripheral portion of the swirl flow is in contact with the wall surface of the flow path, the swirl flow on the outer periphery serves as a reactant supply body, and abrupt changes in material and heat are mitigated. Since it functions as a barrier against the reactants of the injected injection material (liquid, gas, solid), it prevents the reactant from adhering to the inner surface of the reactor and the inner surface of the flow path and is stable for a long time The present inventor tried to develop a reaction processing apparatus that uses a tube reactor as an apparatus that exhibits a sufficient throughput even though it is a small processing apparatus. However, in certain types of reaction processing material systems, fine showers (primary nuclei) adhere to the walls of the flow channel, and then crystals grow from this as the nuclei, blocking the flow and long-term stable operation. Some cases were difficult to do.

その対策として、反応径路を並設し、詰まりが発生したならば、他方の反応経路に切換えて流通させ、その間に詰まりが生じた反応経路は清浄する方策が考えられる。しかし、切換えの僅かな時間においても、接触の場における、不連続運転に起因した粒径の変動を避けるべきであり、長時間にわたり安定した運転に耐えるべく新たな機構が必要と判断した。   As a countermeasure, it is conceivable to arrange reaction paths in parallel and, if clogging occurs, switch to the other reaction path for circulation, and clean the reaction path in which clogging occurred. However, it was judged that a change in particle size due to discontinuous operation should be avoided even in a short time of switching, and that a new mechanism is necessary to withstand stable operation over a long period of time.

これに対し、本発明に従って、反応器内の液流れを、接触処理液の返送による旋回流とし、この旋回流に対して注入手段により注入した反応液と接触させるよう構成したことにより前記課題を解決できることが知見された。   On the other hand, according to the present invention, the liquid flow in the reactor is a swirl flow by returning the contact treatment liquid, and the swirl flow is brought into contact with the reaction liquid injected by the injection means. It was found that this could be solved.

他方、接触処理を常圧で行うことで、目的の凝集粒子を生成できるものの、反応器内の圧力を常圧より高める昇圧手段を設けて、加圧力作用下で反応を行わせると、処理物質によっては、反応がより促進または抑制させることを知見した。これは液体の誘電率が圧力増加と共に高くなるため、イオン性物質は溶媒和しやすくなることが考えられ、この誘電率の変化が核発生や一次粒子の成長といった反応速度に影響を与えるものと考えられる。   On the other hand, although the target aggregated particles can be generated by performing the contact treatment at normal pressure, a treatment substance is obtained by providing a pressure-increasing means for raising the pressure in the reactor above normal pressure and performing the reaction under the action of pressure. It has been found that the reaction is further promoted or suppressed. This is because the dielectric constant of the liquid increases with increasing pressure, and ionic substances are likely to solvate. This change in dielectric constant affects the reaction rate such as nucleation and primary particle growth. Conceivable.

〔請求項3記載の発明〕
返送された接触処理液と注入した前記反応液との前記反応器内の接触の場を、前記反応器内に生成された旋回流の反応器の内表面より中心側領域とし、この接触の場において前記反応液の接触を行なわせるようにした請求項1記載の連続反応装置。
[Invention of Claim 3]
The contact field in the reactor between the returned contact treatment liquid and the injected reaction liquid is defined as a region on the center side from the inner surface of the swirling flow reactor generated in the reactor. The continuous reaction apparatus according to claim 1, wherein the reaction solution is brought into contact.

(作用効果)
反応器に対し液を循環させるとともに、その反応器内に、循環液の返送液を流入させることにより旋回流を生成させると、旋回流の外周部分が反応器内面においてある厚さの筒状体部分を形成する。その結果、筒状体部分が、新たに注入した注入液との反応に対してバリヤー(障壁)として機能する現象が生じ、接触の場を旋回流の反応器の内表面より中心側領域とし、この接触の場において前記反応液の接触を行なわせるようにした。その結果、反応による吸熱・発熱に伴う温度変化の緩和、反応物質の流路内面への付着を防止することができる。
(Function and effect)
When a liquid is circulated through the reactor and a return flow of the circulating liquid is caused to flow into the reactor to generate a swirling flow, a cylindrical body having a thickness where the outer peripheral portion of the swirling flow is on the inner surface of the reactor Forming part. As a result, a phenomenon occurs in which the cylindrical body part functions as a barrier (barrier) against the reaction with the newly injected liquid, and the contact field is set to the central region from the inner surface of the swirling flow reactor. The reaction solution was brought into contact in this contact field. As a result, it is possible to alleviate temperature changes accompanying heat absorption and heat generation due to the reaction and to prevent the reactants from adhering to the inner surface of the flow path.

〔請求項4記載の発明〕
反応器は、その内面が一方端部側から他方端部に向かって先窄まりとなり、接触処理液流入位置が前記反応器の長手方向一方端部である請求項1記載の連続反応装置。
[Invention of Claim 4]
2. The continuous reaction apparatus according to claim 1, wherein the inner surface of the reactor is tapered from one end side toward the other end portion, and the contact treatment liquid inflow position is at one end portion in the longitudinal direction of the reactor.

(作用効果)
反応器は内空間が均一な半径をもつ筒状のものでもよいが、長手方向一方端部側から他方端部に向かって内面が先窄まりとなるものが、旋回流の生成に好適である。
また、反応器としては、旋回流の接触の場を長くするために長手方向に沿ったある程度長い空間を確保することが望ましい。そこで、反応器の長手方向一方端部から液を流入させ、長手方向の他方端部から流出させるのが好適な態様である。
(Function and effect)
The reactor may have a cylindrical shape with a uniform inner radius, but a reactor whose inner surface is tapered from one end to the other end in the longitudinal direction is suitable for generating a swirling flow. .
In addition, it is desirable for the reactor to ensure a certain long space along the longitudinal direction in order to lengthen the contact field of the swirl flow. In view of this, it is a preferred embodiment that the liquid is allowed to flow from one end portion in the longitudinal direction of the reactor and to flow out from the other end portion in the longitudinal direction.

〔請求項5記載の発明〕
前記反応器の他方端部から抜き出された接触処理液が前記一方端部へ返送される循環経路に、圧力調整手段及び循環ポンプをこの順に有する請求項1記載の連続反応装置。
[Invention of Claim 5]
The continuous reaction apparatus according to claim 1, further comprising a pressure adjusting means and a circulation pump in this order in a circulation path through which the contact treatment liquid extracted from the other end of the reactor is returned to the one end.

(作用効果)
反応器内の圧力を常圧より高める昇圧手段としては、反応器他方端部から抜き出された接触処理液が前記一方端部へ返送される循環経路に、圧力調整手段及び循環ポンプをこの順に有することにより構成でき、構成として簡素であるとともに、反応器内の圧力調整も可能である。また圧力調整手段と循環ポンプの間に外部処理槽を設置した場合には、循環ポンプを安定して駆動させることが可能となる。
(Function and effect)
As a pressure increasing means for raising the pressure in the reactor from the normal pressure, the pressure adjusting means and the circulation pump are arranged in this order in the circulation path in which the contact treatment liquid extracted from the other end of the reactor is returned to the one end. It can be configured by having it, and the configuration is simple and the pressure in the reactor can also be adjusted. Further, when an external treatment tank is installed between the pressure adjusting means and the circulation pump, the circulation pump can be driven stably.

〔請求項6記載の発明〕
前記反応器の他方端部から抜き出された接触処理液が前記一方端部へ返送される循環経路に、圧力調整弁、循環ポンプ及び圧力計をこの順に有し、前記圧力計による循環経路の圧力に基づき前記圧力調整弁が圧力調整するようにした請求項1記載の連続反応装置。
[Invention of Claim 6]
A circulation path through which the contact treatment liquid extracted from the other end of the reactor is returned to the one end has a pressure regulating valve, a circulation pump, and a pressure gauge in this order. The continuous reaction apparatus according to claim 1, wherein the pressure adjusting valve adjusts the pressure based on the pressure.

(作用効果)
反応器内の圧力分布調整を容易に行うことができ、入口圧力を調整すればその圧力分布が予め判っているため、反応液と接触する反応場の圧力を監視することが可能となる。
(Function and effect)
The pressure distribution in the reactor can be easily adjusted. If the inlet pressure is adjusted, the pressure distribution is known in advance, so that the pressure in the reaction field in contact with the reaction solution can be monitored.

〔請求項7記載の発明〕
前記他方端部から抜き出された接触処理液が前記一方端部へ返送される循環経路に、圧力調整弁、接触処理液を一時的に貯留する圧力貯留器、循環ポンプ及び圧力計をこの順に有し、前記圧力貯留器にその内部を加圧するコンプレッサ又は加圧シリンダが連結され、前記圧力計による循環経路の圧力に基づき前記コンプレッサ又は加圧シリンダが圧力調整するようにした請求項1記載の連続反応装置。
[Invention of Claim 7]
A pressure regulating valve, a pressure reservoir for temporarily storing the contact treatment liquid, a circulation pump, and a pressure gauge are arranged in this order on the circulation path through which the contact treatment liquid extracted from the other end is returned to the one end. The compressor or pressurizing cylinder for pressurizing the inside thereof is connected to the pressure reservoir, and the compressor or the pressurizing cylinder adjusts the pressure based on the pressure of the circulation path by the pressure gauge. Continuous reactor.

(作用効果)
コンプレッサ又は加圧シリンダにより圧力貯留器の内部を加圧し、これにより反応器内の圧力を常圧より高めることができる。
〔請求項8記載の発明〕
前記他方端部から抜き出された接触処理液が前記一方端部へ返送される循環経路に、圧力調整弁、接触処理液を一時的に貯留する圧力貯留器、循環ポンプ及び圧力計をこの順に有し、前記圧力貯留器にその内部を加圧するコンプレッサ又は加圧シリンダが連結され、前記圧力計による前記圧力貯留器の圧力に基づき、前記循環経路から前記接触処理液を連続又は間欠に抜き出しを行う圧力制御系を設けた請求項1記載の連続反応装置。
(作用効果)
圧力貯留器内の圧力を一定に保つことで反応場の圧力を一定に保ち、反応液の注入圧変動が低減され、反応液の注入制御を安定化することができる。
(Function and effect)
The inside of the pressure reservoir is pressurized by a compressor or a pressurizing cylinder, whereby the pressure in the reactor can be increased from the normal pressure.
[Invention of Claim 8]
A pressure regulating valve, a pressure reservoir for temporarily storing the contact treatment liquid, a circulation pump, and a pressure gauge are arranged in this order on the circulation path through which the contact treatment liquid extracted from the other end is returned to the one end. A compressor or a pressurizing cylinder is connected to the pressure reservoir, and the contact treatment liquid is continuously or intermittently extracted from the circulation path based on the pressure of the pressure reservoir by the pressure gauge. The continuous reaction apparatus of Claim 1 which provided the pressure control system to perform.
(Function and effect)
By keeping the pressure in the pressure reservoir constant, the pressure in the reaction field is kept constant, fluctuations in the reaction liquid injection pressure are reduced, and reaction liquid injection control can be stabilized.

〔請求項9記載の発明〕
前記接触の場を与える反応器が、直列的に配置されている請求項1記載の連続反応装置。
[Invention of Claim 9]
The continuous reaction apparatus according to claim 1, wherein the reactors for providing the contact field are arranged in series.

(作用効果)
処理量を多くしたい場合、反応器を直列的に配置することが望ましい。直列配置させることで、循環返送液量を増やすことなく、注入液量を段数分増やすことが可能となり、生産量を増大させると共に、生産量に比した装置内容量を低減することができるため、結果的に省スペース化と装置コストの低減が可能となる。ここで、「生産量に比した装置内容量が低減する」とは、循環ポンプや流路部分の容量は一定のまま、反応器とこれらを連結する管の容量だけが注入となるため、結果として装置全体容量が生産量に比して低減できるという意味である。また、「装置内容量を低減」ということは、装置内における反応物質の滞留時間を短くすることができるという効果も現れ、結果的に小径化に向けた滞留時間制御が可能なものになる。
さらに、かかる構成によれば、前段では高い加圧力で、後段は低い加圧力とすることで、核の発生、粒子の成長といった形態で表される反応速度を調整する操作が可能であり、ある種の反応物質については、きわめて好適な手段となる。
(Function and effect)
When it is desired to increase the throughput, it is desirable to arrange the reactors in series. By arranging in series, it is possible to increase the amount of injected liquid by the number of stages without increasing the amount of circulating return liquid, increasing the production volume and reducing the internal capacity of the apparatus relative to the production volume, As a result, it is possible to save space and reduce apparatus cost. Here, “the capacity of the device relative to the production volume is reduced” means that the capacity of the circulation pump and the flow path part remains constant and only the capacity of the reactor and the pipe connecting them is injected. This means that the overall capacity of the apparatus can be reduced compared to the production volume. Further, “reducing the internal volume of the apparatus” also has the effect of shortening the residence time of the reactants in the apparatus, and as a result, the residence time can be controlled to reduce the diameter.
Furthermore, according to such a configuration, by adjusting the reaction rate expressed in a form such as generation of nuclei and growth of particles by using a high pressure in the former stage and a low pressure in the latter stage, it is possible. For species of reactants, it is a very suitable means.

〔請求項10記載の発明〕
反応液の接触の場に対する注入方向が、旋回流の流線方向下流の方向もしくは前記一方端部側から他方端部に向いている請求項1記載の連続反応装置。
[Invention of Claim 10]
The continuous reaction apparatus according to claim 1, wherein the injection direction with respect to the contact field of the reaction solution is directed in the downstream direction of the swirl flow or from the one end side to the other end part.

(作用効果)
注入液の接触の場に対する注入方向が、前記液の旋回流の上流方向に向いていてもよいが、液の旋回流の流線方向下流の方向もしくは前記一方端部側から他方端部に向いている方が反応液の注入量がスムーズにコントロールされる。
(Function and effect)
The injection direction with respect to the contact field of the injection liquid may be in the upstream direction of the swirling flow of the liquid, but is in the direction downstream in the streamline direction of the swirling flow of the liquid or from the one end side toward the other end. The amount of reaction solution injected can be controlled more smoothly.

〔請求項11記載の発明〕
一方端部及び他方端部を有する反応器と、この反応器内に反応液を注入する注入手段と、前記反応器の前記他方端部から接触処理液を抜き出して、抜き出した接触処理液の少なくとも一部を前記反応器の前記一方端部へ返送する循環手段とを有し、
さらに前記反応器内の圧力を常圧より高める昇圧手段を有し、
前記反応器内の液流れを前記接触処理液の返送により旋回流とし、この旋回流に対して前記注入手段により注入した反応液を接触させて反応を行わせ、無機粒子の反応晶析を行うことを特徴とする無機粒子の連続反応晶析方法。
[Invention of Claim 11]
A reactor having one end and the other end; injection means for injecting the reaction liquid into the reactor; and extracting the contact treatment liquid from the other end of the reactor, and at least the extracted contact treatment liquid Circulating means for returning a part to the one end of the reactor,
Furthermore, it has a pressure raising means for raising the pressure in the reactor from the normal pressure,
The liquid flow in the reactor is swirled by returning the contact treatment liquid, the reaction liquid injected by the injection means is brought into contact with the swirl flow, the reaction is performed, and reaction crystallization of inorganic particles is performed. A continuous reaction crystallization method for inorganic particles.

(作用効果)
請求項1と同様の作用効果を奏する。
(Function and effect)
There exists an effect similar to Claim 1.

以上のとおり、本発明によれば、小型の処理装置でありながら、十分な処理量を発揮し、しかも均一な接触処理性を示すものとなる等の利点がある。   As described above, according to the present invention, there is an advantage that a sufficient amount of processing can be achieved and a uniform contact processing property can be exhibited even though the processing device is small.

本発明の第1例の概要図である。It is a schematic diagram of the 1st example of the present invention. 第1例の反応器の概要図である。It is a schematic diagram of the reactor of the 1st example. 反応器の上端部の横断概要図である。It is a cross-sectional schematic diagram of the upper end part of a reactor. 旋回流の生成形態の説明概要図である。It is an explanatory outline figure of the generation form of swirl flow. 反応器の直列配置例の概要図である。It is a schematic diagram of the example of serial arrangement of a reactor. 他の実施の形態の概要図である。It is a schematic diagram of other embodiment. さらに別の実施の形態の概要図である。It is a schematic diagram of another embodiment. 他の反応器例の概要図である。It is a schematic diagram of the other reactor example. 別の反応器の形態例の概要図である。It is a schematic diagram of the example of another form of a reactor. ブロックユニット反応器例を示し、(a)は平面図、(b)は正面図である。An example of a block unit reactor is shown, (a) is a plan view and (b) is a front view. 55kPaにおけるうず度分布図である。It is a vorticity distribution map at 55 kPa. 147kPaにおけるうず度分布図である。It is a vorticity distribution map in 147kPa. 従来例の概要図である。It is a schematic diagram of a prior art example.

次に、本発明を実施するための形態を説明する。
後に説明するように、本発明の適用範囲は広範である。しかし、種々の例を総合的に説明すると、混乱の原因になりかねないので、一例を挙げながら装置例を説明し、後に他の適用範囲について説明することとする。
Next, the form for implementing this invention is demonstrated.
As will be described later, the scope of application of the present invention is wide. However, a comprehensive description of various examples may cause confusion, so an example of the apparatus will be described with an example, and another application range will be described later.

本発明の典型例は、金属粒子の凝集粒子を得るための連続反応装置である。その具体例の一つはNi,Coの遷移金属を用いた凝集粒子を製造することを対象とするものである。
本発明に従って、注入すべき無機物質を含む注入液を、反応器内の旋回流の接触の場において、反応器の内表面より中心側位置において注入し、接触処理を行なわせる方法は、広く一般に無機物質により凝集粒子を得る場合に適用できるものであるから、前記遷移金属以外の金属や他の無機物質を対象にしてもよい。
A typical example of the present invention is a continuous reaction apparatus for obtaining agglomerated particles of metal particles. One specific example is intended to produce aggregated particles using Ni and Co transition metals.
According to the present invention, a method for injecting an injection solution containing an inorganic substance to be injected at a position closer to the center than the inner surface of the reactor in the contact field of the swirling flow in the reactor and performing the contact treatment is generally widely used. Since it can be applied to the case where aggregated particles are obtained from an inorganic substance, metals other than the transition metal and other inorganic substances may be targeted.

図1〜図4は、本発明の第1例を示したもので、反応器10内の液流れを旋回流とし、注入すべき無機物質を含む注入液を、反応器内10の接触の場(図2及び図4に概念的に符号Qとして示した)において、反応器10の内表面より中心側位置において注入し、接触処理を行なわせるものである。
図示例では、注入すべき無機物質を含む注入液として、A液、B液及びC液を注入している。図示しないが、併せて並行的にガス(窒素ガスや二酸化炭素ガスなどの不活性ガス)を注入することもできる。
また、本発明の第1例は、注入すべき無機物質を含む注入液の接触の場に対する注入方向が、液の旋回流の下流方向に向いている例である。
図示の反応器10は横向きであるが、原理的に流れに影響はないため竪向きでもよい。
1 to 4 show a first example of the present invention, in which a liquid flow in the reactor 10 is a swirl flow, and an injection liquid containing an inorganic substance to be injected is contacted in the reactor 10. In FIG. 2 and FIG. 4 conceptually indicated by the symbol Q, the injection is performed at the center side position from the inner surface of the reactor 10 to perform the contact treatment.
In the illustrated example, A liquid, B liquid, and C liquid are injected as an injection liquid containing an inorganic substance to be injected. Although not shown, a gas (inert gas such as nitrogen gas or carbon dioxide gas) can be injected in parallel.
The first example of the present invention is an example in which the injection direction with respect to the contact field of the injection liquid containing the inorganic substance to be injected is directed to the downstream direction of the swirling flow of the liquid.
Although the illustrated reactor 10 is in the horizontal direction, it may be in the vertical direction because it does not affect the flow in principle.

図示の反応器10は、循環ポンプ13により液を循環路11、14(抜き出し路11、返送路14)を介して循環させるとともに、反応器10内に、循環液の返送液を流入させることにより旋回流を生成させるものである。15は、必要により設けられる、液の加温又は冷却の温度調節器である。
図面に示されているように、反応器10はその長手方向一方端部側から他方端部に向かって内面が先窄まりとなり、循環液の返送液の流入口10Xを含む流入位置が反応器10の長手方向一方端部にあり、図3に示されているように、その内周面に沿う形態で、ほぼ接線方向に沿って、返送液を流入させるようにしてある。これによって、旋回流Rが形成されている。
接触処理がなされた後の接触処理液の流出口10Yを含む流出位置は、長手方向他方端部となっている。
The illustrated reactor 10 circulates the liquid through the circulation paths 11 and 14 (the extraction path 11 and the return path 14) by the circulation pump 13, and allows the return liquid of the circulating liquid to flow into the reactor 10. A swirl flow is generated. Reference numeral 15 denotes a temperature controller for heating or cooling the liquid provided as necessary.
As shown in the drawing, the reactor 10 has a tapered inner surface from one end side in the longitudinal direction to the other end, and the inflow position including the inlet 10X for returning the circulating fluid is the reactor. 10 at one end in the longitudinal direction, and as shown in FIG. 3, the return liquid is allowed to flow in substantially the tangential direction in a form along the inner peripheral surface thereof. Thereby, a swirl flow R is formed.
The outflow position including the outflow port 10Y of the contact processing liquid after the contact processing is performed is the other end portion in the longitudinal direction.

接触処理液は、一時貯留器20に導かれ、この一時貯留器20内において接触処理液の安定化や粒子の沈降が図られ、最終接触処理液10Zは、一時貯留器20からオーバーフロー液として、または抜き出しポンプ22により、後続の製品化手段(図示せず)に移送される。21は取出し弁である。23は調整用撹拌機である。
残部の液は、循環ポンプ13により、返送路14を介して反応器10へ返送される。
The contact treatment liquid is guided to the temporary storage device 20, and the contact treatment liquid is stabilized and particles are settled in the temporary storage device 20. The final contact treatment liquid 10 </ b> Z is used as an overflow liquid from the temporary storage device 20. Or it is transferred to the subsequent productization means (not shown) by the extraction pump 22. 21 is a take-off valve. 23 is an adjustment stirrer.
The remaining liquid is returned to the reactor 10 by the circulation pump 13 via the return path 14.

反応器10の入口部分には、圧力指示計12Aが、出口部分には圧力調整弁12Bが設けられおり、循環ポンプ13の吐出圧力に対し、圧力調整弁12Bの弁開度を絞ることにより、反応器10内の圧力を加圧状態としてある。
そして、圧力指示計12Aによる現圧力に基づき、圧力調整弁12Bの弁開度を調整することにより、反応器10内の圧力調整を行うようにしてある。
反応器10内の圧力としては、反応器10の入口部分で、0.01〜1.0MPa、特に0.05〜0.3MPaが望ましい。
A pressure indicator 12A is provided at the inlet portion of the reactor 10, and a pressure adjustment valve 12B is provided at the outlet portion. By narrowing the valve opening degree of the pressure adjustment valve 12B with respect to the discharge pressure of the circulation pump 13, The pressure in the reactor 10 is in a pressurized state.
Then, the pressure in the reactor 10 is adjusted by adjusting the valve opening degree of the pressure adjusting valve 12B based on the current pressure by the pressure indicator 12A.
The pressure in the reactor 10 is preferably 0.01 to 1.0 MPa, particularly 0.05 to 0.3 MPa at the inlet portion of the reactor 10.

反応器10内の液流れは旋回流Rとなるが、その渦中心部には空洞部分V(図4参照)ができる傾向にある。そして、特に、旋回流Rの渦中心近傍の内周部分の流れは、平均流速に比較して著しく高速であり、かつ、流れの乱れも大きい。
かかる位置において、注入すべき金属を含む注入液A液〜C液を注入すると、注入液が急激に拡散し、均質な反応が可能となる。
そこで、図2に示すように、各注入液A液〜C液は注入管16A、16B…を使用してその先端から吐出されるまで、相互の接触を防止することが望ましい。
さらに、旋回流Rの影響が及ばないように、ガイド管17を挿入するのが望ましい。
The liquid flow in the reactor 10 becomes a swirl flow R, but there is a tendency that a hollow portion V (see FIG. 4) is formed at the center of the vortex. In particular, the flow in the inner peripheral portion in the vicinity of the vortex center of the swirling flow R is remarkably faster than the average flow velocity, and the flow disturbance is large.
When the injection liquids A to C containing the metal to be injected are injected at such positions, the injection liquid diffuses rapidly and a homogeneous reaction is possible.
Therefore, as shown in FIG. 2, it is desirable to prevent each of the infusion solutions A to C until they are discharged from their tips using the infusion tubes 16A, 16B.
Furthermore, it is desirable to insert the guide tube 17 so as not to be affected by the swirling flow R.

ここで、注入すべき無機物質を含む注入液A液〜C液の注入位置は、反応器10内の接触の場において、反応器10の内壁表面より中心側位置において注入すれば足りるが、図4に位置を示すように、中心から半径rの2/3以内、好ましくは1/2以内が好適である。   Here, the injection positions of the injection liquids A to C containing the inorganic substance to be injected may be injected at a position closer to the center than the inner wall surface of the reactor 10 in the contact area in the reactor 10. As indicated by position 4, the radius is preferably within 2/3 of the radius r, preferably within 1/2.

図5に例を示したように、接触の場を与える反応器10、10…を、直列的に配置することができる。   As shown in the example of FIG. 5, the reactors 10, 10... That provide the contact field can be arranged in series.

他方、図6に例を示したように、密閉した圧力貯留器30を設け、これをコンプレッサ24により加圧し、反応器10内を加圧するようにしてある。
この例においても、反応器10の入口部分には、圧力指示計12Aが、出口部分には圧力調整弁12Bが設けられおり、循環ポンプ13の吐出圧力に対し、圧力調整弁12Bの弁開度を絞ることにより、反応器10内の圧力を加圧状態としてある。
また、圧力貯留器30にも圧力指示計30Aが設けられ、圧力指示計30A、圧力指示計12Aによる現圧力に基づき、圧力調整弁12Bの弁開度を調整することにより、反応器10内の圧力調整を行う制御器50が設けられている。
On the other hand, as shown in FIG. 6, a sealed pressure reservoir 30 is provided, and this is pressurized by the compressor 24 to pressurize the inside of the reactor 10.
Also in this example, a pressure indicator 12A is provided at the inlet portion of the reactor 10, and a pressure adjustment valve 12B is provided at the outlet portion. The valve opening degree of the pressure adjustment valve 12B with respect to the discharge pressure of the circulation pump 13 is provided. By reducing the pressure, the pressure in the reactor 10 is in a pressurized state.
Further, the pressure reservoir 30 is also provided with a pressure indicator 30A, and by adjusting the valve opening degree of the pressure regulating valve 12B based on the current pressure by the pressure indicator 30A and the pressure indicator 12A, A controller 50 for adjusting the pressure is provided.

圧力貯留器30の一部の液は、抜き出しポンプ22Aにより、移送路16を介して調整槽20内に送られ、粒径などの調整が行われ、抜き出しポンプ22Aにより、最終的に後続の製品化手段(図示せず)に移送される。   A part of the liquid in the pressure reservoir 30 is sent into the adjustment tank 20 via the transfer path 16 by the extraction pump 22A, and the particle size and the like are adjusted, and finally the subsequent product is extracted by the extraction pump 22A. Is transferred to a converting means (not shown).

圧力貯留器30の残部の液は、循環ポンプ13により、返送路14を介して反応器10へ返送される。   The remaining liquid in the pressure reservoir 30 is returned to the reactor 10 by the circulation pump 13 via the return path 14.

他方、図7に示すように、循環経路に、圧力調整弁12B、圧力調整弁12B、接触処理液を一時的に貯留する圧力貯留器30、この圧力貯留器30内の圧力を指示する圧力計30A及び循環ポンプ13をこの順に有し、前記圧力貯留器30にその内部を加圧するコンプレッサ24又は加圧シリンダが連結され、前記圧力計30Aによる圧力貯留器30の圧力に基づき、循環経路から接触処理液を連続又は間欠に抜き出して、圧力貯留器30内の圧力を一定に制御を行う制御器51を有する圧力制御系を設けることが望ましい。具体的制御の操作は、抜き出しポンプ22A又は抜き出し弁22Cに対して行うことができる。   On the other hand, as shown in FIG. 7, the pressure regulating valve 12 </ b> B, the pressure regulating valve 12 </ b> B, the pressure reservoir 30 that temporarily stores the contact processing liquid, and the pressure gauge that indicates the pressure in the pressure reservoir 30 as shown in FIG. 7. 30A and a circulation pump 13 are arranged in this order, and a compressor 24 or a pressure cylinder for pressurizing the inside thereof is connected to the pressure reservoir 30, and contact is made from a circulation path based on the pressure of the pressure reservoir 30 by the pressure gauge 30A. It is desirable to provide a pressure control system having a controller 51 that continuously or intermittently extracts the processing liquid and controls the pressure in the pressure reservoir 30 to be constant. The specific control operation can be performed on the extraction pump 22A or the extraction valve 22C.

上記例の反応器10は、長手方向一方端部側から他方端部に向かって内面が先窄まりとなるものが、旋回流の生成に好適であるが、内空間が均一な半径をもつ筒状のものでもよい。
さらに、図8のように、反応器10内に回転筒または固定筒40を設け、注入すべき金属を含む注入液A液、B液を、注入管42、43を介して内壁面の接線方向に注入し、他方の端部の流出管44から、接触処理がなされた後の流出液を流出するようにすることもができる。
In the reactor 10 of the above example, the one whose inner surface is tapered from the one end side in the longitudinal direction toward the other end is suitable for generating a swirl flow, but the inner space has a uniform radius. It may be in a shape.
Further, as shown in FIG. 8, a rotating cylinder or a fixed cylinder 40 is provided in the reactor 10, and the injection liquids A and B containing the metal to be injected are introduced into the tangential direction of the inner wall surface through the injection pipes 42 and 43. The effluent after the contact treatment is made to flow out from the outflow pipe 44 at the other end.

図1〜図4に示す、内空間が均一な半径をもつ筒状部分及び先窄まり部分を有する例において、筒状部分から先窄まり部分への変化位置は、適宜選択できる。しかるに、接触処理液の流入口10Xは、筒状部分にあるのが、螺旋流れ生成に好適である。   In the example shown in FIGS. 1 to 4 in which the inner space includes a cylindrical portion having a uniform radius and a tapered portion, the change position from the cylindrical portion to the tapered portion can be selected as appropriate. However, the inflow port 10X for the contact treatment liquid is preferably in the cylindrical part for generating a spiral flow.

先に示した図2の形態では、反応器10の比較的下流側において注入液を注入したが、図9のように、ガイド管17を短くし、注入液A液〜C液の注入管16A、16B…を上流側に設けてもよい。もしくはガイド管を無くして端に注入管を設けても良い。また、図2に示すように注入管16A、16B…先端位置を異ならせるほか、注入管16A、16B…先端位置を一致させるようにしてもよい。
図9に示す形態によれば、旋回流場での反応長が稼げるため、下流側での流路内の材料の付着が激減する。
In the embodiment shown in FIG. 2, the injection solution is injected on the relatively downstream side of the reactor 10. However, as shown in FIG. 9, the guide tube 17 is shortened and the injection solution A to C solution injection tube 16A is used. 16B... May be provided on the upstream side. Alternatively, the guide tube may be eliminated and an injection tube may be provided at the end. Further, as shown in FIG. 2, the injection tubes 16 </ b> A, 16 </ b> B...
According to the form shown in FIG. 9, since the reaction length in the swirl flow field can be earned, the adhesion of the material in the flow path on the downstream side is drastically reduced.

本発明の製造方法によって得られた金属の凝集粒子を、電池用の物質として製造できる。
本発明によって得られた粒子径が小さく粒子径が揃い、かつ優れた球形状である金属の凝集粒子を、たとえば電池用物質に利用すれば電気的特性が向上する。
The metal agglomerated particles obtained by the production method of the present invention can be produced as a battery material.
The electrical characteristics can be improved by using, for example, battery agglomerated particles, which are obtained by the present invention, having a small particle size, a uniform particle size, and an excellent spherical metal shape.

本発明に係る装置は、適宜の材料で形成できるが、特に反応器10をプラスチック成形品に流路を加工したものなども使用できる。そのブロックユニット反応器例を図10に示す。また、反応器は処理材料や液によって適宜の寸法関係とすることができる。
しかるに、小型の処理装置でありながら、十分な処理量を発揮し、しかも均一な接触処理性を示すものを得る観点から、図10に示す寸法基準で、旋回流を形成する接触の場の直径D2に対する旋回流を形成する主流の注入口径D1の比が、D2/D1=2.5〜10であることが望ましい。この比が小さいと旋回流の生成が十分でなく、過度に大きい場合には、速度が遅くなり、旋回流が不安定となる。
また、旋回流が安定して生成されるためには、旋回流を形成する接触の場の直径D2に対する抜き出し部の口径D3の比が、D2/D3=0.5〜10であるのが望ましい。
さらに、接触反応時間を確保するために、旋回流を形成する接触の場の直径D2に対する流路方向長さHの比が、H/D2=1〜10であるのが望ましい。
The apparatus according to the present invention can be formed of an appropriate material. In particular, the reactor 10 in which a flow path is processed into a plastic molded article can be used. An example of the block unit reactor is shown in FIG. The reactor can have an appropriate dimensional relationship depending on the processing material and liquid.
However, the diameter of the contact field that forms the swirl flow on the basis of the dimensions shown in FIG. 10 from the viewpoint of obtaining a small processing apparatus that exhibits a sufficient throughput and that exhibits uniform contact processability. The ratio of the main-flow inlet diameter D1 that forms the swirling flow with respect to D2 is preferably D2 / D1 = 2.5-10. When this ratio is small, the generation of the swirling flow is not sufficient, and when it is excessively large, the speed becomes slow and the swirling flow becomes unstable.
In order to generate a swirl flow stably, it is desirable that the ratio of the diameter D3 of the extraction portion to the diameter D2 of the contact field forming the swirl flow is D2 / D3 = 0.5-10. .
Further, in order to ensure the contact reaction time, it is desirable that the ratio of the length H in the flow path direction to the diameter D2 of the contact field forming the swirling flow is H / D2 = 1 to 10.

ところで本発明は、 反応より物質移動律速となっている反応場において、物質移動と化学反応を効率よく行うものであり、無機反応、有機反応に関わらず利用可能なものである。
また、液液抽出における本装置の適用、水と油のエマルション等、液液の混合装置としても利用可能である。
他にも気液反応、固体粒子表面への反応(コーティング)等、液液反応以外のプロセスにも用途展開可能な装置である。
By the way, the present invention efficiently performs mass transfer and chemical reaction in a reaction field that is controlled by mass transfer rather than reaction, and can be used regardless of inorganic reaction or organic reaction.
It can also be used as a liquid-liquid mixing device such as application of this device in liquid-liquid extraction, water-oil emulsion, and the like.
In addition, it is an apparatus that can be used for processes other than liquid-liquid reactions such as gas-liquid reactions and reactions (coating) on the surface of solid particles.

なお、旋回流を少ない動力にて得るためには液粘性として1000cP以下、特に100cP以下のものが望ましい。   In order to obtain a swirl flow with less power, a liquid viscosity of 1000 cP or less, particularly 100 cP or less is desirable.

次に実施例及び比較例を示し、本発明の効果を明らかにする。
(実施例1)
図1〜図4の態様の装置において、運転条件として、反応器入口圧力110kPa、流量30L/min、温度45℃、装置全容量5Lとし、硫酸ニッケル1.24mol/Lと硫酸コバルト0.23mol/Lとなるように調整した水溶液を、76g/min、25wt%苛性ソーダを30g/minにて反応器に注入し、25wt%アンモニア水を反応器に5g/minにて追加しながら6hr後に得られたサンプルをSEM写真などで評価した。
(実施例2)
反応器入口圧力50kPaに替えたほか、実施例1と同様とした。
(実施例3)
運転条件として、反応器入口圧力110kPa、流量7L/min、温度45℃、装置全容量1Lとし、硫酸第一鉄を0.55mol/L、硫酸マンガン0.09mol/L, 硫酸亜鉛 0.08mol/Lとなるように調整した水溶液を29g/min、苛性ソーダを8g/minにて反応器に注入し、3hr後に得られたサンプルを評価した。
(実施例4)
反応器入口圧力50kPaに替えたほか、実施例3と同様とした。
<考察>
(1)実施例1及び実施例2のいずれの場合も、粒子径が小さく、好適な凝集粒子を得ることができた。
(2)サンプル評価は凝集粒子の充填密度を評価項目とし、25mlメスシリンダーに24hr,105℃にて乾燥した試料10gを投入し、これを振動板の上に1分間のせ十分に均一になったときの嵩を測定したものである。このとき振動モータの回転数は2500rpmとした。
実施例1の充填密度:1.32g/ml、実施例2の充填密度:1.2g/ml、実施例3の充填密度:0.7g/ml、実施例4の充填密度:0.55g/mlであった。
この結果から、反応器内の圧力により、凝集粒子の充填密度が明確に変り得ることが判明した。
(3)圧力に応じて反応器内のうず度の変化を実測測定したところ、図11及び図12の形態となった。
Next, examples and comparative examples will be shown to clarify the effects of the present invention.
Example 1
In the apparatus of the embodiment of FIGS. 1 to 4, the operating conditions are as follows: reactor inlet pressure 110 kPa, flow rate 30 L / min, temperature 45 ° C., total apparatus capacity 5 L, nickel sulfate 1.24 mol / L and cobalt sulfate 0.23 mol / An aqueous solution adjusted to L was poured into the reactor at 76 g / min and 25 wt% sodium hydroxide at 30 g / min, and obtained after 6 hr while adding 25 wt% aqueous ammonia to the reactor at 5 g / min. Samples were evaluated by SEM photographs and the like.
(Example 2)
The same procedure as in Example 1 was performed except that the reactor inlet pressure was changed to 50 kPa.
(Example 3)
As operating conditions, the reactor inlet pressure was 110 kPa, the flow rate was 7 L / min, the temperature was 45 ° C., the total volume of the apparatus was 1 L, ferrous sulfate was 0.55 mol / L, manganese sulfate was 0.09 mol / L, and zinc sulfate was 0.08 mol / The aqueous solution adjusted to L was injected into the reactor at 29 g / min and caustic soda at 8 g / min, and samples obtained after 3 hours were evaluated.
Example 4
The same procedure as in Example 3 was performed except that the reactor inlet pressure was changed to 50 kPa.
<Discussion>
(1) In any case of Example 1 and Example 2, the particle diameter was small and suitable agglomerated particles could be obtained.
(2) In the sample evaluation, the packing density of the agglomerated particles was used as an evaluation item, and 10 g of a sample dried at 24 hr and 105 ° C. was put into a 25 ml graduated cylinder, and this was placed on the vibration plate for 1 minute to be sufficiently uniform. It is a measure of the bulk of the time. At this time, the rotation speed of the vibration motor was 2500 rpm.
Packing density of Example 1: 1.32 g / ml, Packing density of Example 2: 1.2 g / ml, Packing density of Example 3: 0.7 g / ml, Packing density of Example 4: 0.55 g / ml ml.
From this result, it was found that the packing density of the aggregated particles can be clearly changed by the pressure in the reactor.
(3) When the change in the vorticity in the reactor was measured according to the pressure, the results shown in FIGS. 11 and 12 were obtained.

リチウムイオン電池用正極活物質用のほか各種の用途のものに適用できる。その例を列挙すると次のとおりである。
1)エマルション燃料製造
2)小径粒子製造 ナノ粒子を結晶成長させる等
3)ジアゾ化合物製造
4)触媒反応
5)その他マイクロリアクターでの反応処理例
ア 気液界面反応
フッ素ガスによるフッ素化反応
一酸化炭素ガスによるカルボニル化反応
イ 液液界面反応
ニトロ化反応(有機相/水相)
エステル還元
ジアゾカップリング
ウ 固液界面反応
固体担持触媒利用反応
エ 気・液・固界面反応
水素化反応
It can be applied to various uses in addition to the positive electrode active material for lithium ion batteries. Examples are listed as follows.
1) Emulsion fuel production 2) Small-diameter particle production Nanoparticle crystal growth, etc. 3) Diazo compound production 4) Catalytic reaction 5) Other reaction processes in microreactors a Gas-liquid interface reaction Fluorination reaction with fluorine gas Carbon monoxide Carbonylation reaction by gas b Liquid-liquid interface reaction Nitration reaction (organic phase / water phase)
Ester reduction Diazo coupling c Solid-liquid interface reaction Solid-supported catalyst reaction Air-liquid-solid interface reaction Hydrogenation reaction

10…反応器、10X…流入口、10Y…流出口、11、14…循環路、16A、16B…注入管、17…ガイド管、20…貯留器、40…回転筒、A,B,C…注入液。 DESCRIPTION OF SYMBOLS 10 ... Reactor, 10X ... Inlet, 10Y ... Outlet, 11, 14 ... Circulation path, 16A, 16B ... Injection pipe, 17 ... Guide pipe, 20 ... Reservoir, 40 ... Rotating cylinder, A, B, C ... Infusion solution.

Claims (11)

一方端部及び他方端部を有する反応器と、この反応器内に反応液を注入する注入手段と、前記反応器の前記他方端部から接触処理液を抜き出して、抜き出した接触処理液の少なくとも一部を前記反応器の前記一方端部へ返送する循環手段とを有し、
前記反応器内の液流れを前記接触処理液の返送により旋回流とし、この旋回流に対して前記注入手段により注入した反応液を接触させるよう構成されており、
前記反応器内の圧力を常圧より高める昇圧手段を有することを特徴とする連続反応装置。
A reactor having one end and the other end; injection means for injecting the reaction liquid into the reactor; and extracting the contact treatment liquid from the other end of the reactor, and at least the extracted contact treatment liquid Circulating means for returning a part to the one end of the reactor,
The liquid flow in the reactor is swirled by returning the contact treatment liquid, and the swirl is configured to contact the reaction liquid injected by the injection means.
A continuous reaction apparatus comprising pressure increasing means for increasing the pressure in the reactor from normal pressure.
前記反応器の内表面より中心側位置において前記反応液を注入するようにした請求項1記載の連続反応装置。   The continuous reaction apparatus according to claim 1, wherein the reaction liquid is injected at a position closer to the center than the inner surface of the reactor. 返送された接触処理液と注入した前記反応液との前記反応器内の接触の場を、前記反応器内に生成された旋回流の反応器の内表面より中心側領域とし、この接触の場において前記反応液の接触を行なわせるようにした請求項1記載の連続反応装置。   The contact field in the reactor between the returned contact treatment liquid and the injected reaction liquid is defined as a region on the center side from the inner surface of the swirling flow reactor generated in the reactor. The continuous reaction apparatus according to claim 1, wherein the reaction solution is brought into contact. 反応器は、その内面が一方端部側から他方端部に向かって先窄まりとなり、接触処理液流入位置が前記反応器の長手方向一方端部である請求項1記載の連続反応装置。   2. The continuous reaction apparatus according to claim 1, wherein the inner surface of the reactor is tapered from one end side toward the other end portion, and the contact treatment liquid inflow position is at one end portion in the longitudinal direction of the reactor. 前記反応器の他方端部から抜き出された接触処理液が前記一方端部へ返送される循環経路に、圧力調整手段及び循環ポンプをこの順に有する請求項1記載の連続反応装置。   The continuous reaction apparatus according to claim 1, further comprising a pressure adjusting means and a circulation pump in this order in a circulation path through which the contact treatment liquid extracted from the other end of the reactor is returned to the one end. 前記反応器の他方端部から抜き出された接触処理液が前記一方端部へ返送される循環経路に、圧力調整弁、循環ポンプ及び圧力計をこの順に有し、前記圧力計による循環経路の圧力に基づき前記圧力調整弁が圧力調整するようにした請求項1記載の連続反応装置。   A circulation path through which the contact treatment liquid extracted from the other end of the reactor is returned to the one end has a pressure regulating valve, a circulation pump, and a pressure gauge in this order. The continuous reaction apparatus according to claim 1, wherein the pressure adjusting valve adjusts the pressure based on the pressure. 前記他方端部から抜き出された接触処理液が前記一方端部へ返送される循環経路に、圧力調整弁、接触処理液を一時的に貯留する圧力貯留器、この圧力貯留器内の圧力を指示する圧力計及び循環ポンプをこの順に有し、前記圧力貯留器にその内部を加圧するコンプレッサ又は加圧シリンダが連結され、前記圧力計による圧力貯留器の圧力信号に基づき前記コンプレッサ又は加圧シリンダが圧力調整するようにした請求項1記載の連続反応装置。   A pressure adjusting valve, a pressure reservoir for temporarily storing the contact treatment liquid, and a pressure in the pressure reservoir are provided in a circulation path through which the contact treatment liquid extracted from the other end is returned to the one end. A pressure gauge for instructing and a circulation pump are provided in this order, and a compressor or a pressure cylinder for pressurizing the inside thereof is connected to the pressure reservoir, and the compressor or the pressure cylinder is based on a pressure signal of the pressure reservoir by the pressure gauge. The continuous reaction apparatus according to claim 1, wherein the pressure is adjusted. 前記他方端部から抜き出された接触処理液が前記一方端部へ返送される循環経路に、圧力調整弁、接触処理液を一時的に貯留する圧力貯留器、循環ポンプ及び圧力計をこの順に有し、前記圧力貯留器にその内部を加圧するコンプレッサ又は加圧シリンダが連結され、前記圧力計による前記圧力貯留器の圧力に基づき、前記循環経路から前記接触処理液を連続又は間欠に抜き出しを行う圧力制御系を設けた請求項1記載の連続反応装置。   A pressure regulating valve, a pressure reservoir for temporarily storing the contact treatment liquid, a circulation pump, and a pressure gauge are arranged in this order on the circulation path through which the contact treatment liquid extracted from the other end is returned to the one end. A compressor or a pressurizing cylinder is connected to the pressure reservoir, and the contact treatment liquid is continuously or intermittently extracted from the circulation path based on the pressure of the pressure reservoir by the pressure gauge. The continuous reaction apparatus of Claim 1 which provided the pressure control system to perform. 前記接触の場を与える反応器が、直列的に配置されている請求項1記載の連続反応装置。   The continuous reaction apparatus according to claim 1, wherein the reactors for providing the contact field are arranged in series. 反応液の接触の場に対する注入方向が、前記一方端部側から他方端部に向いている請求項1記載の連続反応装置。   The continuous reaction apparatus according to claim 1, wherein an injection direction with respect to the contact field of the reaction solution is directed from the one end side to the other end part. 一方端部及び他方端部を有する反応器と、この反応器内に反応液を注入する注入手段と、前記反応器の前記他方端部から接触処理液を抜き出して、抜き出した接触処理液の少なくとも一部を前記反応器の前記一方端部へ返送する循環手段とを有し、
さらに前記反応器内の圧力を常圧より高める昇圧手段を有し、
前記反応器内の液流れを前記接触処理液の返送により旋回流とし、この旋回流に対して前記注入手段により注入した反応液を接触させて反応を行わせ、無機粒子の反応晶析を行うことを特徴とする無機粒子の連続反応晶析方法。
A reactor having one end and the other end; injection means for injecting the reaction liquid into the reactor; and extracting the contact treatment liquid from the other end of the reactor, and at least the extracted contact treatment liquid Circulating means for returning a part to the one end of the reactor,
Furthermore, it has a pressure raising means for raising the pressure in the reactor from the normal pressure,
The liquid flow in the reactor is swirled by returning the contact treatment liquid, the reaction liquid injected by the injection means is brought into contact with the swirl flow, the reaction is performed, and reaction crystallization of inorganic particles is performed. A continuous reaction crystallization method for inorganic particles.
JP2013267998A 2013-12-25 2013-12-25 Continuous reaction apparatus for inorganic particles and method for continuous reaction crystallization of inorganic particles Active JP6255648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013267998A JP6255648B2 (en) 2013-12-25 2013-12-25 Continuous reaction apparatus for inorganic particles and method for continuous reaction crystallization of inorganic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013267998A JP6255648B2 (en) 2013-12-25 2013-12-25 Continuous reaction apparatus for inorganic particles and method for continuous reaction crystallization of inorganic particles

Publications (2)

Publication Number Publication Date
JP2015123383A true JP2015123383A (en) 2015-07-06
JP6255648B2 JP6255648B2 (en) 2018-01-10

Family

ID=53534527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013267998A Active JP6255648B2 (en) 2013-12-25 2013-12-25 Continuous reaction apparatus for inorganic particles and method for continuous reaction crystallization of inorganic particles

Country Status (1)

Country Link
JP (1) JP6255648B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191840A (en) * 1992-12-25 1994-07-12 Kao Corp Continuous production of salt hardly soluble in water
JP2004047182A (en) * 2002-07-09 2004-02-12 Sony Corp Cathode material, manufacturing method for it and battery using it
JP2004095385A (en) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd Method of manufacturing positive electrode material for lithium ion battery and lithium ion battery
JP2006517511A (en) * 2003-01-28 2006-07-27 エンバイロスクラブ テクノロジーズ コーポレイション Manganese oxides processed in a continuous flow reactor
JP2008168168A (en) * 2007-01-06 2008-07-24 Konica Minolta Medical & Graphic Inc Continuous mixing reactor
JP2011013523A (en) * 2009-07-03 2011-01-20 Canon Inc Method for manufacturing toner particles
JP2011083768A (en) * 2009-09-18 2011-04-28 Nippon Chem Ind Co Ltd Continuous crystallizer
JP5466732B2 (en) * 2012-06-21 2014-04-09 月島機械株式会社 Method for producing reactive aggregated particles, method for producing positive electrode active material for lithium ion battery, method for producing lithium ion battery, and apparatus for producing reactive aggregated particles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191840A (en) * 1992-12-25 1994-07-12 Kao Corp Continuous production of salt hardly soluble in water
JP2004047182A (en) * 2002-07-09 2004-02-12 Sony Corp Cathode material, manufacturing method for it and battery using it
JP2004095385A (en) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd Method of manufacturing positive electrode material for lithium ion battery and lithium ion battery
JP2006517511A (en) * 2003-01-28 2006-07-27 エンバイロスクラブ テクノロジーズ コーポレイション Manganese oxides processed in a continuous flow reactor
JP2008168168A (en) * 2007-01-06 2008-07-24 Konica Minolta Medical & Graphic Inc Continuous mixing reactor
JP2011013523A (en) * 2009-07-03 2011-01-20 Canon Inc Method for manufacturing toner particles
JP2011083768A (en) * 2009-09-18 2011-04-28 Nippon Chem Ind Co Ltd Continuous crystallizer
JP5466732B2 (en) * 2012-06-21 2014-04-09 月島機械株式会社 Method for producing reactive aggregated particles, method for producing positive electrode active material for lithium ion battery, method for producing lithium ion battery, and apparatus for producing reactive aggregated particles

Also Published As

Publication number Publication date
JP6255648B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP5619837B2 (en) Continuous reaction equipment for inorganic particles
JP5466732B2 (en) Method for producing reactive aggregated particles, method for producing positive electrode active material for lithium ion battery, method for producing lithium ion battery, and apparatus for producing reactive aggregated particles
CA2658018C (en) Mixing apparatus and process
US10894719B2 (en) Graphene material production device and system
KR102571598B1 (en) Production of amine oxides by oxidation of tertiary amines
US20080245184A1 (en) Preparation method of metal nano particle using micro mixer
CN111233892B (en) Method for synthesizing penicillin G sulfoxide by using continuous flow reactor
JP6255648B2 (en) Continuous reaction apparatus for inorganic particles and method for continuous reaction crystallization of inorganic particles
CN203564982U (en) Mixer
JP6255649B2 (en) Continuous reaction crystallization apparatus and inorganic particle continuous reaction crystallization method
CN102897823A (en) Preparation device and process of CeO2 powder by supercritical water system oxidation
JP2016010774A (en) Taylor reaction device
CN108686593B (en) Multi-scale microstructure reactor
RU2010114790A (en) METHOD FOR CONTINUOUS IMPLEMENTATION OF ELECTROCHEMICAL REACTION IN SUB AND supercritical fluids AND DEVICE FOR ITS PERFORMANCE
CN214422396U (en) Multiphase hypergravity micro-reaction wastewater treatment device
CN202849093U (en) Device for preparing rare earth compound micro powder
CN217288221U (en) Ultrasonic dispersion device
WO2021103462A1 (en) Intelligent strengthening reaction system and process for preparing isoformaldehyde by using olefin carbonylation
CN207680625U (en) A kind of multichannel blender
Jundale et al. Scaling-up continuous production of mesoporous silica particles at kg scale: design & operational strategies
CN115364786A (en) Synthesis system and method of micron-grade high-quality DAAF with narrow particle size distribution
JP2016032781A (en) Taylor reactor
Edwards et al. The use of a zonal model and multimodal tomography to explore mixing in a concentrated precipitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171117

R150 Certificate of patent or registration of utility model

Ref document number: 6255648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350