JP2015122855A - Power generation element - Google Patents

Power generation element Download PDF

Info

Publication number
JP2015122855A
JP2015122855A JP2013264736A JP2013264736A JP2015122855A JP 2015122855 A JP2015122855 A JP 2015122855A JP 2013264736 A JP2013264736 A JP 2013264736A JP 2013264736 A JP2013264736 A JP 2013264736A JP 2015122855 A JP2015122855 A JP 2015122855A
Authority
JP
Japan
Prior art keywords
coil
magnetostrictive rod
rod
magnetostrictive
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013264736A
Other languages
Japanese (ja)
Inventor
宏樹 布野
Hiroki Funo
宏樹 布野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2013264736A priority Critical patent/JP2015122855A/en
Publication of JP2015122855A publication Critical patent/JP2015122855A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a power generation element capable of suppressing the occurrence of a strange sound, the disconnection of a coil, and the disturbance of a voltage waveform.SOLUTION: A conductor is wound spirally to form a coil 13, and a magnetostrictive rod 11 is provided inside the coil 13. A magnetic loop is formed between a rigid rod 12 and the magnetostrictive rod 11 and the magnetostrictive rod 11 vibrates in the juxta position direction of the magnetostrictive rod 11 and the rigid rod 12, thereby generating power. The coil 13 is fixed to a holding member 50 but not fixed to a holding member 60, so that the interval between the magnetostrictive rod 11 and the coil 13 is kept. Since the magnetostrictive rod 11 vibrates inside the coil 13, the collision of the magnetostrictive rod 11 and the coil 13 with each other is prevented. Consequently, the occurrence of a strange sound and the disconnection of the coil 13 (conductor) due to the collision of the magnetostrictive rod 11 and the coil 13 can be prevented and the disturbance of a voltage waveform is prevented.

Description

本発明は、磁歪材料の逆磁歪効果を利用して振動発電を行う発電素子に関し、特に異音の発生やコイルの断線、電圧波形の乱れを抑制できる発電素子に関するものである。   The present invention relates to a power generation element that performs vibration power generation using the inverse magnetostriction effect of a magnetostrictive material, and more particularly to a power generation element that can suppress generation of abnormal noise, coil disconnection, and voltage waveform disturbance.

従来より、磁歪材料の逆磁歪効果を利用して振動発電を行う発電素子が知られている(例えば特許文献1)。特許文献1には、平行に配設される一対の磁歪棒と、それら一対の磁歪棒の一端を保持する第1保持部材と、一対の磁歪棒の他端を支持すると共に質量体(可動マス)として機能する第2保持部材と、導線が螺旋状に巻回されると共に磁歪棒が内設されるコイルと、一対の磁歪棒の一端および他端にそれぞれ磁極を違えて配設される一対の永久磁石とを備える発電素子が開示されている。特許文献1に開示される発電素子は、第1保持部材を振動体に固着すると共に、第2保持部材を自由端とした状態で設置され、振動体の振動に伴って、磁歪棒の軸直角方向へ第2保持部材を振り子運動(自由振動または強制振動)させることで、磁歪棒一方および他方に軸方向の伸張および収縮をそれぞれ発生させる。これにより、磁歪棒の軸方向と平行な方向に磁束密度が変化し(逆磁歪効果)、磁歪棒に巻回されたコイルに電流が発生し、発電が行われる。   Conventionally, a power generation element that performs vibration power generation using the inverse magnetostriction effect of a magnetostrictive material is known (for example, Patent Document 1). In Patent Document 1, a pair of magnetostrictive rods arranged in parallel, a first holding member that holds one end of the pair of magnetostrictive rods, the other end of the pair of magnetostrictive rods, and a mass body (movable mass) are disclosed. ) Functioning as a second holding member, a coil in which a conducting wire is spirally wound and a magnetostrictive rod is provided, and a pair of magnetostrictive rods disposed at one end and the other end with different magnetic poles. A power generating element including a permanent magnet is disclosed. The power generation element disclosed in Patent Document 1 is installed with the first holding member fixed to the vibrating body and the second holding member as a free end, and the axis of the magnetostrictive rod is perpendicular to the vibration of the vibrating body. By causing the second holding member to perform a pendulum motion (free vibration or forced vibration) in the direction, axial expansion and contraction are generated in one and the other of the magnetostrictive rods, respectively. As a result, the magnetic flux density changes in a direction parallel to the axial direction of the magnetostrictive rod (inverse magnetostrictive effect), current is generated in the coil wound around the magnetostrictive rod, and power generation is performed.

国際公開第2011/158473号(段落0078、図4Aなど)International Publication No. 2011/158473 (paragraph 0078, FIG. 4A, etc.)

しかしながら上述した従来の発電素子では、コイルに内設された磁歪棒が振動するので、磁歪棒がコイルの内周面に繰返し衝突すると、衝突音(異音)が発生したりコイル(導線)が断線したりするという問題がある。また、磁歪棒がコイルに衝突する衝撃で、出力される電圧波形が乱れるという問題がある。   However, in the above-described conventional power generating element, the magnetostrictive rod installed in the coil vibrates, so that when the magnetostrictive rod repeatedly collides with the inner peripheral surface of the coil, a collision sound (abnormal noise) is generated or the coil (conductor) is generated. There is a problem of disconnection. Further, there is a problem that the output voltage waveform is disturbed by the impact of the magnetostrictive rod colliding with the coil.

本発明は、上述した問題点を解決するためになされたものであり、異音の発生やコイルの断線、電圧波形の乱れを抑制できる発電素子を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a power generation element that can suppress generation of abnormal noise, disconnection of a coil, and disturbance of a voltage waveform.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

請求項1記載の発電素子によれば、導線が螺旋状に巻回されてコイルが形成され、磁歪材料から棒状に構成される磁歪棒が、コイルの内周面と間隔をあけてコイルに内設される。磁性材料から棒状に構成される剛性棒が磁歪棒に並設され、磁歪棒との間で磁気ループが形成される。一対の保持部材により剛性棒および磁歪棒の軸方向両端がそれぞれ保持され、一対の保持部材の一方が固定される。一対の保持部材の他方が、磁歪棒および剛性棒が並設される方向に振動することで磁歪棒が軸方向に伸張または収縮して発電が行われる。   According to the power generating element of the first aspect, the coil is formed by spirally winding the conductive wire, and the magnetostrictive rod configured in a rod shape from the magnetostrictive material is disposed in the coil with a gap from the inner peripheral surface of the coil. Established. A rigid rod configured in a rod shape from a magnetic material is juxtaposed with the magnetostrictive rod, and a magnetic loop is formed with the magnetostrictive rod. Both ends of the rigid rod and the magnetostrictive rod in the axial direction are held by the pair of holding members, respectively, and one of the pair of holding members is fixed. The other of the pair of holding members vibrates in the direction in which the magnetostrictive rod and the rigid rod are juxtaposed, whereby the magnetostrictive rod expands or contracts in the axial direction to generate power.

コイルは、軸方向一端側が一対の保持部材のいずれか一方に固定されるので、磁歪棒とコイルとの間隔が保持される。コイルの軸方向一端側を保持部材に固定すると、磁歪棒はコイルの内側で振動するので、磁歪棒とコイルとの衝突を阻止できる。その結果、磁歪棒とコイルとの衝突による異音の発生およびコイル(導線)の断線を防止できる効果がある。また、磁歪棒がコイルに衝突することを防止できるので、電圧波形の乱れを抑制できる効果がある。   Since one end of the coil in the axial direction is fixed to one of the pair of holding members, the distance between the magnetostrictive rod and the coil is maintained. When one end of the coil in the axial direction is fixed to the holding member, the magnetostrictive rod vibrates inside the coil, so that the collision between the magnetostrictive rod and the coil can be prevented. As a result, there is an effect that it is possible to prevent generation of noise due to collision between the magnetostrictive rod and the coil and disconnection of the coil (conductive wire). In addition, since the magnetostrictive rod can be prevented from colliding with the coil, there is an effect that the disturbance of the voltage waveform can be suppressed.

さらに、コイルの軸方向他端側が一対の保持部材のいずれか他方に非固定とされる。仮に、コイルの軸方向の両側を一対の保持部材に固定する場合には、磁歪棒の曲げ変形にコイルの曲げ剛性が影響する。そうすると、磁歪棒を変形させて保持部材を振動させるために、磁歪棒だけを変形させる場合と比較して、コイルが介在する分だけ大きな加振力を要する。また、コイルの曲げ剛性が発電素子の固有振動数に影響を与えるので、発電素子の固有振動数を設計し難くなる。   Furthermore, the other axial end of the coil is not fixed to either one of the pair of holding members. If both sides in the axial direction of the coil are fixed to the pair of holding members, the bending rigidity of the coil affects the bending deformation of the magnetostrictive rod. Then, in order to deform the magnetostrictive rod and vibrate the holding member, a larger excitation force is required as much as the coil intervenes than when only the magnetostrictive rod is deformed. Further, since the bending rigidity of the coil affects the natural frequency of the power generation element, it is difficult to design the natural frequency of the power generation element.

これに対し、コイルの軸方向他端側を一対の保持部材のいずれか他方に非固定とすることにより、コイルの曲げ剛性が磁歪棒の曲げ変形に影響を与えることを防止できる。その結果、コイルの軸方向の両側を一対の保持部材に固定する場合と比較して、発電可能な加振力を小さくすることができると共に、発電素子の固有振動数の設計を容易にできる効果がある。   On the other hand, it is possible to prevent the bending rigidity of the coil from affecting the bending deformation of the magnetostrictive rod by making the other axial end of the coil unfixed to one of the pair of holding members. As a result, compared to the case where both sides of the coil in the axial direction are fixed to a pair of holding members, it is possible to reduce the excitation force that can be generated and to easily design the natural frequency of the power generation element. There is.

請求項2記載の発電素子によれば、コイルは、一対の保持部材のうち固定側の一方に軸方向一端側が固定されている。仮に、一対の保持部材のうち振動側の一方にコイルの軸方向一端側が固定される場合には、保持部材に固定されたコイルの軸方向一端側が、振動の加速度によって保持部材から外れ易くなる。しかし、一対の保持部材のうち固定側の一方にコイルの軸方向一端側が固定されるので、保持部材に固定されたコイルの軸方向一端側に振動によって作用する加速度を小さくできる。その結果、コイルの軸方向一端側を保持部材から外れ難くすることができ、請求項1の効果に加え、信頼性を向上できる効果がある。   According to the power generating element of the second aspect, the coil has one end in the axial direction fixed to one of the fixed sides of the pair of holding members. If one end of the coil in the axial direction is fixed to one of the pair of holding members on the vibration side, the one end in the axial direction of the coil fixed to the holding member is easily detached from the holding member due to acceleration of vibration. However, since one end in the axial direction of the coil is fixed to one of the fixed members of the pair of holding members, the acceleration acting on the one end in the axial direction of the coil fixed to the holding member can be reduced. As a result, it is possible to make it difficult for one end of the coil in the axial direction to be detached from the holding member, and in addition to the effect of claim 1, there is an effect that the reliability can be improved.

また、仮に、振動側の保持部材にコイルの軸方向一端側が固定される場合には、コイルの質量が発電素子の固有振動数に影響を与えるので、発電素子の固有振動数を設計し難くなる。これに対し、固定側の保持部材にコイルの軸方向一端側が固定され、振動側の保持部材にコイルの軸方向他端側が非固定にされるので、請求項1の効果に加え、コイルの質量が発電素子の固有振動数に影響を与えることを防止して、発電素子の固有振動数の設計を容易にできる効果がある。   Also, if one end of the coil in the axial direction is fixed to the vibration-side holding member, the mass of the coil affects the natural frequency of the power generating element, making it difficult to design the natural frequency of the power generating element. . On the other hand, since one end in the axial direction of the coil is fixed to the holding member on the fixed side and the other end in the axial direction of the coil is not fixed to the holding member on the vibration side, the mass of the coil is added to the effect of claim 1. This has the effect of preventing the natural frequency of the power generating element from being affected and facilitating the design of the natural frequency of the power generating element.

請求項3記載の発電素子によれば、磁歪棒および剛性棒が並設される方向と交差する方向に沿う係止部が、保持部材の軸方向端面に設けられる。コイルは、軸方向一端側が係止部に係止され固定されるので、磁歪棒および剛性棒が並設される方向に保持部材が振動したときに、コイルの軸方向一端側を保持部材に対して位置ずれし難くすることができる。よって、請求項1又は2の効果に加え、信頼性を向上できる効果がある。   According to the power generating element of the third aspect, the locking portion along the direction intersecting with the direction in which the magnetostrictive rod and the rigid rod are juxtaposed is provided on the axial end surface of the holding member. Since one end of the coil in the axial direction is locked and fixed to the locking portion, when the holding member vibrates in the direction in which the magnetostrictive rod and the rigid rod are juxtaposed, the one end in the axial direction of the coil is opposed to the holding member. This makes it difficult to shift the position. Therefore, in addition to the effect of Claim 1 or 2, there exists an effect which can improve reliability.

請求項4記載の発電素子によれば、コイルと係止部との間に緩衝部が介設され、緩衝部は、磁歪棒および剛性棒が並設される方向に弾性変形可能に構成されている。緩衝部が弾性変形することによりコイルが係止部から脱落することを抑制できるので、請求項1から3のいずれかの効果に加え、信頼性を向上できる効果がある。   According to the power generating element of the fourth aspect, the buffer portion is interposed between the coil and the locking portion, and the buffer portion is configured to be elastically deformable in a direction in which the magnetostrictive rod and the rigid rod are arranged in parallel. Yes. Since it can suppress that a coil falls from a latching | locking part by elastically deforming a buffer part, in addition to the effect in any one of Claims 1-3, there exists an effect which can improve reliability.

請求項5記載の発電素子によれば、コイルは、一対の保持部材のいずれか他方に非固定とされる軸方向他端側の磁歪棒および剛性棒が並設される方向における内径が、軸方向一端側の磁歪棒および剛性棒が並設される方向における内径より拡大されている。よって、請求項1から4のいずれかの効果に加え、保持部材が大きく振動して磁歪棒の曲げ変形量が大きくなったときも、コイルの軸方向他端側に磁歪棒を衝突させ難くできる効果がある。   According to the power generating element of claim 5, the coil has an inner diameter in a direction in which the magnetostrictive rod and the rigid rod on the other axial end side that are not fixed to the other of the pair of holding members are arranged side by side. It is expanded from the inner diameter in the direction in which the magnetostrictive rod and the rigid rod on one end side in the direction are arranged side by side. Therefore, in addition to the effect of any one of claims 1 to 4, even when the holding member vibrates greatly and the amount of bending deformation of the magnetostrictive rod increases, it is difficult to cause the magnetostrictive rod to collide with the other axial end of the coil. effective.

(a)は本発明の第1実施の形態における発電素子の平面図であり、(b)は矢印Ib方向視における発電素子の側面図である。(A) is a top view of the electric power generation element in 1st Embodiment of this invention, (b) is a side view of the electric power generation element in the arrow Ib direction view. (a)は固定部材の正面図であり、(b)は図2(a)の矢印IIb方向視における固定部材の側面図であり、(c)は図2(b)のIIc−IIc線における固定部材の断面図である。(A) is a front view of a fixing member, (b) is a side view of the fixing member as viewed in the direction of arrow IIb in FIG. 2 (a), and (c) is along a line IIc-IIc in FIG. 2 (b). It is sectional drawing of a fixing member. (a)はホルダ部材の正面図であり、(b)は図3(a)の矢印IIIb方向視におけるホルダ部材の側面図である。(A) is a front view of a holder member, (b) is a side view of the holder member in the arrow IIIb direction view of FIG. 3 (a). (a)はコイル、磁歪棒および剛性棒を装着するときの固定部材の軸方向断面図であり、(b)はコイル、磁歪棒および剛性棒が装着された固定部材の軸方向断面図である。(A) is an axial sectional view of the fixing member when the coil, the magnetostrictive rod and the rigid rod are mounted, and (b) is an axial sectional view of the fixing member to which the coil, the magnetostrictive rod and the rigid rod are mounted. . (a)は第2実施の形態における発電素子の固定部材の側面図であり、(b)は図5(a)のVb−Vb線における固定部材の断面図であり、(c)は図5(b)の一部を拡大して図示した固定部材の断面図である。(A) is a side view of the fixing member of the electric power generating element in 2nd Embodiment, (b) is sectional drawing of the fixing member in the Vb-Vb line | wire of Fig.5 (a), (c) is FIG. It is sectional drawing of the fixing member which expanded and illustrated a part of (b). (a)は第3実施の形態における発電素子の平面図であり、(b)は矢印VIb方向視における発電素子の側面図である。(A) is a top view of the electric power generation element in 3rd Embodiment, (b) is a side view of the electric power generation element in the arrow VIb direction view. 実施例および比較例における発電素子の加振振幅に対する発電圧を示す図である。It is a figure which shows the generated voltage with respect to the excitation amplitude of the electric power generating element in an Example and a comparative example. 実施例および比較例における発電素子により発生した電圧波形を示す図である。It is a figure which shows the voltage waveform which generate | occur | produced with the electric power generation element in an Example and a comparative example.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。図1(a)は本発明の第1実施の形態における発電素子1の平面図であり、図1(b)は矢印Ib方向視における発電素子1の側面図である。なお、図1では、永久磁石14,15の磁極の向きの理解を容易とするために、その磁性を「N」「S」の表記を利用して便宜的に図中に図示する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Fig.1 (a) is a top view of the electric power generation element 1 in 1st Embodiment of this invention, FIG.1 (b) is a side view of the electric power generation element 1 in the arrow Ib direction view. In FIG. 1, in order to facilitate understanding of the orientation of the magnetic poles of the permanent magnets 14 and 15, the magnetism is illustrated in the drawing for convenience using the notation “N” and “S”.

図1に示すように、発電素子1は、振動体Vに対し、一対の保持部材50,60の内の一方の保持部材50を固着すると共に他方の保持部材60を自由端とした状態で設置され、振動体Vの振動に伴って、磁歪棒11及び剛性棒12の軸直角方向(図1(b)上下方向)へ他方の保持部材60を振り子運動(自由振動または強制振動)させて使用される。この場合、振り子運動に伴う曲げ変形により軸方向の伸張および収縮が磁歪棒11に発生することで、磁歪棒11の軸方向と平行な方向に磁束密度が変化し、コイル13に電流が発生することで、発電が行われる。   As shown in FIG. 1, the power generating element 1 is installed in a state where one holding member 50 of the pair of holding members 50 and 60 is fixed to the vibrating body V and the other holding member 60 is a free end. As the vibrating body V vibrates, the other holding member 60 is used in a pendulum motion (free vibration or forced vibration) in the direction perpendicular to the axis of the magnetostrictive rod 11 and the rigid rod 12 (vertical direction in FIG. 1B). Is done. In this case, axial expansion and contraction occur in the magnetostrictive rod 11 due to bending deformation accompanying the pendulum motion, so that the magnetic flux density changes in a direction parallel to the axial direction of the magnetostrictive rod 11 and current is generated in the coil 13. Thus, power generation is performed.

発電素子1は、磁歪材料から構成される磁歪棒11及び磁性材料から構成される剛性棒12と、磁歪棒11に巻回されるコイル13と、磁歪棒11及び剛性棒12の軸方向一端側(図1(b)左側)及び他端側(図1(b)右側)においてこれら磁歪棒11及び剛性棒12の対向間に挟装される一対の永久磁石14,15と、磁歪棒11及び剛性棒12の軸方向一端側および他端側にそれぞれ取着され磁歪棒11及び剛性棒12の対向間に永久磁石14,15が挟装された状態を保持する一対の保持部材50,60とを備える。   The power generating element 1 includes a magnetostrictive rod 11 made of a magnetostrictive material and a rigid rod 12 made of a magnetic material, a coil 13 wound around the magnetostrictive rod 11, and one axial end side of the magnetostrictive rod 11 and the rigid rod 12. A pair of permanent magnets 14 and 15 sandwiched between the opposing of the magnetostrictive rod 11 and the rigid rod 12 on the left side (FIG. 1 (b) left side) and the other end side (right side of FIG. 1 (b)), A pair of holding members 50 and 60 that are attached to one end and the other end in the axial direction of the rigid rod 12 and hold the permanent magnets 14 and 15 sandwiched between the magnetostrictive rod 11 and the rigid rod 12, respectively; Is provided.

磁歪棒11及び剛性棒12は、厚さ(図1(b)上下方向寸法)に対して幅(図1(a)上下方向寸法)が大きな断面長方形(即ち、断面が長辺(幅方向に沿う辺)及び短辺(厚さ方向に沿う辺)を有する長方形)から長尺板状に形成される。   The magnetostrictive rod 11 and the rigid rod 12 have a rectangular shape with a large width (Fig. 1 (a) vertical dimension) relative to the thickness (Fig. 1 (b) vertical size) (that is, the cross section has a long side (in the width direction). (Long side) and a short side (a rectangle having a side along the thickness direction)).

これら磁歪棒11及び剛性棒12は、互いに同一形状(寸法)に形成されると共に、面積が大きな側面(即ち、断面において長辺を含む側面)同士を対向させて平行に配置される。なお、剛性棒12は、磁歪棒11よりも磁歪効果の低い磁性材料から構成される。本実施の形態では、磁歪棒11が鉄ガリウム合金から、剛性棒12が鉄鋼材料から、それぞれ構成される。   The magnetostrictive rod 11 and the rigid rod 12 are formed in the same shape (dimension) with each other, and are arranged in parallel so that side surfaces having a large area (that is, side surfaces including long sides in the cross section) face each other. The rigid rod 12 is made of a magnetic material having a lower magnetostrictive effect than the magnetostrictive rod 11. In the present embodiment, the magnetostrictive rod 11 is made of an iron gallium alloy, and the rigid rod 12 is made of a steel material.

コイル13は、銅線から構成される線材(導線)を螺旋状に磁歪棒11に巻回したものであり、コイル13と磁歪棒11との間に隙間が設けられる。本実施の形態では、コイル13は自己融着線からなる導線同士が接着固定された空芯コイルであり、磁歪棒11の断面形状に応じて扁平した断面略楕円の筒状に形成されている。   The coil 13 is obtained by winding a wire (conductive wire) made of copper wire around the magnetostrictive rod 11 in a spiral shape, and a gap is provided between the coil 13 and the magnetostrictive rod 11. In the present embodiment, the coil 13 is an air-core coil in which conductive wires made of self-bonding wires are bonded and fixed, and is formed in a cylindrical shape having a substantially elliptical cross section that is flattened according to the cross-sectional shape of the magnetostrictive rod 11. .

永久磁石14,15は、磁歪棒11にバイアス磁界を付与するための部材であり、それぞれ断面矩形の棒状に形成される。なお、永久磁石14,15は、挟持対向部22,23の対向方向(図1(b)上下方向)の寸法が厚さ寸法とされる。永久磁石14,15は、互いに磁極を違えて配設される。即ち、永久磁石14は、磁歪棒11に接続される面側(図1(b)上側)にN極、剛性棒12に接続される面側(図1(b)下側)にS極が配置される一方、これとは反対に、永久磁石15は、磁歪棒11に接続される面側にS極、剛性棒12に接続される面側にN極が配置される。   The permanent magnets 14 and 15 are members for applying a bias magnetic field to the magnetostrictive rod 11 and are each formed in a bar shape having a rectangular cross section. In addition, as for the permanent magnets 14 and 15, the dimension of the opposing direction (FIG.1 (b) up-down direction) of the clamping opposing parts 22 and 23 is made into a thickness dimension. The permanent magnets 14 and 15 are arranged with different magnetic poles. That is, the permanent magnet 14 has an N pole on the surface side connected to the magnetostrictive rod 11 (upper side in FIG. 1B) and an S pole on the surface side connected to the rigid rod 12 (lower side in FIG. 1B). On the other hand, on the contrary, the permanent magnet 15 has an S pole on the surface connected to the magnetostrictive rod 11 and an N pole on the surface connected to the rigid rod 12.

これにより、磁歪棒11と、剛性棒12と、永久磁石14,15とにより磁気ループが形成され、永久磁石14,15の起磁力によるバイアス磁界が磁歪棒11に付与される。その結果、磁歪棒11の磁化容易方向(磁化の方向または磁化が生じ易い方向)が、磁歪棒11の軸方向(長手方向)に設定される。   As a result, a magnetic loop is formed by the magnetostrictive rod 11, the rigid rod 12, and the permanent magnets 14 and 15, and a bias magnetic field generated by the magnetomotive force of the permanent magnets 14 and 15 is applied to the magnetostrictive rod 11. As a result, the easy magnetization direction (the direction of magnetization or the direction in which magnetization is likely to occur) of the magnetostrictive rod 11 is set to the axial direction (longitudinal direction) of the magnetostrictive rod 11.

永久磁石14,15は、固定部材20,30に形成(凹設)された収容空間に配設される。この収容空間の内面(挟持対向部22,23の対向面22b,23b、規制部24の対向面および連結部25の対向面、図2参照)や磁歪棒11及び剛性棒12の側面と、永久磁石14,15の対向面(側面)との対向間には隙間が形成され、この隙間に充填した接着剤により、永久磁石14,15が固定部材20,30に固着される。   The permanent magnets 14 and 15 are disposed in the accommodation spaces formed (recessed) in the fixing members 20 and 30. The inner surface of the housing space (opposing surfaces 22b and 23b of the clamping opposing portions 22 and 23, the opposing surface of the restricting portion 24 and the opposing surface of the connecting portion 25, see FIG. 2), the side surfaces of the magnetostrictive rod 11 and the rigid rod 12, and the permanent A gap is formed between the opposing surfaces (side surfaces) of the magnets 14 and 15, and the permanent magnets 14 and 15 are fixed to the fixing members 20 and 30 by an adhesive filled in the gap.

保持部材50,60は、磁歪棒11及び剛性棒12の軸方向一端側および他端側にそれぞれ取着される一対の固定部材20,30と、それら一対の固定部材20,30がそれぞれ圧入されるホルダ部材40とを備える。固定部材20,30及びホルダ部材40は、非磁性材料(本実施の形態では、アルミニウム合金)から構成される。ここで、図2及び図3を参照して、固定部材20,30及びホルダ部材40の詳細構成について説明する。   The holding members 50, 60 are press-fitted with a pair of fixing members 20, 30 attached to one end side and the other end side in the axial direction of the magnetostrictive rod 11 and the rigid rod 12, respectively. The holder member 40 is provided. The fixing members 20 and 30 and the holder member 40 are made of a nonmagnetic material (in this embodiment, an aluminum alloy). Here, with reference to FIG.2 and FIG.3, the detailed structure of the fixing members 20 and 30 and the holder member 40 is demonstrated.

図2(a)は、固定部材20の側面図であり、図2(b)は図2(a)の矢印IIb方向視における固定部材20の側面図であり、図2(c)は図2(b)のIIc−IIc線における固定部材20の断面図である。なお、固定部材30は、係止部26が省略されている以外、固定部材20と同様に構成されている。よって、固定部材30は、固定部材20と同一の部分に同一の符号を付して、以下の説明を省略する。   2 (a) is a side view of the fixing member 20, FIG. 2 (b) is a side view of the fixing member 20 as viewed in the direction of arrow IIb in FIG. 2 (a), and FIG. 2 (c) is FIG. It is sectional drawing of the fixing member 20 in the IIc-IIc line | wire of (b). The fixing member 30 is configured similarly to the fixing member 20 except that the locking portion 26 is omitted. Therefore, the fixed member 30 attaches | subjects the same code | symbol to the same part as the fixed member 20, and abbreviate | omits the following description.

図2に示すように、固定部材20は、ブロック状に形成されるベース部21と、そのベース部21の側面(図2(a)紙面手前側面)から突設されると共に所定間隔を隔てて対向する挟持対向部22,23と、それら挟持対向部22,23の対向間に位置しつつベース部21の側面から突設される規制部24と、挟持対向部22,23の対向間を連結しつつベース部21の側面から突設される連結部25とを備える。なお、固定部材20は、高さ方向(図2(a)上下方向)中央に位置する仮想平面(図示せず)に対して面対称に形成される。   As shown in FIG. 2, the fixing member 20 is provided with a base portion 21 formed in a block shape and a side surface of the base portion 21 (a front side surface in FIG. 2 (a)) and at a predetermined interval. The opposing sandwiching facing parts 22 and 23 are connected to each other, and the regulation part 24 projecting from the side surface of the base part 21 while being located between the sandwiching facing parts 22 and 23 is opposed to the sandwiching facing parts 22 and 23. However, a connecting portion 25 that protrudes from the side surface of the base portion 21 is provided. The fixing member 20 is formed symmetrically with respect to a virtual plane (not shown) located in the center in the height direction (the vertical direction in FIG. 2A).

挟持対向部22,23は、磁歪棒11及び剛性棒12を永久磁石14,15へ向かう方向に挟み込んで挟持する部位であり(図1参照)、対向面22a,22b及び対向面23a,23bがそれぞれ対向して形成される。対向面22a,22b及び対向面23a,23bの対向間に形成される空間に、磁歪棒11、剛性棒12及び永久磁石14,15がそれぞれ収容される(図1参照)。   The sandwiching facing portions 22 and 23 are portions that sandwich and sandwich the magnetostrictive rod 11 and the rigid rod 12 in the direction toward the permanent magnets 14 and 15 (see FIG. 1). The facing surfaces 22a and 22b and the facing surfaces 23a and 23b include They are formed to face each other. The magnetostrictive rod 11, the rigid rod 12, and the permanent magnets 14 and 15 are accommodated in spaces formed between the opposing surfaces 22a and 22b and the opposing surfaces 23a and 23b, respectively (see FIG. 1).

なお、対向面22a,23aは互いに平行とされ、それら対向面22a,23aの対向間隔(図2(a)上下方向の寸法)は、磁歪棒11、剛性棒12及び永久磁石14,15の厚さ(図1(b)上下方向寸法)の合計よりも所定量(本実施の形態では0.02mm)だけ大きくされる。同様に、対向面22b,23bは互いに平行とされ、それら対向面23a,23bの対向間隔は、永久磁石14,15の厚さよりも所定量(本実施の形態では0.02mm)だけ大きくされる。   The facing surfaces 22a and 23a are parallel to each other, and the facing distance between the facing surfaces 22a and 23a (the vertical dimension in FIG. 2A) is the thickness of the magnetostrictive rod 11, the rigid rod 12, and the permanent magnets 14 and 15. This is made larger by a predetermined amount (0.02 mm in the present embodiment) than the total (FIG. 1 (b) vertical dimension). Similarly, the facing surfaces 22b and 23b are parallel to each other, and the facing distance between the facing surfaces 23a and 23b is larger than the thickness of the permanent magnets 14 and 15 by a predetermined amount (in this embodiment, 0.02 mm). .

ベース部21及び挟持対向部22,23(即ち、固定部材20)の上面側および下面側(図2(a)上側または下側)には、固定部材20をホルダ部材40へ圧入する際の圧入方向に沿って傾斜する傾斜面22c及び傾斜面23cが形成される。傾斜面22c及び傾斜面23cは、規制部24から連結部25へ向かうに従って互いに異なる方向に傾斜(図2(a)に示す側面視において、傾斜面22cは下降傾斜、傾斜面23cは上昇傾斜)する傾斜面として形成される。この傾斜(勾配)によって、固定部材20(ベース部21及び挟持対向部22,23)は、図2(a)に示す側面視において、磁歪棒11及び剛性棒12の軸方向中央から軸方向端部へ向かうに従って先細りとなる形状に形成される(図1参照)。なお、傾斜面22c,23cは、水平面(上述した固定部材20の対称面となる仮想平面)に対し傾斜角度θ1で傾斜される。   Press fitting when the fixing member 20 is press-fitted into the holder member 40 on the upper surface side and the lower surface side (upper side or lower side in FIG. 2A) of the base portion 21 and the sandwiching facing portions 22 and 23 (that is, the fixing member 20). An inclined surface 22c and an inclined surface 23c that are inclined along the direction are formed. The inclined surface 22c and the inclined surface 23c are inclined in different directions from the restricting portion 24 toward the connecting portion 25 (in the side view shown in FIG. 2A, the inclined surface 22c is a downward inclination, and the inclined surface 23c is an upward inclination). It is formed as an inclined surface. Due to this inclination (gradient), the fixing member 20 (the base portion 21 and the sandwiching facing portions 22 and 23) has an axial end from the axial center of the magnetostrictive rod 11 and the rigid rod 12 in the side view shown in FIG. It is formed in a shape that tapers as it goes to the part (see FIG. 1). In addition, the inclined surfaces 22c and 23c are inclined at an inclination angle θ1 with respect to a horizontal plane (a virtual plane that is a symmetric plane of the fixing member 20 described above).

規制部24は、図2(a)に示す側面視形状が矩形とされる部位であり、挟持対向部22,23の対向面22a,23aに対して所定の間隔を隔てて配設される。規制部24と挟持対向部22,23の対向面22a,23aとの間の間隔(図2(a)上下方向寸法)は、磁歪棒11及び剛性棒12の厚さ(図1(b)上下方向寸法)と同等または若干大きくされる。また、規制部24は、挟持対向部22,23の対向方向(図2(a)上下方向)の寸法である厚さW1が、永久磁石14,15の厚さよりも大きくされる。なお、本実施の形態では、規制部24の厚さW1が、連結部25側に位置する対向面22b,23bの対向間隔(図2(a)上下方向寸法)と同等に設定される。   The restricting portion 24 is a portion having a rectangular shape in a side view shown in FIG. 2A, and is disposed at a predetermined interval with respect to the facing surfaces 22 a and 23 a of the sandwiching facing portions 22 and 23. The distance between the restricting portion 24 and the opposing surfaces 22a, 23a of the sandwiching opposing portions 22, 23 (Fig. 2 (a) vertical dimension) is the thickness of the magnetostrictive rod 11 and rigid rod 12 (Fig. 1 (b) vertical). Direction dimension) or slightly larger. Further, in the restricting portion 24, the thickness W <b> 1, which is the dimension in the facing direction of the sandwiching facing portions 22 and 23 (the vertical direction in FIG. 2A), is made larger than the thickness of the permanent magnets 14 and 15. In the present embodiment, the thickness W1 of the restricting portion 24 is set to be equal to the facing distance (the vertical dimension in FIG. 2A) of the facing surfaces 22b and 23b located on the connecting portion 25 side.

挟持対向部22,23及び規制部24は、連結部25の反対側に位置する端面(図2(a)左側の面)が面一に形成されると共に、磁歪棒11及び剛性棒12の軸方向に垂直な平坦面として形成される(図1参照)。   The sandwiching facing portions 22 and 23 and the restricting portion 24 are formed so that the end surface (the left side surface in FIG. 2A) located on the opposite side of the connecting portion 25 is flush with each other, and the shafts of the magnetostrictive rod 11 and the rigid rod 12 It is formed as a flat surface perpendicular to the direction (see FIG. 1).

連結部25は、固定部材20の先細りとなる側(規制部24の反対側、図2(a)右側)に位置し、ベース部21の側面からの高さ(図2(b)左右方向寸法)が、挟持対向部22,23及び規制部24の高さと同一に設定される。連結部25が対向面22b,23bの間に介在することで、固定部材20をホルダ部材40へ圧入する際に、寸法公差が存在する場合や、圧入工程の精度が不足した場合でも、永久磁石14,15が対向面22b,23bに押圧されることを抑制して、かかる永久磁石14,15が破損することを抑制できる。   The connecting portion 25 is located on the tapered side of the fixing member 20 (opposite side of the restricting portion 24, right side in FIG. 2A), and the height from the side surface of the base portion 21 (FIG. 2B) dimension in the left-right direction. ) Is set to be the same as the heights of the sandwiching facing portions 22 and 23 and the restricting portion 24. When the connecting portion 25 is interposed between the opposing surfaces 22b and 23b, the permanent magnet can be used even when there is a dimensional tolerance when the fixing member 20 is press-fitted into the holder member 40 or when the accuracy of the press-fitting process is insufficient. It can suppress that 14 and 15 are pressed by opposing surface 22b, 23b, and can suppress that the permanent magnets 14 and 15 are damaged.

図2(b)に示すように固定部材20は、係止部26が軸方向端面に設けられている。係止部26は、コイル13の軸方向端部が係止される部位であり、磁歪棒11及び剛性棒12が並設される方向(図2(b)上下方向)と交差する方向(図2(b)左右方向)に沿って挟持対向部22及び規制部24の軸方向端面に形成される。本実施の形態では、係止部26は、挟持対向部22及び規制部24からベース部21に亘って連続して形成され、軸方向視における形状が楕円の略C字状とされる。   As shown in FIG. 2B, the fixing member 20 is provided with a locking portion 26 on the end surface in the axial direction. The locking portion 26 is a portion where the axial end of the coil 13 is locked, and a direction (FIG. 2 (b) vertical direction) intersecting the direction in which the magnetostrictive rod 11 and the rigid rod 12 are juxtaposed (FIG. 2 (b)). 2 (b) in the left-right direction) and is formed on the end faces in the axial direction of the sandwiching facing portion 22 and the restricting portion 24. In the present embodiment, the locking portion 26 is formed continuously from the sandwiching facing portion 22 and the restricting portion 24 to the base portion 21, and has an elliptical substantially C shape when viewed in the axial direction.

図2(c)に示すように、係止部26は固定部材20の軸方向端面に凹設され、溝状に形成される。溝状の係止部26(図2(b)参照)は、両端がそれぞれ対向面22a,24aに開口し、係止部26の溝幅は、コイル13の線材の太さ(直径)より僅かに大きめに形成されている。また、係止部26は、軸方向視における形状が、コイル13の軸方向端部の軸方向視における形状と同一に設定される。これによりコイル13は、軸方向端部が係止部26に嵌装され、軸直角方向(図2(b)紙面と平行方向)の移動が規制される。   As shown in FIG. 2C, the locking portion 26 is recessed in the axial end surface of the fixing member 20 and is formed in a groove shape. Both ends of the groove-shaped locking portion 26 (see FIG. 2B) open to the opposing surfaces 22a and 24a, respectively, and the groove width of the locking portion 26 is slightly smaller than the thickness (diameter) of the wire of the coil 13. It is formed larger. The locking portion 26 is set to have the same shape as viewed in the axial direction as the shape of the axial end portion of the coil 13 as viewed in the axial direction. As a result, the end of the coil 13 is fitted to the engaging portion 26 at the end in the axial direction, and movement in the direction perpendicular to the axis (the direction parallel to the plane of FIG. 2B) is restricted.

次に図3を参照してホルダ部材40について説明する。図3(a)は、ホルダ部材40の側面図であり、図3(b)は、図3(a)の矢印IIIb方向視におけるホルダ部材40の側面図である。   Next, the holder member 40 will be described with reference to FIG. 3A is a side view of the holder member 40, and FIG. 3B is a side view of the holder member 40 as viewed in the direction of arrow IIIb in FIG. 3A.

ホルダ部材40は、略直方体形状のベース部41と、そのベース部41の一側(図3(a)左側)から突設されると共に所定間隔を隔てて対向して配設される被圧入対向部42,43とを備える。なお、ホルダ部材40は、高さ方向(図3(a)上下方向)中央に位置する仮想平面(図示せず)に対して面対称に形成される。   The holder member 40 has a substantially rectangular parallelepiped base portion 41 and a press-fitting opposing surface that protrudes from one side of the base portion 41 (left side in FIG. 3 (a)) and is opposed to each other at a predetermined interval. Parts 42 and 43. The holder member 40 is formed symmetrically with respect to a virtual plane (not shown) located in the center in the height direction (the vertical direction in FIG. 3A).

被圧入対向部42,43は、固定部材20,30が圧入される部位であり、それら被圧入対向部42,43の互いに対向する面には、固定部材20,30をホルダ部材40へ圧入する際の圧入方向に沿って傾斜する傾斜面42a,43aが形成される。傾斜面42a,43aは、被圧入対向部42,43の突設先端側からベース部41へ向かうに従って互いに異なる方向に傾斜(図3(a)に示す側面視において、傾斜面42aは下降傾斜、傾斜面43aは上昇傾斜)する傾斜面として形成される。この傾斜(勾配)によって、傾斜面42a,43aの対向間隔は、ベース部41へ向かうに従って狭くなる。   The press-fitting opposing portions 42 and 43 are portions into which the fixing members 20 and 30 are press-fitted, and the fixing members 20 and 30 are press-fitted into the holder member 40 on the mutually opposing surfaces of the press-fitting opposing portions 42 and 43. Inclined surfaces 42a and 43a are formed which are inclined along the press-fitting direction. The inclined surfaces 42a and 43a are inclined in different directions from the projecting tip side of the press-fitting facing portions 42 and 43 toward the base portion 41 (in the side view shown in FIG. 3A, the inclined surface 42a is inclined downward) The inclined surface 43a is formed as an inclined surface that is inclined upward). Due to this inclination (gradient), the interval between the inclined surfaces 42 a and 43 a becomes narrower toward the base portion 41.

なお、傾斜面42a,43aは、水平面(上述したホルダ部材40の対称面となる仮想平面)に対し傾斜角度θ2で傾斜される。この傾斜角度θ2は、本実施の形態では、固定部材20,30の傾斜角度θ1(図2(a)参照)と同一とされる。   The inclined surfaces 42a and 43a are inclined at an inclination angle θ2 with respect to a horizontal plane (a virtual plane that is a symmetric plane of the holder member 40 described above). In the present embodiment, the inclination angle θ2 is the same as the inclination angle θ1 of the fixing members 20 and 30 (see FIG. 2A).

次に図4を参照して、発電素子1の組立方法について説明する。図4(a)はコイル13、磁歪棒11及び剛性棒12を装着するときの固定部材20の軸方向断面図であり、図4(b)はコイル13、磁歪棒11及び剛性棒12が装着された固定部材20の軸方向断面図である。   Next, an assembly method for the power generating element 1 will be described with reference to FIG. 4A is an axial sectional view of the fixing member 20 when the coil 13, the magnetostrictive rod 11 and the rigid rod 12 are attached, and FIG. 4B is an attachment of the coil 13, the magnetostrictive rod 11 and the rigid rod 12. It is an axial sectional view of the fixed member 20 made.

図4(a)に示すように、自己融着線からなる導線同士が接着固定されたコイル13(空芯コイル)に磁歪棒11を挿通し、図4(b)に示すように、磁歪棒11及び剛性棒12の軸方向一端側を固定部材20の挟持対向部22,23と規制部24との間に挿入する。コイル13は、軸方向一端側を係止部26に嵌装し、コイル13の軸方向一端側と固定部材20(係止部26)とを接着剤により接着固定する。次に、永久磁石14を固定部材20の収容空間(磁歪棒11及び剛性棒12の対向間)に配設し、接着剤により接着固定する。次いで、ホルダ部材40の被圧入対向部42,43の対向間へ、磁歪棒11及び剛性棒12の軸方向(図4(b)左右方向)を圧入方向として固定部材20を圧入する。   As shown in FIG. 4 (a), the magnetostrictive rod 11 is inserted into a coil 13 (air core coil) in which conductive wires made of self-bonding wires are bonded and fixed. As shown in FIG. 4 (b), the magnetostrictive rod is inserted. 11 and one end side of the rigid rod 12 in the axial direction are inserted between the sandwiching facing portions 22 and 23 of the fixing member 20 and the restricting portion 24. The coil 13 is fitted to the locking portion 26 at one end in the axial direction, and the axial end of the coil 13 and the fixing member 20 (the locking portion 26) are bonded and fixed with an adhesive. Next, the permanent magnet 14 is disposed in the accommodation space of the fixing member 20 (between the magnetostrictive rod 11 and the rigid rod 12 facing each other), and is bonded and fixed with an adhesive. Subsequently, the fixing member 20 is press-fitted between the opposed portions 42 and 43 of the holder member 40 with the axial direction of the magnetostrictive rod 11 and the rigid rod 12 (the left-right direction in FIG. 4B) as the press-fitting direction.

同様に、磁歪棒11及び剛性棒12の軸方向他端側を固定部材30(図1(b)参照)の挟持対向部22,23と規制部24との間に挿入する。次に、永久磁石15を固定部材30の収容空間(磁歪棒11及び剛性棒12の対向間)に配設し、接着剤により接着固定する。次いで、ホルダ部材40の被圧入対向部42,43の対向間へ、磁歪棒11及び剛性棒12の軸方向(図4(b)左右方向)を圧入方向として固定部材30を圧入する。これにより発電素子1が組み立てられる。但し、永久磁石14,15の収容空間への取り付け(接着剤による接着固定)は、ホルダ部材40への圧入が完了した後に行っても良い。   Similarly, the other axial ends of the magnetostrictive rod 11 and the rigid rod 12 are inserted between the clamping facing portions 22 and 23 and the restricting portion 24 of the fixing member 30 (see FIG. 1B). Next, the permanent magnet 15 is disposed in the accommodation space of the fixing member 30 (between the magnetostrictive rod 11 and the rigid rod 12 facing each other) and bonded and fixed with an adhesive. Next, the fixing member 30 is press-fitted between the opposed portions 42 and 43 of the holder member 40 with the axial direction of the magnetostrictive rod 11 and the rigid rod 12 (the left-right direction in FIG. 4B) as the press-fitting direction. Thereby, the power generation element 1 is assembled. However, the attachment of the permanent magnets 14 and 15 to the accommodation space (adhesion fixation with an adhesive) may be performed after the press-fitting into the holder member 40 is completed.

以上のようにして組み立てられた発電素子1によれば、保持部材50を介して磁歪棒11及び剛性棒12の軸方向一端側が振動体Vに固定され、保持部材60の質量によって磁歪棒11及び剛性棒12が並設される方向(図1(b)上下方向)に軸方向他端側が振動することで、磁歪棒11が軸方向に伸張または収縮して発電が行われる。コイル13の軸方向一端側が固定部材20(保持部材50)に接着固定され、コイル13の軸方向他端側が固定部材30(保持部材60)に非固定とされるので、固定部材20により磁歪棒11とコイル13との間隔が保持される。   According to the power generating element 1 assembled as described above, one end in the axial direction of the magnetostrictive rod 11 and the rigid rod 12 is fixed to the vibrating body V via the holding member 50, and the magnetostrictive rod 11 and the The other end side in the axial direction vibrates in the direction in which the rigid rods 12 are juxtaposed (the vertical direction in FIG. 1B), whereby the magnetostrictive rod 11 extends or contracts in the axial direction to generate power. One end of the coil 13 in the axial direction is bonded and fixed to the fixing member 20 (holding member 50), and the other end in the axial direction of the coil 13 is not fixed to the fixing member 30 (holding member 60). The distance between the coil 11 and the coil 13 is maintained.

コイル13に磁歪棒11が衝突しない範囲内で磁歪棒11の曲げ変形が生じるように、振動体Vの振幅やコイル13と磁歪棒11との間隔等を設定すれば、磁歪棒11とコイル13との衝突が阻止される。その結果、磁歪棒11とコイル13との衝突による異音の発生およびコイル13(導線)の断線を防止できる。また、磁歪棒11がコイル13に衝突することを防止できるので、電圧波形の乱れを抑制できる。   If the amplitude of the vibrating body V and the interval between the coil 13 and the magnetostrictive rod 11 are set such that the magnetostrictive rod 11 is bent and deformed within a range where the magnetostrictive rod 11 does not collide with the coil 13, the magnetostrictive rod 11 and the coil 13 are set. Collisions are prevented. As a result, it is possible to prevent the generation of noise due to the collision between the magnetostrictive rod 11 and the coil 13 and the disconnection of the coil 13 (conductive wire). Moreover, since it is possible to prevent the magnetostrictive rod 11 from colliding with the coil 13, disturbance of the voltage waveform can be suppressed.

ここで、コイル13と磁歪棒11との間にコーキング剤等を注入することで、コイル13と磁歪棒11との衝突を防ぐ(コーキング剤等の弾性体により衝撃を緩衝する)ことは可能である。しかし、この場合には、磁歪棒11の振動が弾性体を介してコイル13に入力される可能性があり、磁歪棒11の振動(曲げ変形)によりコイル13に曲げ荷重が入力される可能性がある。そうすると、コイル13に入力される曲げ荷重によりコイル13(導線)が断線するおそれがある。   Here, by injecting a caulking agent or the like between the coil 13 and the magnetostrictive rod 11, it is possible to prevent a collision between the coil 13 and the magnetostrictive rod 11 (shock is shocked by an elastic body such as a caulking agent). is there. However, in this case, the vibration of the magnetostrictive rod 11 may be input to the coil 13 through the elastic body, and the bending load may be input to the coil 13 due to the vibration (bending deformation) of the magnetostrictive rod 11. There is. If it does so, there exists a possibility that the coil 13 (conductor) may be disconnected by the bending load input into the coil 13.

これに対し発電素子1によれば、磁歪棒11はコイル13(空芯コイル)の中空部分でコイル13に干渉されずに自由に振動できるので、磁歪棒11の振動(曲げ変形)によりコイル13に曲げ荷重が入力されないようにできる。従って、コイル13に入力される曲げ荷重によりコイル13(導線)が断線することを防止できる。また、コイル13の剛性により磁歪棒11の振動が抑制されることを防止できるので、発電効率(発電素子1に入力された加振エネルギーに対する電力量の比率)が低下することを抑制できる。   On the other hand, according to the power generating element 1, the magnetostrictive rod 11 can freely vibrate without interfering with the coil 13 in the hollow portion of the coil 13 (air core coil), and therefore the coil 13 is vibrated by the vibration (bending deformation) of the magnetostrictive rod 11. It is possible to prevent the bending load from being input to the. Therefore, it is possible to prevent the coil 13 (conductive wire) from being disconnected by a bending load input to the coil 13. Further, since the vibration of the magnetostrictive rod 11 can be prevented from being suppressed by the rigidity of the coil 13, it is possible to suppress a decrease in power generation efficiency (ratio of the amount of electric power to the excitation energy input to the power generation element 1).

なお、コイル13と固定部材20(係止部26)とを接着固定する接着剤は、エポキシ樹脂系、アクリル樹脂系、シリコーンゴム系、クロロプレンゴム系、シアノアクリレート系等の種々の接着剤を採用できる。コイル13の軸方向一端側と固定部材20とを接着し、コイル13の軸方向他端側と固定部材30とを非固定にすることで、採用可能な接着剤の自由度を向上できる。   Various adhesives such as epoxy resin, acrylic resin, silicone rubber, chloroprene rubber, and cyanoacrylate are used as the adhesive for bonding and fixing the coil 13 and the fixing member 20 (locking portion 26). it can. By adhering the one axial end side of the coil 13 and the fixing member 20 and unfixing the other axial end side of the coil 13 and the fixing member 30, the degree of freedom of the adhesive that can be employed can be improved.

仮に、コイル13の軸方向一端側を固定部材20に接着し、コイル13の軸方向他端側を固定部材30に接着する構成とする場合に、硬化後に弾性変形不能な接着剤を用いると、磁歪棒11を変形させて保持部材60(図1(b)参照)を振動させるために、磁歪棒11だけを変形させる場合と比較して、コイル13が介在する分だけ大きな加振力を要する。また、コイル13の曲げ剛性が発電素子1の固有振動数(磁歪棒11のばね定数の平方根に反比例する)に影響を与えるので、発電素子1の固有振動数を設計し難くなる。   Temporarily, when it is set as the structure which adhere | attaches the axial direction one end side of the coil 13 to the fixing member 20, and adhere | attaches the axial direction other end side of the coil 13 to the fixing member 30, when using the adhesive agent which cannot be elastically deformed after hardening, In order to deform the magnetostrictive rod 11 and vibrate the holding member 60 (see FIG. 1B), a larger excitation force is required as compared with the case where only the magnetostrictive rod 11 is deformed. . Further, since the bending rigidity of the coil 13 affects the natural frequency of the power generating element 1 (inversely proportional to the square root of the spring constant of the magnetostrictive rod 11), it is difficult to design the natural frequency of the power generating element 1.

そこで、コイル13の軸方向の両端を固定部材20,30にそれぞれ接着する構成とする場合には、磁歪棒11の曲げ変形にコイル13の曲げ剛性が影響することをできる限り抑制するため、硬化後に弾性変形可能な弾性接着剤が好適に採用される。弾性接着剤は、シリコーン系、変性シリコーン系、ポリウレタン系、ニトリルゴム系、合成ゴム系などの高分子化合物を含有するものが用いられる。   Therefore, when both ends in the axial direction of the coil 13 are bonded to the fixing members 20 and 30, respectively, in order to suppress the bending rigidity of the coil 13 from affecting the bending deformation of the magnetostrictive rod 11, as much as possible. An elastic adhesive that can be elastically deformed later is preferably employed. As the elastic adhesive, one containing a high molecular compound such as silicone, modified silicone, polyurethane, nitrile rubber, or synthetic rubber is used.

これに対し、本実施の形態のようにコイル13の軸方向他端側を保持部材60に非固定とすることにより、コイル13の曲げ剛性が磁歪棒11の曲げ変形に影響を与えることを防止できる。その結果、コイル13の軸方向一端側と固定部材20とを固定する接着剤は、弾性接着剤に限定されることなく種々の接着剤を自由に採用できる。シアノアクリレート系等の硬化速度の大きい接着剤を採用することも可能なので、そのような硬化速度の大きい接着剤を採用した場合には、発電素子1の組立時間を短縮できる。   On the other hand, the other end in the axial direction of the coil 13 is not fixed to the holding member 60 as in this embodiment, thereby preventing the bending rigidity of the coil 13 from affecting the bending deformation of the magnetostrictive rod 11. it can. As a result, the adhesive that fixes the one end side of the coil 13 in the axial direction and the fixing member 20 is not limited to an elastic adhesive, and various adhesives can be freely employed. Since an adhesive having a high curing speed, such as a cyanoacrylate, can be used, the assembly time of the power generating element 1 can be shortened when such an adhesive having a high curing speed is used.

また、コイル13の軸方向他端側を非固定にするので、コイル13の軸方向一端側を固定部材20に接着し、コイル13の軸方向他端側を固定部材30に接着する構成とする場合と比較して、コイル13の軸方向他端側を固定部材30に接着しない分だけ、コイル13の接着に要する工数および接着剤の使用量を削減できる。   Further, since the other axial end of the coil 13 is not fixed, one axial end of the coil 13 is bonded to the fixing member 20 and the other axial end of the coil 13 is bonded to the fixing member 30. Compared to the case, the man-hour required for bonding the coil 13 and the amount of adhesive used can be reduced by the amount that the other axial end of the coil 13 is not bonded to the fixing member 30.

また、コイル13の曲げ剛性が磁歪棒11の曲げ変形に影響を与えることを防止できるので、コイル13の軸方向の両側を一対の保持部材50,60に固定する場合と比較して、磁歪棒11を振動させるために必要な加振エネルギーの増加を抑制できる。その結果、発電素子1の発電効率を向上できる。さらに、コイル13による磁歪棒11の曲げ剛性(ばね定数)の上昇を抑制できるので、磁歪棒11の固有振動数が設計値からずれることを防止でき、固有振動数の設計を容易にできる。   Further, since the bending rigidity of the coil 13 can be prevented from affecting the bending deformation of the magnetostrictive rod 11, the magnetostrictive rod is compared with the case where both axial sides of the coil 13 are fixed to the pair of holding members 50, 60. An increase in excitation energy necessary for vibrating 11 can be suppressed. As a result, the power generation efficiency of the power generation element 1 can be improved. Furthermore, since the increase in the bending rigidity (spring constant) of the magnetostrictive rod 11 by the coil 13 can be suppressed, the natural frequency of the magnetostrictive rod 11 can be prevented from deviating from the design value, and the design of the natural frequency can be facilitated.

発電素子1によれば、保持部材50(固定部材20)にコイル13の軸方向一端側が固定されるので、コイル13の軸方向他端側が保持部材60(固定部材30)に接触する手前まで、コイル13の軸方向長さを軸方向他端側に延ばすことができる。その結果、コイル13を磁歪棒11及び剛性棒12の軸方向の中央部分に配置する場合と比較して、コイル13の巻数を増加させることができる。その結果、発電電圧を増加させることができる。   According to the power generation element 1, since the one axial end side of the coil 13 is fixed to the holding member 50 (fixing member 20), until the axial other end side of the coil 13 contacts the holding member 60 (fixing member 30), The axial length of the coil 13 can be extended to the other axial end side. As a result, the number of turns of the coil 13 can be increased as compared with the case where the coil 13 is disposed in the central portion of the magnetostrictive rod 11 and the rigid rod 12 in the axial direction. As a result, the generated voltage can be increased.

また、振動体Vに固定される保持部材50にコイル13の軸方向端部が固定されるので、保持部材50に対して振動する保持部材60にコイル13の軸方向端部が固定される場合と比較して、固定されるコイル13の軸方向一端側(保持部材50側)の加速度(振動の大きさ)を小さくできる。その結果、振動側の保持部材60にコイル13が固定される場合と比較して、コイル13を保持部材50から外れ難くすることができる。その結果、発電素子1の信頼性を向上できる。   Further, since the axial end of the coil 13 is fixed to the holding member 50 fixed to the vibrating body V, the axial end of the coil 13 is fixed to the holding member 60 that vibrates with respect to the holding member 50. As compared with the above, the acceleration (magnitude of vibration) on one end side (holding member 50 side) in the axial direction of the coil 13 to be fixed can be reduced. As a result, it is possible to make it difficult for the coil 13 to be detached from the holding member 50 as compared with the case where the coil 13 is fixed to the vibration-side holding member 60. As a result, the reliability of the power generation element 1 can be improved.

また、仮に、振動側の保持部材60にコイル13の軸方向端部が固定される場合には、コイル13の質量が発電素子1の固有振動数(保持部材60の質量の平方根に比例する)に影響を与えるので、発電素子1の固有振動数を設計し難くなる。これに対し、固定側の保持部材50にコイルの軸方向一端側が固定され、振動側の保持部材60にコイル13が非固定にされるので、コイル13の質量が発電素子1の固有振動数に影響を与えることを防止して、発電素子1の固有振動数の設計を容易にできる。   If the axial end of the coil 13 is fixed to the holding member 60 on the vibration side, the mass of the coil 13 is proportional to the natural frequency of the power generating element 1 (proportional to the square root of the mass of the holding member 60). Therefore, it is difficult to design the natural frequency of the power generating element 1. On the other hand, since one end in the axial direction of the coil is fixed to the holding member 50 on the fixed side and the coil 13 is not fixed to the holding member 60 on the vibration side, the mass of the coil 13 becomes the natural frequency of the power generating element 1. The natural frequency of the power generating element 1 can be easily designed by preventing the influence.

また、磁歪棒11及び剛性棒12が並設される方向(図2(b)上下方向)と交差する方向に沿う係止部26が、固定部材20の挟持対向部22及び規制部24の軸方向端面に設けられる。コイル13は、軸方向一端側が係止部26に係止され固定されるので、磁歪棒11及び剛性棒12が並設される方向に保持部材50(固定部材20)に加速度が作用したときに、加速度が作用する方向にコイル13の軸方向一端側をずれ難くできる。その結果、コイル13を保持部材50から外れ難くすることができるので、信頼性を向上できる。   Further, the locking portion 26 along the direction intersecting the direction in which the magnetostrictive rod 11 and the rigid rod 12 are juxtaposed (the vertical direction in FIG. 2B) is the axis of the sandwiching facing portion 22 and the regulating portion 24 of the fixing member 20. It is provided on the direction end face. Since the coil 13 has one end in the axial direction locked and fixed to the locking portion 26, when acceleration is applied to the holding member 50 (fixing member 20) in the direction in which the magnetostrictive rod 11 and the rigid rod 12 are juxtaposed. The one end side in the axial direction of the coil 13 can be made difficult to shift in the direction in which the acceleration acts. As a result, it is possible to make it difficult for the coil 13 to be detached from the holding member 50, so that reliability can be improved.

なお、係止部26は、固定部材20の挟持対向部22及び規制部26からベース部21に亘り軸方向視して略C字状に形成されている。ベース部21に設けられる係止部26は、磁歪棒11及び剛性棒12が並設される方向に沿うので、磁歪棒11及び剛性棒12が並設される方向と交差する方向に保持部材50(固定部材20)に加速度が作用したときも、加速度が作用する方向にコイル13の軸方向一端側をずれ難くできる。その結果、コイル13を保持部材50から外れ難くすることができるので、信頼性を向上できる。   The locking portion 26 is formed in a substantially C shape when viewed in the axial direction from the sandwiching facing portion 22 and the regulating portion 26 of the fixing member 20 to the base portion 21. Since the locking portion 26 provided on the base portion 21 is along the direction in which the magnetostrictive rod 11 and the rigid rod 12 are arranged in parallel, the holding member 50 is arranged in a direction intersecting with the direction in which the magnetostrictive rod 11 and the rigid rod 12 are arranged in parallel. Even when an acceleration acts on the (fixing member 20), it is possible to make it difficult to shift one end of the coil 13 in the axial direction in the direction in which the acceleration acts. As a result, it is possible to make it difficult for the coil 13 to be detached from the holding member 50, so that reliability can be improved.

また、固定部材20に係止部26を凹溝状に形成し、その凹溝状の係止部26の内面とコイル13の軸方向端部とを接着するので、係止部26が形成されていない固定部材の軸方向端面(平面)にコイル13の軸方向端部を接着する場合と比較して、係止部26(凹溝)の深さに比例して接着面積を拡大できる。その結果、接着強度を確保できるので、信頼性を確保できる。   In addition, the locking portion 26 is formed in a concave groove shape on the fixing member 20, and the inner surface of the concave groove-shaped locking portion 26 and the axial end portion of the coil 13 are bonded, so that the locking portion 26 is formed. Compared to the case where the axial end portion of the coil 13 is bonded to the axial end surface (flat surface) of the fixing member that is not fixed, the bonding area can be increased in proportion to the depth of the locking portion 26 (concave groove). As a result, since the adhesive strength can be ensured, reliability can be ensured.

次に図5を参照して、第2実施の形態について説明する。第1実施の形態では、固定部材20の軸方向端面に凹設された係止部26にコイル13を接着固定する場合について説明した。これに対し第2実施の形態では、固定部材70の軸方向端面に凹設された係止部71にコイル13を圧入固定する場合について説明する。なお、第1実施の形態と同一の部分については、同一の符号を付して以下の説明を省略する。図5(a)は第2実施の形態における発電素子の固定部材70の側面図であり、図5(b)は図5(a)のVb−Vb線における固定部材70の断面図であり、図5(c)は図5(b)の一部を拡大して図示した固定部材70の断面図である。   Next, a second embodiment will be described with reference to FIG. In the first embodiment, the case where the coil 13 is bonded and fixed to the locking portion 26 that is recessed in the axial end face of the fixing member 20 has been described. On the other hand, in the second embodiment, a case will be described in which the coil 13 is press-fitted and fixed to the engaging portion 71 that is recessed in the axial end surface of the fixing member 70. In addition, about the part same as 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 5A is a side view of the power generating element fixing member 70 according to the second embodiment, and FIG. 5B is a cross-sectional view of the fixing member 70 taken along line Vb-Vb in FIG. FIG. 5C is a cross-sectional view of the fixing member 70 shown by enlarging a part of FIG.

図5(a)に示すように固定部材70は、軸方向端面に係止部71が形成されている。図5(b)に示すように係止部71は、コイル13の軸方向端部が係止される部位であり、磁歪棒11及び剛性棒12が並設される方向(図5(a)上下方向)と交差する方向(図5(a)左右方向)に沿って挟持対向部22及び規制部24の軸方向端面に形成される。本実施の形態では、係止部71は、挟持対向部22及び規制部24からベース部21に亘って連続して形成され、軸方向視における形状が楕円の略C字状とされる。   As shown in FIG. 5A, the fixing member 70 has a locking portion 71 formed on the axial end surface. As shown in FIG. 5B, the locking portion 71 is a portion where the axial end of the coil 13 is locked, and the direction in which the magnetostrictive rod 11 and the rigid rod 12 are juxtaposed (FIG. 5A). It is formed in the axial direction end surface of the clamping opposing part 22 and the control part 24 along the direction (FIG. 5 (a) left-right direction) which cross | intersects the up-down direction. In the present embodiment, the locking portion 71 is formed continuously from the sandwiching facing portion 22 and the restricting portion 24 to the base portion 21, and has an elliptical substantially C shape when viewed in the axial direction.

図5(c)に示すように、係止部71は凹溝状に形成され、固定部材70の軸方向端面に凹設される。係止部71(図5(a)参照)は、両端がそれぞれ対向面22a,24aに開口する部位であり、内壁に緩衝部72が固設される。緩衝部72はゴム状弾性体から薄膜状に構成される。係止部71の内壁に固設される緩衝部72間の隙間は、コイル13の線材の太さ(直径)より小さめに形成されている。また、係止部71は、軸方向視における形状が、コイル13の軸方向端部の軸方向視における形状と同一に設定される。これによりコイル13は、軸方向端部が緩衝部72に圧入され、軸直角方向(図5(a)紙面と平行方向)の移動が規制される。   As shown in FIG. 5C, the locking portion 71 is formed in a concave groove shape, and is recessed on the axial end surface of the fixing member 70. The locking portion 71 (see FIG. 5A) is a portion where both ends open to the opposing surfaces 22a and 24a, respectively, and a buffer portion 72 is fixed to the inner wall. The buffer part 72 is comprised from the rubber-like elastic body in the shape of a thin film. The gap between the buffer portions 72 fixed to the inner wall of the locking portion 71 is formed smaller than the thickness (diameter) of the wire of the coil 13. Further, the shape of the locking portion 71 in the axial direction is set to be the same as the shape in the axial direction of the axial end portion of the coil 13. Thereby, the end of the axial direction of the coil 13 is press-fitted into the buffer 72, and the movement in the direction perpendicular to the axis (the direction parallel to the plane of FIG. 5A) is restricted.

第2実施の形態によれば、磁歪棒11及び剛性棒12が並設される方向(図5(a)上下方向)と交差する方向に沿う係止部71が、固定部材70の軸方向端面に設けられる。コイル13は、軸方向一端側が係止部71に係止され固定されるので、磁歪棒11及び剛性棒12が並設される方向に加速度が作用したときに、コイル13の軸方向一端側を固定部材70から外れ難くすることができる。よって、信頼性を向上できる。   According to the second embodiment, the locking portion 71 along the direction intersecting the direction in which the magnetostrictive rod 11 and the rigid rod 12 are juxtaposed (the vertical direction in FIG. 5A) is the axial end surface of the fixing member 70. Is provided. Since the coil 13 has one end in the axial direction locked and fixed to the locking portion 71, when acceleration is applied in the direction in which the magnetostrictive rod 11 and the rigid rod 12 are juxtaposed, the one end in the axial direction of the coil 13 is It can be made difficult to come off from the fixing member 70. Therefore, reliability can be improved.

また、コイル13と係止部71との間に緩衝部72が介設され、緩衝部72はゴム状弾性体により構成される。コイル13は緩衝部72間に圧入され固定されるので、接着剤を塗布してコイル13を静置した状態で硬化させる接着作業を不要にできる。   Moreover, the buffer part 72 is interposed between the coil 13 and the latching | locking part 71, and the buffer part 72 is comprised by the rubber-like elastic body. Since the coil 13 is press-fitted between the buffer portions 72 and fixed, it is possible to eliminate the need for an adhesive operation in which an adhesive is applied and the coil 13 is left stationary.

さらに、緩衝部72は、磁歪棒11及び剛性棒12が並設される方向(振動方向)に弾性変形可能に構成されている。その結果、磁歪棒11及び剛性棒12が並設される方向の加速度を、緩衝部72の弾性変形により抑制できる。よって、コイル13に作用する加速度を緩衝できるので、信頼性を向上できる。   Further, the buffer portion 72 is configured to be elastically deformable in a direction (vibration direction) in which the magnetostrictive rod 11 and the rigid rod 12 are juxtaposed. As a result, the acceleration in the direction in which the magnetostrictive rod 11 and the rigid rod 12 are juxtaposed can be suppressed by the elastic deformation of the buffer portion 72. Therefore, since the acceleration which acts on the coil 13 can be buffered, reliability can be improved.

次に図6を参照して第3実施の形態について説明する。第1実施の形態および第2実施の形態では、コイル13(空芯コイル)が軸方向に亘って同一の内径に設定される場合について説明した。これに対し第3実施の形態では、保持部材50に固定されるコイル82の軸方向一端側の内径に対して、保持部材60に非固定とされるコイル82の軸方向他端側の内径が大きく設定される場合について説明する。なお、第1実施の形態と同一の部分については、同一の符号を付して以下の説明を省略する。図6(a)は第3実施の形態における発電素子81の平面図であり、図6(b)は矢印VIb方向視における発電素子81の側面図である。   Next, a third embodiment will be described with reference to FIG. In 1st Embodiment and 2nd Embodiment, the case where the coil 13 (air core coil) was set to the same internal diameter over the axial direction was demonstrated. On the other hand, in the third embodiment, the inner diameter on the other end side in the axial direction of the coil 82 not fixed to the holding member 60 is smaller than the inner diameter on one end side in the axial direction of the coil 82 fixed to the holding member 50. A case where a large value is set will be described. In addition, about the part same as 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted. FIG. 6A is a plan view of the power generation element 81 in the third embodiment, and FIG. 6B is a side view of the power generation element 81 in the direction of arrow VIb.

発電素子81は、保持部材50(固定部材20)にコイル82の軸方向一端側が接着固定されている。コイル82は、銅線から構成される線材(導線)を螺旋状に巻回したものであり、コイル82の内周面と隙間を設けて磁歪棒11が内設される。本実施の形態では、コイル82は自己融着線からなる導線同士が接着固定された空芯コイルであり、保持部材50に固定される軸方向一端側が略円筒状に形成される一方、保持部材60に非固定とされる軸方向他端側が、軸方向他端側に向かうにつれて漸次拡径する略円錐状(ラッパ状)に形成される。即ちコイル82は、磁歪棒11及び剛性棒12が並設される方向(図6(b)上下方向)における内径が、軸方向他端側(図6(b)右側)が軸方向一端側(図6(b)左側)より拡大されている。   In the power generation element 81, one axial end side of the coil 82 is bonded and fixed to the holding member 50 (fixing member 20). The coil 82 is a spirally wound wire (conducting wire) made of a copper wire, and the magnetostrictive rod 11 is provided inside the coil 82 with a clearance from the inner peripheral surface. In the present embodiment, the coil 82 is an air-core coil in which conductive wires made of self-bonding wires are bonded and fixed, and one end in the axial direction fixed to the holding member 50 is formed in a substantially cylindrical shape, while the holding member The other axial end that is not fixed to 60 is formed in a substantially conical shape (trumpet shape) that gradually increases in diameter toward the other axial end. That is, the coil 82 has an inner diameter in the direction in which the magnetostrictive rod 11 and the rigid rod 12 are juxtaposed (the vertical direction in FIG. 6B), and the other axial end side (the right side in FIG. 6B) is the axial one end side. It is enlarged from FIG.6 (b) left side.

これにより、大きな加振エネルギーが入力されて、保持部材50に対して保持部材60が大きく変位し、磁歪棒11及び剛性棒12が並設される方向(図6(b)上下方向)に磁歪棒11の曲げ変形量が大きくなったときも、コイル82の軸方向他端側(図6(b)右側)に磁歪棒11を衝突させ難くできる。   Thereby, a large excitation energy is input, the holding member 60 is greatly displaced with respect to the holding member 50, and the magnetostriction in the direction in which the magnetostrictive rod 11 and the rigid rod 12 are juxtaposed (the vertical direction in FIG. 6B). Even when the amount of bending deformation of the rod 11 increases, it is possible to make it difficult for the magnetostrictive rod 11 to collide with the other axial end of the coil 82 (the right side in FIG. 6B).

以下、実施例により本発明を具体的に説明する。実施例、比較例1及び比較例2の発電素子は、いずれも同一材質かつ同一寸法の磁歪棒11、コイル13等の部品を用いて作成されている。なお、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described specifically by way of examples. The power generation elements of the example, comparative example 1 and comparative example 2 are all made using parts such as the magnetostrictive rod 11 and the coil 13 of the same material and the same dimensions. The present invention is not limited to these examples.

(実施例)
第1実施の形態で説明した発電素子1を作成するために、磁歪棒11を挿通したコイル13の軸方向一端側を保持部材50(固定部材20)に接着固定すると共に、磁歪棒11、剛性棒12及び永久磁石14,15を一対の保持部材50,60により保持した。コイル13の軸方向他端側は保持部材60(固定部材30)に非固定とした。これにより、実施例における発電素子を得た。
(Example)
In order to create the power generating element 1 described in the first embodiment, one end in the axial direction of the coil 13 through which the magnetostrictive rod 11 is inserted is bonded and fixed to the holding member 50 (fixing member 20). The rod 12 and the permanent magnets 14 and 15 were held by a pair of holding members 50 and 60. The other axial end of the coil 13 was not fixed to the holding member 60 (fixing member 30). This obtained the electric power generating element in an Example.

(比較例1)
コイル13に磁歪棒11を挿通した後、磁歪棒11、剛性棒12及び永久磁石14,15を一対の保持部材50,60により保持した。コイル13は、軸方向の両端を保持部材50,60に非固定とした。これにより、比較例1における発電素子を得た。比較例1は、コイル13の軸方向一端側が保持部材50に固定されていない点で、コイル13の軸方向一端側が保持部材50に固定された実施例と異なる。
(Comparative Example 1)
After inserting the magnetostrictive rod 11 through the coil 13, the magnetostrictive rod 11, the rigid rod 12 and the permanent magnets 14 and 15 were held by a pair of holding members 50 and 60. The coil 13 was not fixed to the holding members 50 and 60 at both ends in the axial direction. Thereby, the power generation element in Comparative Example 1 was obtained. The comparative example 1 is different from the embodiment in which one axial end side of the coil 13 is fixed to the holding member 50 in that the one axial end side of the coil 13 is not fixed to the holding member 50.

(比較例2)
コイル13に磁歪棒11を挿通した後、磁歪棒11、剛性棒12及び永久磁石14,15を一対の保持部材50,60により保持した。次いで、合成樹脂系(エラストマー製)の接着剤を、コイル13の軸方向両端部からコイル13と磁歪棒11との間に注入し硬化させた。これにより、比較例2における発電素子を得た。比較例2は、弾性を有する接着剤を介して、磁歪棒11及びコイル13の軸方向両端が保持部材50,60に接着されている点で、磁歪棒11及びコイル13が互いに干渉しない(コイル13が磁歪棒11の曲げ変形に影響を与えない)実施例と異なる。
(Comparative Example 2)
After inserting the magnetostrictive rod 11 through the coil 13, the magnetostrictive rod 11, the rigid rod 12 and the permanent magnets 14 and 15 were held by a pair of holding members 50 and 60. Subsequently, a synthetic resin-based (made of elastomer) adhesive was injected between the coil 13 and the magnetostrictive rod 11 from both axial ends of the coil 13 and cured. Thereby, the power generation element in Comparative Example 2 was obtained. In Comparative Example 2, the magnetostrictive rod 11 and the coil 13 do not interfere with each other in that the axial ends of the magnetostrictive rod 11 and the coil 13 are bonded to the holding members 50 and 60 via an elastic adhesive (coil 13 does not affect the bending deformation of the magnetostrictive rod 11).

(試験結果)
実施例、比較例1及び比較例2における発電素子の加振振幅と発生電圧との関係を測定した。一対の保持部材50,60の内、保持部材50を固定端とし、保持部材60を振動端として、振動端に加振振幅を与えた。図7は実施例および比較例における発電素子の加振振幅に対する発電圧(発生電圧)を示す図である。横軸は加振振幅(mm)であり、縦軸は発生電圧(V)である。図7に示すように、実施例および比較例1における発電素子は、0.03mm程度の加振振幅を与えると約2Vの発電圧が得られた。
(Test results)
The relationship between the excitation amplitude of the power generation element and the generated voltage in Examples, Comparative Examples 1 and 2 was measured. Of the pair of holding members 50, 60, the holding member 50 is a fixed end, the holding member 60 is a vibration end, and an excitation amplitude is given to the vibration end. FIG. 7 is a diagram showing a generated voltage (generated voltage) with respect to the excitation amplitude of the power generating element in the example and the comparative example. The horizontal axis is the excitation amplitude (mm), and the vertical axis is the generated voltage (V). As shown in FIG. 7, the power generation element in the example and the comparative example 1 generated a voltage of about 2 V when an excitation amplitude of about 0.03 mm was applied.

これに対し、比較例2における発電素子は、0.08mm程度の加振振幅を与えないと約2Vの発電圧が得られないことがわかった。これは、比較例2における発電素子は、磁歪棒11及びコイル13の軸方向両端が保持部材50,60に接着されているので、磁歪棒11の曲げ剛性(ばね定数)が上がり、発電効率(発電素子に入力された加振エネルギーに対する電力量の比率)が低下したためであると推察される。   On the other hand, it was found that the power generation element in Comparative Example 2 could not generate a voltage of about 2 V unless an excitation amplitude of about 0.08 mm was given. This is because the magnetostrictive rod 11 and the coil 13 have both axial ends bonded to the holding members 50 and 60 in the power generating element in the comparative example 2, so that the bending rigidity (spring constant) of the magnetostrictive rod 11 is increased, and the power generation efficiency ( This is presumably because the ratio of the amount of electric power to the excitation energy input to the power generation element has decreased.

次に図8を参照して、実施例および比較例1における発電素子の電圧波形について説明する。図8は実施例および比較例における発電素子により発生した電圧波形を示す図である。横軸は時間(s)であり、縦軸は発生電圧(V)である。図8に示すように、実施例における発電素子は約0.007秒の周期で±4Vの電圧波形が得られた。   Next, with reference to FIG. 8, the voltage waveform of the electric power generation element in an Example and the comparative example 1 is demonstrated. FIG. 8 is a diagram showing voltage waveforms generated by the power generation elements in the examples and comparative examples. The horizontal axis is time (s), and the vertical axis is the generated voltage (V). As shown in FIG. 8, a voltage waveform of ± 4 V was obtained for the power generation element in the example with a period of about 0.007 seconds.

これに対し、比較例1における発電素子は、実施例の電圧波形(基本波)に、これよりも高い周波数をもった交流電圧が重畳することで、電圧波形が乱れている。電圧波形の乱れは過大な電流が流れることに繋がるので、機器の誤動作や過熱等の原因となる。電圧波形の乱れの原因は、コイル13に磁歪棒11が衝突する衝撃によるものであると推察される。   On the other hand, in the power generation element in Comparative Example 1, the voltage waveform is disturbed by superimposing an AC voltage having a higher frequency on the voltage waveform (fundamental wave) of the example. Disturbances in the voltage waveform lead to excessive current flow, causing malfunction of the device and overheating. It is presumed that the disturbance of the voltage waveform is due to the impact of the magnetostrictive rod 11 colliding with the coil 13.

以上説明したように、実施例における発電素子1は、コイル13の軸方向一端側が保持部材50に固定されることで、振動する磁歪棒11とコイル13との衝突が阻止される。その結果、電圧波形の乱れを抑制できることが明らかになった。また、磁歪棒11とコイル13との衝突を阻止することで、磁歪棒11とコイル13との衝突による異音の発生およびコイル13(導線)の断線を防止できる。   As described above, in the power generating element 1 according to the embodiment, the one end side in the axial direction of the coil 13 is fixed to the holding member 50, thereby preventing collision between the vibrating magnetostrictive rod 11 and the coil 13. As a result, it became clear that the disturbance of the voltage waveform can be suppressed. Further, by preventing the collision between the magnetostrictive rod 11 and the coil 13, it is possible to prevent the generation of noise due to the collision between the magnetostrictive rod 11 and the coil 13 and the disconnection of the coil 13 (conductive wire).

なお、説明は省略したが、第2実施の形態から第3実施の形態における発電素子についても、実施例と同様に、電圧波形の乱れを抑制できることを確認した。また、磁歪棒とコイルとの衝突を阻止することで、磁歪棒とコイルとの衝突による異音の発生およびコイル(導線)の断線を防止できることは推察できる。   In addition, although description was abbreviate | omitted, also about the electric power generation element in 2nd Embodiment to 3rd Embodiment, it was confirmed that disorder of a voltage waveform can be suppressed similarly to an Example. Moreover, it can be inferred that by preventing the collision between the magnetostrictive rod and the coil, it is possible to prevent the generation of noise due to the collision between the magnetostrictive rod and the coil and the disconnection of the coil (conductive wire).

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed.

上記各実施の形態では、保持部材50,60が固定部材20,30とホルダ部材40との2部材から構成される場合を説明したが、必ずしもこれに限られるものではなく、固定部材20,30とホルダ部材40とを一体に形成しても良い。なお、この場合には、圧入による磁歪棒11等の挟圧保持作用を得られないため、磁歪棒11等の保持部材50,60への固着を、接着剤による接着固定で行う。   In each of the above-described embodiments, the case where the holding members 50 and 60 are configured by the two members of the fixing members 20 and 30 and the holder member 40 has been described. However, the present invention is not necessarily limited thereto, and the fixing members 20 and 30 are not necessarily limited thereto. And the holder member 40 may be integrally formed. In this case, since the holding action of the magnetostrictive rod 11 or the like by press-fitting cannot be obtained, the magnetostrictive rod 11 or the like is fixed to the holding members 50 and 60 by adhesive fixing with an adhesive.

上記各実施形態では、磁歪棒11のみにコイル13を巻回する場合を説明したが、必ずしもこれに限られるのもではなく、磁歪棒11と剛性棒12との両者にそれぞれコイル13を巻回しても良い。なお、この場合には、磁歪棒11及び剛性棒12を同じ磁歪材料から構成する(即ち、剛性棒12を磁歪棒11よりも磁歪効果の低い材料で構成する必要はない)。   In each of the above-described embodiments, the case where the coil 13 is wound only on the magnetostrictive rod 11 has been described. However, the present invention is not limited to this. May be. In this case, the magnetostrictive rod 11 and the rigid rod 12 are made of the same magnetostrictive material (that is, the rigid rod 12 need not be made of a material having a lower magnetostrictive effect than the magnetostrictive rod 11).

上記各実施形態では、発電素子1を例示して説明したが、必ずしもこれに限られるものではなく、「磁歪材料から構成される磁歪棒と、その磁歪棒に巻回されるコイルとを備え、磁歪棒の軸方向一端側が固定端とされると共に軸方向他端側が自由振動可能または強制振動可能な自由端(振動端)とされ、磁歪棒が軸方向に伸張または収縮されることで、逆磁歪効果により発電を行うもの」であれば、他の発電素子を採用することは当然可能である。   In each of the above embodiments, the power generation element 1 has been described as an example. However, the present invention is not necessarily limited thereto, and includes “a magnetostrictive rod made of a magnetostrictive material and a coil wound around the magnetostrictive rod, One end in the axial direction of the magnetostrictive rod is a fixed end and the other end in the axial direction is a free end capable of free vibration or forced vibration (vibration end), and the magnetostrictive rod is expanded or contracted in the axial direction. Of course, it is possible to employ other power generating elements as long as they generate electricity by the magnetostrictive effect.

他の発電素子としては、例えば、永久磁石14,15に代えて、電磁石を利用するものを採用することができる。また、発電素子1の系外からの磁場により磁気回路に漏れ磁束が発生する構成であれば、発電素子1の系外に磁石を配置した構成とすることは可能である。また、永久磁石や電磁石の起磁力により磁歪棒11及び剛性棒12(磁歪棒)にバイアス磁化を印加するバックヨークを設けることも可能である。   As another power generation element, for example, an element using an electromagnet can be adopted instead of the permanent magnets 14 and 15. In addition, if the magnetic flux from the outside of the power generating element 1 is generated in the magnetic circuit, a configuration in which a magnet is arranged outside the power generating element 1 is possible. It is also possible to provide a back yoke that applies bias magnetization to the magnetostrictive rod 11 and the rigid rod 12 (magnetostrictive rod) by the magnetomotive force of a permanent magnet or electromagnet.

上記各実施の形態では、磁歪棒11及び剛性棒12の寸法(即ち、厚み寸法および幅寸法)を同一とする場合を説明したが、必ずしもこれに限られるものではなく、磁歪棒11の寸法に対し、剛性棒12の寸法を異なる値(厚み寸法および幅寸法の一方のみ又は両方が異なる値)としても良い。   In each of the above-described embodiments, the case where the dimensions (that is, the thickness dimension and the width dimension) of the magnetostrictive rod 11 and the rigid rod 12 are the same has been described. On the other hand, the dimension of the rigid rod 12 may be a different value (only one or both of the thickness dimension and the width dimension are different).

上記各実施の形態では、磁歪棒11、剛性棒12を断面長方形に形成する場合を説明したが、必ずしもこれに限られるものではなく、他の形状とすることは当然可能である。他の形状としては、断面正方形、断面円形、断面楕円形、断面多角形(例えば、断面六角形)などが例示される。   In each of the above embodiments, the case where the magnetostrictive rod 11 and the rigid rod 12 are formed to have a rectangular cross section has been described. However, the present invention is not necessarily limited to this, and other shapes are naturally possible. Examples of other shapes include a square cross section, a circular cross section, an elliptical cross section, and a polygonal cross section (for example, a hexagonal cross section).

なお、例えば、磁歪棒11等を断面円形としたことで、永久磁石14,15と線接触となり、接触面積が確保できない場合には、永久磁石14,15の寸法または起磁力を大きくするか、或いは、磁歪棒11等と永久磁石14,15との間に磁性体からなり両者の形状に対応した形状(即ち、両者に面接触する形状)のスペーサを介在させ、接触面積を確保することが好ましい。これらにより、付与可能なバイアス磁界の増加を図ることができるからである。   In addition, for example, when the magnetostrictive rod 11 or the like has a circular cross section, the permanent magnets 14 and 15 are in line contact, and when the contact area cannot be secured, the size or magnetomotive force of the permanent magnets 14 and 15 is increased, Alternatively, it is possible to secure a contact area by interposing a spacer made of a magnetic material between the magnetostrictive rod 11 and the like and the permanent magnets 14 and 15 and having a shape corresponding to the shape of both (that is, a shape in surface contact with both). preferable. This is because the bias magnetic field that can be applied can be increased.

上記各実施の形態では、固定側の保持部材50にコイル13,82の一端を固定し、振動側の保持部材60とコイル13,82の他端とを非固定にする場合について説明した。しかし、必ずしもこれに限られるものではなく、振動側の保持部材60にコイル13,82の他端を固定する一方、固定側の保持部材50とコイル13,82の一端とを非固定にすることは当然可能である。この場合も、コイル13,82が磁歪棒11の曲げ変形に影響を与えないようにできるので、異音の発生やコイル13,82の断線、電圧波形の乱れを抑制できる。   In each of the above embodiments, the case where one end of the coils 13 and 82 is fixed to the holding member 50 on the fixed side and the other end of the holding member 60 on the vibration side and the other ends of the coils 13 and 82 are not fixed has been described. However, the present invention is not necessarily limited to this, and the other end of the coils 13 and 82 is fixed to the vibration-side holding member 60, while the fixed-side holding member 50 and one end of the coils 13 and 82 are not fixed. Is of course possible. Also in this case, since the coils 13 and 82 can be prevented from affecting the bending deformation of the magnetostrictive rod 11, occurrence of abnormal noise, disconnection of the coils 13 and 82, and disturbance of the voltage waveform can be suppressed.

上記各実施の形態では、固定部材20,70(保持部材50)に凹溝状の係止部26,71が凹設される場合について説明したが、必ずしもこれに限られるものではなく、凸起状や突条状の係止部を固定部材20,70の軸方向端面に凸設することは当然可能である。係止部を凸起状や突条状にした場合も、固定部材20,70の軸方向端面に沿ってコイル13,82の軸方向端部側が移動することを規制できるからである。   In each of the above embodiments, the case where the recessed groove-like locking portions 26 and 71 are provided in the fixing members 20 and 70 (holding member 50) has been described. Of course, it is possible to project the locking portions in the shape of ridges or ridges on the end surfaces of the fixing members 20 and 70 in the axial direction. This is because even when the locking portion is formed in a protruding shape or a ridge shape, the movement of the axial end portions of the coils 13 and 82 along the axial end surfaces of the fixing members 20 and 70 can be restricted.

上記第2実施の形態では、ゴム状弾性体で緩衝部72を構成し、緩衝部72の隙間にコイル13,82の軸方向一端側を圧入する場合について説明した。しかし、必ずしもこれに限られるものではなく、硬化後に弾性変形可能な弾性接着剤で緩衝部72を構成することは当然可能である。この場合には、凹溝状の係止部71内に弾性接着剤を塗布した後、コイル13,82の軸方向一端側を係止部71に挿入する。弾性接着剤の硬化後、係止部71とコイル13,82との間に、弾性接着剤による緩衝部が形成される。これにより、第2実施の形態における発電素子と同様の作用・効果を実現できる。   In the second embodiment, the case where the buffer portion 72 is formed of a rubber-like elastic body and the axial one end side of the coils 13 and 82 is press-fitted into the gap of the buffer portion 72 has been described. However, the present invention is not necessarily limited to this, and it is naturally possible to configure the buffer portion 72 with an elastic adhesive that can be elastically deformed after curing. In this case, after applying an elastic adhesive in the recessed groove-shaped locking part 71, one axial end side of the coils 13 and 82 is inserted into the locking part 71. After the elastic adhesive is hardened, a buffer portion made of the elastic adhesive is formed between the locking portion 71 and the coils 13 and 82. Thereby, the effect | action and effect similar to the electric power generation element in 2nd Embodiment are realizable.

上記第3実施の形態では、保持部材60に非固定とされるコイル82の軸方向他端側が、軸方向他端側に向かうにつれて漸次拡径する略円錐状(ラッパ状)に形成される場合について説明した。しかし、必ずしもこれに限られるものではなく、軸方向他端側の内径を段差状に拡大することは当然可能である。この場合も、コイル82の軸方向他端側の内径をコイルの軸方向一端側の内径より拡大させることで、磁歪棒11の曲げ変形がコイル82に妨げられないようにできるからである。   In the third embodiment, the other axial end of the coil 82 that is not fixed to the holding member 60 is formed in a substantially conical shape (trumpet shape) that gradually increases in diameter toward the other axial end. Explained. However, the present invention is not necessarily limited to this, and it is naturally possible to expand the inner diameter at the other end in the axial direction in a step shape. Also in this case, the bending deformation of the magnetostrictive rod 11 can be prevented from being hindered by the coil 82 by enlarging the inner diameter of the coil 82 on the other end side in the axial direction than the inner diameter on the one end side in the axial direction of the coil.

1,81 発電素子
11 磁歪棒
12 剛性棒
13,82 コイル
26,71 係止部
50,60 保持部材
72 緩衝部
DESCRIPTION OF SYMBOLS 1,81 Power generation element 11 Magnetostrictive rod 12 Rigid rod 13, 82 Coil 26, 71 Locking part 50, 60 Holding member 72 Buffer part

Claims (5)

導線が螺旋状に巻回されて形成されるコイルと、
前記コイルの内周面と間隔をあけて前記コイルに内設されると共に磁歪材料から棒状に構成される磁歪棒と、
前記磁歪棒に並設されると共に磁性材料から棒状に構成され前記磁歪棒との間で磁気ループが形成される剛性棒と、
前記剛性棒および前記磁歪棒の軸方向両端をそれぞれ保持する一対の保持部材とを備え、前記一対の保持部材の一方が固定され、前記一対の保持部材の他方が前記磁歪棒および前記剛性棒が並設される方向に振動することで前記磁歪棒が軸方向に伸張または収縮して発電が行われる発電素子であって、
前記コイルは、軸方向一端側が前記一対の保持部材のいずれか一方に固定され、軸方向他端側が前記一対の保持部材のいずれか他方に非固定とされていることを特徴とする発電素子。
A coil formed by winding a conductive wire in a spiral;
A magnetostrictive rod that is provided in the coil with a gap from the inner peripheral surface of the coil and is configured in a rod shape from a magnetostrictive material;
A rigid rod that is arranged in parallel to the magnetostrictive rod and is formed into a rod shape from a magnetic material, and a magnetic loop is formed between the magnetostrictive rod,
A pair of holding members that respectively hold axially opposite ends of the rigid rod and the magnetostrictive rod, one of the pair of holding members is fixed, and the other of the pair of holding members is the magnetostrictive rod and the rigid rod A power generating element in which power is generated by stretching or contracting the magnetostrictive rod in the axial direction by oscillating in a parallel direction,
One end of the coil in the axial direction is fixed to one of the pair of holding members, and the other end in the axial direction is not fixed to the other of the pair of holding members.
前記コイルは、前記一対の保持部材のうち固定側の一方に軸方向一端側が固定されていることを特徴とする請求項1記載の発電素子。   2. The power generating element according to claim 1, wherein one end of the coil in the axial direction is fixed to one of the fixed sides of the pair of holding members. 前記保持部材は、前記磁歪棒および前記剛性棒が並設される方向と交差する方向に沿って軸方向端面に設けられる係止部を備え、
前記コイルは、軸方向一端側が前記係止部に係止され固定されることを特徴とする請求項1又は2に記載の発電素子。
The holding member includes a locking portion provided on an axial end surface along a direction intersecting with a direction in which the magnetostrictive rod and the rigid rod are juxtaposed,
The power generating element according to claim 1, wherein one end side of the coil in the axial direction is locked and fixed to the locking portion.
前記コイルと前記係止部との間に介設される緩衝部を備え、
前記緩衝部は、前記磁歪棒および前記剛性棒が並設される方向に弾性変形可能に構成されていることを特徴とする請求項1から3のいずれかに記載の発電素子。
Including a buffer portion interposed between the coil and the locking portion;
The power generation element according to any one of claims 1 to 3, wherein the buffer portion is configured to be elastically deformable in a direction in which the magnetostrictive rod and the rigid rod are juxtaposed.
前記コイルは、前記一対の保持部材のいずれか他方に非固定とされる軸方向他端側の前記磁歪棒および剛性棒が並設される方向における内径が、軸方向一端側の前記磁歪棒および剛性棒が並設される方向における内径より拡大されていることを特徴とする請求項1から4のいずれかに記載の発電素子。   The coil has an inner diameter in a direction in which the magnetostrictive rod and the rigid rod on the other axial end side that are not fixed to the other of the pair of holding members are arranged side by side, and the magnetostrictive rod on the one axial end side and The power generating element according to any one of claims 1 to 4, wherein the power generating element is enlarged from an inner diameter in a direction in which the rigid rods are juxtaposed.
JP2013264736A 2013-12-23 2013-12-23 Power generation element Pending JP2015122855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264736A JP2015122855A (en) 2013-12-23 2013-12-23 Power generation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264736A JP2015122855A (en) 2013-12-23 2013-12-23 Power generation element

Publications (1)

Publication Number Publication Date
JP2015122855A true JP2015122855A (en) 2015-07-02

Family

ID=53534022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264736A Pending JP2015122855A (en) 2013-12-23 2013-12-23 Power generation element

Country Status (1)

Country Link
JP (1) JP2015122855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312833B2 (en) * 2014-04-23 2019-06-04 Mitsumi Electric Co., Ltd Power generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078181A (en) * 2001-08-31 2003-03-14 Matsushita Electric Works Ltd Ultra-magnetostrictive linear actuator
JP2005147675A (en) * 2003-11-11 2005-06-09 Tdk Corp Tension sensor
JP2005253139A (en) * 2004-03-01 2005-09-15 Tdk Corp Super-magnetostriction actuator
JP2008072438A (en) * 2006-09-14 2008-03-27 Tokyo Metropolitan Univ Magnetostriction actuator
JP2013208029A (en) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd Power generation element
JP2014033508A (en) * 2012-08-01 2014-02-20 Mitsumi Electric Co Ltd Power generation element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078181A (en) * 2001-08-31 2003-03-14 Matsushita Electric Works Ltd Ultra-magnetostrictive linear actuator
JP2005147675A (en) * 2003-11-11 2005-06-09 Tdk Corp Tension sensor
JP2005253139A (en) * 2004-03-01 2005-09-15 Tdk Corp Super-magnetostriction actuator
JP2008072438A (en) * 2006-09-14 2008-03-27 Tokyo Metropolitan Univ Magnetostriction actuator
JP2013208029A (en) * 2012-03-29 2013-10-07 Toyo Tire & Rubber Co Ltd Power generation element
JP2014033508A (en) * 2012-08-01 2014-02-20 Mitsumi Electric Co Ltd Power generation element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312833B2 (en) * 2014-04-23 2019-06-04 Mitsumi Electric Co., Ltd Power generator

Similar Documents

Publication Publication Date Title
US10780457B2 (en) Vibration generator moving vibrator by magnetic field generated by coil and vibrator-mounted holder used in vibration-generator
US9571011B2 (en) Power generating element and power generation device
JP5760316B2 (en) Vibration type electromagnetic generator
JP2011505114A (en) Electromechanical generator for converting mechanical vibration energy into electrical energy
JP5986773B2 (en) Power generation element
JP5969244B2 (en) Power generation element
JP6349909B2 (en) Power generator
JP6266991B2 (en) Vibration power generator
WO2015162988A1 (en) Electricity generation device
JP2015122855A (en) Power generation element
CN110098711B (en) Actuator
JP5890721B2 (en) Power generation element
JP6068187B2 (en) Power generation element
JP6155009B2 (en) Power generator
JP2013208030A (en) Power generation element
JP6093573B2 (en) Power generation element cover
WO2014168008A1 (en) Power generation device
JP2017022958A (en) Vibration power generation device
JP5346137B1 (en) Giant magnetostrictive actuator
JP2014082879A (en) Power generation unit
JP6239411B2 (en) Power generator
WO2014168007A1 (en) Power generation device
JP7172660B2 (en) Vibration power generation device
KR101085461B1 (en) Apparatus for small sized actuator using different elastic spring
CN110098712B (en) Actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180403