JP2015121726A - Diffraction grating and manufacturing method thereof - Google Patents

Diffraction grating and manufacturing method thereof Download PDF

Info

Publication number
JP2015121726A
JP2015121726A JP2013266418A JP2013266418A JP2015121726A JP 2015121726 A JP2015121726 A JP 2015121726A JP 2013266418 A JP2013266418 A JP 2013266418A JP 2013266418 A JP2013266418 A JP 2013266418A JP 2015121726 A JP2015121726 A JP 2015121726A
Authority
JP
Japan
Prior art keywords
light
wavelength
diffraction grating
diffracted
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013266418A
Other languages
Japanese (ja)
Other versions
JP6236598B2 (en
Inventor
洋 垣内田
Hiroshi Kakitsuda
洋 垣内田
吉村 和記
Kazunori Yoshimura
吉村  和記
田澤 真人
Masato Tazawa
真人 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013266418A priority Critical patent/JP6236598B2/en
Publication of JP2015121726A publication Critical patent/JP2015121726A/en
Application granted granted Critical
Publication of JP6236598B2 publication Critical patent/JP6236598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diffraction grating that is manufactured as one lattice structure by one-step exposure, that generates Bragg diffraction light of two wavelengths with one incident angle, and controls and switches them between the two wavelengths.SOLUTION: The diffraction grating has a periodic phase separation structure of a liquid crystal and polymer formed by one-step holographic exposure, can cause Bragg diffraction to light incident at one incident angle and having two or more different wavelengths, and can switch between diffraction/non-diffraction states by changing a polarization light direction of incident light. Polarization light (p polarization light) in a plane including an incident beam and a diffraction beam can perform switching between light of one wavelength being in a diffraction state and light of the other wavelength being in a non-diffraction state, from light of two different wavelengths incident at one incident angle. On the other hand, when a polarization light direction is switched to polarization light (s polarization light ) perpendicular to the plane, light of the former wavelength is switched to the non-diffraction state, and light of the latter wavelength is switched to the diffraction state. Thus, dual wavelength interchangeable switching is allowed by which the switching can be performed reversibly in the polarization light direction.

Description

本発明は、回折格子とその製造方法に関するものである。さらに詳しくは、本発明は、光学スイッチ、ファイバースイッチ、波長セレクター、分光光度計(回折格子)、偏光解析装置、偏光変換素子、偏光ビームスプリッター、偏光選択フィルター、光ピックアップ器、光ディスク装置等の各種の光機器、光装置に用いられる波長切換え素子として有用な回折格子とその製造方法に関するものである。   The present invention relates to a diffraction grating and a manufacturing method thereof. More specifically, the present invention relates to various types of optical switches, fiber switches, wavelength selectors, spectrophotometers (diffraction gratings), polarization analyzers, polarization conversion elements, polarization beam splitters, polarization selection filters, optical pickups, optical disk devices, and the like. The present invention relates to a diffraction grating useful as a wavelength switching element used in optical devices and optical devices, and a manufacturing method thereof.

光波長選択機能は様々な光制御において求められ、従来より種々の場面での光波長選択のための素子・機器が開発されている。例えば、光ピックアップ系では、光ディスクの書込み・読取りは波長の異なるレーザで行われるが、それらの光路結合や光路分岐など伝播光を制御する必要がある。また分光装置では、内蔵する回折格子に入射する光の入射角によって波長選択的に回折を生じさせ、入射角をスキャンし回折波長をシフトさせて分光する必要がある。一方、SHG効果による短波長光の発現においては、基本波(波長をλ1とする)の光が入射して生じた第2、3、・・・次高調波(それぞれ波長λ1/2、λ1/3、・・・)の出射光を区分して処理するために波長選択素子で分割制御する必要がある。これらの様々な場面での波長選択機能等を有する光学素子は可能な限り、シンプル且つコンパクトであることが要望され、装置機器全体の小型軽量化や作製コスト低減が求められる。 The optical wavelength selection function is required in various optical controls, and elements and devices for optical wavelength selection in various scenes have been developed. For example, in an optical pickup system, writing / reading of an optical disk is performed by lasers having different wavelengths, but it is necessary to control propagation light such as optical path coupling and optical path branching. Further, in the spectroscopic device, it is necessary to cause diffraction in a wavelength-selective manner according to the incident angle of light incident on a built-in diffraction grating, scan the incident angle, shift the diffraction wavelength, and perform spectroscopy. On the other hand, in the expression of short-wavelength light due to the SHG effect, the second, third,... Second harmonics (wavelengths λ 1/2, respectively) generated when light of the fundamental wave (having wavelength λ 1 ) is incident λ 1/3, ···) it is necessary to divide the control by the wavelength selection element for processing by dividing the emitted light. An optical element having a wavelength selection function and the like in these various scenes is required to be as simple and compact as possible, and it is required to reduce the size and weight of the entire apparatus and to reduce the manufacturing cost.

従来型の一つとして、波長毎に光を分岐するためのダイクロイックミラーやトリクロイックミラーをビームスプリッター等と組合せ、コンパクトな光学系とした小型光ヘッド(例えば、特許文献1)が挙げられる。但しこの場合、光学部品を個別に組み合わせるため、サイズ縮小には限界があり、また部品点数などを考えると作製コスト面でも改善が容易でない。その解決法として、二つ以上の波長で選択的に光を分岐できる素子が開発された。その中でも、偏光方向により波長選択が可能な素子は、有効な技術であり、これまで多くのタイプが報告されている。例えば、ニオブ酸リチウムなど複屈折を有する光学異方材料の基板に周期格子溝を形成し、その溝中に、光学異方材料の一方と屈折率を一致させた等方材料を充填して作製した回折格子が提案されている(特許文献2)。この素子では、ある一つの波長の光が入射すると、特定の偏光方向に対し回折が生じ、これに直行する偏光方向の光は直進するように設計されている。一方、この素子に異なる波長の光が入射すると、材料の波長分散により、互いに接するこれら二つの材料の屈折率の関係が変わり、偏光方向に拘らず空間的な屈折率変調が維持され回折が生じる状態となり、波長セレクターとして用いることができる。また、格子ピッチの異なる複数の透過型回折格子を多層化し、一体素子とすることで複数の波長で選択的に回折される複合回折格子が提案されている(特許文献3)。この素子では、回折格子を形成する材料は複屈折性を有する材料で作製した異方性回折格子を複数に組み合せ、それぞれが異なる偏光で回折するよう設計することで、偏光方向により回折波長の選択性を持たすことができる。   As one of the conventional types, there is a small optical head (for example, Patent Document 1) in which a dichroic mirror or a trichromatic mirror for splitting light for each wavelength is combined with a beam splitter or the like to form a compact optical system. However, in this case, since the optical components are individually combined, there is a limit in reducing the size, and considering the number of components, it is not easy to improve the manufacturing cost. As a solution, an element that can selectively split light at two or more wavelengths has been developed. Among them, an element capable of selecting a wavelength depending on the polarization direction is an effective technique, and many types have been reported so far. For example, a periodic grating groove is formed in a substrate of optically anisotropic material having birefringence, such as lithium niobate, and the groove is filled with an isotropic material having a refractive index matching that of one of the optically anisotropic materials. A diffraction grating has been proposed (Patent Document 2). This element is designed so that when light of a certain wavelength is incident, diffraction occurs in a specific polarization direction, and light in a polarization direction perpendicular to the polarization direction travels straight. On the other hand, when light of different wavelengths is incident on this element, the relationship between the refractive indices of these two materials in contact with each other changes due to the wavelength dispersion of the material, and spatial refractive index modulation is maintained regardless of the polarization direction, resulting in diffraction. It becomes a state and can be used as a wavelength selector. In addition, a composite diffraction grating that is selectively diffracted at a plurality of wavelengths by forming a plurality of transmission diffraction gratings having different grating pitches into a multilayered structure is proposed (Patent Document 3). In this element, the diffraction grating is made of a combination of a plurality of anisotropic diffraction gratings made of birefringent materials, each of which is designed to diffract with different polarizations. Can have sex.

これらの従来例では、複数の波長選択機能を素子に集積化したことでコンパクト化されたが、所望の波長毎に選択的に回折させる構造を個別に作製するため工程が複雑になりやすく、コスト低減に関してまだ改善の余地があると言える。   These conventional examples have been made compact by integrating a plurality of wavelength selection functions in the element, but the process is likely to be complicated because the structure for selectively diffracting for each desired wavelength is individually produced, and the cost is low. It can be said that there is still room for improvement in terms of reduction.

また、回折格子の形成技術として、一種の自己組織化を利用した簡便な手法が報告されている。例えば、液晶と高分子の周期構造からなる屈折率変調型の透過回折格子は、ホログラフィック高分子分散液晶(HPDLC)回折素子と呼ばれ、これまで多くの技術が報告されている。これは、液晶と光重合性モノマーに重合開始材などの添加物を加えて混合した原料を透明基板に薄く挟み、これに二光束干渉露光といった不均一露光を施し、露光時の空間的な光強度の強弱に応じて局所的に重合させることで、液晶と高分子が空間周期的に二相に分離して形成される回折格子となる。その際、自己組織的に液晶の配向が特定方向に秩序を高め、光学異方性を持たせたBragg型の回折格子とすることができる。この回折格子に光が入射すると、特定の偏光方向のみが選択的に回折され、偏光方向を変えることで回折光がオン・オフされる(特許文献4)。このように、HPDLCでは、特定の入射角に対して、Bragg条件を満たす一つの波長の光が選択的に回折され、偏光方向を変えることでこの回折光はオン・オフされることが知られている。   As a diffraction grating forming technique, a simple method using a kind of self-organization has been reported. For example, a refractive index modulation type transmission diffraction grating composed of a periodic structure of a liquid crystal and a polymer is called a holographic polymer dispersed liquid crystal (HPDLC) diffraction element, and many techniques have been reported so far. This is because the raw material, which is a mixture of liquid crystal and photopolymerizable monomer added with an additive such as a polymerization initiator, is thinly sandwiched between transparent substrates, and this is subjected to non-uniform exposure such as two-beam interference exposure, resulting in spatial light during exposure. By locally polymerizing depending on the strength, the diffraction grating is formed by separating the liquid crystal and the polymer into two phases in a spatially periodic manner. At this time, a Bragg type diffraction grating having self-organized liquid crystal orientation with higher order in a specific direction and optical anisotropy can be obtained. When light enters the diffraction grating, only a specific polarization direction is selectively diffracted, and the diffracted light is turned on / off by changing the polarization direction (Patent Document 4). Thus, in HPDLC, it is known that light of one wavelength satisfying the Bragg condition is selectively diffracted for a specific incident angle, and this diffracted light is turned on / off by changing the polarization direction. ing.

特開2008−181637JP2008-181637 WO2004−97819WO2004-97819 特許4735749Patent 4735749 特開2006−134504JP 2006-134504 A

HPDLCは簡便な手法としてワンステップ(一度のみの)二光束干渉露光で作製することができる点で注目される技術である。しかしながら、上記の例のようなこれまでのHPDLC回折素子では、一つの入射角で二つの波長のBragg回折光を発生させ、それらを偏光方向により切り換え制御することは実現されていない。   HPDLC is a technology that attracts attention because it can be fabricated by one-step (one-time) two-beam interference exposure as a simple technique. However, in the conventional HPDLC diffractive element as in the above example, it is not realized to generate Bragg diffracted light of two wavelengths at one incident angle and to switch and control them according to the polarization direction.

本発明は、このような従来の問題点を解消し、偏光制御による波長切換えをワンステップ露光で作製した一つの格子構造で実現でき、素子、装置のコンパクト化や、応用範囲の拡大、汎用性向上を図ることのできる新しい回折格子とその製造方法を提供することを課題としている。   The present invention eliminates such conventional problems and can realize wavelength switching by polarization control with a single grating structure fabricated by one-step exposure, making elements and devices compact, expanding the range of applications, and versatility. It is an object of the present invention to provide a new diffraction grating that can be improved and a method for manufacturing the same.

本発明者は、HPDLC回折素子についての検討から、HPDLC回折素子は、上述の通り、二光束干渉露光(干渉縞間隔Λとする)による重合、相分離、液晶配向により形成され、露光時の干渉の光強度分布に応じて、ピッチΛの屈折率変調分布が形成され、この周期構造で表されるBragg条件
を満たす特定の波長λと入射角θでBragg回折が生じ、式(1)から、偏光方向の切り換えに対し可逆的に格子ピッチΛが変化する格子構造を形成することで、同一の入射角θでのBragg回折波長λの選択を偏光により制御することができるとの知見を得た。また、この格子構造は、作製における出発材料や露光時の条件を選択することで、ワンステップ露光により形成される複屈折を含めた屈折率変調分布を設計し実現することができることを確認した。
The present inventor has examined the HPDLC diffractive element, and as described above, the HPDLC diffractive element is formed by polymerization, phase separation, and liquid crystal alignment by two-beam interference exposure (interference fringe spacing Λ), and interference at the time of exposure. Depending on the light intensity distribution, a refractive index modulation distribution with a pitch Λ is formed, and the Bragg condition expressed by this periodic structure
Bragg diffraction occurs at a specific wavelength λ and an incident angle θ satisfying the above, and from equation (1), by forming a grating structure in which the grating pitch Λ reversibly changes with switching of the polarization direction, the same incident angle θ It was found that the selection of Bragg diffraction wavelength λ can be controlled by polarization. It was also confirmed that this lattice structure can be realized by designing a refractive index modulation distribution including birefringence formed by one-step exposure by selecting a starting material in production and conditions at the time of exposure.

本発明はこれらの知見、検証に基づいて完成されたものである。より具体的には、本発明は以下のことを特徴としている。   The present invention has been completed based on these findings and verifications. More specifically, the present invention is characterized by the following.

(1)ワンステップホログラフィック露光により形成される液晶と高分子との周期相分離構造であって、一つの入射角で入射した二つ以上の異なる波長を有する光に対してBragg回折を起こすことができ、入射光の偏光方向を変えることで、回折/非回折状態の間で切り換えられる回折格子。   (1) A periodic phase separation structure of liquid crystal and polymer formed by one-step holographic exposure, which causes Bragg diffraction for light having two or more different wavelengths incident at one incident angle. A diffraction grating that can be switched between diffracted and non-diffracted states by changing the polarization direction of incident light.

(2)入射光線と回折光線を含む平面内の偏光 (p偏光)で、一つの入射角で入射した異なる二つの波長の光の内、一方の波長の光は回折状態、他方の波長の光は非回折状態となるのに対し、その平面に垂直な偏光(s偏光)に偏光方向を切り換えると、前者の波長の光は非回折状態、後者の波長は回折状態に切り換わり、この切り換えが偏光方向に可逆的に行われる、二波長間の交換型切り換えが可能である前記(1)記載の回折格子。   (2) In-plane polarized light containing incident and diffracted rays (p-polarized light), one of the two different wavelengths incident at one incident angle is in the diffracted state and the other in the wavelength Is in the non-diffractive state, but if the polarization direction is switched to the polarized light (s-polarized light) perpendicular to the plane, the light of the former wavelength is switched to the non-diffracted state and the latter wavelength is switched to the diffracted state. The diffraction grating according to the above (1), which is reversible in the polarization direction and capable of switching between two wavelengths.

(3)異なる二つの波長が含まれる光を入射すると、その内の一つの波長の光がp偏光で回折状態、s偏光で非回折状態と切り換わるのに対し、他方の波長の光はp偏光およびs偏光に拘らず非回折状態を維持する前記(1)の回折格子。   (3) When light including two different wavelengths is incident, light of one wavelength is switched between a diffracted state with p-polarized light and a non-diffracted state with s-polarized light, whereas light with the other wavelength is p-polarized. The diffraction grating of (1), which maintains a non-diffracting state regardless of polarization and s-polarization.

(4)異なる二つの波長が含まれる光を入射すると、一方の波長の光は偏光に拘らず回折状態を維持し、他方の波長の光は、p偏光で回折状態となりs偏光で非回折状態に切り換わる前記(1)記載の回折格子。   (4) When light containing two different wavelengths is incident, the light of one wavelength maintains the diffracted state regardless of the polarization, and the light of the other wavelength becomes the diffracted state by p-polarized light and the non-diffracted state by s-polarized light. The diffraction grating according to (1), wherein the diffraction grating is switched to

(5)異なる二つの波長が含まれる光を入射すると、これら二つの波長の光が揃ってp偏光で回折状態、s偏光で非回折状態に切り換わる前記(1)記載の回折格子。   (5) The diffraction grating according to (1), wherein when light including two different wavelengths is incident, the light of the two wavelengths is aligned and switched to a diffracted state with p-polarized light and a non-diffracted state with s-polarized light.

(6)異なる二つの波長が含まれる光を入射すると、その内の一つの波長の光がs偏光で回折状態、p偏光で非回折状態と切り換わるのに対し、他方の波長の光はpおよびs偏光に拘らず非回折状態を維持する前記(1)記載の回折格子。   (6) When light including two different wavelengths is incident, light of one wavelength is switched between a s-polarized and diffracted state and a p-polarized light and a non-diffracted state. The diffraction grating according to (1), wherein the diffraction grating maintains a non-diffracting state regardless of s-polarized light.

(7)異なる二つの波長が含まれる光を入射すると、一方の波長の光は偏光に拘らず回折状態を維持し、他方の波長の光は、s偏光で回折状態となりp偏光で非回折状態に切り換わる前記(1)記載の回折格子。   (7) When light including two different wavelengths is incident, the light of one wavelength maintains the diffracted state regardless of the polarization, and the light of the other wavelength becomes the diffracted state by s-polarized light and the non-diffracted state by p-polarized light. The diffraction grating according to (1), wherein the diffraction grating is switched to

(8)異なる二つの波長が含まれる光を入射すると、これら二つの波長の光が揃ってs偏光で回折状態、p偏光で非回折状態に切り換わる前記(1)記載の回折格子。   (8) The diffraction grating according to (1), wherein when light including two different wavelengths is incident, the light of these two wavelengths is switched to a diffracted state with s-polarized light and a non-diffracted state with p-polarized light.

(9)入射角θに対しBragg回折される全ての波長λは、Bragg条件
(ここでNは自然数、Λは格子ピッチ)に従う前記(1)〜(8)記載の回折格子。
(9) All wavelengths λ that are Bragg diffracted with respect to the incident angle θ
The diffraction grating according to any one of (1) to (8), wherein N is a natural number and Λ is a grating pitch.

(10)液晶の配向秩序転移を活用し、温度変化で可逆的に回折強度を発生・消失させられる、前記(1)〜(9)記載のいずれかに相当する回折格子。   (10) A diffraction grating corresponding to any one of the above (1) to (9), wherein the diffraction order is reversibly generated / disappeared by temperature change by utilizing alignment order transition of liquid crystal.

(11)液晶と高分子の空間周期的な濃度分布に対し、その濃度変化とともに液晶分子の配向秩序が空間周期的に変わることで、前記(1)〜(10)記載のいずれかの特徴を発現する回折格子。   (11) With respect to the spatial periodic concentration distribution of the liquid crystal and the polymer, the orientation order of the liquid crystal molecules changes spatially with the concentration change, so that any of the features described in the above (1) to (10) Appearing diffraction grating.

(12)透明基板間に挟まれた5〜50μm厚、0.5〜2μmの格子ピッチを有する前記(1)〜(11)記載のいずれかの回折格子。   (12) The diffraction grating according to any one of (1) to (11), having a thickness of 5 to 50 μm and a grating pitch of 0.5 to 2 μm sandwiched between transparent substrates.

(13)前記(1)〜(12)記載のいずれかの回折格子の製造方法であって、平均官能基数が少ないモノマー、より具体的には平均官能基数が1.14から1.2の範囲となるように調製されたモノマーを出発原料に用いて干渉露光で作製する回折格子の製造方法。   (13) The method for producing a diffraction grating according to any one of (1) to (12), wherein the monomer has a small average functional group number, more specifically, the average functional group number is in the range of 1.14 to 1.2. A method for producing a diffraction grating, which is produced by interference exposure using a prepared monomer as a starting material.

(14)液晶が濃度X重量%、官能基数1のモノマーが(90-X)重量%、官能基数2のモノマーが10重量%の組成比を維持しつつ、Xを30〜50%の範囲で混合し、さらに光重合開始材と増感剤(色素)を付加して出発原料とし、25〜70℃の範囲の何れかの温度で一定保持し干渉露光する前記(13)記載の回折格子の製造方法。   (14) While maintaining the composition ratio of liquid crystal concentration X wt%, functional group number 1 monomer (90-X) wt%, functional group number 2 monomer 10 wt%, X in the range of 30-50% Mixing, further adding a photopolymerization initiator and a sensitizer (pigment) as a starting material, the diffraction grating according to the above (13), which is kept constant at any temperature in the range of 25 to 70 ° C. and subjected to interference exposure Production method.

本発明によれば、偏光制御による波長切換えを、ワンステップ露光で作製した一つの格子構造で実現できるため、素子ひいては装置のコンパクト化が進み、応用範囲拡大や汎用性向上を図ることができる。また、この格子構造は一括ホログラフィック露光で自己組織的に容易に形成できるため、作製コスト低減が見込まれる。   According to the present invention, wavelength switching by polarization control can be realized with a single grating structure manufactured by one-step exposure, so that the device and thus the apparatus can be made more compact, and the application range can be expanded and versatility can be improved. Moreover, since this lattice structure can be easily formed in a self-organized manner by collective holographic exposure, the manufacturing cost can be reduced.

本発明の回折素子の作製手順、回折および構造スキーム。(a)一括ホログラフィック露光の基本光学系およびHPDLC形成過程のスキーム。(b)回折格子の構成と偏光回折。(c)格子構造のより実際に近い断面スキーム。The production procedure, diffraction, and structure scheme of the diffraction element of this invention. (a) Basic optical system for batch holographic exposure and scheme of HPDLC formation process. (b) Structure of diffraction grating and polarization diffraction. (c) A cross-sectional scheme that is closer to the actual lattice structure. 液晶・高分子の回折格子内での液晶相の存在比率(c)と液晶配向秩序度(S)の格子ベクトル方向(x)の分布(上図)、および、それらによって決まる異方性屈折率分布(nx, nyz)。(a)および(b)では、例として、秩序度Sが一定か正弦波状に変化するかの違いで計算した。Distribution of the liquid crystal phase in the liquid crystal / polymer diffraction grating (c) and the distribution of the liquid crystal orientation order (S) in the lattice vector direction (x) (above), and the anisotropic refractive index determined by them Distribution (n x , n yz ). In (a) and (b), for example, the calculation was performed based on the difference in whether the degree of order S is constant or sinusoidal. 格子構造中の異方性屈折率分布(nx, nyz)。(a)および(b)は、異なる作製条件での結果。背景は格子のSEM断面像を重ねて表示。Anisotropic refractive index distribution (n x , n yz ) in the lattice structure. (a) and (b) are the results under different production conditions. The background is displayed by superimposing SEM cross-sectional images of the lattice. 入射角(媒質中)および波長に対する高次モードを含めた、偏光別のBragg回折強度。三次元プロットで表現し、横・縦・高さは、それぞれ媒質中の入射角(θ’)・波長(λ)・回折効率(ηpあるいはηs)に相当する。θ’−λ平面内に複数の実曲線で示すように、本研究では次数N=1〜7までのBragg回折強度が観測された。本プロットは図3(a)の試料での結果で、(a)はp偏光、(b)はs偏光で20℃での測定結果。測定した回折効率はバーの高さで表現した。Bragg diffraction intensity by polarization, including higher-order modes for incident angle (in medium) and wavelength. Expressed by a three-dimensional plot, the horizontal, vertical, and height correspond to the incident angle (θ ′), wavelength (λ), and diffraction efficiency (ηp or ηs) in the medium, respectively. In this study, Bragg diffraction intensities up to order N = 1-7 were observed as indicated by a plurality of real curves in the θ′-λ plane. This plot shows the results for the sample in Fig. 3 (a), where (a) is p-polarized light and (b) is s-polarized light measured at 20 ° C. The measured diffraction efficiency was expressed by the height of the bar. 入射角(媒質中)および波長に対する高次モードを含めた、偏光別のBragg回折強度。本プロットは図3(b)の試料での結果で、(a)はp偏光、(b)はs偏光で20℃での測定結果。図の説明は図4を参照。Bragg diffraction intensity by polarization, including higher-order modes for incident angle (in medium) and wavelength. This plot shows the results for the sample in Fig. 3 (b), where (a) is the p-polarized light and (b) is the s-polarized light measured at 20 ° C. See Figure 4 for a description of the figure. 入射角(媒質中)および波長に対する高次モードを含めた、偏光別のBragg回折強度。本プロットは図3(b)の試料での結果で、(a)はp偏光、(b)はs偏光で50℃での測定結果。図の説明は図4を参照。Bragg diffraction intensity by polarization, including higher-order modes for incident angle (in medium) and wavelength. This plot shows the results for the sample in Fig. 3 (b), where (a) is p-polarized light and (b) is s-polarized light measured at 50 ° C. See Figure 4 for a description of the figure. 様々なタイプの偏光制御型の波長選択スイッチ。各A〜Gの上図がp偏光、下図がs偏光。実線と破線は異なる波長を示す。Various types of polarization-controlled wavelength selective switches. The upper figure of each A to G is p-polarized light, and the lower figure is s-polarized light. A solid line and a broken line indicate different wavelengths. Bragg回折効率の、X、Yおよび露光温度Tに対する依存性。入射角および波長に対するp偏光の回折効率。三次元表示での水平面の実曲線は、Braggの関係を示す。図の見方は図4の説明を参照。Dependence of Bragg diffraction efficiency on X, Y and exposure temperature T. The diffraction efficiency of p-polarized light with respect to the incident angle and wavelength. The solid curve on the horizontal plane in the three-dimensional display shows the Bragg relationship. Refer to the explanation of FIG. 4 for how to read the figure. Bragg回折効率の、X、Yおよび露光温度Tに対する依存性。入射角および波長に対するs偏光の回折効率。三次元表示での水平面の実曲線は、Braggの関係を示す。図の見方は図4の説明を参照。Dependence of Bragg diffraction efficiency on X, Y and exposure temperature T. Diffraction efficiency of s-polarized light with respect to incident angle and wavelength. The solid curve on the horizontal plane in the three-dimensional display shows the Bragg relationship. Refer to the explanation of FIG. 4 for how to read the figure. Bragg回折効率の、X、Yおよび露光温度Tに対する依存性。入射角θ=30°(媒質中でθ'=19.5°)での1次および2次モード(それぞれN=1および2)Bragg波長1.0μm(白丸付き実線)および0.5μm(マーカー無し実線)での回折効率の偏光角依存性。偏光角0°および90°が、それぞれpおよびs偏光に相当。各グラフに記したA〜Dは、図7で示された素子タイプA〜Dのそれぞれの動作スキームに相当することを表す。Dependence of Bragg diffraction efficiency on X, Y and exposure temperature T. Primary and secondary modes at incident angle θ = 30 ° (θ '= 19.5 ° in the medium) (N = 1 and 2 respectively) with Bragg wavelengths of 1.0 μm (solid line with white circles) and 0.5 μm (solid line without markers) Dependence of diffraction efficiency on polarization angle. Polarization angles of 0 ° and 90 ° correspond to p and s polarized light, respectively. A to D described in each graph indicate that they correspond to respective operation schemes of the element types A to D shown in FIG.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1(a)の本発明の回折格子の作製手順に示すように、ホログラフィック露光(二光束干渉露光)で生じた光の強弱に従って、二枚の透明基板間に注入された液晶・モノマー混合原料が周期的に光重合と相分離を生じ、その結果ホログラフィック構造が形成される。さらに本発明の我々の材料系では、相分離にともない自己組織的に液晶が秩序をもって配向づけられる。そして、このような光学異方性を有する格子構造で、図1(b)に模式的に示すように、偏光性の高いBragg回折が得られる。実際には、図1(c)に、詳細に示すように、高分子中に液晶滴が連続周期的に分布した相分離構造を有し、この分布が形成される際に生じる液晶滴内の配向付けを制御することで、様々な偏光回折パターンが得られる。   As shown in the manufacturing procedure of the diffraction grating of the present invention in FIG. 1 (a), the liquid crystal / monomer mixture injected between two transparent substrates according to the intensity of light generated by holographic exposure (two-beam interference exposure). The raw material periodically undergoes photopolymerization and phase separation, resulting in the formation of a holographic structure. Furthermore, in our material system of the present invention, liquid crystals are aligned in a self-organized manner with phase separation. With such a grating structure having optical anisotropy, Bragg diffraction with high polarization can be obtained as schematically shown in FIG. 1 (b). In fact, as shown in detail in FIG. 1 (c), the liquid crystal droplets have a phase separation structure in which the liquid crystal droplets are continuously and periodically distributed in the polymer, and the liquid crystal droplets generated when this distribution is formed By controlling the orientation, various polarization diffraction patterns can be obtained.

図2(a)と2(b)は、シミュレーションでデザインした格子構造の二例を示している。横軸は格子ベクトル方向に沿った格子内部の位置(ここではx軸に設定)で、格子ピッチΛで規格化した。上図は、液晶分子の存在濃度cと配向秩序度Sのx軸に沿った空間分布を示している。ここで配向秩序度Sは、液晶分子の配向が完全な無秩序から完全な秩序までを0から1で表す指標で、複屈折率との関係は、第一種完全楕円積分関数を含めた式で表されるが、本発明では直線関係で十分に近似できる(F.Basile, et al.,Phys.Rev.E,48(1993)432)。下図は、上図のcとSで決まる屈折率分布で、ここでは液晶およびポリマーの濃度と屈折率の関係、また液晶の配向秩序と複屈折率との関係に線形性(加法性)があるという仮定の下、光学異方性を考慮して、x方向に平行な成分
および、x軸に垂直な成分
FIGS. 2 (a) and 2 (b) show two examples of lattice structures designed by simulation. The horizontal axis is the position inside the lattice along the lattice vector direction (here, set to the x-axis) and normalized by the lattice pitch Λ. The upper diagram shows the spatial distribution along the x-axis of the concentration c of liquid crystal molecules and the degree of orientation order S. Here, the degree of orientation order S is an index from 0 to 1 from the complete disorder to the complete order of the alignment of the liquid crystal molecules, and the relationship with the birefringence is an equation including the first type perfect elliptic integral function. Although expressed, the present invention can be approximated by a linear relationship (F. Basile, et al., Phys. Rev. E, 48 (1993) 432). The figure below shows the refractive index distribution determined by c and S in the figure above. Here, there is linearity (additiveness) in the relationship between the concentration of liquid crystal and polymer and the refractive index, and the relationship between the alignment order of the liquid crystal and the birefringence. Under the assumption that the component is parallel to the x direction in consideration of optical anisotropy
And the component perpendicular to the x-axis

で表した(H. Kakiuchida, et al., Phys. Rev. E, 86 (2012) 061701)。ここで、neおよびnoは、異常光と常光に対する液晶の屈折率で、例として本実施例で用いた液晶の値、それぞれ1.7288、1.5331とした。また、nplyはポリマーの屈折率で、ここでは1.5258とした。図2(a)は、LC濃度cがx方向に正弦波状に分布し、配向秩序度Sが空間的に一定値を維持する場合である。この場合、下図に示すように、屈折率分布nx、nyzは、異なる振幅をもって両者ともにピッチΛで正弦波状に分布する。一方、図2(b)はLC濃度cとともに配向秩序度Sも正弦波状に変化した場合である。この場合、下図に示すように、nxの屈折率分布は正弦波状から少しずれ、nyzについては半ピッチ(Λ/2)での変調成分が顕著に現れる。このようにシミュレーションによれば、液晶の配向秩序Sが格子ベクトル方向に一定でなくなることで、屈折率の空間周期的な分布に異方性を生じさせられる。とくに、nxがピッチΛの正弦波状分布をほぼ維持するのに対し、nyzは半ピッチ(Λ/2)の正弦波状分布が顕著に現れることを示した。これは、干渉縞間隔Λの干渉露光などによって形成されたピッチΛの液晶(あるいは高分子)濃度分布であっても、液晶分子の配向秩序度が一定でなくなれば、Λ以外のピッチの屈折率変調を異方的に形成しうることを意味している。そしてこのような光学異方構造を実現することで、入射光の偏光方向を変えることで格子ピッチを切り換えるという本発明の課題を達成できる。本発明者は、この構造をワンステップ(一度の)二光束干渉露光で形成すべく、用いる材料や露光条件を探った。 (H. Kakiuchida, et al., Phys. Rev. E, 86 (2012) 061701). Here, n e and n o is the extraordinary light and the refractive index of the liquid crystal with respect to ordinary light, the liquid crystal of the values used in this embodiment as an example, are assumed to be of 1.7288,1.5331. N ply is the refractive index of the polymer, which is 1.5258 here. FIG. 2 (a) shows a case where the LC concentration c is distributed in a sine wave shape in the x direction, and the degree of orientation order S maintains a spatially constant value. In this case, as shown in the figure below, the refractive index distributions n x and n yz are distributed in a sinusoidal shape with different amplitudes and a pitch Λ. On the other hand, FIG. 2 (b) shows the case where the degree of orientation order S changes in a sinusoidal shape with the LC concentration c. In this case, as shown below, the refractive index distribution of the n x is slightly offset from the sine wave, for n yz modulation component in the half pitch (lambda / 2) appears remarkably. Thus, according to the simulation, since the alignment order S of the liquid crystal is not constant in the lattice vector direction, anisotropy can be generated in the spatial periodic distribution of the refractive index. In particular, while the n x is substantially maintained sinusoidal distribution of the pitch lambda, n yz showed that sinusoidal distribution of a half pitch (lambda / 2) appears remarkably. This is the refractive index of pitches other than Λ, even if the liquid crystal (or polymer) concentration distribution of pitch Λ is formed by interference exposure with interference fringe spacing Λ, etc. This means that the modulation can be anisotropic. By realizing such an optically anisotropic structure, the object of the present invention can be achieved in which the grating pitch is switched by changing the polarization direction of incident light. The inventor searched for materials and exposure conditions to be used in order to form this structure by one-step (one-time) two-beam interference exposure.

HPDLC格子における液晶と高分子相の組成と液晶滴内の分子配向秩序度の格子ベクトル方向での分布は、出発原料における液晶/モノマー混合比、モノマー官能基数、また作製工程では相分離時の温度など、幾つかの要因で変わることが報告されている。例えば、Pogueらは、液晶と混合するモノマーの官能基数を調整してHPDLCを作製し、その液晶滴の形状を調べ、2〜5の範囲で異なる平均官能基数を有するモノマー五種類を用いて、液晶滴のサイズや分布、形状異方性などと官能基数との関係を報告している(R. T. Pogue, Polymer, 41 (2000) 733)。また、Sarkarらは、1.3〜3.5の範囲で異なる平均官能基数を有するモノマーを用いて、液晶滴形状への影響を調べている(M. D. Sarkar, Macromolecules, 36 (2003) 630)。彼らの報告によれば、相分離で生じたHPDLC内の液晶滴サイズは、出発原料におけるモノマー官能基数が増加すると大きくなる傾向を示す。一方でKyuらは、HPDLCのストライプパターンでの相分離にともなう液晶相の分布と配向秩序をシミュレーションで再現し、液晶濃度の違いにより相分離モフォロジーが変わることを報告している(T. Kyu, Phys. Rev. E, 63 (2001) 061802)。   The composition of the liquid crystal and polymer phase in the HPDLC lattice and the distribution of the molecular orientation order in the liquid crystal droplets in the direction of the lattice vector are the liquid crystal / monomer mixture ratio in the starting material, the number of monomer functional groups, and the temperature during phase separation in the preparation process. It is reported that it changes by several factors. For example, Pogue et al. Prepared HPDLC by adjusting the number of functional groups of the monomer mixed with the liquid crystal, investigated the shape of the liquid crystal droplets, and used five types of monomers having different average functional groups in the range of 2 to 5, The relationship between the size and distribution of liquid crystal droplets and the shape anisotropy and the number of functional groups has been reported (RT Pogue, Polymer, 41 (2000) 733). In addition, Sarkar et al. Investigated the influence on the liquid crystal droplet shape using monomers having different average functional group numbers in the range of 1.3 to 3.5 (M. D. Sarkar, Macromolecules, 36 (2003) 630). According to their report, the liquid crystal droplet size in HPDLC produced by phase separation tends to increase as the number of monomer functional groups in the starting material increases. On the other hand, Kyu et al. Reported that the distribution and orientation order of the liquid crystal phase accompanying the phase separation in the HPDLC stripe pattern was reproduced by simulation, and that the phase separation morphology changed depending on the liquid crystal concentration (T. Kyu, Phys. Rev. E, 63 (2001) 061802).

一方、物理的解釈としては、相分離機構は系の自由エネルギーの変化で説明されることが多い。それによると、液晶とモノマーとの系ではそれらの混合で生じる自由エネルギーと液晶相の配向秩序による自由エネルギーとの和が相分離条件を支配し、さらに重合が進むにつれて液晶・モノマー・ポリマーの混合比率が逐一変化するため、より複雑な振舞いとなる。液晶滴内部の分子配向秩序は、液晶滴のサイズや分布など相分離構造と密接に関わり、それらの形成過程は、(1)液晶とモノマーの比率、(2)モノマー官能基数、(3)露光温度、(4)粘度といった因子より影響を受ける。より詳細には、(1)では、液晶の割合が高まるとともに、相分離時の液晶リッチ領域が増える。(2)に関しては、モノマーの官能基数を増加すると、高分子のネットワーク構造化により液晶滴のサイズが小さくなる傾向が現れる。(3)および(4)は、相分離機構が温度と粘度に深く関わっていることに起因する。   On the other hand, as a physical interpretation, the phase separation mechanism is often explained by a change in the free energy of the system. According to this, in the system of liquid crystal and monomer, the sum of the free energy generated by mixing them and the free energy due to the alignment order of the liquid crystal phase dominates the phase separation condition, and as the polymerization proceeds further, the liquid crystal / monomer / polymer mix. Since the ratio changes one by one, the behavior becomes more complicated. The molecular orientation order inside the liquid crystal droplets is closely related to the phase separation structure such as the size and distribution of the liquid crystal droplets, and the formation process is as follows: (1) ratio of liquid crystal to monomer, (2) number of monomer functional groups, (3) exposure It is influenced by factors such as temperature and (4) viscosity. More specifically, in (1), the liquid crystal ratio increases and the liquid crystal rich region during phase separation increases. Regarding (2), when the number of functional groups of the monomer is increased, the size of the liquid crystal droplets tends to decrease due to the network structure of the polymer. (3) and (4) are due to the fact that the phase separation mechanism is deeply related to temperature and viscosity.

本発明の実施例1では、高分子マトリックス中に存在する液晶滴の形状と分布の影響を受けて液晶分子の配向秩序の空間分布が変わる可能性を狙い、次のコンセプトで探索を行った。(i) 液晶の自己組織的な配向付けを促す高分子ネットワーク構造を狙って、官能基数の少ないモノマーの効果を探る。(ii) 液晶濃度を増加(あるいは減少)させると同時にモノマーの官能基数を増加(減少)させ、素子の構造安定性を維持する。(iii) モノマー官能基数と液晶濃度との関係を固定して反応性の異なるモノマーの導入効果を探る。 (iv) 材料系をそのままにして露光温度による液晶滴形状の変化の効果を探る。   In Example 1 of the present invention, a search was performed based on the following concept with the aim of changing the spatial distribution of the alignment order of liquid crystal molecules under the influence of the shape and distribution of liquid crystal droplets present in the polymer matrix. (i) Aiming for a polymer network structure that promotes self-organizing orientation of liquid crystals, the effects of monomers with a small number of functional groups are explored. (ii) Increase (or decrease) the liquid crystal concentration and simultaneously increase (decrease) the number of functional groups of the monomer to maintain the structural stability of the device. (iii) The relationship between the number of monomer functional groups and the liquid crystal concentration is fixed, and the introduction effect of monomers having different reactivity is investigated. (iv) With the material system as it is, the effect of the change of the liquid crystal droplet shape by the exposure temperature is investigated.

ここで実際の作製手順の一例を示すが、本発明の構造を実現するために、これにのみ制限されるものでない。まず出発原料として、表1に記載する液晶、モノマー、重合開始材、色素(増感材)を所定の重量比で混合し、二枚の透明基板の10μmの間隙に注入した。   Here, an example of an actual manufacturing procedure is shown, but the present invention is not limited to this in order to realize the structure of the present invention. First, as starting materials, liquid crystals, monomers, polymerization initiators, and dyes (sensitizers) described in Table 1 were mixed at a predetermined weight ratio and injected into a 10 μm gap between two transparent substrates.

液晶に4-Cyano-4'-pentylbiphenyl (いわゆる5CB) (メルク)、モノマーとして2-hydroxy-3-phenoxy propyl acrylate (共栄社化学)、dimethylol tricyclo decane diacrylate (共栄社化学)、1-Vinyl-2-Pyrrolidinone (アルドリッチ)、2-hydroxyethyl methacrylate (共栄社化学)、開始材としてN-Phenylglycine(東京化成)、色素(増感材)としてDibromofluoroscein (東京化成)を加えた。重量比として液晶と官能基を一つ有するモノマー1をそれぞれX%、(85-X)%とし、官能基を二つ持つモノマー2を10%、またクロスリンカーとしての役割を果たすタイプの異なるモノマー3と4をそれぞれY%と(5-Y)%として、合計100%とし、さらに開始材と色素(増感剤)を付加して、X=30〜50%、Y=1〜3%の範囲で分量を振った。Xの変化は上述の(i)と(ii)の操作に相当し、Xを30%から50%まで増加することで官能基数増加による網目構造の強化と液晶濃度増加による液晶凝集滴の形状と分布ひいては配向秩序の空間分布の形成を試みた。一方、Yの変化は(iii)に相当し、官能基数を一定に維持し、反応速度などが異なるメタクリル系とビニル系のモノマーの効果を比べた。ホログラフィック露光は25〜70℃の範囲の何れかの温度で行い、(iv)に記したように、モノマー・液晶の組成の効果と別に温度変化の効果を探った。   4-Cyano-4'-pentylbiphenyl (so-called 5CB) (Merck) in the liquid crystal, 2-hydroxy-3-phenoxy propyl acrylate (Kyoeisha Chemical), dimethylol tricyclo decane diacrylate (Kyoeisha Chemical), 1-Vinyl-2-Pyrrolidinone as monomer (Aldrich), 2-hydroxyethyl methacrylate (Kyoeisha Chemical), N-Phenylglycine (Tokyo Kasei) as a starting material, and Dibromofluoroscein (Tokyo Kasei) as a dye (sensitizer) were added. The weight ratio of monomer 1 with liquid crystal and one functional group is X% and (85-X)% respectively, monomer 2 with two functional groups is 10%, and different types of monomers that serve as crosslinkers 3 and 4 are Y% and (5-Y)%, respectively, for a total of 100%, further adding an initiator and a dye (sensitizer), X = 30-50%, Y = 1-3% Shake the amount in the range. The change in X corresponds to the above operations (i) and (ii), and by increasing X from 30% to 50%, the network structure is strengthened by increasing the number of functional groups, and the shape of liquid crystal aggregation droplets is increased by increasing the liquid crystal concentration. Attempts were made to form a distribution and thus a spatial distribution of orientational order. On the other hand, the change in Y corresponds to (iii), and the effects of methacrylic and vinyl monomers with different reaction rates and the like were compared, maintaining the number of functional groups constant. Holographic exposure was performed at any temperature in the range of 25 to 70 ° C., and as described in (iv), the effect of temperature change was investigated separately from the effect of monomer / liquid crystal composition.

本実施例での露光は波長532nmの単一モード発振レーザ光源(昭和オプトロニクス、J150GS)より出射したレーザ光を二光束に分け、格子ピッチ1μm、格子スラント角0°となるよう、ビームを試料基板面の垂直軸からそれぞれ±15°で入射して干渉縞を形成し、光強度40mW/cm2として5分間照射した。 In this embodiment, the laser beam emitted from a single mode oscillation laser light source (Showa Optronics, J150GS) with a wavelength of 532 nm is divided into two light beams, and the beam is directed to the sample substrate so that the grating pitch is 1 μm and the grating slant angle is 0 °. Interference fringes were formed by incidence at ± 15 ° from the vertical axis of the surface, and irradiation was performed for 5 minutes with a light intensity of 40 mW / cm 2 .

試料の格子構造を走査型電子顕微鏡(SEM)、光学分光回折法により調べた。実施例として作製した回折格子二例の屈折率分布を図3に示す。図3(a)、3(b)は、それぞれX=40%、50%として露光温度40℃で作製した試料を温度20℃にし測定した結果で、格子ベクトル方向(x軸)に沿った2つの屈折率変調分布ΔnxとΔnyz(白の実線と破線)を示す。また図の背景に、屈折率変調ピッチ(1μm設計で作製したが、実際にはΛ=1.03μmだった)に一致するようスケールを合わせたSEM断面像を示す。これを見ると、作製条件により相分離構造が変化し、屈折率分布が大きく変わっていることがわかる。とくに、Δnyzでは半ピッチ(Λ/2)の変調成分が明確に現れ、本研究で求める光学構造、すなわちΔnxとΔnyzで異方性をもった空間的変調が形成されていることが確認された。これらのHPDLC素子を昇温して、液晶のネマティック-等方相転移点(本材料では35℃)より高い50℃で屈折率分布を調べた(黒の細実線と太破線)。その結果、黒の細実線と太破線が一致することが見られるように、周期構造中の複屈折性が消失したことから、この光学異方性は液晶の配向秩序分布で生じていると結論付けられる。このように、本研究で作製したHPDLCの屈折率変調分布は、偏光方向により異なるピッチ成分が現れ、このような光学異方性をもつ格子を形成することで、本発明課題である、偏光方向でBragg回折波長の切り換えが可能な波長セレクターを実現できる。 The lattice structure of the sample was examined by scanning electron microscope (SEM) and optical spectroscopic diffraction. FIG. 3 shows the refractive index distributions of two examples of diffraction gratings manufactured as examples. FIGS. 3 (a) and 3 (b) are the results of measuring a sample prepared at an exposure temperature of 40 ° C. with X = 40% and 50%, respectively, at a temperature of 20 ° C., and 2 along the lattice vector direction (x-axis). Two refractive index modulation distributions Δn x and Δn yz (white solid line and broken line) are shown. The background of the figure shows an SEM cross-sectional image with the scale adjusted to match the refractive index modulation pitch (produced with a 1 μm design, but actually Λ = 1.03 μm). From this, it can be seen that the phase separation structure changes depending on the manufacturing conditions, and the refractive index distribution changes greatly. In particular, appears clearly that modulation component of the [Delta] n yz half pitch (lambda / 2), the optical structure obtained by the present study, namely that the spatial modulator having anisotropy [Delta] n x and [Delta] n yz are formed confirmed. The temperature of these HPDLC devices was raised, and the refractive index distribution was examined at 50 ° C. higher than the nematic-isotropic phase transition point of the liquid crystal (35 ° C. in this material) (black thin solid line and thick broken line). As a result, the birefringence in the periodic structure disappeared, as seen in the black solid line and the thick broken line, and it was concluded that this optical anisotropy was caused by the orientational order distribution of the liquid crystal. Attached. Thus, the refractive index modulation distribution of HPDLC produced in this study shows different pitch components depending on the polarization direction, and forms a grating with such optical anisotropy, which is the subject of the present invention, the polarization direction. Can realize a wavelength selector that can switch Bragg diffraction wavelength.

図4と図5に、それぞれ図3(a)と3(b)で示した屈折率変調分布で生じるBragg回折スペクトルの入射角および波長依存性を三次元形式のグラフで示す。横軸は媒質中での入射角θ'、縦軸は波長λ、高さ軸が回折効率ηpあるいはηsで、高さ方向にプロットした各々の棒グラフが測定データである。θ'-λ平面内でN=1〜7の数値を打った実線曲線は、格子ピッチ(Λ/N)に相当するBraggの関係式
で、本発明ではN次のBraggモードと表現する。
FIGS. 4 and 5 show the incident angle and wavelength dependence of the Bragg diffraction spectrum generated in the refractive index modulation distribution shown in FIGS. 3 (a) and 3 (b), respectively, in a three-dimensional graph. The horizontal axis is the incident angle θ ′ in the medium, the vertical axis is the wavelength λ, the height axis is the diffraction efficiency η p or η s , and each bar graph plotted in the height direction is the measurement data. The solid line curve with N = 1 to 7 in the θ'-λ plane is the Bragg relational expression corresponding to the lattice pitch (Λ / N)
In the present invention, it is expressed as an Nth-order Bragg mode.

図3(a)で示した低温での屈折率変調Δnxは、図3(b)でのそれに比べ、基本ピッチΛの正弦波に近い分布を示し、ΔnyzにはN次のピッチ(Λ/N)の正弦波状の変調が現れ、このような格子構造は、図4に示すように、p偏光ではN=1の回折効率が高まり、s偏光ではN=2の回折効率が高まる。一方、図3(b)では、低温の屈折率が非正弦波状に変調され、Δnyzでは、半ピッチ(Λ/2)の変化が顕著になっており、図5に示すように、p偏光ではN=1、2と複数のBraggモードが現れ、s偏光ではN=2のモードで高い回折効率を示す。図4および5は、20℃での結果で、これをネマティック-等方相転移点より高い50℃まで昇温すると、例えば図4からこの昇温で、図6に示す変化で見られるように、pおよびs偏光はともに回折が弱められて値が一致し、等方性の回折格子構造となる。 The refractive index modulation Δn x at low temperature shown in FIG. 3 (a) shows a distribution closer to a sine wave of the basic pitch Λ than that in FIG. 3 (b), and Δn yz has an Nth order pitch (Λ As shown in FIG. 4, such a grating structure has a diffraction efficiency of N = 1 for p-polarized light and a diffraction efficiency of N = 2 for s-polarized light. On the other hand, in FIG. 3 (b), the refractive index at low temperature is modulated in a non-sinusoidal shape , and in Δn yz , the change of the half pitch (Λ / 2) becomes significant, and as shown in FIG. In N = 1, 2 and a plurality of Bragg modes appear, and in s-polarized light, N = 2 mode shows high diffraction efficiency. 4 and 5 show the results at 20 ° C., and when this is raised to 50 ° C., which is higher than the nematic-isotropic phase transition point, as shown in FIG. Both p, s and s polarized light are weakly diffracted and have the same value, resulting in an isotropic diffraction grating structure.

本発明である偏光制御型の波長切換え素子の動作スキームを図7にまとめる。   The operation scheme of the polarization control type wavelength switching element according to the present invention is summarized in FIG.

タイプAは、入射光線と回折光線を含む平面内の偏光 (p偏光)で、一つの入射角で入射した異なる二つの波長の光の内、一方の波長の光(実線)は回折状態、他方の波長の光(破線)は非回折状態となるのに対し、その平面に垂直な偏光(s偏光)に偏光方向を切り換えると、前者の波長の光は非回折状態、後者の波長は回折状態に切り換わり、この切り換えが偏光方向に可逆的に行われる、いわゆる二波長間の交換型切り換えの特徴を有している。   Type A is polarized light in the plane containing incident light and diffracted light (p-polarized light). Of light of two different wavelengths incident at one incident angle, light of one wavelength (solid line) is in the diffracted state and the other The light of the wavelength (broken line) is in the non-diffracted state, but when the polarization direction is switched to the polarized light (s-polarized light) perpendicular to the plane, the light of the former wavelength is in the non-diffracted state and the latter wavelength is in the diffracted state In other words, this switching is reversibly performed in the polarization direction, so-called switching switching between two wavelengths.

タイプBは、異なる二つの波長が含まれる光を入射すると、その内の一つの波長の光(実線)がp偏光で回折状態、s偏光で非回折状態と切り換わるのに対し、他方の波長の光(破線)はpおよびs偏光に拘らず非回折状態を維持するという特徴を有する。   In Type B, when light that includes two different wavelengths is incident, one of the wavelengths (solid line) is switched to a diffracted state for p-polarized light and a non-diffracted state for s-polarized light, whereas the other wavelength is switched. The light (dashed line) has a characteristic of maintaining a non-diffracting state regardless of p and s polarized light.

タイプCは、異なる二つの波長が含まれる光を入射すると、一方の波長の光(破線)は偏光に拘らず回折状態を維持し、他方の波長の光(実線)は、p偏光で回折状態となりs偏光で非回折状態に切り換わる特徴を持つ。   In Type C, when light containing two different wavelengths is incident, light of one wavelength (broken line) maintains the diffracted state regardless of polarization, and light of the other wavelength (solid line) is diffracted by p-polarized light. And s-polarized light that switches to a non-diffracting state.

タイプDは、異なる二つの波長が含まれる光を入射すると、これら二つの波長の光が揃ってp偏光で回折状態、s偏光で非回折状態に切り換わる特徴を持つ。   Type D has the characteristic that when light containing two different wavelengths is incident, the light of these two wavelengths is aligned and switched to a diffracted state with p-polarized light and a non-diffracted state with s-polarized light.

タイプEは、異なる二つの波長が含まれる光を入射すると、その内の一つの波長の光(実線)がs偏光で回折状態、p偏光で非回折状態と切り換わるのに対し、他方の波長の光(破線)はpおよびs偏光に拘らず非回折状態を維持するという特徴を有する。   In type E, when light containing two different wavelengths is incident, one of the wavelengths (solid line) switches from s-polarized to diffracted state and p-polarized to non-diffracted state, whereas the other wavelength The light (dashed line) has a characteristic of maintaining a non-diffracting state regardless of p and s polarized light.

タイプFは、異なる二つの波長が含まれる光を入射すると、一方の波長の光(破線)は偏光に拘らず回折状態を維持し、他方の波長の光(実線)は、s偏光で回折状態となりp偏光で非回折状態に切り換わる特徴を持つ。   In Type F, when light containing two different wavelengths is incident, light of one wavelength (broken line) maintains the diffracted state regardless of polarization, and light of the other wavelength (solid line) is diffracted by s-polarized light. And has the characteristic of switching to a non-diffracting state with p-polarized light.

タイプGは、異なる二つの波長が含まれる光を入射すると、これら二つの波長の光が揃ってs偏光で回折状態、p偏光で非回折状態に切り換わる特徴を持つ。図7に示したこれらの動作スキームは、前述のように、材料組成と作製条件を変えることで実現される。   Type G has the characteristic that when light including two different wavelengths is incident, the light of these two wavelengths is aligned and switched to a diffracted state with s-polarized light and a non-diffracted state with p-polarized light. These operation schemes shown in FIG. 7 are realized by changing the material composition and manufacturing conditions as described above.

図8、図9および図10に、様々な条件で試作したHPDLC素子の回折特性を示す。図8および図9は、それぞれpおよびs偏光での回折効率ηp、ηsで、図4〜6と同様の形式で示している。原料の重量割合Xと露光温度との組合せの中で、1次Braggモード(N=1)だけでなく、複数のモード
が強められる条件があり、それぞれのモードの回折効率は偏光方向を切り換えると変わる。図10は、図8および図9において入射角θ=30°(媒質内でθ'=19.2°に相当)に固定し、1次および2次のBraggモード(N=1および2で、それぞれ波長1.0と0.5μmに相当)の回折効率の偏光角依存性を示している。ここでは、Yを振った場合の結果も合わせて示す。図10のそれぞれの結果に記されるアルファベットA〜Dは、図7に示したタイプA〜Dの動作スキームに対応し、作製条件により様々な波長選択スイッチが実現されることがわかる。Xと温度を組み合わせて振った場合、比較的Xが小さい範囲では、タイプDとなる傾向が強く、Xが増えていくと徐々にタイプCとなり、さらにタイプBおよびAに移行する様子が見られる。露光温度の変化で見ると、Xが比較的小さい場合、タイプCおよびDで依存性が見られないのに対し、Xが大きい場合、タイプBやCからAに推移する様子が見られる。一方、タイプE〜Gは、それぞれタイプB〜Dにおいてpとs偏光での振舞いをsとp偏光に入れ換えたことに相当し、原理的には、タイプBからDで用いる正の分極率を持つ液晶を負の分極率をもつ液晶に原料を変えることで実現され、例えば、N−(p−methoxy benzylidene)−p'−butyl aniline(MBBA)などがある。
FIGS. 8, 9 and 10 show the diffraction characteristics of the HPDLC elements prototyped under various conditions. FIGS. 8 and 9 show the diffraction efficiencies η p and η s for p and s polarized light, respectively, in the same format as FIGS. Within the combination of the raw material weight ratio X and exposure temperature, not only the primary Bragg mode (N = 1) but also multiple modes
The diffraction efficiency of each mode changes when the polarization direction is switched. Fig. 10 shows the incident angle θ = 30 ° in Fig. 8 and Fig. 9 (corresponding to θ '= 19.2 ° in the medium), and the primary and secondary Bragg modes (N = 1 and 2, respectively, with wavelength This shows the polarization angle dependence of the diffraction efficiency (corresponding to 1.0 and 0.5 μm). Here, the result when Y is shaken is also shown. The alphabets A to D described in the respective results of FIG. 10 correspond to the operation schemes of the types A to D shown in FIG. 7, and it can be seen that various wavelength selective switches are realized depending on the manufacturing conditions. When X and temperature are shaken in combination, there is a strong tendency to become type D in the range where X is relatively small, and as X increases, it gradually becomes type C, and it can be seen that it further shifts to type B and A . Looking at the change in exposure temperature, when X is relatively small, type C and D have no dependence, whereas when X is large, it can be seen that the type B or C changes to A. On the other hand, types E to G correspond to replacing the behavior of p and s polarized light with type s and p polarized light in types B to D, respectively. In principle, the positive polarizabilities used in types B to D are changed. For example, N- (p-methoxy benzylidene) -p'-butyl aniline (MBBA) is used by changing the raw material to a liquid crystal having negative polarizability.

以上の説明では、官能基数の少ないモノマーに着目し、高分子が比較的緩くネットワーク構造を形成する中での液晶滴の分布と滴内の液晶分子の配向秩序の制御性を示したが、格子構造中の配向秩序の分布の自己組織化による制御は、材料系や作製条件の様々な組合せにより実現されうる可能性が高く、本実施例に制限されるものではない。   In the above explanation, we focused on monomers with a small number of functional groups, and showed the controllability of the distribution of liquid crystal droplets and the alignment order of liquid crystal molecules in the droplets while the polymer was relatively loose to form a network structure. There is a high possibility that the control by the self-organization of the distribution of the orientational order in the structure can be realized by various combinations of material systems and fabrication conditions, and is not limited to this embodiment.

本発明の回折格子は、光学スイッチ、ファイバースイッチ、波長セレクター、分光光度計(回折格子)、偏光解析装置、偏光変換素子、偏光ビームスプリッター、光ピックアップ装置、光ディスク装置、偏光選択フィルター等の各種の用途において有用なものとなる。   The diffraction grating of the present invention includes various optical switches, fiber switches, wavelength selectors, spectrophotometers (diffraction gratings), polarization analyzers, polarization conversion elements, polarization beam splitters, optical pickup devices, optical disk devices, polarization selection filters, and the like. It will be useful in applications.

Claims (14)

ワンステップホログラフィック露光により形成される液晶と高分子との周期相分離構造であって、一つの入射角で入射した二つ以上の異なる波長を有する光に対してBragg回折を起こすことができ、入射光の偏光方向を変えることで、回折/非回折状態の間で切り換えられることを特徴とする回折格子。   A periodic phase separation structure of liquid crystal and polymer formed by one-step holographic exposure, which can cause Bragg diffraction for light having two or more different wavelengths incident at one incident angle, A diffraction grating characterized in that it can be switched between a diffracted state and a non-diffracted state by changing the polarization direction of incident light. 入射光線と回折光線を含む平面内の偏光 (p偏光)で、一つの入射角で入射した異なる二つの波長の光の内、一方の波長の光は回折状態、他方の波長の光は非回折状態となるのに対し、その平面に垂直な偏光(s偏光)に偏光方向を切り換えると、前者の波長の光は非回折状態、後者の波長は回折状態に切り換わり、この切り換えが偏光方向に可逆的に行われる、二波長間の交換型切り換えが可能であることを特徴とする請求項1記載の回折格子。   In-plane polarized light (p-polarized light) that includes incident light and diffracted light. Of light of two different wavelengths incident at one incident angle, light of one wavelength is diffracted, and light of the other wavelength is non-diffracted. In contrast, when the polarization direction is switched to polarized light (s-polarized light) perpendicular to the plane, the former wavelength light switches to the non-diffracted state and the latter wavelength switches to the diffracted state. 2. The diffraction grating according to claim 1, wherein exchangeable switching between two wavelengths can be performed reversibly. 異なる二つの波長が含まれる光を入射すると、その内の一つの波長の光がp偏光で回折状態、s偏光で非回折状態と切り換わるのに対し、他方の波長の光はp偏光およびs偏光に拘らず非回折状態を維持することを特徴とする請求項1記載の回折格子。   When light including two different wavelengths is incident, light of one wavelength is switched to a diffracted state by p-polarized light and a non-diffracted state by s-polarized light, whereas light of the other wavelength is switched to p-polarized light and s-polarized light. 2. The diffraction grating according to claim 1, wherein the non-diffractive state is maintained regardless of polarization. 異なる二つの波長が含まれる光を入射すると、一方の波長の光は偏光に拘らず回折状態を維持し、他方の波長の光は、p偏光で回折状態となりs偏光で非回折状態に切り換わることを特徴とする請求項1記載の回折格子。   When light containing two different wavelengths is incident, the light of one wavelength maintains the diffracted state regardless of the polarization, and the light of the other wavelength switches to the diffracted state with p-polarized light and switches to the non-diffracted state with s-polarized light. The diffraction grating according to claim 1. 異なる二つの波長が含まれる光を入射すると、これら二つの波長の光が揃ってp偏光で回折状態、s偏光で非回折状態に切り換わることを特徴とする請求項1記載の回折格子。   2. The diffraction grating according to claim 1, wherein when light including two different wavelengths is incident, the lights of the two wavelengths are switched to a diffracted state with p-polarized light and a non-diffracted state with s-polarized light. 異なる二つの波長が含まれる光を入射すると、その内の一つの波長の光がs偏光で回折状態、p偏光で非回折状態と切り換わるのに対し、他方の波長の光はpおよびs偏光に拘らず非回折状態を維持することを特徴とする請求項1記載の回折格子。   When light including two different wavelengths is incident, light of one wavelength is switched between a s-polarized and diffracted state and a p-polarized and non-diffracted state, whereas the other wavelength of light is p and s-polarized. 2. The diffraction grating according to claim 1, wherein the diffraction grating is maintained in a non-diffracting state. 異なる二つの波長が含まれる光を入射すると、一方の波長の光は偏光に拘らず回折状態を維持し、他方の波長の光は、s偏光で回折状態となりp偏光で非回折状態に切り換わることを特徴とする請求項1記載の回折格子。   When light containing two different wavelengths is incident, the light of one wavelength maintains the diffracted state regardless of the polarization, and the light of the other wavelength switches to the diffracted state with s-polarized light and switches to the non-diffracted state with p-polarized light. The diffraction grating according to claim 1. 異なる二つの波長が含まれる光を入射すると、これら二つの波長の光が揃ってs偏光で回折状態、p偏光で非回折状態に切り換わることを特徴とする請求項1記載の回折格子。   2. The diffraction grating according to claim 1, wherein when light including two different wavelengths is incident, the lights of the two wavelengths are switched to a s-polarized diffraction state and a p-polarized light non-diffractive state. 入射角θに対しBragg回折される全ての波長λは、Bragg条件
(ここでNは自然数、Λは格子ピッチ)に従うことを特徴とする請求項1から8のうちのいずれか一項記載の回折格子。
All wavelengths λ that are Bragg diffracted with respect to the incident angle θ
The diffraction grating according to claim 1, wherein N is a natural number and Λ is a grating pitch.
液晶の配向秩序転移を活用し、温度変化で可逆的に回折強度を発生・消失させられることを特徴とする請求項1から9のうちのいずれか一項記載の何れかに相当する回折格子。   The diffraction grating according to any one of claims 1 to 9, wherein the diffraction order is reversibly generated / disappeared by temperature change by utilizing alignment order transition of liquid crystal. 液晶と高分子の空間周期的な濃度分布に対し、その濃度変化とともに液晶分子の配向秩序が空間周期的に変わることを特徴とする請求項1から10のうちのいずれか一項記載の回折格子。   The diffraction grating according to any one of claims 1 to 10, wherein the orientational order of liquid crystal molecules changes spatially periodically as the concentration changes with respect to the spatial periodic concentration distribution of liquid crystal and polymer. . 透明基板間に挟まれた5〜50μm厚、0.5〜2μmの格子ピッチを有することを特徴とする請求項1から11のうちのいずれか一項記載の回折格子。   The diffraction grating according to any one of claims 1 to 11, wherein the diffraction grating has a thickness of 5 to 50 µm and a grating pitch of 0.5 to 2 µm sandwiched between transparent substrates. 請求項1から12のうちのいずれか一項記載の回折格子の製造方法であって、平均官能基数が少ないモノマーの質量比が1.14から1.2の範囲となるように調製されたモノマーを出発原料に用いて干渉露光することを特徴とする回折格子の製造方法。   A method for producing a diffraction grating according to any one of claims 1 to 12, wherein a monomer prepared such that the mass ratio of monomers having a small average number of functional groups is in the range of 1.14 to 1.2 is used as a starting material. A method of manufacturing a diffraction grating, wherein interference exposure is performed using the method. 液晶が濃度X重量%、官能基数1のモノマーが(90-X)重量%、官能基数2のモノマーが10重量%の組成比を維持しつつ、Xを30〜50%の範囲で混合し、さらに光重合開始材と増感剤(色素)を付加して出発原料とし、25〜70℃の範囲の何れかの温度で一定保持し干渉露光することを特徴とする請求項13記載の回折格子の製造方法。   While maintaining the composition ratio of liquid crystal concentration X wt%, monomer with 1 functional group (90-X) wt%, monomer with 2 functional groups 10 wt%, X is mixed in the range of 30-50%, 14. The diffraction grating according to claim 13, wherein a photopolymerization initiator and a sensitizer (pigment) are further added to form a starting material, which is held at a constant temperature of 25 to 70 ° C. and subjected to interference exposure. Manufacturing method.
JP2013266418A 2013-12-25 2013-12-25 Diffraction grating and manufacturing method thereof Active JP6236598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013266418A JP6236598B2 (en) 2013-12-25 2013-12-25 Diffraction grating and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013266418A JP6236598B2 (en) 2013-12-25 2013-12-25 Diffraction grating and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015121726A true JP2015121726A (en) 2015-07-02
JP6236598B2 JP6236598B2 (en) 2017-11-29

Family

ID=53533375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013266418A Active JP6236598B2 (en) 2013-12-25 2013-12-25 Diffraction grating and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6236598B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270419A (en) * 2002-03-18 2003-09-25 Sony Corp Diffractive optical element and image display device
JP2005209327A (en) * 2003-12-26 2005-08-04 Asahi Glass Co Ltd Polarizing diffraction element and optical head device
EP1612596A1 (en) * 2004-06-29 2006-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production
JP2006134504A (en) * 2004-11-08 2006-05-25 Ricoh Co Ltd Polarized beam splitting element and its manufacturing method, optical head unit, and optical disk drive
JP2008134628A (en) * 2006-10-27 2008-06-12 National Institute Of Advanced Industrial & Technology Solar transmission control element
JP2013210589A (en) * 2012-03-30 2013-10-10 Nagoya Univ Diffraction grating and method for manufacturing the same, and optical waveguide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270419A (en) * 2002-03-18 2003-09-25 Sony Corp Diffractive optical element and image display device
JP2005209327A (en) * 2003-12-26 2005-08-04 Asahi Glass Co Ltd Polarizing diffraction element and optical head device
US20060239171A1 (en) * 2003-12-26 2006-10-26 Asahi Glass Company Limited Polarizing diffraction element and optical head device
EP1612596A1 (en) * 2004-06-29 2006-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production
JP2008504580A (en) * 2004-06-29 2008-02-14 フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ Method for producing highly efficient, tunable and switchable optical elements based on polymer-liquid crystal mixtures
JP2006134504A (en) * 2004-11-08 2006-05-25 Ricoh Co Ltd Polarized beam splitting element and its manufacturing method, optical head unit, and optical disk drive
JP2008134628A (en) * 2006-10-27 2008-06-12 National Institute Of Advanced Industrial & Technology Solar transmission control element
JP2013210589A (en) * 2012-03-30 2013-10-10 Nagoya Univ Diffraction grating and method for manufacturing the same, and optical waveguide

Also Published As

Publication number Publication date
JP6236598B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US20240103440A1 (en) Method for Holographic Mastering and Replication
US11561507B2 (en) Methods for three-dimensional arrangement of anisotropic molecules, patterned anisotropic films, and optical elements therewith
Xiang et al. Nanoscale liquid crystal polymer Bragg polarization gratings
Sutherland et al. Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes
Hyman et al. Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device
JP2008139684A (en) Polarization converting element and polarization conversion device
JPH1048605A (en) Light control element and its production
Kawai et al. Tunable dichroic polarization beam splitter created by one-step holographic photoalignment using four-beam polarization interferometry
JP2008145619A (en) Polymer dispersion liquid crystal type polarization selective hologram element and method of manufacturing the same
Wang et al. Bistable switching of polarization-grating diffractions enabled by a front bistable twisted nematic film
JP2008070624A (en) Polarization converting element and its manufacturing method
JP6236598B2 (en) Diffraction grating and manufacturing method thereof
Ogiwara et al. Effects of thermal modulation on diffraction in liquid crystal composite gratings
Chen et al. Interference-free and single exposure to generate continuous cycloidal alignment for large-area liquid crystal devices
Moran et al. The directed self-assembly of reflective liquid crystalline polymer films to form polarization-independent diffractive optical elements
Ogiwara Effects of anisotropic diffractions on holographic polymer-dispersed liquid-crystal gratings
Selvaraj et al. Adaptive focal lengths in white light focusing Fresnel lenses enabled by reflective-type and phase-only spatial light modulator
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP2003090916A (en) Wavelength plate and projection display device
JP2013007781A (en) Liquid crystal device
JP4999485B2 (en) Beam splitting element and beam splitting method
JP2008233226A (en) Beam-splitting element
Momosaki et al. Diffraction properties of liquid crystal cell with beat structure formed by photoalignment substrates
CN100575991C (en) Polarization diffraction device and optic probe device
Ogiwara et al. Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6236598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250