JP2015121480A - Method for evaluating transparency of transparent polymer material - Google Patents

Method for evaluating transparency of transparent polymer material Download PDF

Info

Publication number
JP2015121480A
JP2015121480A JP2013265684A JP2013265684A JP2015121480A JP 2015121480 A JP2015121480 A JP 2015121480A JP 2013265684 A JP2013265684 A JP 2013265684A JP 2013265684 A JP2013265684 A JP 2013265684A JP 2015121480 A JP2015121480 A JP 2015121480A
Authority
JP
Japan
Prior art keywords
transparency
polymer material
transparent polymer
opacity
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013265684A
Other languages
Japanese (ja)
Inventor
真範 丸山
Masanori Maruyama
真範 丸山
和彦 坂井
Kazuhiko Sakai
和彦 坂井
内田 雅司
Masashi Uchida
雅司 内田
邦明 横山
Kuniaki Yokoyama
邦明 横山
田頭 克春
Katsuharu Tagashira
克春 田頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunAllomer Ltd
Original Assignee
SunAllomer Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunAllomer Ltd filed Critical SunAllomer Ltd
Priority to JP2013265684A priority Critical patent/JP2015121480A/en
Publication of JP2015121480A publication Critical patent/JP2015121480A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for evaluating the transparency of a transparent polymer material high in correlation with an evaluation of transparency by visual observation and high in practicability.SOLUTION: The method for evaluating the transparency of a transparent polymer material comprises: the color measurement step of color measuring a specimen having a tabular test piece consisting of a transparent polymer material by a colorimetric illuminant of a geometric condition b and a standard C in JIS Z8722 according to JIS Z8722 to calculate tristimulus values X, Y and Z of an XYZ colorimetric system; and the opacity derivation step of substituting the tristimulus values X, Y and Z for the following formula (1) to be calculated and derive an opacity A; and the evaluation step of evaluating transparency on the basis of the value of the opacity A. The formula (1) is A=Y+0.3018Z-3.831X.

Description

本発明は、透明高分子材料の透明性を評価する方法に関する。   The present invention relates to a method for evaluating the transparency of a transparent polymer material.

透明高分子材料の成形品は様々な用途に使用されている。透明高分子材料の透明性を定量的に評価する方法として、拡散反射光の全光線透過光に対する割合であるヘイズ(JIS K7136)を利用する方法が広く知られている(例えば特許文献1参照)。ヘイズは曇度とも称され、その値が小さい程、透き通ったものとなり、透明性が高い、とされてきた。   Transparent polymer material molded products are used in various applications. As a method for quantitatively evaluating the transparency of a transparent polymer material, a method using haze (JIS K7136), which is a ratio of diffusely reflected light to total transmitted light, is widely known (see, for example, Patent Document 1). . Haze is also referred to as haze, and the smaller the value, the clearer it is and the higher the transparency.

特開2009−279787号公報JP 2009-279787 A

しかし、ヘイズは、材料の種類によっては、目視による透明性の評価に対する相関性が必ずしも高くなく、実用性が低いという問題を有していた。
本発明は、目視による透明性評価に対する相関性が高く、実用性が高い透明高分子材料の透明性評価方法を提供することを課題とする。
However, haze has a problem that, depending on the type of material, the correlation with the visual evaluation of transparency is not necessarily high, and the practicality is low.
It is an object of the present invention to provide a method for evaluating the transparency of a transparent polymer material having high correlation with visual transparency evaluation and high practicality.

本発明は、以下の態様を含む。
[1]透明高分子材料からなる平板状試験片を有する試験体を、JIS Z8722に従い、JIS Z8722における幾何条件b且つ標準Cの測色用イルミナントで測色してXYZ表色系の三刺激値X,Y,Zを求める測色工程と、前記三刺激値X,Y,Zを下記式(1)に代入し、計算して不透明度Aを導出する不透明度導出工程と、前記不透明度Aの値に基づいて透明性を評価する評価工程とを有する、透明高分子材料の透明性評価方法。
A=Y+0.3018Z−3.831X (1)
(なお、式(1)におけるX,Y,Zは、三刺激値X,Y,Zである。)
[2]前記試験体は、前記平板状試験片と、該平板状試験片の両面に流動パラフィンを塗布して形成した流動パラフィン膜と、前記平板状試験片及び前記流動パラフィン膜を挟持した一対のガラス板とを備える、[1]に記載の透明高分子材料の透明性評価方法。
[3]前記一対のガラス板の一方を無着色透明ガラス板とし、前記一対のガラス板の他方を黒色ガラス板とし、測色工程では、前記無着色透明ガラス板に向けて測定用の光を照射して試験体を測色する、[2]に記載の透明高分子材料の透明性評価方法。
The present invention includes the following aspects.
[1] Tristimulus value of XYZ color system by measuring a specimen having a flat specimen made of a transparent polymer material with a colorimetric illuminant of geometric condition b and standard C in JIS Z8722 according to JIS Z8722. A colorimetry step for obtaining X, Y, and Z; an opacity derivation step for substituting the tristimulus values X, Y, and Z into the following equation (1) to calculate and derive the opacity A; and the opacity A The transparency evaluation method of a transparent polymeric material which has an evaluation process which evaluates transparency based on the value of.
A = Y + 0.3018Z-3.831X (1)
(X, Y, and Z in equation (1) are the tristimulus values X, Y, and Z.)
[2] The test body is a pair of the flat test piece, a liquid paraffin film formed by applying liquid paraffin on both sides of the flat test piece, and the flat test piece and the liquid paraffin film. The transparent polymer material transparency evaluation method according to [1], comprising: a glass plate.
[3] One of the pair of glass plates is a non-colored transparent glass plate, and the other of the pair of glass plates is a black glass plate. In the color measurement step, measurement light is directed toward the non-colored transparent glass plate. The method for evaluating the transparency of a transparent polymer material according to [2], wherein the specimen is measured by irradiation.

本発明の透明高分子材料の透明性評価方法は、目視による透明性評価に対する相関性が高く、実用性が高い。   The transparency evaluation method of the transparent polymer material of the present invention has high correlation with visual evaluation of transparency and high practicality.

試験例1〜4において、横軸に目視による透明性評価結果を、縦軸に不透明度及びヘイズをプロットしたグラフである。In Test Examples 1-4, it is the graph which plotted the transparency evaluation result by visual observation on the horizontal axis, and plotted opacity and haze on the vertical axis.

本発明の透明高分子材料の透明性評価方法は、測色工程と不透明度導出工程と評価工程とを有する。
本発明が適用される透明高分子材料に含まれる透明高分子としては、例えば、ポリプロピレン、ポリエチレン、エチレン・αオレフィン共重合体、エチレン・酢酸ビニル共重合体、エチレン・アクリル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、スチレン・アクリル共重合体、アクリル樹脂、ABS樹脂、ポリエステル、ポリカーボネート、ポリアミド、トリアセチルセルロース等が挙げられる。これらの中でも、本発明の効果がより顕著に発揮されることから、結晶性高分子(例えば、ポリプロピレン、ポリエチレン等)が好ましく、ポリプロピレンがより好ましい。
透明高分子材料には、透明性を損なわない範囲で、ブルーイング剤やカーボンブラック等の着色剤が含まれてもよい。
さらに、透明高分子材料には、必要に応じて、結晶核剤、酸化防止剤、光安定剤、滑剤等の各種添加剤が含まれてもよい。
透明高分子材料は、JIS K7361:1997に従って測定した全光線透過率が50%以上の材料である。全光線透過率が50%未満の不透明な高分子材料に対しては、本発明を適用することは困難である。
The transparent polymer material transparency evaluation method of the present invention includes a colorimetry step, an opacity derivation step, and an evaluation step.
As the transparent polymer contained in the transparent polymer material to which the present invention is applied, for example, polypropylene, polyethylene, ethylene / α-olefin copolymer, ethylene / vinyl acetate copolymer, ethylene / acrylic copolymer, polychlorinated Examples thereof include vinyl, polyvinylidene chloride, polystyrene, styrene / acrylic copolymer, acrylic resin, ABS resin, polyester, polycarbonate, polyamide, and triacetyl cellulose. Among these, since the effect of the present invention is more remarkably exhibited, a crystalline polymer (for example, polypropylene, polyethylene, etc.) is preferable, and polypropylene is more preferable.
The transparent polymer material may contain a coloring agent such as a blueing agent and carbon black as long as the transparency is not impaired.
Furthermore, the transparent polymer material may contain various additives such as a crystal nucleating agent, an antioxidant, a light stabilizer, and a lubricant as necessary.
The transparent polymer material is a material having a total light transmittance of 50% or more measured according to JIS K7361: 1997. It is difficult to apply the present invention to an opaque polymer material having a total light transmittance of less than 50%.

測色工程は、透明高分子材料からなる平板状試験片を有する試験体を、測色してXYZ表色系の三刺激値X,Y,Zを求める工程である。
本発明における測色工程では、試験体を、JIS Z8722:2009(色の測定方法−反射及び透過物体色)に従って測色する。測色の際の、照射及び受光の幾何条件は、JIS Z8722:2009の5.3.1に記載された幾何条件bとする。また、測色の際に使用する測色用イルミナントは、標準Cの測色用イルミナントとする。
The colorimetry step is a step of obtaining a tristimulus value X, Y, Z of the XYZ color system by measuring the color of a test body having a flat test piece made of a transparent polymer material.
In the color measurement step in the present invention, the test specimen is measured according to JIS Z8722: 2009 (color measurement method—reflective and transmissive object color). The geometric condition of irradiation and light reception at the time of color measurement is the geometric condition b described in 5.3.1 of JIS Z8722: 2009. The colorimetric illuminant used in colorimetry is a standard C colorimetric illuminant.

測色方法としては、分光測光器を用いる分光測色法、光電色彩計を用いる刺激値直読法のいずれであってもよい。測定精度が高くなる点では、分光測色法が好ましい。
分光測色法は、分光測光器を用いて、分光反射率係数及び分光透過率係数を測定し、JIS Z8701に規定する三刺激値X,Y、Zを求める方法である。分光測光器は、JIS Z8722:2009の4に記載された第1種分光測光器を用いてもよいし、第2種分光測光器を用いてもよい。
分光測色法における分光反射率係数の測定は、JIS Z 8722:2009の5.3.3に記載された方法aでもよいし、方法bでもよい。
The colorimetry method may be either a spectrocolorimetry method using a spectrophotometer or a stimulus value direct reading method using a photoelectric colorimeter. The spectrocolorimetric method is preferable in terms of high measurement accuracy.
The spectrocolorimetric method is a method of obtaining tristimulus values X, Y, and Z defined in JIS Z8701 by measuring a spectral reflectance coefficient and a spectral transmittance coefficient using a spectrophotometer. As the spectrophotometer, a first type spectrophotometer described in JIS Z8722: 2009 4 may be used, or a second type spectrophotometer may be used.
The measurement of the spectral reflectance coefficient in the spectrocolorimetric method may be the method a described in JIS Z 8722: 2009 5.3.3, or the method b.

前記試験体は、少なくとも平板状試験片を有する。平板状試験片は、透明高分子材料を成形して作製したものである。成形方法は、射出成形、押出成形、圧縮成形、真空成形等、各種成形法のいずれであってもよい。平板状試験片の厚さは、0.01〜5mmであることが好ましい。
測色の測定精度が高くなる点では、前記試験体は、前記平板状試験片と、該平板状試験片の両面に流動パラフィンを塗布して形成した流動パラフィン膜と、前記平板状試験片及び前記流動パラフィン膜を挟持した一対のガラス板とを備える積層体が好ましい。
流動パラフィン膜を形成しておけば、平板状試験片の表面の凹凸による光散乱を抑制でき、特に表面の影響の大きい薄い試験片や、片側が自由表面となるロール成形したシートから採取した試験片において、測色の測定精度がより高くなる。流動パラフィン膜を形成する方法としては、流動パラフィンを、刷毛やコーターを用いて平板状試験片の表面に塗布する方法、平板状試験片を流動パラフィンに浸漬させる方法等が挙げられる。
一対のガラス板で挟持すれば、流動性を有する流動パラフィン膜を平板状試験片の表面に保持することができる。
The test body has at least a flat test piece. The flat test piece is produced by molding a transparent polymer material. The molding method may be any of various molding methods such as injection molding, extrusion molding, compression molding, and vacuum molding. The thickness of the flat test piece is preferably 0.01 to 5 mm.
In terms of high colorimetric measurement accuracy, the test body includes the flat plate test piece, a liquid paraffin film formed by applying liquid paraffin on both sides of the flat plate test piece, the flat plate test piece, A laminate comprising a pair of glass plates sandwiching the liquid paraffin film is preferred.
If a liquid paraffin film is formed, light scattering due to unevenness on the surface of the flat plate test piece can be suppressed, and in particular, a test taken from a thin test piece having a large surface influence or a roll-formed sheet having a free surface on one side. In the strip, the measurement accuracy of the color measurement is higher. Examples of a method for forming a liquid paraffin film include a method of applying liquid paraffin to the surface of a flat plate test piece using a brush or a coater, a method of immersing the flat plate test piece in liquid paraffin, and the like.
If sandwiched between a pair of glass plates, a liquid paraffin film having fluidity can be held on the surface of the flat test piece.

さらに、前記一対のガラス板の一方(第1のガラス板)を無着色透明ガラス板とし、前記一対のガラス板の他方(第2のガラス板)を黒色ガラス板とし、前記無着色透明ガラス板に向けて測定用の光を照射して試験体を測色することが好ましい。無着色透明ガラス板は着色剤が含まれないガラス板であり、黒色ガラス板は、JIS Z8741の6.1に記載された黒色ガラスの板である。黒色ガラス板としては、例えば、株式会社村上色彩技術研究所製ブラックガラスBK−7が挙げられる。
第2のガラス板が黒色ガラス板であると、平板状試験片及び流動パラフィン膜を透過して第2のガラス板に入射した光を全波長にわたって吸収できるため、第2のガラス板からの鏡面反射の影響を排除できる。そのため、測色の測定精度がより高くなる。
Further, one of the pair of glass plates (first glass plate) is a non-colored transparent glass plate, the other of the pair of glass plates (second glass plate) is a black glass plate, and the non-colored transparent glass plate It is preferable to measure the color of the test specimen by irradiating with light for measurement. The non-colored transparent glass plate is a glass plate containing no colorant, and the black glass plate is a black glass plate described in 6.1 of JIS Z8741. An example of the black glass plate is black glass BK-7 manufactured by Murakami Color Research Laboratory Co., Ltd.
When the second glass plate is a black glass plate, light that has passed through the flat test piece and the liquid paraffin film and has entered the second glass plate can be absorbed over all wavelengths, so that the mirror surface from the second glass plate The influence of reflection can be eliminated. Therefore, the measurement accuracy of colorimetry becomes higher.

不透明度導出工程は、三刺激値X,Y,Zを下記式(1)に代入し、計算して不透明度Aを導出する。この不透明度Aは白色の度合いを示しており、不透明度Aの値が小さい程、白色度が小さく、透き通ったものとなる。
A=Y+0.3018Z−3.831X (1)
(なお、式(1)におけるX,Y,Zは、三刺激値X,Y,Zである。)
不透明度Aの導出は、コンピュータを用いてもよい。例えば、式(1)をコンピュータに記憶させておき、測色工程により求めた三刺激値X,Y,Zをコンピュータに入力し、式(1)を計算して不透明度Aを求めてもよい。前記コンピュータは、測色する際に使用する測色計に備え付けられたコンピュータであってもよいし、測色計に備え付けられたコンピュータとは別のコンピュータであってもよい。
In the opacity derivation step, the tristimulus values X, Y, and Z are substituted into the following equation (1) and calculated to derive the opacity A. The opacity A indicates the degree of whiteness, and the smaller the value of the opacity A, the smaller the whiteness and the more transparent.
A = Y + 0.3018Z-3.831X (1)
(X, Y, and Z in equation (1) are the tristimulus values X, Y, and Z.)
A computer may be used to derive the opacity A. For example, equation (1) may be stored in a computer, tristimulus values X, Y, and Z obtained by the colorimetry process may be input to the computer, and equation (1) may be calculated to obtain opacity A. . The computer may be a computer provided in a colorimeter used for colorimetry, or may be a computer different from the computer provided in the colorimeter.

評価工程は、前記不透明度Aの値に基づいて透明性を評価する工程である。すなわち、不透明度Aの値の大小によって透明性を評価する。具体的には、不透明度Aが小さい程、透明性が高い、と評価する。   The evaluation step is a step of evaluating transparency based on the value of the opacity A. That is, the transparency is evaluated by the magnitude of the opacity A value. Specifically, the smaller the opacity A, the higher the transparency.

上記透明高分子材料の透明性評価方法では、拡散反射光や全光線透過光の量を測定して透明性を評価するのではなく、試験体を測色し、その測定値に基づいて透明性を評価する方法である。具体的には、試験体について、白色の度合いを表す不透明度Aを測定し、不透明度Aに基づいて透明性を評価する。不透明度Aが小さい程、白色の度合いが小さくなり、透き通ったものとなる。したがって、不透明度Aによって透明性を評価できる。
本発明者らが調べた結果、不透明度Aに基づく透明性の評価結果は、目視による透明性評価結果に対する相関性が高いことがわかった。したがって、本発明の透明性評価方法は実用性が高い。
In the method for evaluating the transparency of the transparent polymer material, rather than measuring the amount of diffusely reflected light or total light transmitted to evaluate the transparency, the test specimen is color-measured, and the transparency is determined based on the measured value. It is a method to evaluate. Specifically, the opacity A representing the degree of whiteness is measured for the test specimen, and the transparency is evaluated based on the opacity A. The smaller the opacity A, the smaller the degree of whiteness and the more transparent it becomes. Therefore, transparency can be evaluated by the opacity A.
As a result of investigation by the present inventors, it was found that the transparency evaluation result based on the opacity A has a high correlation with the visual transparency evaluation result. Therefore, the transparency evaluation method of the present invention is highly practical.

(試験例1〜4)
下記の透明高分子材料を成形温度230℃で射出成形して、厚さ1.5mm及び1.0mmの平板状試験片を得た。
透明高分子材料A:下記の結晶性ポリプロピレン共重合体(a)68質量%、エチレン・αオレフィン共重合体(b)32質量%に、酸化防止剤(BASF社製B225)0.1質量部および中和剤(カルシウムステアレート)0.05質量部を配合し、混合して樹脂混合物を得た。その樹脂混合物を、二軸押出機を用い、ダイス設定温度220℃で溶融混練し、ペレット化して、MFRが11.7g/10分の透明高分子材料Aを得た。
結晶性ポリプロピレン共重合体(a):公知の立体選択性チーグラー・ナッタ触媒を用い、既知の重合法を用いて製造されたMFRが17.5g/10分で、共重合体中のエチレン単位の割合が4.3質量%のプロピレン・エチレン共重合体。
エチレン・αオレフィン共重合体(b):ダウケミカル社製EG8480
透明高分子材料B:下記のブロックポリプロピレン(c)に、酸化防止剤(BASF社製B225)0.1質量部および中和剤(カルシウムステアレート)0.05質量部を配合し、混合して樹脂混合物を得た。その樹脂混合物を、二軸押出機を用い、ダイス設定温度220℃で溶融混練し、ペレット化して、MFRが27.3g/10分の透明高分子材料Bを得た。
ブロックポリプロピレン(c):公知の立体選択性チーグラー・ナッタ触媒を用い、既知の逐次重合法を用いて製造された、プロピレン・エチレン共重合体とエチレン・1−ブテン共重合体とからなるブロックポリプロピレン。プロピレン・エチレン共重合体中のエチレン単位の割合が3.0質量%、エチレン・1−ブテン共重合体の含有割合が33質量%。
得られた各平板状試験片について、下記方法により不透明度及びヘイズを測定し、また、目視によって透明性を評価した。測定結果及び評価結果を表1に示す。
(Test Examples 1 to 4)
The following transparent polymer material was injection-molded at a molding temperature of 230 ° C. to obtain flat test pieces having a thickness of 1.5 mm and 1.0 mm.
Transparent polymer material A: The following crystalline polypropylene copolymer (a) 68% by mass, ethylene / α-olefin copolymer (b) 32% by mass, antioxidant (B225 manufactured by BASF) 0.1 mass part And 0.05 mass part of neutralizing agents (calcium stearate) were mix | blended and mixed, and the resin mixture was obtained. The resin mixture was melt-kneaded at a die set temperature of 220 ° C. using a twin-screw extruder and pelletized to obtain a transparent polymer material A having an MFR of 11.7 g / 10 min.
Crystalline polypropylene copolymer (a): Using a known stereoselective Ziegler-Natta catalyst, the MFR produced using a known polymerization method is 17.5 g / 10 min, and the ethylene units in the copolymer Propylene / ethylene copolymer having a proportion of 4.3% by mass.
Ethylene / α-olefin copolymer (b): EG8480 manufactured by Dow Chemical Company
Transparent polymer material B: 0.1 parts by mass of an antioxidant (B225 manufactured by BASF) and 0.05 parts by mass of a neutralizing agent (calcium stearate) are blended in the following block polypropylene (c) and mixed. A resin mixture was obtained. The resin mixture was melt-kneaded at a die set temperature of 220 ° C. using a twin-screw extruder and pelletized to obtain a transparent polymer material B having an MFR of 27.3 g / 10 min.
Block polypropylene (c): A block polypropylene made of a propylene / ethylene copolymer and an ethylene / 1-butene copolymer produced by using a known sequential polymerization method using a known stereoselective Ziegler-Natta catalyst. . The proportion of the ethylene unit in the propylene / ethylene copolymer is 3.0% by mass, and the content of the ethylene / 1-butene copolymer is 33% by mass.
About each obtained flat test piece, opacity and haze were measured by the following method, and transparency was evaluated visually. The measurement results and evaluation results are shown in Table 1.

[不透明度の測定]
測色計(日本電色工業株式会社製E3000)を用い、JIS Z8722に従い、JIS Z8722における幾何条件b且つ標準Cの測色用イルミナントで、方法bにて平板状試験片を測色して、XYZ表色系の三刺激値X,Y,Zを求めた。次いで、下記式(1)より不透明度Aを求めた。
A=Y+0.3018Z−3.831X (1)
[Opacity measurement]
Using a colorimeter (E3000 manufactured by Nippon Denshoku Industries Co., Ltd.), in accordance with JIS Z8722, color measurement is performed on the flat test piece by the method b with the geometric condition b and standard C colorimetric illuminant in JIS Z8722. Tristimulus values X, Y, and Z of the XYZ color system were obtained. Next, the opacity A was determined from the following formula (1).
A = Y + 0.3018Z-3.831X (1)

[ヘイズの測定]
ヘイズ測定装置(株式会社村上色彩技術研究所製HM−150型)を用い、JIS K7136に従って平板状試験片のヘイズを測定した。
[Measurement of haze]
Using a haze measuring apparatus (HM-150 type, manufactured by Murakami Color Research Laboratory Co., Ltd.), the haze of the flat specimen was measured according to JIS K7136.

[目視による透明性評価]
評価者が、平板状試験片を目視観察し、透明性を5段階評価した。数値が大きい程、透明性が高い。
[Visual transparency evaluation]
The evaluator visually observed the flat test piece and evaluated the transparency in five stages. The larger the value, the higher the transparency.

Figure 2015121480
Figure 2015121480

図1に、横軸に目視による透明性評価結果を、縦軸に不透明度及びヘイズをプロットしたグラフを示す。
図1に示すように、不透明度は、目視による透明性評価結果との相関性が高かった。一方、ヘイズは、目視による透明性評価結果との相関性が低かった。
FIG. 1 is a graph in which the horizontal axis represents the results of visual transparency evaluation, and the vertical axis represents opacity and haze.
As shown in FIG. 1, the opacity was highly correlated with the result of visual evaluation of transparency. On the other hand, the haze was low in correlation with the visual transparency evaluation result.

(試験例5,6)
下記の透明高分子材料を押出温度230℃でシート成形して、厚さ0.3mmの平板状試験片を得た。
透明高分子材料C:下記の結晶性ポリプロピレン共重合体(d)78質量%、エチレン・αオレフィン共重合体(e)22質量%に、酸化防止剤(BASF社製B225)0.1質量部および中和剤(カルシウムステアレート)0.05質量部、さらに核剤(ミリケンジャパン株式会社製Millad3988)0.25質量部を配合し、混合して樹脂混合物を得た。その樹脂混合物を、二軸押出機を用い、ダイス設定温度220℃で溶融混練し、ペレット化して、MFRが2.7g/10分の透明高分子材料Cを得た。
結晶性ポリプロピレン共重合体(d):公知の立体選択性チーグラー・ナッタ触媒を用い、既知の重合法を用いて製造されたMFRが1.2g/10分で、共重合体中のエチレン単位の割合が2.5質量%のプロピレン・エチレン共重合体。
エチレン・αオレフィン共重合体(e):ダウケミカル社製ENR7256
透明高分子材料D:下記のブロックポリプロピレン(f)に、酸化防止剤(BASF社製B225)0.1質量部および中和剤(カルシウムステアレート)0.05質量部、さらに核剤(ミリケンジャパン株式会社製Millad3988)0.25質量部を配合し、混合して樹脂混合物を得た。その樹脂混合物を、二軸押出機を用い、ダイス設定温度220℃で溶融混練し、ペレット化して得た、MFRが3.3g/10分のポリプロピレン系樹脂組成物。
ブロックポリプロピレン(f):公知の立体選択性チーグラー・ナッタ触媒を用い、既知の逐次重合法を用いて製造された、プロピレン・エチレン共重合体とエチレン・1−ブテン共重合体とからなるブロックポリプロピレン。プロピレン・エチレン共重合体中のエチレン単位の割合が3.2質量%、エチレン・1−ブテン共重合体の含有割合が18質量%。
得られた各平板状試験片について、上記方法により不透明度を測定し、目視によって透明性を評価した。なお、試験例5,6の不透明度の測定においては、上述した、平板状試験片の両面に流動パラフィン(関東化学製、Cat.No.32033−00)を塗布して一対のガラス板で挟持した積層体を試験体として用いた。また、下記方法によりヘイズを測定した。測定結果及び評価結果を表2に示す。
(Test Examples 5 and 6)
The following transparent polymer material was formed into a sheet at an extrusion temperature of 230 ° C. to obtain a flat test piece having a thickness of 0.3 mm.
Transparent polymer material C: The following crystalline polypropylene copolymer (d) 78% by mass, ethylene / α-olefin copolymer (e) 22% by mass, antioxidant (BA225 B225) 0.1 part by mass Further, 0.05 part by mass of a neutralizing agent (calcium stearate) and 0.25 part by mass of a nucleating agent (Milliken Japan Co., Ltd. Millad 3988) were blended and mixed to obtain a resin mixture. The resin mixture was melt-kneaded at a die setting temperature of 220 ° C. using a twin-screw extruder and pelletized to obtain a transparent polymer material C having an MFR of 2.7 g / 10 min.
Crystalline polypropylene copolymer (d): A known stereoselective Ziegler-Natta catalyst and an MFR produced by a known polymerization method of 1.2 g / 10 min. Propylene / ethylene copolymer with a proportion of 2.5% by mass.
Ethylene / α-olefin copolymer (e): ENR7256 manufactured by Dow Chemical Company
Transparent polymer material D: 0.1 parts by mass of antioxidant (B225 manufactured by BASF) and 0.05 parts by mass of neutralizing agent (calcium stearate), and nucleating agent (Milken Japan) Millad 3988) 0.25 part by mass was blended and mixed to obtain a resin mixture. A polypropylene resin composition having an MFR of 3.3 g / 10 min obtained by melt-kneading the resin mixture at a die setting temperature of 220 ° C. using a twin-screw extruder and pelletizing.
Block polypropylene (f): A block polypropylene made of propylene / ethylene copolymer and ethylene / 1-butene copolymer produced by using a known sequential polymerization method using a known stereoselective Ziegler-Natta catalyst. . The proportion of ethylene units in the propylene / ethylene copolymer was 3.2% by mass, and the content of the ethylene / 1-butene copolymer was 18% by mass.
About each obtained flat test piece, opacity was measured by the said method and transparency was evaluated by visual observation. In the measurement of opacity in Test Examples 5 and 6, liquid paraffin (Cat. No. 32033-00, manufactured by Kanto Chemical Co., Ltd.) was applied to both surfaces of the flat test piece and sandwiched between a pair of glass plates. The laminated body used was used as a test body. Moreover, the haze was measured by the following method. Table 2 shows the measurement results and the evaluation results.

[ヘイズの測定]
平板状試験片の両面に流動パラフィン(関東化学製、Cat.No.32033−00)を塗布して流動パラフィン膜を形成した。次いで、平板状試験片及び流動パラフィン膜を一対のカバーガラスで挟んで試験体を得た。この試験体について、ヘイズ測定装置(株式会社村上色彩技術研究所製HM−150型)を用い、JIS K7136に従ってヘイズを測定した。
[Measurement of haze]
A liquid paraffin film was formed by applying liquid paraffin (Cat. No. 32033-00, manufactured by Kanto Chemical Co., Ltd.) to both surfaces of the flat test piece. Subsequently, the flat test piece and the liquid paraffin film were sandwiched between a pair of cover glasses to obtain a test body. About this test body, haze was measured according to JISK7136 using the haze measuring apparatus (HM-150 type | mold by Murakami Color Research Laboratory Co., Ltd.).

Figure 2015121480
Figure 2015121480

目視評価では、試験例6よりも試験例5の方が、透明性が高かった。不透明度の値は、試験例6よりも試験例5の方が小さいが、ヘイズの値は、試験例5よりも試験例6の方が小さかった。この結果も、不透明度は、目視による透明性評価結果との相関性が高いことを示している。   In the visual evaluation, the transparency of Test Example 5 was higher than that of Test Example 6. Although the opacity value was smaller in Test Example 5 than in Test Example 6, the haze value was smaller in Test Example 6 than in Test Example 5. This result also shows that the opacity is highly correlated with the visual transparency evaluation result.

Claims (3)

透明高分子材料からなる平板状試験片を有する試験体を、JIS Z8722に従い、JIS Z8722における幾何条件b且つ標準Cの測色用イルミナントで測色してXYZ表色系の三刺激値X,Y,Zを求める測色工程と、前記三刺激値X,Y,Zを下記式(1)に代入し、計算して不透明度Aを導出する不透明度導出工程と、前記不透明度Aの値に基づいて透明性を評価する評価工程とを有する、透明高分子材料の透明性評価方法。
A=Y+0.3018Z−3.831X (1)
(なお、式(1)におけるX,Y,Zは、三刺激値X,Y,Zである。)
Tristimulus values X and Y of the XYZ color system are measured by measuring a specimen having a flat test piece made of a transparent polymer material with a colorimetric illuminant of geometric condition b and standard C in JIS Z8722 according to JIS Z8722. , Z, a colorimetric step, the tristimulus values X, Y, and Z are substituted into the following equation (1) and calculated to derive opacity A, and the opacity A value is calculated. A transparency evaluation method for a transparent polymer material, comprising: an evaluation step for evaluating transparency based on the method.
A = Y + 0.3018Z-3.831X (1)
(X, Y, and Z in equation (1) are the tristimulus values X, Y, and Z.)
前記試験体は、前記平板状試験片と、該平板状試験片の両面に流動パラフィンを塗布して形成した流動パラフィン膜と、前記平板状試験片及び前記流動パラフィン膜を挟持した一対のガラス板とを備える、請求項1に記載の透明高分子材料の透明性評価方法。   The test body includes the flat plate test piece, a liquid paraffin film formed by applying liquid paraffin on both sides of the flat plate test piece, and a pair of glass plates sandwiching the flat plate test piece and the liquid paraffin film. The transparency evaluation method of the transparent polymeric material of Claim 1 provided with these. 前記一対のガラス板の一方を無着色透明ガラス板とし、前記一対のガラス板の他方を黒色ガラス板とし、
測色工程では、前記無着色透明ガラス板に向けて測定用の光を照射して試験体を測色する、請求項2に記載の透明高分子材料の透明性評価方法。
One of the pair of glass plates is an uncolored transparent glass plate, the other of the pair of glass plates is a black glass plate,
The method for evaluating transparency of a transparent polymer material according to claim 2, wherein, in the color measurement step, the test specimen is subjected to color measurement by irradiating measurement light toward the non-colored transparent glass plate.
JP2013265684A 2013-12-24 2013-12-24 Method for evaluating transparency of transparent polymer material Pending JP2015121480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265684A JP2015121480A (en) 2013-12-24 2013-12-24 Method for evaluating transparency of transparent polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265684A JP2015121480A (en) 2013-12-24 2013-12-24 Method for evaluating transparency of transparent polymer material

Publications (1)

Publication Number Publication Date
JP2015121480A true JP2015121480A (en) 2015-07-02

Family

ID=53533215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265684A Pending JP2015121480A (en) 2013-12-24 2013-12-24 Method for evaluating transparency of transparent polymer material

Country Status (1)

Country Link
JP (1) JP2015121480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020753A (en) * 2018-08-03 2020-02-06 サンアロマー株式会社 Transparency evaluation method of transparent polymer material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450220A (en) * 1990-06-19 1992-02-19 Kuraray Co Ltd Polyurethane and production thereof
WO2012085204A1 (en) * 2010-12-22 2012-06-28 Nitto Europe Pressure sensitive adhesive tape

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450220A (en) * 1990-06-19 1992-02-19 Kuraray Co Ltd Polyurethane and production thereof
WO2012085204A1 (en) * 2010-12-22 2012-06-28 Nitto Europe Pressure sensitive adhesive tape

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"SpectroEyeのホワイトネスとイエローネスのインデックス", [オンライン], JPN6017026458, 29 June 2009 (2009-06-29) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020753A (en) * 2018-08-03 2020-02-06 サンアロマー株式会社 Transparency evaluation method of transparent polymer material
JP7242211B2 (en) 2018-08-03 2023-03-20 サンアロマー株式会社 Method for evaluating transparency of transparent polymeric materials

Similar Documents

Publication Publication Date Title
CN107209292A (en) Sheet of transparent formed body, the transparent screen for possessing the sheet of transparent formed body and the image projection device including the sheet of transparent formed body or transparent screen
CN105658713B (en) Aterrimus thermoplastic molding composition and its preparation with high gloss
CN105683788A (en) Polarizing plate
EP3212397B1 (en) High clarity and strength polyethylene films
EP3162818A1 (en) Methacrylic resin or methacrylic resin composition
KR20110070999A (en) Light guide plate
JPWO2017030147A1 (en) Resin composition, molded article and laminate
KR20170084219A (en) Methacrylic resin composition and molded body
CN101663152B (en) Film, method for producing the same, and use of the same
JP2015121480A (en) Method for evaluating transparency of transparent polymer material
KR20170068427A (en) Polarizing film
JPWO2009130969A1 (en) Optical film, optical film manufacturing method, polarizing plate, and liquid crystal display device
CN112930262B (en) Polyethylene film structures and related methods
DE102013227127A1 (en) Polypropylene resin composition with improved mechanical properties
Oniszczuk et al. Physical assessment, spectroscopic and chemometric analysis of starch-based foils with selected functional additives
JPH11179856A (en) Matte sheet
WO2020022339A1 (en) Resin composition
JP7242211B2 (en) Method for evaluating transparency of transparent polymeric materials
Luo et al. Light‐scattering properties of linear low density polyethylene/polystyrene films fabricated through layer‐multiplying technology
JP5338644B2 (en) Resin molded product and method for producing resin molded product
JP6544684B2 (en) Polypropylene resin molding material and polypropylene resin molded article
KR20090069758A (en) Master batch composition for preparing diffuser sheet with high luminance and low yellow index and diffuser sheet comprising the same
CN114441740B (en) Evaluation method of polyethylene raw material for electronic protective film
JP7165078B2 (en) Light-transmitting sheets, multilayer sheets, lighting devices, automobile interior materials
US20230083934A1 (en) Black Elastomer Molded Article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130