JP2015120776A - Method and apparatus for manufacturing powder polymer - Google Patents

Method and apparatus for manufacturing powder polymer Download PDF

Info

Publication number
JP2015120776A
JP2015120776A JP2013263856A JP2013263856A JP2015120776A JP 2015120776 A JP2015120776 A JP 2015120776A JP 2013263856 A JP2013263856 A JP 2013263856A JP 2013263856 A JP2013263856 A JP 2013263856A JP 2015120776 A JP2015120776 A JP 2015120776A
Authority
JP
Japan
Prior art keywords
polymerization reactor
powder polymer
contents
surface position
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013263856A
Other languages
Japanese (ja)
Other versions
JP6283216B2 (en
Inventor
鈴木 和彦
Kazuhiko Suzuki
和彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2013263856A priority Critical patent/JP6283216B2/en
Publication of JP2015120776A publication Critical patent/JP2015120776A/en
Application granted granted Critical
Publication of JP6283216B2 publication Critical patent/JP6283216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably manufacturing a powder polymer having an even particle diameter and shape, by controlling a resident time of content in a polymerization reactor in powder bed continuous mass polymerization.SOLUTION: A method for manufacturing a powder polymer includes: continuously supplying under agitation a raw material monomer and a polymerization catalyst for generating the powder polymer to a polymerization reactor where the powder polymer exists; and continuously extracting the powder polymer from a powder polymer extracting port of the polymerization reactor. Furthermore, the method for manufacturing the powder polymer includes performing resident time control for controlling a discharge on-off valve provided on a discharge path of the powder polymer extracting port so as to bring an observation resident time of the content in the polymerization reactor to a target resident time of the content in the polymerization reactor.

Description

本発明は、連続塊状重合反応により粉体ポリマーを製造する方法に関する。   The present invention relates to a method for producing a powder polymer by a continuous bulk polymerization reaction.

粉体床連続塊状重合は、スチレン系重合体やプロピレン系重合体等の製造方法の一つとして知られている(例えば特許文献1及び2を参照)。この方法によれば、種ポリマーとして粉体ポリマーが存在する重合反応器に撹拌下で原料モノマー及び触媒を連続的に供給することで、重合反応器内に存在する種ポリマーに吸収された原料モノマーが重合し、溶媒を用いることなく粉体ポリマーを得ることができる。溶媒を使用しないため、反応後の溶媒を回収する工程が不要となり、コストを低減することができる。また、生成物はポリマー及び未反応モノマーが主体であるので、減圧や乾燥等にてモノマーを回収するだけで高純度のポリマーを得ることができる。   Powder bed continuous bulk polymerization is known as one of methods for producing a styrene polymer, a propylene polymer, and the like (see, for example, Patent Documents 1 and 2). According to this method, the raw material monomer absorbed in the seed polymer present in the polymerization reactor is obtained by continuously supplying the raw material monomer and the catalyst with stirring to the polymerization reactor in which the powder polymer is present as the seed polymer. Is polymerized, and a powder polymer can be obtained without using a solvent. Since no solvent is used, a step of recovering the solvent after the reaction becomes unnecessary, and the cost can be reduced. Further, since the product is mainly composed of a polymer and unreacted monomers, a high-purity polymer can be obtained simply by recovering the monomer by decompression or drying.

ところで、一般に、所望の物性を有するポリマーを均一に得るためには、反応速度及び反応時間によって重合反応を制御することが重要である。原料仕込量、反応温度、触媒濃度等が一定の場合には反応速度を一定とすることができるので、粉体床連続塊状重合においては、反応時間に係わる重合反応器内の内容物の滞留時間を制御できれば、粒径や形状、分子量分布、更に共重合体の場合にはその組成分布等が均一なポリマー粒子を得ることができる。滞留時間が短すぎる場合には、ポリマー粒子が十分に成長する前に排出されてしまう一方、滞留時間が長すぎる場合には、ポリマー粒子間で結合して粗大粒子やダンベル状の異形状粒子を形成することもある。
しかし、粉体系では、液体系とは異なり、重合反応器内部のポリマー粒子の総質量を測定することが困難であるため、重合反応器内の内容物の滞留時間をリアルタイムに制御することが困難である。
By the way, generally, in order to obtain a polymer having desired physical properties uniformly, it is important to control the polymerization reaction according to the reaction rate and the reaction time. Since the reaction rate can be constant when the raw material charge, reaction temperature, catalyst concentration, etc. are constant, in powder bed continuous bulk polymerization, the residence time of the contents in the polymerization reactor related to the reaction time Can control the particle size, shape, molecular weight distribution, and in the case of a copolymer, polymer particles having a uniform composition distribution can be obtained. If the residence time is too short, the polymer particles are discharged before they are sufficiently grown.On the other hand, if the residence time is too long, the polymer particles are bonded together to form coarse particles or dumbbell-shaped irregularly shaped particles. Sometimes it forms.
However, in the powder system, unlike the liquid system, it is difficult to measure the total mass of the polymer particles inside the polymerization reactor, so it is difficult to control the residence time of the contents in the polymerization reactor in real time. It is.

そのため、従来は、粉体系においても液体系と同様に、重合反応器から生成ポリマーを抜き出す速度を制御して、重合反応器内の内容物の容積を一定に制御することで重合反応器内の内容物の滞留時間の制御とみなしているのが実情である(特許文献1及び2を参照)。例えば特許文献1では、横型反応器を用いることで流体のフローパターンをプラグフロー化し、複数の反応器を直列に並べたのと同程度に滞留時間分布を狭くすることが開示されているが、その実施例の記載によれば、重合反応器内の反応系の容積が一定となるように、重合反応器から生成ポリマーを間欠的に抜き出すことが開示されている。なお、重合反応器内の反応系の容積を一定にするとは、重合反応器内における内容物の上面位置(気固相界面)を観測し、その位置を一定に保つように生成ポリマーを抜き出す速度が制御されるのが一般的である。   Therefore, conventionally, in the powder system as well as in the liquid system, the rate at which the produced polymer is extracted from the polymerization reactor is controlled, and the volume of the contents in the polymerization reactor is controlled to be constant. The actual situation is regarded as control of the residence time of the contents (see Patent Documents 1 and 2). For example, Patent Document 1 discloses that a flow pattern of a fluid is converted into a plug flow by using a horizontal reactor, and the residence time distribution is narrowed to the same extent as a plurality of reactors arranged in series. According to the description of the examples, it is disclosed that the produced polymer is intermittently withdrawn from the polymerization reactor so that the volume of the reaction system in the polymerization reactor becomes constant. To keep the volume of the reaction system in the polymerization reactor constant, the upper surface position (gas-solid interface) of the contents in the polymerization reactor is observed, and the production polymer is extracted so as to keep the position constant. Is generally controlled.

特開2011−116970号公報JP 2011-116970 A 特開平5−093015号公報JP-A-5-093015

しかしながら、従来法では、重合反応器内の内容物の滞留時間を制御しきれておらず、装置運転の小さな変動によっても滞留時間が変動してしまい、ポリマー粒子形状の不安定化を招くとともに、重合反応器内の撹拌翼を回転させる動力又はトルクの変動が生じて安定運転に支障をきたしている。そのため、重合反応器内の内容物の滞留時間を十分に制御できるよう、改善が求められている。   However, in the conventional method, the residence time of the contents in the polymerization reactor cannot be controlled, and the residence time varies due to small fluctuations in the operation of the apparatus, leading to instability of the polymer particle shape, A fluctuation in power or torque that rotates the stirring blade in the polymerization reactor occurs, which hinders stable operation. Therefore, improvement is required so that the residence time of the contents in the polymerization reactor can be sufficiently controlled.

したがって、本発明が解決しようとする課題は、粉体床連続塊状重合において、重合反応器内の内容物の滞留時間を制御して、粒径や形状が均一な粉体ポリマーを安定的に製造する方法を提供することにある。   Therefore, the problem to be solved by the present invention is to stably produce a powder polymer having a uniform particle size and shape by controlling the residence time of the contents in the polymerization reactor in the powder bed continuous bulk polymerization. It is to provide a way to do.

本発明者は、従来法によって重合反応器内の内容物の滞留時間を制御しきれていない原因を追求した結果、重合反応器内における内容物の上面位置を一定に制御していても、ポリマー粒子の粒子径分布が変動して内容物の嵩密度の変動が生じる場合には、重合反応器内の内容物の質量が変動するために、重合反応器内の内容物の滞留時間を実質的に制御できていないことを見出した。
本発明者は、更に鋭意検討を重ねた結果、重合反応器内の撹拌翼を回転させる動力又はトルクの変動と、重合反応器内の内容物の嵩密度の変動とが相関していることに着眼し、この相関関係に基づいて重合反応器内の内容物の真の滞留時間を制御できることを見出した。
本発明は、これらの知見に基づき完成するに至ったものである。
As a result of pursuing the reason why the residence time of the contents in the polymerization reactor cannot be controlled by the conventional method, the present inventor has determined that the top surface position of the contents in the polymerization reactor is controlled to be constant. When the particle size distribution of the particles fluctuates and the bulk density of the contents changes, the mass of the contents in the polymerization reactor fluctuates, so that the residence time of the contents in the polymerization reactor is substantially reduced. I found out that I was not able to control.
As a result of further earnest studies, the present inventor found that the fluctuation of the power or torque for rotating the stirring blade in the polymerization reactor correlates with the fluctuation of the bulk density of the contents in the polymerization reactor. It was found that the true residence time of the contents in the polymerization reactor can be controlled based on this correlation.
The present invention has been completed based on these findings.

すなわち、本発明は、以下の粉体ポリマー製造方法及び製造装置に関する。
<1>粉体ポリマーが存在する重合反応器に、粉体ポリマーを生成する原料モノマー及び重合触媒を連続的に撹拌下に供給し、前記重合反応器の粉体ポリマー抜き出し口から連続的に粉体ポリマーを抜き出す粉体ポリマー製造方法であって、
前記重合反応器内の内容物の観測滞留時間が前記重合反応器内の内容物の目標滞留時間になるように、前記粉体ポリマー抜き出し口の吐出路に設けられた吐出開閉弁を制御する滞留時間制御を行う粉体ポリマー製造方法。
<2>前記の重合反応器内の内容物の観測滞留時間が下式(1)及び(2)により算出される、上記<1>に記載の粉体ポリマー製造方法。
(重合反応器内の内容物の観測滞留時間)=(重合反応器内の内容物の質量)/(単位時間当たりの原料モノマーの供給質量) ・・・(1)
(重合反応器内の内容物の質量)=(重合反応器内の内容物の容積)×(重合反応器内の内容物の嵩密度) ・・・(2)
<3>前記の重合反応器内の内容物の嵩密度は、少なくとも、該嵩密度と相関づけられた前記重合反応器内の撹拌に要するトルク又は動力に基づいて算出される、上記<2>に記載の粉体ポリマー製造方法。
<4>前記の単位時間当たりの原料モノマーの供給質量を一定にする、上記<1>〜<3>のいずれかに記載の粉体ポリマー製造方法。
<5>前記重合反応器内の内容物の観測上面位置が、予め設定された第1管理範囲から外れた場合には、前記滞留時間制御に替えて、前記観測上面位置が前記重合反応器内の内容物の目標上面位置になるように、前記吐出開閉弁を制御する上面位置制御を行う、上記<1>〜<4>のいずれかに記載の粉体ポリマー製造方法。
<6>前記上面位置制御を行っている場合であって、前記観測上面位置が、前記第1管理範囲より狭い範囲に設定された第2管理範囲内に戻った場合には、前記上面位置制御から前記滞留時間制御に戻す、上記<5>に記載の粉体ポリマー製造方法。
<7>前記観測滞留時間と前記目標滞留時間との差の変化率の標準偏差が20%以下になるように、前記吐出開閉弁を制御する、上記<1>〜<6>のいずれかに記載の粉体ポリマー製造方法。
<8>前記原料モノマーがスチレン又はプロピレンである、上記<1>〜<7>のいずれかに記載の粉体ポリマー製造方法。
<9>上記<1>〜<8>のいずれかに記載の粉体ポリマー製造方法により粉体ポリマーを製造する粉体ポリマー製造装置。
That is, this invention relates to the following powder polymer manufacturing methods and manufacturing apparatuses.
<1> A raw material monomer for generating a powder polymer and a polymerization catalyst are continuously supplied to a polymerization reactor in which the powder polymer is present under stirring, and the powder is continuously discharged from the powder polymer outlet of the polymerization reactor. A powder polymer manufacturing method for extracting a body polymer,
Residence for controlling the discharge on-off valve provided in the discharge passage of the powder polymer outlet so that the observed residence time of the contents in the polymerization reactor becomes the target residence time of the contents in the polymerization reactor Powder polymer manufacturing method for time control.
<2> The method for producing a powder polymer according to <1>, wherein the observation residence time of the contents in the polymerization reactor is calculated by the following formulas (1) and (2).
(Observation residence time of contents in polymerization reactor) = (mass of contents in polymerization reactor) / (feed mass of raw material monomer per unit time) (1)
(Mass of contents in polymerization reactor) = (Volume of contents in polymerization reactor) × (Bulk density of contents in polymerization reactor) (2)
<3> The bulk density of the contents in the polymerization reactor is calculated based on at least the torque or power required for stirring in the polymerization reactor correlated with the bulk density, <2> The powder polymer manufacturing method as described in any one of.
<4> The method for producing a powder polymer according to any one of <1> to <3>, wherein the supply mass of the raw material monomer per unit time is constant.
<5> When the observation upper surface position of the contents in the polymerization reactor deviates from the preset first management range, the observation upper surface position is changed in the polymerization reactor instead of the residence time control. The method for producing a powder polymer according to any one of <1> to <4>, wherein upper surface position control for controlling the discharge on-off valve is performed so as to be a target upper surface position of the contents.
<6> When the upper surface position control is performed and the observed upper surface position returns to the second management range set to be narrower than the first management range, the upper surface position control is performed. The method for producing a powder polymer according to the above <5>, wherein the method returns to the residence time control.
<7> Any one of the above items <1> to <6>, wherein the discharge on-off valve is controlled such that a standard deviation of a change rate of a difference between the observed residence time and the target residence time is 20% or less. The powder polymer manufacturing method as described.
<8> The method for producing a powder polymer according to any one of <1> to <7>, wherein the raw material monomer is styrene or propylene.
<9> A powder polymer production apparatus for producing a powder polymer by the powder polymer production method according to any one of <1> to <8>.

本発明によれば、粉体床連続塊状重合において、重合反応器内の内容物の真の滞留時間を制御することができ、粒径や形状が均一な粉体ポリマーを安定的に製造することができる。   According to the present invention, in powder bed continuous bulk polymerization, the true residence time of the contents in the polymerization reactor can be controlled, and a powder polymer having a uniform particle size and shape can be stably produced. Can do.

図1は、本発明の粉体ポリマー製造方法の好ましい一実施態様の概略を示す工程図である。FIG. 1 is a process diagram showing an outline of a preferred embodiment of the method for producing a powder polymer of the present invention. 図2は、自動制御装置による滞留時間制御と上面位置制御との切り替えを説明する模式図である。FIG. 2 is a schematic diagram for explaining switching between residence time control and top surface position control by the automatic control device. 図3は、実施例及び比較例における粉体ポリマーの嵩密度の変化率を示すグラフである。FIG. 3 is a graph showing the change rate of the bulk density of the powder polymer in Examples and Comparative Examples.

本発明の粉体ポリマー製造方法は、粉体床連続塊状重合に適用される。具体的には、粉体ポリマーが存在する重合反応器に、粉体ポリマーを生成する原料モノマー及び重合触媒を連続的に撹拌下に供給し、前記重合反応器の粉体ポリマー抜き出し口から連続的に粉体ポリマーを抜き出す方法である。   The method for producing a powder polymer of the present invention is applied to powder bed continuous bulk polymerization. Specifically, a raw material monomer for generating a powder polymer and a polymerization catalyst are continuously supplied to a polymerization reactor in which the powder polymer is present under stirring, and continuously from the powder polymer outlet of the polymerization reactor. In this method, the powder polymer is extracted.

本発明において、「粉体ポリマー」とは、その粒径が5000μm以下の粒体ポリマーをいう。本発明の方法で製造される粉体ポリマーの粒径は、好ましくは3500μm以下、より好ましくは2000μm以下、更に好ましくは1500μm以下である。粒径の下限値は特に限定されないが、好ましくは1μm以上である。また、粉体ポリマーの体積中位粒径は、好ましくは100〜900μmである。   In the present invention, the “powder polymer” refers to a granular polymer having a particle size of 5000 μm or less. The particle size of the powder polymer produced by the method of the present invention is preferably 3500 μm or less, more preferably 2000 μm or less, and even more preferably 1500 μm or less. The lower limit of the particle size is not particularly limited, but is preferably 1 μm or more. The volume median particle size of the powder polymer is preferably 100 to 900 μm.

本発明の方法で製造されるポリマーの種類は特に制限されず、粉体床連続塊状重合により製造できるものであればよい。本発明の方法で製造されるポリマーの種類の具体例としては、プロピレン系重合体等のオレフィン系重合体(ポリノルボルネン等のシクロオレフィン系重合体を含む)、ポリブタジエン等のゴム系樹脂、スチレン系重合体、(メタ)アクリル系重合体、ポリ塩化ビニル等が挙げられる。これらは、単独重合体でもよく、共重合体でもよい。また、共重合体の場合はランダム共重合体でも、ブロック共重合体でもよい。
これらの中でも、オレフィン系重合体及びスチレン系重合体が好ましく、プロピレン単独重合体、プロピレン−エチレン共重合体から選ばれるプロピレン系重合体及びスチレン単独重合体、スチレン−エチレン共重合体、スチレン−プロピレン共重合体から選ばれるスチレン系重合体がより好ましい。さらにスチレン系重合体の中では、シンジオタクチックポリスチレン(SPS)が好ましい。
The type of the polymer produced by the method of the present invention is not particularly limited as long as it can be produced by powder bed continuous bulk polymerization. Specific examples of the types of polymers produced by the method of the present invention include olefin polymers such as propylene polymers (including cycloolefin polymers such as polynorbornene), rubber resins such as polybutadiene, and styrene resins. Examples include polymers, (meth) acrylic polymers, polyvinyl chloride, and the like. These may be homopolymers or copolymers. In the case of a copolymer, it may be a random copolymer or a block copolymer.
Among these, olefin polymers and styrene polymers are preferable, and propylene polymers and styrene homopolymers selected from propylene homopolymers and propylene-ethylene copolymers, styrene-ethylene copolymers, styrene-propylenes. Styrenic polymers selected from copolymers are more preferred. Further, among the styrenic polymers, syndiotactic polystyrene (SPS) is preferable.

本発明に用いられる原料モノマーは、上記のポリマーの原料となるものであり、目的とするポリマーの種類に応じて適宜決定される。例えば、目的とするポリマーがプロピレン単独重合体又はスチレン単独重合体である場合には、原料モノマーはそれぞれプロピレン又はスチレンとなる。原料モノマーの状態は特に限定されないが、現実的には液体又は気体であり、例えばスチレン重合体を得る場合の原料モノマーであるスチレンは液体である。
また、本発明に用いられる重合触媒も同様に、目的とするポリマーの種類に応じて適宜決定される。具体的には、特開2011−116970号公報及び特開平5−093015号公報に示されているものが例示される。
The raw material monomer used in the present invention is a raw material for the above-mentioned polymer, and is appropriately determined according to the type of the target polymer. For example, when the target polymer is a propylene homopolymer or a styrene homopolymer, the raw material monomer is propylene or styrene, respectively. Although the state of the raw material monomer is not particularly limited, it is actually a liquid or a gas. For example, styrene, which is a raw material monomer for obtaining a styrene polymer, is a liquid.
Similarly, the polymerization catalyst used in the present invention is also appropriately determined according to the type of the target polymer. Specific examples include those disclosed in Japanese Patent Application Laid-Open No. 2011-116970 and Japanese Patent Application Laid-Open No. 5-093015.

粉体床連続塊状重合では、重合反応器に存在する種ポリマーとしての粉体ポリマーに吸収された原料モノマーが重合することで粉体ポリマーが成長する。そして成長したポリマーの一部が崩壊して細粒となり、それがさらに種ポリマーとして原料モノマーを吸収し成長する。ある程度成長した粉体ポリマーは重合反応器から順次排出される。このサイクルを繰り返すことで連続的に粉体ポリマーが製造される。   In the powder bed continuous bulk polymerization, the raw material monomer absorbed in the powder polymer as a seed polymer existing in the polymerization reactor is polymerized to grow the powder polymer. A part of the grown polymer collapses into fine particles, which further absorb the raw material monomer as a seed polymer and grow. The powder polymer that has grown to some extent is discharged sequentially from the polymerization reactor. By repeating this cycle, a powder polymer is continuously produced.

粉体床連続塊状重合において重合反応器に最初に充填する粉体としては、原料モノマーから生成されるポリマーと同一の粉体ポリマーでもよく、異なる粉体でもよい。例えば、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリエチレンナフタレート、ポリアリレート、ナイロン等の樹脂;シリカ、鉄、ステンレス、銅、アルミニウム、ニッケル、クロム、金、銀等の無機材料;等を任意に用いることができる。ただし、連続式重合において生成するポリマーの品質の均一性の観点からは、原料モノマーの重合反応によって生成するポリマーと同種類の粉体ポリマーを重合反応器に最初に充填することが好ましい。   The powder initially charged in the polymerization reactor in the powder bed continuous bulk polymerization may be the same powder polymer as the polymer produced from the raw material monomer, or a different powder. For example, resins such as polyethylene terephthalate, polypropylene, polyethylene, polycarbonate, polyethylene naphthalate, polyarylate, and nylon; inorganic materials such as silica, iron, stainless steel, copper, aluminum, nickel, chromium, gold, and silver; be able to. However, from the viewpoint of the uniformity of the quality of the polymer produced in the continuous polymerization, it is preferable to first charge the polymerization reactor with the same type of powder polymer as the polymer produced by the polymerization reaction of the raw material monomers.

本発明の粉体ポリマー製造方法では、観測される重合反応器内の内容物の滞留時間(本発明において「重合反応器内の内容物の観測滞留時間」という)が重合反応器内の内容物の目標滞留時間になるように、粉体ポリマー抜き出し口の吐出路に設けられた吐出開閉弁を制御する滞留時間制御(滞留時間に基づく吐出開閉弁の制御)が行われる。ここで、本発明では、内容物の嵩密度の変動を、少なくともこれに伴う重合反応器内の撹拌翼を回転させる動力もしくはトルクの変動として捉えて重合反応器内の内容物の質量を制御することで重合反応器内の内容物の観測滞留時間を制御することが好ましい。   In the powder polymer production method of the present invention, the observed residence time of the contents in the polymerization reactor (referred to as “observation residence time of the contents in the polymerization reactor” in the present invention) is the contents in the polymerization reactor. The residence time control (control of the discharge on-off valve based on the residence time) is performed so as to control the discharge on-off valve provided in the discharge path of the powder polymer extraction port so that the target residence time is reached. Here, in the present invention, the mass density of the content in the polymerization reactor is controlled by regarding the fluctuation in the bulk density of the content as at least the power or torque fluctuation that rotates the stirring blade in the polymerization reactor. It is preferable to control the observation residence time of the contents in the polymerization reactor.

本発明において、重合反応器内の内容物の観測滞留時間は、下式(1)により算出することができる。
(重合反応器内の内容物の観測滞留時間)=(重合反応器内の内容物の質量)/(単位時間当たりの原料モノマーの供給質量) ・・・(1)
すなわち、重合反応器内の内容物の観測滞留時間は、重合反応器内の内容物の質量を、単位時間当たりの原料モノマーの供給質量で除することによって算出することができる。ここで、単位時間当たりの原料モノマーの供給質量は、原料モノマーの密度と供給流量とから適宜設定することができ、任意の手段によってリアルタイムに制御することができる。
In the present invention, the observed residence time of the contents in the polymerization reactor can be calculated by the following equation (1).
(Observation residence time of contents in polymerization reactor) = (mass of contents in polymerization reactor) / (feed mass of raw material monomer per unit time) (1)
That is, the observed residence time of the contents in the polymerization reactor can be calculated by dividing the mass of the contents in the polymerization reactor by the supply mass of the raw material monomer per unit time. Here, the supply mass of the raw material monomer per unit time can be appropriately set from the density of the raw material monomer and the supply flow rate, and can be controlled in real time by any means.

前記の重合反応器内の内容物の質量は、下式(2)により算出することができる。
(重合反応器内の内容物の質量)=(重合反応器内の内容物の容積)×(重合反応器内の内容物の嵩密度) ・・・(2)
すなわち、重合反応器内の内容物の質量は、重合反応器内の内容物の容積とその内容物の嵩密度との積によって算出することができる。重合反応器内の内容物の容積は、重合反応器内における内容物の上面位置(気固相界面)を観測し、重合反応器のサイズに基づいて算出される。
また、重合反応器内の内容物の嵩密度は、少なくとも、嵩密度と相関づけられた重合反応器内の撹拌に要するトルク又は動力に基づいて算出されることが好ましい。すなわち、粉体ポリマーの嵩密度と少なくとも重合反応器内の撹拌翼を回転させる動力又はトルクとの相関関係を示す検量線を予め作成しておくことが好ましく、重合反応器から排出される粉体ポリマーを間欠的にサンプリングして嵩密度の離散型データを収集する場合でも、当該検量線に照らし合わせることで、重合反応器内の撹拌に要するトルク又は動力と相関させて連続型データに変換し、これに基づいて重合反応器内の内容物の嵩密度をリアルタイムにモニタリングすることが可能である。
なお、重合反応器内の撹拌翼を回転させる動力又はトルクの変動は、任意の手段により観測することができる。
The mass of the contents in the polymerization reactor can be calculated by the following equation (2).
(Mass of contents in polymerization reactor) = (Volume of contents in polymerization reactor) × (Bulk density of contents in polymerization reactor) (2)
That is, the mass of the content in the polymerization reactor can be calculated by the product of the volume of the content in the polymerization reactor and the bulk density of the content. The volume of the content in the polymerization reactor is calculated based on the size of the polymerization reactor by observing the upper surface position (gas-solid interface) of the content in the polymerization reactor.
The bulk density of the contents in the polymerization reactor is preferably calculated based on at least the torque or power required for stirring in the polymerization reactor correlated with the bulk density. That is, it is preferable to prepare in advance a calibration curve showing the correlation between the bulk density of the powder polymer and at least the power or torque for rotating the stirring blade in the polymerization reactor, and the powder discharged from the polymerization reactor Even when discrete data of bulk density is collected by sampling the polymer intermittently, it is converted into continuous data by correlating with the torque or power required for stirring in the polymerization reactor by comparing with the calibration curve. Based on this, it is possible to monitor the bulk density of the contents in the polymerization reactor in real time.
In addition, the fluctuation | variation of the motive power or torque which rotates the stirring blade in a polymerization reactor can be observed by arbitrary means.

本発明では、上記で算出された観測滞留時間が、予め設定された目標滞留時間になるように、粉体ポリマー抜き出し口の吐出路に設けられた吐出開閉弁を制御して粉体ポリマーの排出量の調節が行われる。観測滞留時間と目標滞留時間との差の変化率の標準偏差が、好ましくは20%以下、より好ましくは15%以下、更に好ましくは10%以下になるように、吐出開閉弁が制御される。   In the present invention, the discharge polymer discharge is controlled by controlling the discharge on-off valve provided in the discharge passage of the powder polymer outlet so that the observation residence time calculated above becomes a preset target residence time. The amount is adjusted. The discharge on / off valve is controlled so that the standard deviation of the change rate of the difference between the observed residence time and the target residence time is preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less.

変数を減らして制御を容易にする観点、すなわち実際の生産を考慮すれば、単位時間当たりの原料モノマーの供給質量を一定にすることが好ましい。式(1)から明らかなように、単位時間当たりの原料モノマーの供給質量を一定値に制御することで、制御式を簡略化することができ、前記滞留時間制御を重合反応器内の内容物の質量制御に置き換えることができる。この場合、観測される重合反応器内の内容物の質量と目標質量との差の変化率の標準偏差が、好ましくは20%以下、より好ましくは15%以下、更に好ましくは10%以下になるように、吐出開閉弁が制御される。   From the viewpoint of facilitating control by reducing variables, that is, considering actual production, it is preferable to keep the supply mass of the raw material monomer per unit time constant. As is clear from the equation (1), the control equation can be simplified by controlling the supply mass of the raw material monomer per unit time to a constant value, and the residence time control is performed by the contents in the polymerization reactor. Can be replaced by mass control. In this case, the standard deviation of the rate of change in the difference between the observed mass of the contents in the polymerization reactor and the target mass is preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less. Thus, the discharge on-off valve is controlled.

上述のとおり、重合反応器内の内容物の容積は、重合反応器内における内容物の上面位置(気固相界面)を観測し、重合反応器のサイズに基づいて算出される。このとき、観測される重合反応器内の内容物の上面位置(本発明において「重合反応器内の内容物の観測上面位置」という)が重合反応器内の内容物の目標上面位置から大きく外れるような異常事態が生じた場合には、上記の滞留時間制御では、重合反応器内の内容物の観測上面位置を目標上面位置に迅速に復旧することが困難な場合があり、安定運転に支障をきたすおそれがある。そのような異常事態が生じた場合には、正常状態に戻すために上記の滞留時間制御から上面位置制御(重合反応器内の内容物の上面位置に基づく吐出開閉弁の制御)に切り替えることが好ましい。
具体的には、目標上面位置からの許容変動範囲を「第1管理範囲」として予め設定し、重合反応器内の内容物の観測上面位置が第1管理範囲から外れた場合には、滞留時間制御から上面位置制御に切り替えて吐出開閉弁の制御を行う。また、第1管理範囲内に該第1管理範囲よりも狭い範囲で「第2管理範囲」を予め設定し、上面位置制御によって重合反応器内の内容物の観測上面位置が第2管理範囲内に戻った場合には、上面位置制御から滞留時間制御に戻して吐出開閉弁の制御を行う。上面位置制御から滞留時間制御に戻す閾値として第2管理範囲を設けることで、上面位置制御と滞留時間制御との切り替えの頻度を少なくして安定した制御を行うことができる。
As described above, the volume of the content in the polymerization reactor is calculated based on the size of the polymerization reactor by observing the upper surface position (gas-solid interface) of the content in the polymerization reactor. At this time, the observed upper surface position of the content in the polymerization reactor (referred to as “the observed upper surface position of the content in the polymerization reactor” in the present invention) deviates significantly from the target upper surface position of the content in the polymerization reactor. When such an abnormal situation occurs, it may be difficult to quickly restore the observation upper surface position of the contents in the polymerization reactor to the target upper surface position with the above residence time control, which hinders stable operation. There is a risk of causing. When such an abnormal situation occurs, switching from the above residence time control to the upper surface position control (control of the discharge on-off valve based on the upper surface position of the contents in the polymerization reactor) in order to return to the normal state. preferable.
Specifically, when the allowable fluctuation range from the target upper surface position is set in advance as the “first management range” and the observation upper surface position of the contents in the polymerization reactor is out of the first management range, the residence time The discharge on / off valve is controlled by switching from the control to the upper surface position control. In addition, a “second management range” is preset in the first management range in a range narrower than the first management range, and the observed upper surface position of the contents in the polymerization reactor is within the second management range by upper surface position control. In the case of returning to the above, the control of the discharge on-off valve is performed by returning from the upper surface position control to the residence time control. By providing the second management range as a threshold value for returning from the upper surface position control to the residence time control, it is possible to perform stable control by reducing the frequency of switching between the upper surface position control and the residence time control.

以下、本発明の好ましい一実施態様について、図面を参照しながら説明する。図1は、本発明の粉体ポリマー製造方法の好ましい一実施態様の概略を示す工程図である。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram showing an outline of a preferred embodiment of the method for producing a powder polymer of the present invention.

粉体ポリマー製造装置1は、粉体ポリマーが存在する重合反応器2に、粉体ポリマーを生成する原料モノマー及び重合触媒を連続的に撹拌下に供給し、重合反応器2の粉体ポリマー抜き出し口14から連続的に粉体ポリマーを抜き出すことにより粉体ポリマーを製造する製造装置である。粉体ポリマー製造装置1は自動制御装置3を有し、自動制御装置3により重合反応器内の内容物の滞留時間が制御され、粒径や形状が均一な粉体ポリマーを安定的に製造することができる。   The powder polymer production apparatus 1 continuously supplies a raw material monomer and a polymerization catalyst for generating a powder polymer to the polymerization reactor 2 in which the powder polymer exists, with stirring, and extracts the powder polymer from the polymerization reactor 2. This is a production apparatus for producing a powder polymer by continuously extracting the powder polymer from the mouth 14. The powder polymer production apparatus 1 has an automatic control device 3. The automatic control device 3 controls the residence time of the contents in the polymerization reactor and stably produces a powder polymer having a uniform particle size and shape. be able to.

重合反応器2は、原料モノマー供給口11と、触媒供給口12と、撹拌翼13と、粉体ポリマー抜き出し口14とを有する。重合反応器2は、温度調節用のジャケット15を有していてもよい。特開平11−236404号公報に記載の方法と同様に、不活性溶媒による蒸発潜熱にて重合温度を調整してもよい。
原料モノマー供給口11には原料モノマー供給路21が接続されており、原料モノマー供給路21に設けられた原料モノマー供給開閉弁22により、原料モノマーの供給流量が調節される。原料モノマー供給路21には、原料モノマー供給流量検出手段23が設けられている。原料モノマー供給流量検出手段23により、原料モノマーの供給流量が検出される。また、触媒供給口12には触媒供給路24が接続されており、触媒供給路24に設けられた触媒供給開閉弁25により、触媒の供給流量が調節される。触媒供給路24には、触媒供給流量検出手段26が設けられている。触媒供給流量検出手段26により、触媒の供給流量が検出される。
撹拌翼13は、重合反応器2内に回転可能に支持されており、撹拌翼駆動機構30によって回転する。撹拌翼駆動機構30には、トルク検出手段又は動力検出手段35が接続されている。トルク検出手段又は動力検出手段35により、重合反応器2内の撹拌に要するトルク又は動力が検出される。トルク検出手段又は動力検出手段35としては、トルク計又は動力計等を使用できる。
粉体ポリマー抜き出し口14には吐出路16が接続されており、吐出路16に設けられた吐出開閉弁50により、粉体ポリマーの抜き出し流量が調節される。
重合反応器2内には、粉体ポリマー80が存在する。重合反応器2内における粉体ポリマー80の上面位置81は、上面位置検出手段40により検出される。上面位置検出手段40としては、例えば、超音波検出器、マイクロ波検出器、レーザー検出器、静電容量検出器、γ線検出器を挙げることができ、中でもγ線検出器が好ましい。
The polymerization reactor 2 has a raw material monomer supply port 11, a catalyst supply port 12, a stirring blade 13, and a powder polymer extraction port 14. The polymerization reactor 2 may have a temperature adjusting jacket 15. Similarly to the method described in JP-A-11-236404, the polymerization temperature may be adjusted by latent heat of vaporization using an inert solvent.
A raw material monomer supply passage 21 is connected to the raw material monomer supply port 11, and the raw material monomer supply flow rate is adjusted by a raw material monomer supply opening / closing valve 22 provided in the raw material monomer supply passage 21. In the raw material monomer supply path 21, a raw material monomer supply flow rate detection means 23 is provided. The raw material monomer supply flow rate detecting means 23 detects the raw material monomer supply flow rate. A catalyst supply path 24 is connected to the catalyst supply port 12, and a catalyst supply flow rate is adjusted by a catalyst supply opening / closing valve 25 provided in the catalyst supply path 24. A catalyst supply flow rate detection means 26 is provided in the catalyst supply path 24. The catalyst supply flow rate detecting means 26 detects the catalyst supply flow rate.
The stirring blade 13 is rotatably supported in the polymerization reactor 2 and is rotated by the stirring blade drive mechanism 30. Torque detection means or power detection means 35 is connected to the stirring blade drive mechanism 30. Torque or power detection means 35 detects the torque or power required for stirring in the polymerization reactor 2. As the torque detection means or the power detection means 35, a torque meter, a dynamometer, or the like can be used.
A discharge passage 16 is connected to the powder polymer extraction port 14, and a discharge flow rate of the powder polymer is adjusted by a discharge opening / closing valve 50 provided in the discharge passage 16.
A powder polymer 80 is present in the polymerization reactor 2. The upper surface position 81 of the powder polymer 80 in the polymerization reactor 2 is detected by the upper surface position detecting means 40. Examples of the upper surface position detection means 40 include an ultrasonic detector, a microwave detector, a laser detector, a capacitance detector, and a γ-ray detector. Among these, a γ-ray detector is preferable.

粉体床連続塊状重合では、粉体ポリマー80が存在する重合反応器2に、粉体ポリマーを生成する原料モノマー及び重合触媒が原料モノマー供給口11及び触媒供給口12から連続的に供給される。このとき、撹拌翼13によって撹拌されながら、重合反応器2に存在する種ポリマーとしての粉体ポリマー80に吸収された原料モノマーが重合することで粉体ポリマーが成長する。成長した粉体ポリマーは、粉体ポリマー抜き出し口14から順次排出され、吐出路16を経て回収される。   In the powder bed continuous bulk polymerization, the raw material monomer and the polymerization catalyst for generating the powder polymer are continuously supplied from the raw material monomer supply port 11 and the catalyst supply port 12 to the polymerization reactor 2 in which the powder polymer 80 exists. . At this time, while being stirred by the stirring blade 13, the raw material monomer absorbed in the powder polymer 80 as the seed polymer existing in the polymerization reactor 2 is polymerized, so that the powder polymer grows. The grown powder polymer is sequentially discharged from the powder polymer outlet 14 and collected via the discharge path 16.

本発明では、重合反応器2内の内容物80の観測滞留時間が目標滞留時間になるように、粉体ポリマー抜き出し口14に接続された吐出路16に設けられた吐出開閉弁50を制御する滞留時間制御が行われる。好ましくは、内容物の嵩密度の変動を、少なくともこれに伴う重合反応器内の撹拌翼を回転させる動力又はトルクの変動として捉えて重合反応器内の内容物の質量を制御することで重合反応器内の内容物の観測滞留時間を制御する。重合反応器内の内容物の観測滞留時間は、前記式(1)及び(2)により算出することができ、重合反応器2内の撹拌翼13を回転させる動力又はトルクはトルク検出手段又は動力検出手段35により検出される。   In the present invention, the discharge on / off valve 50 provided in the discharge passage 16 connected to the powder polymer outlet 14 is controlled so that the observed residence time of the contents 80 in the polymerization reactor 2 becomes the target residence time. Residence time control is performed. Preferably, the polymerization reaction is performed by controlling the mass of the content in the polymerization reactor by capturing the change in the bulk density of the content as at least the power or torque fluctuation that rotates the stirring blade in the polymerization reactor. Control the observation dwell time of the contents in the vessel. The observed residence time of the contents in the polymerization reactor can be calculated by the above equations (1) and (2), and the power or torque for rotating the stirring blade 13 in the polymerization reactor 2 is torque detection means or power. It is detected by the detection means 35.

原料モノマー供給流量検出手段23により検出された原料モノマーの供給流量に関する情報が原料モノマー供給流量信号S1として、上面位置検出手段40により検出された重合反応器2内における粉体ポリマー80の上面位置81に関する情報が上面位置信号S2として、トルク検出手段又は動力検出手段35により検出された動力又はトルクに関する情報が動力/トルク信号S3として、それぞれ自動制御装置3に送られる。
自動制御装置3は、原料モノマー供給流量信号S1に基づいて単位時間当たりの原料モノマーの供給質量を算出することができ、上面位置信号S2に基づいて重合反応器内の内容物の容積を算出することができ、少なくとも動力/トルク信号S3に基づいて重合反応器内の内容物の嵩密度を算出することができる。
自動制御装置3は、これらの信号を参照して吐出開閉弁50の開度を決定し、吐出開閉弁開度信号S4を開閉弁制御手段55に送る。開閉弁制御手段55は、吐出開閉弁開度信号S4に基づいて吐出開閉弁50の開度を制御する。また、自動制御装置3は、吐出開閉弁50の開度とともに原料モノマー供給路21及び触媒供給路24にそれぞれ設けられた原料モノマー供給開閉弁22及び触媒供給開閉弁25の開度を決定することもできる。原料モノマー供給開閉弁22及び触媒供給開閉弁25の開度を制御する場合、自動制御装置3は、原料供給開閉弁開度信号S5を開閉弁制御手段27に送り、開閉弁制御手段27は、原料供給開閉弁開度信号S5に基づいて原料モノマー供給開閉弁22及び触媒供給開閉弁25の開度を制御する。
Information on the supply flow rate of the raw material monomer detected by the raw material monomer supply flow rate detection means 23 is the raw material monomer supply flow rate signal S1, and the upper surface position 81 of the powder polymer 80 in the polymerization reactor 2 detected by the upper surface position detection means 40. Information relating to the power or torque detected by the torque detection means or power detection means 35 is sent to the automatic control device 3 as the upper surface position signal S2, respectively, as power / torque signal S3.
The automatic control device 3 can calculate the supply mass of the raw material monomer per unit time based on the raw material monomer supply flow rate signal S1, and calculate the volume of the contents in the polymerization reactor based on the upper surface position signal S2. The bulk density of the contents in the polymerization reactor can be calculated based on at least the power / torque signal S3.
The automatic control device 3 determines the opening degree of the discharge opening / closing valve 50 with reference to these signals, and sends the discharge opening / closing valve opening signal S4 to the opening / closing valve control means 55. The on / off valve control means 55 controls the opening of the discharge on / off valve 50 based on the discharge on / off valve opening signal S4. Further, the automatic control device 3 determines the opening degree of the raw material monomer supply opening / closing valve 22 and the catalyst supply opening / closing valve 25 provided in the raw material monomer supply path 21 and the catalyst supply path 24, respectively, together with the opening degree of the discharge on / off valve 50. You can also. When controlling the opening degree of the raw material monomer supply on / off valve 22 and the catalyst supply on / off valve 25, the automatic control device 3 sends a raw material supply on / off valve opening degree signal S5 to the on / off valve control means 27, and the on / off valve control means 27 The opening degree of the raw material monomer supply opening / closing valve 22 and the catalyst supply opening / closing valve 25 is controlled based on the raw material supply opening / closing valve opening signal S5.

上面位置検出手段40により検出された重合反応器2内における粉体ポリマー80の上面位置81が第1管理範囲から外れた場合には、自動制御装置3は滞留時間制御から上面位置制御に切り替えて吐出開閉弁の制御を行うことが好ましい。   When the upper surface position 81 of the powder polymer 80 in the polymerization reactor 2 detected by the upper surface position detecting means 40 is out of the first management range, the automatic control device 3 switches from the residence time control to the upper surface position control. It is preferable to control the discharge on-off valve.

上述した自動制御装置3による滞留時間制御と上面位置制御との切り替えについて、図2を参照しながら説明する。図2は、自動制御装置による滞留時間制御と上面位置制御との切り替えを説明する模式図である。
図2中、縦軸は、重合反応器内の内容物の観測上面位置Lを示し、横軸は、重合時間tを示す。第1管理範囲Raは、重合反応器内の内容物の目標上面位置L0からの許容変動範囲であり、上面位置La2以上La1以下の範囲として設定されている。第2管理範囲Rbは、第1管理範囲Raの中に該第1管理範囲Raよりも狭く、上面位置Lb2以上Lb1以下の範囲として設定されている。Lb1はL0を超えLa1未満の値であり、Lb2はLa2を超えL0未満の値である。La1、La2、Lb1及びLb2の各値は、装置に応じて適宜設定される。
Switching between the residence time control and the upper surface position control by the automatic control device 3 will be described with reference to FIG. FIG. 2 is a schematic diagram for explaining switching between residence time control and top surface position control by the automatic control device.
In FIG. 2, the vertical axis indicates the observed upper surface position L of the contents in the polymerization reactor, and the horizontal axis indicates the polymerization time t. The first management range Ra is an allowable variation range from the target upper surface position L 0 of the contents in the polymerization reactor, and is set as a range between the upper surface position La 2 and La 1 . The second management range Rb is set in the first management range Ra as a range that is narrower than the first management range Ra and is between the upper surface positions Lb 2 and Lb 1 . Lb 1 is a value exceeding L 0 and less than La 1 , and Lb 2 is a value exceeding La 2 and less than L 0 . Each value of La 1 , La 2 , Lb 1 and Lb 2 is appropriately set according to the apparatus.

図2は、内容物の観測上面位置Lが目標上面位置L0に略一致している状態から、観測上面位置Lが第1管理範囲Raを外れ、その後、第2管理範囲Rb内に復帰した状態までの観測上面位置Lの経時変化を示している。 FIG. 2 shows that the observed upper surface position L deviates from the first management range Ra from the state in which the observed upper surface position L of the contents substantially coincides with the target upper surface position L 0 , and then returns to the second managed range Rb. The time-dependent change of the observation upper surface position L to the state is shown.

0の時点からt1の直前の時点までは、観測上面位置Lが上面位置La1未満であり第1管理範囲Ra内にあるので滞留時間制御が行われている。観測上面位置Lが上面位置La1以上となり第1管理範囲Raから外れたt1の時点(P1)で、自動制御装置3は、滞留時間制御から上面位置制御に切り替えて、吐出開閉弁50の開度を決定し、吐出開閉弁開度信号S4を開閉弁制御手段55に送る。開閉弁制御手段55は、吐出開閉弁開度信号S4に基づいて吐出開閉弁50の開度を制御する。また、自動制御装置3は、吐出開閉弁50の開度とともに原料モノマー供給路21及び触媒供給路24にそれぞれ設けられた原料モノマー供給開閉弁22及び触媒供給開閉弁25の開度を決定することもできる。原料モノマー供給開閉弁22及び触媒供給開閉弁25の開度を制御する場合、自動制御装置3は、原料供給開閉弁開度信号S5を開閉弁制御手段27に送り、開閉弁制御手段27は、原料供給開閉弁開度信号S5に基づいて原料モノマー供給開閉弁22及び触媒供給開閉弁25の開度を制御する。 From the time point t 0 to the time point just before t 1 , the observation upper surface position L is less than the upper surface position La 1 and is within the first management range Ra, so that the residence time control is performed. At time t 1 (P 1 ) when the observed upper surface position L is equal to or higher than the upper surface position La 1 and deviates from the first management range Ra, the automatic control device 3 switches from the residence time control to the upper surface position control, and the discharge on / off valve 50 And the discharge opening / closing valve opening signal S4 is sent to the opening / closing valve control means 55. The on / off valve control means 55 controls the opening of the discharge on / off valve 50 based on the discharge on / off valve opening signal S4. Further, the automatic control device 3 determines the opening degree of the raw material monomer supply opening / closing valve 22 and the catalyst supply opening / closing valve 25 provided in the raw material monomer supply path 21 and the catalyst supply path 24, respectively, together with the opening degree of the discharge on / off valve 50. You can also. When controlling the opening degree of the raw material monomer supply on / off valve 22 and the catalyst supply on / off valve 25, the automatic control device 3 sends a raw material supply on / off valve opening degree signal S5 to the on / off valve control means 27, and the on / off valve control means 27 The opening degree of the raw material monomer supply opening / closing valve 22 and the catalyst supply opening / closing valve 25 is controlled based on the raw material supply opening / closing valve opening signal S5.

観測上面位置Lが上面位置La1未満となっても上面位置Lb1を超える場合は、引き続き上面位置制御が行われる。観測上面位置Lが上面位置Lb1以下となり第2管理範囲Rb内に復帰したt2の時点(P2)で、自動制御装置3は、上面位置制御から滞留時間制御に戻して吐出開閉弁50の制御を行う。 Even if the observed upper surface position L is less than the upper surface position La 1 , if it exceeds the upper surface position Lb 1 , the upper surface position control is continued. At time t 2 (P 2 ) when the observed upper surface position L becomes equal to or lower than the upper surface position Lb 1 and returns to the second management range Rb, the automatic control device 3 returns to the residence time control from the upper surface position control, and the discharge on / off valve 50 Control.

なお、図2には示していないが、観測上面位置がLa2以下となり第1管理範囲Raから外れた場合にも滞留時間制御から上面位置制御への切り替えが行われる。そして、観測上面位置Lが上面位置Lb2以上となり第2管理範囲Rb内に戻った場合に、上面位置制御から滞留時間制御に戻される。 Although not shown in FIG. 2, switching from the dwell time control to the upper surface position control is also performed when the observation upper surface position is La 2 or less and deviates from the first management range Ra. When the observation upper surface position L becomes equal to or higher than the upper surface position Lb 2 and returns to the second management range Rb, the upper surface position control is returned to the dwell time control.

以上、本発明の粉体ポリマー製造方法及び製造装置の好ましい一実施態様について図面を参照しながら説明したが、本発明はこれに限定されない。   As mentioned above, although the preferable one embodiment of the powder polymer manufacturing method and manufacturing apparatus of this invention was demonstrated referring drawings, this invention is not limited to this.

以下に、実施例に基づいて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。   Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.

実施例1
撹拌翼及び温度調節用ジャケットを備えた200Lの重合反応器に、ポリスチレンパウダーを、その上面位置が回転翼の上部を覆うように仕込んだ。触媒成分混合液は、特許第4503852号公報の実施例1において、溶媒トルエン濃度を減らし、触媒濃度を4倍に濃縮したこと以外は特許第4503852号公報の実施例1と同様にして調製した。ジャケットに70℃温水を通水して重合反応器内を加熱した後に、撹拌下でスチレンモノマー及び触媒成分混合液をそれぞれ13L/hr及び0.3L/hr供給して重合を開始した。重合開始5日後から15日間、滞留時間制御を行った。具体的には、重合反応器内の内容物の嵩密度の変動を、少なくともこれに伴う重合反応器内の撹拌翼を回転させる動力又はトルクの変動として捉えて、重合反応器内の内容物の質量が一定となるように制御することで重合反応器内の内容物の観測滞留時間の制御を行った。4時間毎に吐出路から吐出される粉体ポリマーの嵩密度を測定した。測定された粉体ポリマーの嵩密度の平均値からの変化率のグラフを図3に示す。図3中の運転日数0日は、重合開始から5日目である。また、図3中、実施例1における結果は黒丸印で示した。このときの嵩密度の変化率に関する標準偏差は5.4%であった。また、重合反応器内における粉体ポリマーの観測滞留時間、総質量及び上面位置、並びに重合反応器内の撹拌に要したトルクのそれぞれの変化率について標準偏差を算出した。結果を表1に示す。
Example 1
Polystyrene powder was charged into a 200 L polymerization reactor equipped with a stirring blade and a temperature control jacket so that the upper surface of the polystyrene reactor covered the top of the rotor blade. The catalyst component mixture was prepared in the same manner as in Example 1 of Japanese Patent No. 4503852 except that the solvent toluene concentration was reduced and the catalyst concentration was concentrated four times in Example 1 of Japanese Patent No. 4503852. After heating the inside of the polymerization reactor by passing warm water at 70 ° C. through the jacket, the styrene monomer and the catalyst component mixed solution were supplied at 13 L / hr and 0.3 L / hr, respectively, with stirring to initiate the polymerization. The residence time was controlled for 15 days from 5 days after the start of polymerization. Specifically, the fluctuation of the bulk density of the contents in the polymerization reactor is at least regarded as the fluctuation of the power or torque that rotates the stirring blade in the polymerization reactor, and the contents of the contents in the polymerization reactor are changed. The observed residence time of the contents in the polymerization reactor was controlled by controlling the mass to be constant. The bulk density of the powder polymer discharged from the discharge path every 4 hours was measured. The graph of the rate of change from the average value of the measured bulk density of the powder polymer is shown in FIG. The operation days 0 in FIG. 3 is the fifth day from the start of polymerization. In FIG. 3, the results in Example 1 are indicated by black circles. The standard deviation regarding the change rate of the bulk density at this time was 5.4%. In addition, standard deviations were calculated for the observed residence time of the powder polymer in the polymerization reactor, the total mass and the upper surface position, and the rate of change in torque required for stirring in the polymerization reactor. The results are shown in Table 1.

比較例1
実施例1において滞留時間制御に代えて上面位置制御を行ったこと以外は、実施例1と同様にして粉体ポリマーの製造を行い、評価を行った。すなわち、重合反応器内における粉体ポリマーの上面位置が一定となるように制御を行った。評価結果を図3及び表1に示す。図3中、比較例1における結果は黒い四角印で示した。
Comparative Example 1
A powder polymer was produced and evaluated in the same manner as in Example 1 except that the upper surface position control was performed instead of the residence time control in Example 1. That is, control was performed so that the upper surface position of the powder polymer in the polymerization reactor was constant. The evaluation results are shown in FIG. In FIG. 3, the results in Comparative Example 1 are indicated by black square marks.

Figure 2015120776
Figure 2015120776

表1及び図3から明らかなように、従来法である上面位置制御を行った比較例1では、重合反応器内における粉体ポリマーの観測上面位置の変動幅は小さいものの、観測滞留時間は制御しきれておらず、重合反応器内の撹拌に要したトルクの変動幅が大きく、安定運転に支障をきたすおそれがあることがわかる。さらに、得られる粉体ポリマーの嵩密度の変動幅も大きく、得られる粉体ポリマーの粒径や形状の均一性に劣る。
これに対して、滞留時間制御を行った実施例1では、粉体ポリマーの嵩密度の変動幅を小さく制御することができ、ひいては粉体ポリマーの滞留時間の変動幅を小さく制御することができる。また、重合反応器内の撹拌に要したトルクの変動幅も小さく、装置の安定運転が可能である。
As is clear from Table 1 and FIG. 3, in Comparative Example 1 in which the upper surface position control, which is a conventional method, was performed, the fluctuation range of the observed upper surface position of the powder polymer in the polymerization reactor was small, but the observed residence time was controlled. It can be seen that the fluctuation range of the torque required for stirring in the polymerization reactor is large, and there is a risk of hindering stable operation. Furthermore, the fluctuation range of the bulk density of the obtained powder polymer is large, and the particle size and shape uniformity of the obtained powder polymer are inferior.
On the other hand, in Example 1 in which the residence time was controlled, the fluctuation range of the bulk density of the powder polymer can be controlled to be small, and as a result, the fluctuation range of the residence time of the powder polymer can be controlled to be small. . In addition, the fluctuation range of the torque required for stirring in the polymerization reactor is small, and the apparatus can be stably operated.

本発明によれば、粉体床連続塊状重合において、重合反応器内の内容物の真の滞留時間を制御することができ、粒径や形状が均一な粉体ポリマーを安定的に製造することができる。   According to the present invention, in powder bed continuous bulk polymerization, the true residence time of the contents in the polymerization reactor can be controlled, and a powder polymer having a uniform particle size and shape can be stably produced. Can do.

1 粉体ポリマー製造装置
2 重合反応器
3 自動制御装置
11 原料モノマー供給口
12 触媒供給口
13 撹拌翼
14 粉体ポリマー抜き出し口
15 ジャケット
16 吐出路
21 原料モノマー供給路
22 原料モノマー供給開閉弁
23 原料モノマー供給流量検出手段
24 触媒供給路
25 触媒供給開閉弁
26 触媒供給流量検出手段
27 開閉弁制御手段
30 撹拌翼駆動機構
35 トルク検出手段又は動力検出手段
40 上面位置検出手段
50 吐出開閉弁
55 開閉弁制御手段
80 粉体ポリマー(重合反応器内の内容物)
81 粉体ポリマーの上面位置(重合反応器内の内容物の上面位置)
L 重合反応器内の内容物の観測上面位置
0 重合反応器内の内容物の目標上面位置
Ra 第1管理範囲
Rb 第2管理範囲
S1 原料モノマー供給流量信号
S2 上面位置信号
S3 動力/トルク信号
S4 吐出開閉弁開度信号
S5 原料供給開閉弁開度信号
DESCRIPTION OF SYMBOLS 1 Powder polymer manufacturing apparatus 2 Polymerization reactor 3 Automatic control apparatus 11 Raw material monomer supply port 12 Catalyst supply port 13 Stirring blade 14 Powder polymer extraction port 15 Jacket 16 Discharge path 21 Raw material monomer supply path 22 Raw material monomer supply on-off valve 23 Raw material Monomer supply flow rate detection means 24 Catalyst supply path 25 Catalyst supply on / off valve 26 Catalyst supply flow rate detection means 27 Open / close valve control means 30 Stirring blade drive mechanism 35 Torque detection means or power detection means 40 Upper surface position detection means 50 Discharge on / off valve 55 Open / close valve Control means 80 Powder polymer (contents in the polymerization reactor)
81 Upper surface position of powder polymer (upper surface position of contents in polymerization reactor)
L Observing upper surface position of contents in polymerization reactor L 0 Target upper surface position Ra of contents in polymerization reactor First management range Rb Second management range S1 Raw material monomer supply flow rate signal S2 Upper surface position signal S3 Power / torque signal S4 Discharge on / off valve opening signal S5 Raw material supply on / off valve opening signal

Claims (9)

粉体ポリマーが存在する重合反応器に、粉体ポリマーを生成する原料モノマー及び重合触媒を連続的に撹拌下に供給し、前記重合反応器の粉体ポリマー抜き出し口から連続的に粉体ポリマーを抜き出す粉体ポリマー製造方法であって、
前記重合反応器内の内容物の観測滞留時間が前記重合反応器内の内容物の目標滞留時間になるように、前記粉体ポリマー抜き出し口の吐出路に設けられた吐出開閉弁を制御する滞留時間制御を行う粉体ポリマー製造方法。
The raw material monomer for generating the powder polymer and the polymerization catalyst are continuously supplied to the polymerization reactor in which the powder polymer is present under stirring, and the powder polymer is continuously supplied from the powder polymer outlet of the polymerization reactor. A method for producing a powder polymer, comprising:
Residence for controlling the discharge on-off valve provided in the discharge passage of the powder polymer outlet so that the observed residence time of the contents in the polymerization reactor becomes the target residence time of the contents in the polymerization reactor Powder polymer manufacturing method for time control.
前記の重合反応器内の内容物の観測滞留時間が下式(1)及び(2)により算出される、請求項1に記載の粉体ポリマー製造方法。
(重合反応器内の内容物の観測滞留時間)=(重合反応器内の内容物の質量)/(単位時間当たりの原料モノマーの供給質量) ・・・(1)
(重合反応器内の内容物の質量)=(重合反応器内の内容物の容積)×(重合反応器内の内容物の嵩密度) ・・・(2)
The method for producing a powder polymer according to claim 1, wherein the observed residence time of the contents in the polymerization reactor is calculated by the following formulas (1) and (2).
(Observation residence time of contents in polymerization reactor) = (mass of contents in polymerization reactor) / (feed mass of raw material monomer per unit time) (1)
(Mass of contents in polymerization reactor) = (Volume of contents in polymerization reactor) × (Bulk density of contents in polymerization reactor) (2)
前記の重合反応器内の内容物の嵩密度は、少なくとも、該嵩密度と相関づけられた前記重合反応器内の撹拌に要するトルク又は動力に基づいて算出される、請求項2に記載の粉体ポリマー製造方法。   The powder density according to claim 2, wherein the bulk density of the contents in the polymerization reactor is calculated based on at least torque or power required for stirring in the polymerization reactor correlated with the bulk density. Body polymer manufacturing method. 前記の単位時間当たりの原料モノマーの供給質量を一定にする、請求項1〜3のいずれかに記載の粉体ポリマー製造方法。   The method for producing a powder polymer according to any one of claims 1 to 3, wherein a supply mass of the raw material monomer per unit time is made constant. 前記重合反応器内の内容物の観測上面位置が、予め設定された第1管理範囲から外れた場合には、前記滞留時間制御に替えて、前記観測上面位置が前記重合反応器内の内容物の目標上面位置になるように、前記吐出開閉弁を制御する上面位置制御を行う、請求項1〜4のいずれかに記載の粉体ポリマー製造方法。   When the observed upper surface position of the contents in the polymerization reactor deviates from the preset first control range, the observed upper surface position is the contents in the polymerization reactor instead of the residence time control. The method for producing a powder polymer according to any one of claims 1 to 4, wherein upper surface position control for controlling the discharge on-off valve is performed so that the target upper surface position is reached. 前記上面位置制御を行っている場合であって、前記観測上面位置が、前記第1管理範囲より狭い範囲に設定された第2管理範囲内に戻った場合には、前記上面位置制御から前記滞留時間制御に戻す、請求項5に記載の粉体ポリマー製造方法。   When the upper surface position control is performed and the observed upper surface position returns to the second management range set to a range narrower than the first management range, the dwelling is performed from the upper surface position control. The method for producing a powder polymer according to claim 5, wherein the method is returned to time control. 前記観測滞留時間と前記目標滞留時間との差の変化率の標準偏差が20%以下になるように、前記吐出開閉弁を制御する、請求項1〜6のいずれかに記載の粉体ポリマー製造方法。   The powder polymer production according to any one of claims 1 to 6, wherein the discharge on-off valve is controlled so that a standard deviation of a change rate of a difference between the observed residence time and the target residence time is 20% or less. Method. 前記原料モノマーがスチレン又はプロピレンである、請求項1〜7のいずれかに記載の粉体ポリマー製造方法。   The method for producing a powder polymer according to any one of claims 1 to 7, wherein the raw material monomer is styrene or propylene. 請求項1〜8のいずれかに記載の粉体ポリマー製造方法により粉体ポリマーを製造する粉体ポリマー製造装置。   The powder polymer manufacturing apparatus which manufactures a powder polymer with the powder polymer manufacturing method in any one of Claims 1-8.
JP2013263856A 2013-12-20 2013-12-20 Powder polymer manufacturing method and manufacturing apparatus Active JP6283216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013263856A JP6283216B2 (en) 2013-12-20 2013-12-20 Powder polymer manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013263856A JP6283216B2 (en) 2013-12-20 2013-12-20 Powder polymer manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2015120776A true JP2015120776A (en) 2015-07-02
JP6283216B2 JP6283216B2 (en) 2018-02-21

Family

ID=53532703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013263856A Active JP6283216B2 (en) 2013-12-20 2013-12-20 Powder polymer manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6283216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140401A (en) * 2014-01-29 2015-08-03 出光興産株式会社 Method and apparatus for manufacturing powder polymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063567A (en) * 2006-11-06 2007-03-15 Taisei Kako Kk Method for producing ampholytic resin by continuous mass polymerization, and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063567A (en) * 2006-11-06 2007-03-15 Taisei Kako Kk Method for producing ampholytic resin by continuous mass polymerization, and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140401A (en) * 2014-01-29 2015-08-03 出光興産株式会社 Method and apparatus for manufacturing powder polymer

Also Published As

Publication number Publication date
JP6283216B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP2013127048A5 (en)
Ronca et al. Improving the performance of a catalytic system for the synthesis of ultra high molecular weight polyethylene with a reduced number of entanglements
NO156412B (en) PROCEDURE FOR MANUFACTURING HD ETHYLENE POLYMERS IN VERTILE LAYER REACTOR.
JPS60248702A (en) Method and device to control polymerization reaction
BR112017010540B1 (en) PROCESS TO PREPARE POLYOLEFIN COMPOSITION
JP6283216B2 (en) Powder polymer manufacturing method and manufacturing apparatus
Tioni et al. Packed‐bed reactor for short time gas phase olefin polymerization: Heat transfer study and reactor optimization
KR101684726B1 (en) Mass polymerization method of polyvinyl chloride resin and apparatus for mass polymerization of polyvinyl chloride resin
JP2017500387A (en) Continuous or semi-continuous freeze flocculation method for aqueous polymer dispersions
WO2014085902A1 (en) Reduction of fouling in high pressure reactors
JP6283226B2 (en) Powder polymer manufacturing method and manufacturing apparatus
Shishuang et al. Polystyrene prepared by reactive extrusion: kinetics and effect of processing parameters
US9434833B2 (en) Bulk PVC composition, bulk PVC polymerization method and apparatus
Ryan et al. The interaction between fundamental and industrial research and experimental developments in the field of polymer crystallization
CN109890849A (en) Controlled size distribution
Pater et al. Optical and infrared imaging of growing polyolefin particles
JP2009126908A (en) Polymerizer
JP2006002032A (en) Polymer producing method and apparatus therefor
US20100056733A1 (en) Method of rapidly determining the mfr in the high-pressure polymerization ethylene
JPH04300901A (en) Production of thermoplastic resin
CN111944552A (en) System and method for continuous production of mesophase pitch
DE60027617T2 (en) Apparatus and method for increasing the pressure of a propylene polymerization reactor
JP3189333B2 (en) Method for producing polyolefin
CA3158467C (en) System for producing polyolefin and process for recovering polymerization product from gas phase reactor
Joseph Schork Design and Operation of Polymerization Reactors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180126

R150 Certificate of patent or registration of utility model

Ref document number: 6283216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150