JP2015120693A - Processes for preparation of lubiprostone - Google Patents

Processes for preparation of lubiprostone Download PDF

Info

Publication number
JP2015120693A
JP2015120693A JP2014257791A JP2014257791A JP2015120693A JP 2015120693 A JP2015120693 A JP 2015120693A JP 2014257791 A JP2014257791 A JP 2014257791A JP 2014257791 A JP2014257791 A JP 2014257791A JP 2015120693 A JP2015120693 A JP 2015120693A
Authority
JP
Japan
Prior art keywords
compound
formula
rubiprostone
solution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014257791A
Other languages
Japanese (ja)
Inventor
ピー ヘンシュケ、ジュリアン
P Henschke Julian
ピー ヘンシュケ、ジュリアン
リウ、ユアンリアン
Yuanlian Liu
シア、リゼン
Lizhen Xia
チェン、ユン−ファ
Yung-Fa Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scianda Kunshan Biochemical Technology Co Ltd
Original Assignee
Scinopharm Kunshan Biochemical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scinopharm Kunshan Biochemical Technology Co Ltd filed Critical Scinopharm Kunshan Biochemical Technology Co Ltd
Priority to JP2014257791A priority Critical patent/JP2015120693A/en
Publication of JP2015120693A publication Critical patent/JP2015120693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide new processes for preparing and purifying lubiprostone.SOLUTION: A process involves 1,4-conjugate addition of a higher order cuprate compound to a protected cyclopentenone intermediate as an important preparation step. Obtained lubiprostone is converted into a guanidine salt derivative that possesses a different melting point and solubility than lubiprostone, and thereby lubiprostone is refined. A novel synthetic intermediate is also present.

Description

本発明は、ルビプロストンを作るための効果的な合成方法を提供する。   The present invention provides an effective synthetic method for making lubiprostone.

ルビプロストン、7-[(1R,3R,6R,7R)-3-(1,1-ジフルオロペンチル)-3-ヒドロキシ-8-オキソ-2-オキサビシクロ[4.3.0]ノナ-7-イル]ヘプタン酸は、Amitiza(登録商標)製剤、成人における慢性特発性便秘の治療に用いられる胃腸薬における医薬品有効成分(API;原薬)である。それは、Sucampo Pharmaceuticals,Inc.によって販売されており、2006年1月31日に、米国食品医薬品局(FDA)の承認を受けた。それはまた、18歳以上の成人女性における便秘を伴った過敏性腸症候群(ISB−C)を治療するため、2008年4月29日に、FDAの承認を受けた。また、Amitiza(登録商標)は、他の胃腸障害についての臨床試験も受けている。ルビプロストンは、二環式の13,14-ジヒドロ-15-ケト-16,16-ジフルオロ-プロスタグランジンE1誘導体(所謂13,14-ジヒドロ-15-ケト-プロスタグランジン誘導体としても知られる)である。プロスタグランジンは、C20脂肪酸であるプロスタン酸骨格を持つ(図1)。   Rubiprostone, 7-[(1R, 3R, 6R, 7R) -3- (1,1-difluoropentyl) -3-hydroxy-8-oxo-2-oxabicyclo [4.3.0] non-7-yl ] Heptanoic acid is an active pharmaceutical ingredient (API; API) in gastrointestinal drugs used to treat Amitiza® formulations, chronic idiopathic constipation in adults. It is available from Sucampo Pharmaceuticals, Inc. And was approved by the US Food and Drug Administration (FDA) on January 31, 2006. It also received FDA approval on April 29, 2008 to treat irritable bowel syndrome (ISB-C) with constipation in adult women over the age of 18. Amitiza® is also undergoing clinical trials for other gastrointestinal disorders. Rubiprostone is a bicyclic 13,14-dihydro-15-keto-16,16-difluoro-prostaglandin E1 derivative (also known as the so-called 13,14-dihydro-15-keto-prostaglandin derivative). is there. Prostaglandins have a prostanoic acid skeleton which is a C20 fatty acid (FIG. 1).

Figure 2015120693
図1−プロスタグランジンの命名
Figure 2015120693
Figure 1-Prostaglandin naming

C15位の電子欠損ケトンの存在は、都合のよい位置にあるC11位のヒドロキシル基と一体となって、大部分が6員環のヘミケタール環を含む二環式形態で存在するルビプロストンを生じさせる。この形態は、単環式形態との平衡状態で存在する(スキーム1)。総合すれば、これら2つの形態は、互変異性体と称される。糖化学において、この種の環式及び非環式形態の平衡は、環−鎖互変異性化(R−CT)と称される(非特許文献1;非特許文献1によれば、環−鎖互変異性化は、「プロトンの移動が、グルコースの開鎖形態とピラン形態等の開いた構造から環への変化を伴う場合に起こる」)。DOでは、二環式形態の単環式形態に対する比が6:1であるのに対して、CDClでは、それが96:4である(特許文献1)。この互変異性化と二環式ヘミケタール形態の優位性にもかかわらず、ルビプロストンは、それでも、15-ケト-プロスタグランジンE1誘導体と称される。特許文献2によれば、ルビプロストンの報告された2種類の結晶多形体は、固体状態の二環式形態として存在する。 The presence of an electron-deficient ketone at the C15 position, combined with the hydroxyl group at the C11 position at a convenient position, yields rubiprostone, which exists mostly in a bicyclic form containing a 6-membered hemiketal ring. This form exists in equilibrium with the monocyclic form (Scheme 1). Taken together, these two forms are referred to as tautomers. In glycochemistry, this type of equilibrium between cyclic and acyclic forms is called ring-chain tautomerization (R-CT) (Non-Patent Document 1; according to Non-Patent Document 1, ring- Chain tautomerization "occurs when proton transfer is accompanied by a change from an open structure to a ring, such as the open and pyran forms of glucose"). In D 2 O, the ratio of the bicyclic form to the monocyclic form is 6: 1, while in CDCl 3 it is 96: 4 (Patent Document 1). Despite this tautomerization and the advantage of the bicyclic hemiketal form, rubiprostone is still referred to as a 15-keto-prostaglandin E1 derivative. According to Patent Document 2, the two reported crystalline polymorphs of rubiprostone exist as solid state bicyclic forms.

Figure 2015120693
スキーム1−ルビプロストンの「環−鎖互変異性体」形態
Figure 2015120693
Scheme 1-"Ring-chain tautomer" form of rubiprostone

関連技術
プロスタグランジン及び類似体の合成の多用性に優れた初期アプローチが、E.J.コーリー(非特許文献2)によって60年代後半に発明され、これは、恐らく産業上最も用いられる戦略である。現在請求されている方法の他、今まで、ルビプロストンの合成について開示された唯一の方法である。このアプローチは、「コーリー法」と称される。コーリーラクトンアルデヒド(別名コーリーアルデヒド)(非特許文献3)は、それ自体が多くの合成ステップを必要とするものであるが、コーリーアプローチの中心となり、既に適当な位置にある3つのPGE立体化学的中心(ルビプロストンに必要とされるもの等)の全てを含んでおり、ホーナー・ワズワース・エモンス反応(又はHWE反応)とウィッティヒ反応によってω−側鎖とα−側鎖とが連続して加えられる(スキーム2)。コーリーアプローチでは、α−側鎖とω−側鎖を加える順番が交替できる。
Related Art An early approach with great versatility in the synthesis of prostaglandins and analogs is described in E. J. et al. Invented in the late 60s by Corey (Non-Patent Document 2), this is probably the most used strategy in the industry. In addition to the currently claimed method, to date, it is the only method disclosed for the synthesis of rubiprostone. This approach is referred to as the “Cory method”. Corey lactone aldehyde (also known as Corey aldehyde) (Non-Patent Document 3), which itself requires many synthetic steps, is the center of the Corey approach, and already has three PGE 1 stereochemistry in place. It contains all of the target centers (such as those required for rubiprostone), and the ω-side chain and α-side chain are added sequentially by the Horner-Wadsworth-Emmons reaction (or HWE reaction) and the Wittig reaction. (Scheme 2). In the Corey approach, the order of adding α-side chains and ω-side chains can be alternated.

Figure 2015120693
スキーム2−プロスタグランジンを合成する「コーリー法」
Figure 2015120693
Scheme 2-"Cory method" for synthesizing prostaglandins

米国特許第7,355,064号明細書US Pat. No. 7,355,064 米国特許出願公開第2010056808号明細書US Patent Application Publication No. 20110056808

http://en.wikipedia.org/wiki/Tautomerhttp://en.wikipedia.org/wiki/Tautomer J. Am. Chem. Soc., 1969, 91, 5675-5676.J. Am. Chem. Soc., 1969, 91, 5675-5676. Angew. Chem. Int. Ed. Engl., 1991, 30, 455-465.Angew. Chem. Int. Ed. Engl., 1991, 30, 455-465.

本発明のプロスタグランジンプラットフォーム技術
我々の会社は、以前に、プロスタグランジン類似体トラボプロスト及びビマトプロストの全合成を開発した。これらの合成経路及びそれらのプロセスは、米国特許出願公開第20090259058号明細書及び国際公開第2009/141718号において2009年に公開された。トラボプロスト及びビマトプロストの合成における最終工程は、スキーム3に示されており、PGE化合物(3A)又は(3B)を与えるための、シクロペンテノン(1)(分岐する共通中間体)との高次クプラート(化合物(2A)又は(2B)から形成されたもの)の重要な1,4−共役付加反応(別名マイケル付加)を中心に置く。これに続いて、2つのPGEは、立体選択的C9ケトン還元によって、PGF2α化合物(4A)又は(4B)に転化された。この後に、二重のTBS脱保護(C11−OTBS及びC15−OTBS)が続き、トラボプロスト又はビマトプロストのイソプロピルエステル類似体、化合物(5)を提供した。そのイソプロピルエステルは、エステルアミド交換によって、ビマトプロストに転化された。
Prostaglandin Platform Technology of the Invention Our company has previously developed a total synthesis of the prostaglandin analogs travoprost and bimatoprost. These synthetic pathways and their processes were published in 2009 in US Patent Application Publication No. 2009059058 and International Publication No. 2009/141718. The final step in the synthesis of travoprost and bimatoprost is shown in Scheme 3 and is high with cyclopentenone (1) (a branched common intermediate) to give PGE 2 compounds (3A) or (3B). Centered on the important 1,4-conjugate addition reaction (aka Michael addition) of the next cuprate (formed from compound (2A) or (2B)). Following this, the two PGE 2 were converted to PGF compounds (4A) or (4B) by stereoselective C9 ketone reduction. This was followed by double TBS deprotection (C11-OTBS and C15-OTBS) to provide the isopropyl ester analog of travoprost or bimatoprost, compound (5). The isopropyl ester was converted to bimatoprost by ester amide exchange.

本発明の対象であるルビプロストンについて、我々は、APIの構造が、ビマトプロスト及びトラボプロストとかなり異なるため、異なる合成経路を利用したが、それでも、重要な中間体化合物(1)は、クプラート化合物の1,4−共役付加において同様に利用される。それ故に、我々が製造方法を有する分岐中間体(1)は、ルビプロストンの合成にも依然として使用できる。   For lubiprostone, the subject of the present invention, we utilized a different synthetic route because the structure of the API is quite different from that of bimatoprost and travoprost, but the important intermediate compound (1) is still one of the cuprate compounds 1 , 4-conjugate addition is similarly used. Therefore, the branched intermediate (1) for which we have a production method can still be used for the synthesis of rubiprostone.

Figure 2015120693
スキーム3−我々のプロスタグランジンプラットフォーム技術を用いたトラボプロスト及びビマトプロストの合成における最終工程(米国特許出願公開第20090259058号明細書及び国際公開第2009/141718号)
Figure 2015120693
Scheme 3-Final steps in the synthesis of travoprost and bimatoprost using our prostaglandin platform technology (US Patent Application Publication No. 2009059058 and International Publication No. 2009/141718)

ルビプロストンの合成へのプロスタグランジンプラットフォーム技術の適用:
我々の好ましいルビプロストンの合成をスキーム4に示す。我々は、シリル保護基を様々な類似体から選択できるが、TBSが好適であることを提案する。α−側鎖は、C5とC6間に二重結合を持つ可能性があり、これは、cis−若しくはtrans−又はcis−とtrans−の混合物の場合があるが、C5−C6は、飽和していてもよい。C17−C18−C19の結合は、すべてC−C単結合の場合があるが、1つの二重結合と1つの単結合を含有することもできる。C17とC18間又はC18とC19間での二重結合の存在は、IIの合成の人為結果にすぎない。C15の立体化学的配置は、(R)−でも(S)−でもよく、混合物でもよい。ベンジル保護基は、非置換でもよいし(即ち、R14=H)、置換されていてもよい(即ち、R14=4−MeO、2,4−DiMeO等)。R13は、クプラートIIIがそのビニル基をシクロペンテノンIに効率的に移動できるようにするがそれ自体はシクロペンテノンIと反応しないあらゆる置換基又は置換基の組み合わせとなり得る。R13は、シアノ、メチル及びチエニル、並びにこれらのリチウム対イオンとの組み合わせの群から選択されるのが好ましい。考えられる限りでは、他の有機銅試薬もまた使用し得る。クプラートIIIとシクロペンテノンIの1,4−共役付加(工程1c)の後に、水素雰囲気中で金属触媒、好ましくはPdを用いて、ベンジル又は置換ベンジル基と一緒に、化合物IVの全ての二重結合(C13、C14と、例えば、C5とC6間、C17とC18間及びC18とC19間に存在する場合にはその他のもの全て)を取り除く(工程2)。この後、適切なあらゆる試薬、但し、好ましくは金属残渣で生成物を汚染しないもの(例えば、プフィッツナー−モファット型酸化試薬)を用いて、化合物VのC15アルコールをケトンに酸化する。15−ケトプロスタグランジンVIは、ルビプロストンの二重に保護された形態であるが、これは、化合物VIIを提供するための、好ましくは酵素の助けにより達成される、イソプロピルエステル加水分解(工程4i)と、次いで、ルビプロストンのイソプロピルエステルを提供するための酸性条件又はフッ化物試薬による脱シリル化(工程5i)とによって、或いは、酸性条件又はフッ化物試薬による脱シリル化(工程4ii)と、次いで、好ましくは酵素の助けにより達成される、イソプロピルエステル加水分解(工程5ii)とによって、ルビプロストンに転化される。
Application of prostaglandin platform technology to the synthesis of rubiprostone:
Our preferred synthesis of rubiprostone is shown in Scheme 4. We propose that silyl protecting groups can be selected from a variety of analogs, but TBS is preferred. The α-side chain may have a double bond between C5 and C6, which may be cis- or trans- or a mixture of cis- and trans-, but C5-C6 is saturated. It may be. The C17-C18-C19 bonds may all be C-C single bonds, but may contain one double bond and one single bond. The presence of a double bond between C17 and C18 or between C18 and C19 is only an artifact of the synthesis of II. The stereochemical configuration of C15 may be (R)-or (S)-, or may be a mixture. A benzyl protecting group may be unsubstituted (ie, R 14 = H) or substituted (ie, R 14 = 4-MeO, 2,4-DiMeO, etc.). R 13 can be any substituent or combination of substituents that allows cuprate III to efficiently transfer its vinyl group to cyclopentenone I but not itself react with cyclopentenone I. R 13 is preferably selected from the group of cyano, methyl and thienyl, and combinations of these with lithium counter ions. As far as possible, other organocopper reagents may also be used. After the 1,4-conjugate addition of cuprate III and cyclopentenone I (step 1c), all of the compound IV together with benzyl or substituted benzyl groups using a metal catalyst, preferably Pd, in a hydrogen atmosphere. Remove the double bond (C13, C14, for example, between C5 and C6, between C17 and C18, and everything else between C18 and C19) (step 2). This is followed by oxidation of the C15 alcohol of Compound V to a ketone using any suitable reagent, but preferably one that does not contaminate the product with metal residues (eg, Pfitzner-Moffat type oxidation reagent). 15-ketoprostaglandin VI is a doubly protected form of rubiprostone, which is preferably achieved with the aid of an enzyme to provide compound VII (step 4i ) And then desilylation with acidic conditions or fluoride reagent (step 5i) to provide an isopropyl ester of rubiprostone, or desilylation with acidic conditions or fluoride reagent (step 4ii) and then Converted to rubiprostone by isopropyl ester hydrolysis (step 5ii), preferably achieved with the aid of an enzyme.

エステルVIIIのR11は、アルキル、ベンジル、アリールになり得るが、メチル及びエチルが好適である。R、R、Rは、アルキル、アリールのいずれでもよいが、全てメチルが好適である。Rは、H又はBnR14である。R15は、SnR10、Br、I、ZrCpMeになり得るが、好ましくはSnR10である。R、R、R10は、アルキル、アリールのいずれもよいが、全てn−ブチルが好適である。R13は、ないか、Li(CN)、Li(CN)Me、Li(CN)2-チエニル、Li(CH=CHCH(OBnR14)CFCHCHCHCH)(C17からC19までが完全に飽和しているか又はC17からC19までが1つの単結合と1つの二重結合若しくは三重結合とを含有するように、n、m及びoは、1又は2である)、Li(CN)(CH=CHCH(OBnR14)CFCHCHCHCH)(C17からC19までが完全に飽和しているか又はC17からC19までが1つの単結合と1つの二重結合若しくは三重結合とを含有するように、n、m及びoは、1又は2である)であるが、好ましくはLi(CN)Me又はLi(CN)2-チエニルである。 R 11 of ester VIII can be alkyl, benzyl, aryl, but methyl and ethyl are preferred. R 4 , R 5 and R 6 may be any of alkyl and aryl, but all are preferably methyl. R 7 is H or BnR 14 . R 15 can be SnR 8 R 9 R 10 , Br, I, ZrCp 2 Me, but is preferably SnR 8 R 9 R 10 . R 8 , R 9 and R 10 may be either alkyl or aryl, but all are preferably n-butyl. R 13 is absent or Li (CN), Li 2 (CN) Me, Li 2 (CN) 2 -thienyl, Li (CH═CHCH (OBnR 14 ) CF 2 CH n CH m CH o CH 3 ) (C17 N, m and o are 1 or 2 such that from C19 to C19 are fully saturated or C17 to C19 contain one single bond and one double or triple bond), li 2 (CN) (CH = CHCH (OBnR 14) CF 2 CH n CH m CH o CH 3) (C17 from until completely saturated and which may or C17 C19 until C19 is one one single bond and a two N, m and o are 1 or 2 so as to contain a heavy or triple bond), but preferably Li 2 (CN) Me or Li 2 (CN) 2-thienyl.

これまでに報告されていない本発明の重要な側面には、1つの単一工程においてシクロペンテノンIと高次クプラートIIIからルビプロストンのプロスタグランジン骨格を形成する重要な工程として、1,4−共役付加を使用することが含まれる。この後、水素化/水素化分解の効率的利用によって、IVの合成の人為結果であるIVの二重結合すべてを除去し、同時にC15−O保護基を除去し、Vを提供する。上記合成における他の重要な側面は、エステル保護基を除去するために酵素を使用することである。酸性又は塩基性の水性条件によるイソプロピルエステルの加水分解が、敏感な15−ケト−PGE構造の分解を引き起こし、また、シリル保護基も除去し得るので直交しておらず、それにより、我々に合成の制御を提供しないため、これは好適である。最後の2工程は、脱保護工程であるが、いずれの順番でも行うことができる。   An important aspect of the present invention that has not been reported so far is that as an important step of forming the prostaglandin skeleton of rubiprostone from cyclopentenone I and higher order cuprate III in one single step, 1,4- Use of conjugate addition is included. This is followed by the efficient use of hydrogenation / hydrocracking to remove all IV double bonds, which are an artifact of the synthesis of IV, while simultaneously removing the C15-O protecting group and providing V. Another important aspect of the synthesis is the use of enzymes to remove ester protecting groups. Hydrolysis of isopropyl ester under acidic or basic aqueous conditions causes degradation of the sensitive 15-keto-PGE structure and can also remove the silyl protecting group, so it is not orthogonal, thereby synthesizing us This is preferred because it does not provide any control. The last two steps are deprotection steps, but can be performed in either order.

当然ながら、他のエステル類似体(例えば、メチル、エチル、プロピル等)が、ルビプロストンの合成において本発明の合成経路に続いて使用し得るが、イソプロピルが好適である。   Of course, other ester analogs (eg, methyl, ethyl, propyl, etc.) may be used following the synthetic route of the present invention in the synthesis of rubiprostone, but isopropyl is preferred.

Figure 2015120693
スキーム4−ルビプロストンの合成の好適な方法の概要(番号は、ルビプロストンで見られる原子の番号を反映して示す)
Figure 2015120693
Scheme 4-Overview of preferred method of synthesis of rubiprostone (numbers reflect the number of atoms found in rubiprostone)

従って、本発明は、ルビプロストンへの新しい合成経路を含み(スキーム5)、それは、保護されたシクロペンテノン(1)への高次クプラート化合物Cu−IM7(IM7からインサイチューで調製されたもの)の1,4−共役付加を重要な工程として含む。我々は、ルビプロストンのω−側鎖の出発物質であるIM7(スキーム7)及びIM7b(スキーム8)(並びに4−メトキシベンジル誘導体IM7i及びIM7bi)への合成経路も提供した。我々が知る全てのルビプロストンの先行技術合成と違って、我々は、最終的にルビプロストン中でC11−Oになるアルコールの保護のためにケイ素系保護基を利用した。我々の知る限り開示されている他の全ての先行技術方法は、THP等の炭素系保護基の使用を開示する。また、我々が知る全ての他の先行技術方法と違って、我々は、他の全ての先行技術方法で用いられるコーリー法と大きく異なる1,4−共役付加アプローチによってルビプロストンを調製した。これはまた他の全ての方法から離れた我々のアプローチを定める。   Thus, the present invention includes a new synthetic route to rubiprostone (Scheme 5), which includes the higher order cuprate compound Cu-IM7 (prepared in situ from IM7) to the protected cyclopentenone (1). Of 1,4-conjugate addition as an important step. We also provided a synthetic route to IM7 (Scheme 7) and IM7b (Scheme 8) (and 4-methoxybenzyl derivatives IM7i and IM7bi) which are starting materials for the ω-side chain of rubiprostone. Unlike all the prior art syntheses of rubiprostone we know, we utilized a silicon-based protecting group for the protection of alcohols that eventually become C11-O in rubiprostone. All other prior art methods disclosed to the best of our knowledge disclose the use of carbon-based protecting groups such as THP. Also, unlike all other prior art methods we know, we prepared rubiprostone by a 1,4-conjugate addition approach that differs significantly from the Corey method used in all other prior art methods. This also defines our approach away from all other methods.

以下、上記合成経路を詳細に論じる。   Hereinafter, the synthesis route will be discussed in detail.

1)−ルビプロストンの合成(スキーム5):
工程1:第1の工程は、PGE生成物(7)を提供するため、重要な分岐中間体(1)との高次クプラートCu−IM7の1,4−共役付加(工程1c)を含む。この工程での高次クプラートCu−IM7は、ビニルリチウム誘導体Li−IM7を形成するためのMeLiとIM7の段階的な反応(工程1a)と、続いて、インサイチューで調製したクプラート塩(MeCu(CN)Li)との反応による高次クプラートCu−IM7への転化(工程1b)とによってインサイチューで調製された(スキーム6も参照)。THFが、この反応工程の主要な溶媒として好ましく、上記反応は、低温(好ましくは−30℃未満)にて行われた。
1) Synthesis of rubiprostone (Scheme 5):
Step 1: The first step involves a 1,4-conjugate addition of higher order cuprate Cu-IM7 (step 1c) with an important branched intermediate (1) to provide the PGE 2 product (7). . The higher order cuprate Cu-IM7 in this step is a stepwise reaction of MeLi and IM7 (step 1a) to form the vinyllithium derivative Li-IM7, followed by the in situ prepared cuprate salt (MeCu ( CN) Li) and prepared in situ by conversion to higher order cuprate Cu-IM7 (step 1b) (see also scheme 6). THF was preferred as the main solvent for this reaction step, and the reaction was performed at low temperature (preferably less than −30 ° C.).

保護されたC15−OH(即ち、IM7のC3−OH)に使用されるベンジル保護基に加えて、p−メトキシベンジル(別名4−メトキシベンジル)についても保護基としてテストする。それ故に、工程1はまた、p−メトキシベンジル誘導体を用い、生成物p−メトキシベンジルエーテル(7i)を提供するための化合物(1)と高次クプラートCu−IM7i(p−メトキシベンジルIM7類似体、IM7iから調製されたもの)の1,4−共役付加を行うことによってテストされた。   In addition to the benzyl protecting group used for protected C15-OH (ie, IM7 C3-OH), p-methoxybenzyl (also known as 4-methoxybenzyl) is also tested as a protecting group. Therefore, Step 1 also uses a p-methoxybenzyl derivative to provide the product p-methoxybenzyl ether (7i) with compound (1) and higher cuprate Cu-IM7i (p-methoxybenzyl IM7 analog). , Prepared from IM7i) by 1,4-conjugate addition.

工程2:我々は、有機溶媒中、水素雰囲気において炭素に担持されたパラジウム触媒を用いて全体的水素化/水素化分解を行い、3つ全ての二重結合(C5−C6、C13−C14及びC17-18)及びベンジル保護基(又は、化合物(7i)を用いた場合、p−メトキシベンジル基)を除去し、同時に化合物(8)を提供した。EtOAcが好ましい溶媒であったが、EtOHを含む他の溶媒を使用することもできた。酸触媒(p−TsOH等)も上記反応に使用することができた。   Step 2: We performed a total hydrogenation / hydrocracking using a palladium catalyst supported on carbon in an organic solvent in a hydrogen atmosphere and performed all three double bonds (C5-C6, C13-C14 and C17-18) and the benzyl protecting group (or p-methoxybenzyl group when compound (7i) was used) were provided at the same time to provide compound (8). Although EtOAc was the preferred solvent, other solvents including EtOH could be used. An acid catalyst (p-TsOH etc.) could also be used for the reaction.

工程3:C15−OHを、スワーン酸化法(即ち、DMSOを用いた(COCl))によって酸化させ、ジケトン(9)を提供した。ピリジン三酸化硫黄錯体/DMSOを含む他の酸化剤も使用することができる。 Step 3: C15-OH was oxidized by the swarnidation method (ie, (COCl) 2 with DMSO) to provide the diketone (9). Other oxidizing agents including pyridine sulfur trioxide complex / DMSO can also be used.

工程4i:エステルの加水分解を触媒できる様々な触媒(リパーゼPS IM、リパーゼPS SD、PPL、PS IMを含む)は、様々な反応条件下で、化合物(9)のイソプロピルエステルを加水分解することができ、そのカルボン酸形態(10)を提供することを見出した。アセトン、グリコール、グリセロール、DMSOを含む広範囲の有機溶媒を使用することができた。典型的に、加水分解反応は、高温(例えば、30〜60℃の間)及び適切なpH範囲で行われた。有機溶媒としてのアセトンを高温下で水性緩衝液と併用して用いる場合、市販のリパーゼPS SDが好適であった。   Step 4i: Various catalysts capable of catalyzing ester hydrolysis (including lipase PS IM, lipase PS SD, PPL, PS IM) hydrolyze the isopropyl ester of compound (9) under various reaction conditions. Has been found to provide its carboxylic acid form (10). A wide range of organic solvents including acetone, glycol, glycerol, DMSO could be used. Typically, the hydrolysis reaction was performed at elevated temperature (eg, between 30-60 ° C.) and the appropriate pH range. When acetone as an organic solvent was used in combination with an aqueous buffer at high temperature, commercially available lipase PS SD was suitable.

工程5i:ルビプロストンは、HSO、HCl、TFA等の鉱酸若しくは有機酸又はTBAF及び含水HFを含むフッ化物試薬を有機溶媒中で用いた化合物(10)のC11−OTBSのTBS脱保護によって調製される。MeCN中でのHSOが好ましい。 Step 5i: Rubiprostone is a TBS deprotection of C11-OTBS of compound (10) using a mineral or organic acid such as H 2 SO 4 , HCl, TFA or a fluoride reagent containing TBAF and hydrous HF in an organic solvent. Prepared by H 2 SO 4 in MeCN is preferred.

或いは、最後の2工程(即ち、工程4i及び工程5i)は、工程4iiのTBS脱保護(酸又はフッ化物試薬を用いる)と、次いで、工程5iiのエステル加水分解(水性緩衝液/有機溶媒中におけるエステル加水分解酵素を用いる)による逆の順番でも行うことができる。   Alternatively, the last two steps (ie step 4i and step 5i) consist of the TBS deprotection of step 4ii (using acid or fluoride reagent) followed by the ester hydrolysis of step 5ii (in aqueous buffer / organic solvent). Can also be carried out in the reverse order).

ルビプロストンは、例えばグアニジン等の窒素含有塩基を含む塩基との反応によって、塩誘導体に転化できる。これらの塩は、ルビプロストンと比べて異なる融点と溶解度を持つことができ、それにより、ルビプロストンを精製できる代替方法へのアクセスを提供する。我々は、ルビプロストンのグアニジン塩を形成する簡単な方法を提供する。   Rubiprostone can be converted to a salt derivative by reaction with a base containing a nitrogen-containing base such as guanidine. These salts can have different melting points and solubilities compared to rubiprostone, thereby providing access to alternative methods by which rubiprostone can be purified. We provide a simple method of forming the guanidine salt of rubiprostone.

Figure 2015120693
スキーム5−ルビプロストンの合成
Figure 2015120693
Scheme 5-Synthesis of rubiprostone

2)ω−側鎖の合成:
ルビプロストンは、PGE化合物を形成するための、化合物(1)と高次クプラート(Cu−IM7、Cu−IM7b、Cu−IM7i又はCu−IM7bi)の1,4−共役付加によって調製される。高次クプラートCu−IM7(又はCu−IM7b、Cu−IM7i若しくはCu−IM7bi)は、スキーム6に示されるようにtrans−ビニルスタンナンIM7(又はIM7i、IM7b若しくはIM7bi)から調製される。Th−Cu−IM7を提供するため、メチル(シアノ)銅リチウム(MeCu(CN)Li)の代わりに、市販の低次クプラート塩2−チエニル(シアノ)銅リチウムを工程1bにおいて使用することによって、メチルダミー配位子を2−チエニル基で置換することができる。
2) Synthesis of ω-side chain:
Lubiprostone is for forming the PGE 2 compound is prepared by the 1,4 conjugate addition of the compound (1) higher order cuprate (Cu-IM7, Cu-IM7b , Cu-IM7i or Cu-IM7bi). Higher order cuprate Cu-IM7 (or Cu-IM7b, Cu-IM7i or Cu-IM7bi) is prepared from trans-vinylstannane IM7 (or IM7i, IM7b or IM7bi) as shown in Scheme 6. By using the commercially available low order cuprate salt 2-thienyl (cyano) copper lithium in step 1b instead of methyl (cyano) copper lithium (MeCu (CN) Li) to provide Th-Cu-IM7, The methyl dummy ligand can be substituted with a 2-thienyl group.

Figure 2015120693
スキーム6−化合物(1)との1,4−共役付加に必要とされる必須の高次クプラートの合成
Figure 2015120693
Scheme 6—Synthesis of Essential Higher Order Cuprate Required for 1,4-Conjugate Addition with Compound (1)

我々は、スキーム7に示されるような方法によって、必須のtrans−ビニルスタンナンIM7(又はIM7i)を調製した。市販の安価なSM1は、その有機亜鉛臭化物誘導体にインサイチューで転化され、市販の安価なブタナールと反応し、アルコールIM1を提供した。これは、THF中で行われるのが好ましく、ルイス酸を加えることが有益になり得た。C3−酸素の除去は、そのトリフラートIM2への転化と、続いて、IM3を提供するための、DBUを含む塩基によって促進される脱離とによって達成された。IM3中の二重結合の存在は、全く重大ではなく、ルビプロストンは、IM3又はIM3bのいずれからでも合成できる(スキーム8参照)。その合成後に、IM3をアシルアセチレンIM4に転化し、それをワンポットで還元及び脱シリル化し、プロパルギルアルコールIM5を提供した。それ故に、IM5は、ラジカル開始剤AIBNの存在下、BuSnHで処理され、De−Bn−IM7を提供し、次いで、塩基性条件(例えば、NaH又はt−BuONaであり、前者が好適であった)の下、臭化ベンジルを用いてO−保護を行い、IM7を提供した。或いは、IM5のC3−OHを保護することができ、次いで、その生成物IM6をスタンニル化し、IM7を与えた。 We prepared the requisite trans-vinyl stannane IM7 (or IM7i) by the method as shown in Scheme 7. Commercially available inexpensive SM1 was converted in situ to its organozinc bromide derivative and reacted with commercially available inexpensive butanal to provide alcohol IM1. This was preferably done in THF, and it could be beneficial to add a Lewis acid. Removal of C3-oxygen was achieved by its conversion to the triflate IM2, followed by elimination facilitated by a base containing DBU to provide IM3. The presence of double bonds in IM3 is not critical at all, and rubiprostone can be synthesized from either IM3 or IM3b (see Scheme 8). After its synthesis, IM3 was converted to acylacetylene IM4, which was reduced and desilylated in one pot to provide propargyl alcohol IM5. Therefore, IM5 is treated with Bu 3 SnH in the presence of the radical initiator AIBN to provide De-Bn-IM7, then basic conditions (eg NaH or t-BuONa, the former being preferred O-protection was performed using benzyl bromide to provide IM7. Alternatively, the C3-OH of IM5 could be protected, then the product IM6 was stannylated to give IM7.

Figure 2015120693
スキーム7−高次クプラートCu−IM7に必要とされるIM7の合成
Figure 2015120693
Scheme 7-Synthesis of IM7 required for higher order cuprate Cu-IM7

上述のように、IM3類似体2,2−ジフルオロヘキサン酸エチル(IM3b)は市販されている。スキーム7に記載されたものと同一の合成順序によって、IM3bをIM7bに転化させた(スキーム8)   As noted above, the IM3 analog 2,2-difluorohexanoic acid ethyl (IM3b) is commercially available. IM3b was converted to IM7b by the same synthetic sequence as described in Scheme 7 (Scheme 8).

Figure 2015120693
スキーム8−高次クプラートCu−IM7bに必要とされるIM7bの合成
Figure 2015120693
Scheme 8-Synthesis of IM7b required for higher order cuprate Cu-IM7b

例1
工程1:IM1(2,2-ジフルオロ-3-ヒドロキシヘキサン酸エチル)の合成
約25℃にて機械攪拌した亜鉛(108g、1.66mol)、n−ブタノール(100g、1.39mol)、CeCl・7HO(10.14g、0.027mol)及び無水THF(1.3L)の混合物に、N下、2-ブロモ-2,2-ジフルオロ酢酸エチル(SM1、33.8g、0.167mol)を加えた。反応が開始するまで、その混合物を約25℃で攪拌し、次いで、外部加熱なしで、SM1(304g、1.50mol)を滴下しながら35℃にて加えた。添加が完了した後、n−ブタノールが2.0%未満になるまで、その混合物を20〜35℃で攪拌した。次いで、反応混合物を約5℃まで冷却し、NHCl飽和水溶液(800mL)を約5℃にてゆっくりと加え、その後、6NのHClを用いてpH3.0に調整した。その混合物を15分間攪拌し、次いで、セライト栓を通してろ過した;そのろ過ケーキをMTBE(1L)で1回洗った。次いで、合わせたろ液を分離し、水層をMTBE(1L)で1回抽出した。合わせた有機層を、NaHCO飽和水溶液(1L)で1回、NHCl飽和水溶液(1L)で1回洗浄し、次いで、減圧下<50℃にて濃縮し、GC純度80%で281gの粗IM1を与えた。真空蒸留により粗IM1を精製し、GC純度98%及びGC全収率58%で160gのIM1を与えた。
1H NMR (300MHz, CDCl3): δ 4.36 (q, J = 7.1 Hz, 2H), 4.10 - 3.98 (m, 1H), 1.68 - 1.58 (m, 2H), 1.57 -1.40 (m, 2H), 1.37 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.1 Hz, 3H)
m/z (GC-MS): 197 ([MH]+, 1), 124 (75), 96 (100), 73 (45), 55 (80)
Example 1
Step 1: Synthesis of IM1 (ethyl 2,2-difluoro-3-hydroxyhexanoate) Zinc (108 g, 1.66 mol), n-butanol (100 g, 1.39 mol), CeCl 3 mechanically stirred at about 25 ° C. To a mixture of 7H 2 O (10.14 g, 0.027 mol) and anhydrous THF (1.3 L) under N 2 , ethyl 2-bromo-2,2-difluoroacetate (SM1, 33.8 g, 0.167 mol) ) Was added. The mixture was stirred at about 25 ° C. until the reaction started, then SM1 (304 g, 1.50 mol) was added dropwise at 35 ° C. without external heating. After the addition was complete, the mixture was stirred at 20-35 ° C. until n-butanol was less than 2.0%. The reaction mixture was then cooled to about 5 ° C., saturated aqueous NH 4 Cl (800 mL) was added slowly at about 5 ° C., and then adjusted to pH 3.0 using 6N HCl. The mixture was stirred for 15 minutes and then filtered through a celite plug; the filter cake was washed once with MTBE (1 L). The combined filtrate was then separated and the aqueous layer was extracted once with MTBE (1 L). The combined organic layers were washed once with saturated aqueous NaHCO 3 (1 L), once with saturated aqueous NH 4 Cl (1 L), then concentrated at <50 ° C. under reduced pressure and 281 g of GC purity 80%. Crude IM1 was given. The crude IM1 was purified by vacuum distillation to give 160 g of IM1 with a GC purity of 98% and a total GC yield of 58%.
1 H NMR (300MHz, CDCl 3 ): δ 4.36 (q, J = 7.1 Hz, 2H), 4.10-3.98 (m, 1H), 1.68-1.58 (m, 2H), 1.57 -1.40 (m, 2H), 1.37 (t, J = 7.1 Hz, 3H), 0.97 (t, J = 7.1 Hz, 3H)
m / z (GC-MS): 197 ([MH] + , 1), 124 (75), 96 (100), 73 (45), 55 (80)

例2
工程2:IM2(2,2-ジフルオロ-3-(トリフルオロメチルスルホニルオキシ)ヘキサン酸エチル)の合成
0〜5℃にて機械攪拌した無水DCM(6mL)中におけるIM1(3g、0.015mol)及びピリジン(1.42g、0.018mol)の溶液に、N下、0〜15℃にて滴下しながら、無水DCM(3mL)中におけるTfO(4.53g、0.016mol)の混合物を加えた。IM1が2.0%未満になるまで、その混合物を5〜15℃で攪拌した。次いで、水(9mL)を加え、その結果生じた混合物を分離した。水層をDCM(9mL)で1回抽出し、合わせた有機層を、5%HCl水溶液(9mL)で1回、NaHCO飽和水溶液(9mL)で1回、食塩水(9mL)で1回洗浄し、次いで、減圧下<45℃にて濃縮し、GC純度96%で4.2gの粗IM2を与えた。
1H NMR (300MHz, CDCl3): 1H NMR (300 MHz, CDCl3) δ 5.21 (m, 1H), 4.40 (q, J = 7.2 Hz, 2H), 2.00 - 1.74 (m, 2H), 1.70-1.43 (m, 2H), 1.39 (t, J = 7.2 Hz, 3H), 1.00 (t, J = 7.3 Hz, 3H)
m/z (GC-MS): 329 ([MH]+, 1), 151 (20), 124 (15), 106 (70), 77 (100), 69 (45), 55 (55)
Example 2
Step 2: Synthesis of IM2 (ethyl 2,2-difluoro-3- (trifluoromethylsulfonyloxy) hexanoate) IM1 (3 g, 0.015 mol) in anhydrous DCM (6 mL) mechanically stirred at 0-5 ° C. And a solution of Tf 2 O (4.53 g, 0.016 mol) in anhydrous DCM (3 mL) dropwise into a solution of pyridine (1.42 g, 0.018 mol) at 0-15 ° C. under N 2 . Was added. The mixture was stirred at 5-15 ° C. until IM1 was less than 2.0%. Water (9 mL) was then added and the resulting mixture was separated. The aqueous layer was extracted once with DCM (9 mL) and the combined organic layers were washed once with 5% aqueous HCl (9 mL), once with saturated aqueous NaHCO 3 (9 mL) and once with brine (9 mL). And then concentrated under reduced pressure at <45 ° C. to give 4.2 g of crude IM2 with a GC purity of 96%.
1 H NMR (300MHz, CDCl 3 ): 1 H NMR (300 MHz, CDCl 3 ) δ 5.21 (m, 1H), 4.40 (q, J = 7.2 Hz, 2H), 2.00-1.74 (m, 2H), 1.70 -1.43 (m, 2H), 1.39 (t, J = 7.2 Hz, 3H), 1.00 (t, J = 7.3 Hz, 3H)
m / z (GC-MS): 329 ([MH] + , 1), 151 (20), 124 (15), 106 (70), 77 (100), 69 (45), 55 (55)

例3
工程3:IM3(2,2-ジフルオロヘキサ-3-エン酸エチル)の合成
機械攪拌したフラスコに、無水MTBE(900mL)中におけるIM2(300g、0.91mol)及びDBU(165g、1.08mol)を加え、その混合物を加熱し、IM2が3.0%未満になるまで攪拌しながら還流させた。次いで、反応混合物を0〜10℃に冷却し、その後に、5%HCl水溶液(900mL)を加えた。その結果生じた溶液を分離し、水層をMTBE(900mL)で1回抽出した。合わせた有機層を、NaHCO飽和水溶液(900mL)で1回、食塩水(900mL)で1回洗浄し、無水MgSOで乾燥させ、次いで、減圧下<45℃にて濃縮し、167gの粗IM3を与えた。真空蒸留により粗IM3を精製し、GC純度85%及びIM1に基づいたGC収率66%で125gのIM3を与えた。
1H NMR (300MHz, CDCl3): δ 6.33 (dtt, J = 11.5, 6.2, 2.6 Hz, 1H), 5.75 - 5.58 (m, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.24 - 2.11 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.4 Hz, 3H)
m/z (GC-MS): 179 ([MH]+, 4), 106(65), 77 (100), 55 (20)
Example 3
Step 3: Synthesis of IM3 (ethyl 2,2-difluorohex-3-enoate) In a mechanically stirred flask, IM2 (300 g, 0.91 mol) and DBU (165 g, 1.08 mol) in anhydrous MTBE (900 mL). Was added and the mixture was heated to reflux with stirring until IM2 was less than 3.0%. The reaction mixture was then cooled to 0-10 ° C., after which 5% aqueous HCl (900 mL) was added. The resulting solution was separated and the aqueous layer was extracted once with MTBE (900 mL). The combined organic layers were washed once with saturated aqueous NaHCO 3 (900 mL), once with brine (900 mL), dried over anhydrous MgSO 4 and then concentrated under reduced pressure at <45 ° C. to give 167 g of crude IM3 was given. The crude IM3 was purified by vacuum distillation to give 125 g of IM3 with a GC purity of 85% and a GC yield of 66% based on IM1.
1 H NMR (300MHz, CDCl 3 ): δ 6.33 (dtt, J = 11.5, 6.2, 2.6 Hz, 1H), 5.75-5.58 (m, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.24- 2.11 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H), 1.05 (t, J = 7.4 Hz, 3H)
m / z (GC-MS): 179 ([MH] + , 4), 106 (65), 77 (100), 55 (20)

例4
工程4:IM4(4,4-ジフルオロ-1-(トリメチルシリル)オクタ-5-エン-1-イン-3-オン)の合成
0〜10℃にて機械攪拌した無水THF(880mL)中におけるTMS−アセチリド(182g、1.85mol)の溶液に、N下、0〜10℃にて滴下しながら、n−BuLiの溶液(2.5mol/L、748mL、1.87mol)を加えた。反応混合物をこの温度にて1時間攪拌した。機械攪拌したフラスコに、無水THF(220mL)中におけるIM3(220g、1.23mol、1.0eq.、GC純度92%)及びBF/EtO(264g、1.86mol)をN下で加えた。その溶液を−70〜−78℃に冷却し、次いで、TMS−アセチレン−リチウム溶液を−60〜−78℃で2時間かけて加えた。IM3が消失するまでその反応溶液を−70〜−78℃で攪拌した。その反応の中にNHCl飽和水溶液(1.1L)をゆっくりと加え、温度を0〜10℃まで温めた。次いで、その混合物をEtOAc(550mL)で1回抽出し、その後分離した;水層をEtOAc(550mL)で1回抽出した。合わせた有機層を、水(660mL)で1回、食塩水(660mL)で1回洗浄し、次いで、減圧下<55℃にて濃縮し、GC純度87%で297gの粗IM4を与えた。
1H NMR (300MHz, CDCl3): 1H NMR (300 MHz, CDCl3) δ 6.37 (dtt, J = 11.3, 6.3, 2.5 Hz, 1H), 5.69 - 5.52 (m, 1H), 2.26 - 2.13 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H), 0.28 (s, 9H)
m/z (GC-MS): 231 ([MH]+, 1), 125 (100), 97 (35), 73 (30)
Example 4
Step 4: Synthesis of IM4 (4,4-difluoro-1- (trimethylsilyl) oct-5-en-1-in-3-one) TMS- in anhydrous THF (880 mL) mechanically stirred at 0-10 ° C. A solution of n-BuLi (2.5 mol / L, 748 mL, 1.87 mol) was added to a solution of acetylide (182 g, 1.85 mol) dropwise at 0-10 ° C. under N 2 . The reaction mixture was stirred at this temperature for 1 hour. A mechanically stirred flask was charged with IM3 (220 g, 1.23 mol, 1.0 eq., GC purity 92%) and BF 3 / Et 2 O (264 g, 1.86 mol) in anhydrous THF (220 mL) under N 2 . added. The solution was cooled to −70 to −78 ° C., and then the TMS-acetylene-lithium solution was added at −60 to −78 ° C. over 2 hours. The reaction solution was stirred at −70 to −78 ° C. until IM3 disappeared. NH 4 Cl saturated aqueous solution (1.1 L) was slowly added into the reaction, and the temperature was warmed to 0-10 ° C. The mixture was then extracted once with EtOAc (550 mL) and then separated; the aqueous layer was extracted once with EtOAc (550 mL). The combined organic layers were washed once with water (660 mL) and once with brine (660 mL) and then concentrated under reduced pressure at <55 ° C. to give 297 g of crude IM4 with a GC purity of 87%.
1 H NMR (300MHz, CDCl 3 ): 1 H NMR (300 MHz, CDCl 3 ) δ 6.37 (dtt, J = 11.3, 6.3, 2.5 Hz, 1H), 5.69-5.52 (m, 1H), 2.26-2.13 ( m, 2H), 1.06 (t, J = 7.4 Hz, 3H), 0.28 (s, 9H)
m / z (GC-MS): 231 ([MH] + , 1), 125 (100), 97 (35), 73 (30)

例5
工程5:IM5(4,4-ジフルオロオクタ-5-エン-1-イン-3-オール)の合成
0〜−5℃のMeOH(1.5L)中におけるIM4(321g、1.4mol)の溶液に、固体NaBH(19.6g、0.7mol)をゆっくりと加えた。IM4が消費されるまで、反応溶液をこの温度で攪拌した。次いで、固体NaOMe(37.7g、0.7mol)を加え、TMS−IM5が消費されるまで、反応溶液をこの温度で攪拌した。NHCl飽和水溶液(1L)及びHO(1L)を加え、次に、6MのHClを用いて、その混合物をpH5〜6に調整し、その後、その混合物をMTBE(各600mL)で3回抽出した。合わせた有機層を、水(600mL)で1回、食塩水(600mL)で1回洗浄し、次いで、減圧下<45℃にて濃縮し、GC純度87%で224gの粗IM5を与えた。
1H NMR (300MHz, CDCl3): δ 6.32 (dtd, J = 10.8, 6.1, 2.3 Hz, 1H), 5.78 - 5.59 (m, 1H), 4.57 - 4.46 (m, 1H), 2.55 (d, J = 2.2 Hz, 1H), 2.26 - 2.12 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H)
m/z (GC-MS): 159 ([M-H]+, 1), 105 (5), 77 (100), 55 (30)
Example 5
Step 5: Synthesis of IM5 (4,4-difluorooct-5-en-1-in-3-ol) Solution of IM4 (321 g, 1.4 mol) in MeOH (1.5 L) at 0-5 ° C. To was slowly added solid NaBH 4 (19.6 g, 0.7 mol). The reaction solution was stirred at this temperature until IM4 was consumed. Solid NaOMe (37.7 g, 0.7 mol) was then added and the reaction solution was stirred at this temperature until TMS-IM5 was consumed. NH 4 Cl saturated aqueous solution (1 L) and H 2 O (1 L) were added, then the mixture was adjusted to pH 5-6 with 6M HCl, after which the mixture was added 3 times with MTBE (600 mL each). Extracted once. The combined organic layers were washed once with water (600 mL) and once with brine (600 mL) and then concentrated under reduced pressure at <45 ° C. to give 224 g of crude IM5 with a GC purity of 87%.
1 H NMR (300MHz, CDCl 3 ): δ 6.32 (dtd, J = 10.8, 6.1, 2.3 Hz, 1H), 5.78-5.59 (m, 1H), 4.57-4.46 (m, 1H), 2.55 (d, J = 2.2 Hz, 1H), 2.26-2.12 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H)
m / z (GC-MS): 159 ([MH] + , 1), 105 (5), 77 (100), 55 (30)

例6
工程6:De−Bn−IM7((1E)-4,4-ジフルオロ-1-(トリブチルスタンニル)オクタ-1,5-ジエン-3-オール)の合成
トルエン(550mL)中におけるIM5(110g、0.68mol)の高温(70℃)溶液に、攪拌しながら、BuSnH(219g、0.75mol)及びAIBN(12.4g、0.075mol)を加え、IM5が消費されるまで、その混合物を80〜85℃で攪拌した。反応混合物を<55℃で蒸発させ、338gの粗De−Bn−IM7を与えた。カラムクロマトグラフィーによって粗De−Bn−IM7を精製し、GC純度91%で82.5gのDe−Bn−IM7、及びcis−De−Bn−IM7とDe−Bn−IM7の混合物111.5gを与えた。
1H NMR (300MHz, CDCl3): δ 6.48 - 6.40 (m, 1H), 6.27 - 6.13 (m, 1H), 6.01 (dd, J = 19.3, 5.1 Hz, 1H), 5.55 (dtt, J = 15.4, 11.9, 1.7 Hz, 1H), 4.34 - 4.22 (m, 1H), 2.20 - 2.11 (m, 2H), 1.55 - 1.43 (m, 6H), 1.30 (dq, J = 14.0, 7.1 Hz, 6H), 1.03 (t, J = 7.4 Hz, 3H), 0.90 (dd, J = 14.5, 7.3 Hz, 15H)
m/z (ES-API, Neg): 451, 495 (M+HCOO-)
Example 6
Step 6: Synthesis of De-Bn-IM7 ((1E) -4,4-difluoro-1- (tributylstannyl) octa-1,5-dien-3-ol) IM5 in toluene (550 mL) (110 g, To a hot (70 ° C.) solution of 0.68 mol) with stirring, Bu 3 SnH (219 g, 0.75 mol) and AIBN (12.4 g, 0.075 mol) are added and the mixture until IM5 is consumed Was stirred at 80-85 ° C. The reaction mixture was evaporated at <55 ° C. to give 338 g of crude De-Bn-IM7. Purify the crude De-Bn-IM7 by column chromatography to give 81.5 g of De-Bn-IM7 with a GC purity of 91%, and 111.5 g of a mixture of cis-De-Bn-IM7 and De-Bn-IM7. It was.
1 H NMR (300MHz, CDCl 3 ): δ 6.48-6.40 (m, 1H), 6.27-6.13 (m, 1H), 6.01 (dd, J = 19.3, 5.1 Hz, 1H), 5.55 (dtt, J = 15.4 , 11.9, 1.7 Hz, 1H), 4.34-4.22 (m, 1H), 2.20-2.11 (m, 2H), 1.55-1.43 (m, 6H), 1.30 (dq, J = 14.0, 7.1 Hz, 6H), 1.03 (t, J = 7.4 Hz, 3H), 0.90 (dd, J = 14.5, 7.3 Hz, 15H)
m / z (ES-API, Neg): 451, 495 (M + HCOO -)

例7
工程7:IM7(((1E,5E)-3-(ベンジルオキシ)-4,4-ジフルオロオクタ-1,5-ジエニル)トリブチルスタンナン)の合成
機械攪拌したDMF(170mL)中におけるNaH(4.0g、60%、0.1mol)の混合物に、DMF(20mL)中におけるDe−Bn−IM7(42g、93.1mmol)の溶液を−10〜0℃にて加え、反応混合物をこの温度にて1時間攪拌し、De−Bn−IM7が消費されるまで、−10〜0℃の反応混合物中に、DMF(20mL)中におけるBnBr(16.7g、97.7mmol)の溶液を滴下しながら加えた。水(210mL)を加え、その混合物をMTBE(各210mL)で2回抽出した。合わせた有機層を、NHCl飽和水溶液(210mL)で1回、水(210mL)で1回、食塩水(210mL)で1回洗浄し、次いで、減圧下<45℃にて濃縮し、HPLC純度91.1%で52.3gの粗IM7を与えた。
1H NMR (300MHz, CDCl3): δ 7.39 - 7.26 (m, 5H), 6.38 (d, J = 19.2 Hz, 1H), 6.19 - 6.09 (m, 1H), 5.88 (dd, J = 19.2, 6.8 Hz, 1H), 5.60 (dtt, J = 15.4, 11.9, 1.7 Hz, 1H), 4.69 (d, J = 12.2 Hz, 1H), 4.51 (d, J = 12.2 Hz, 1H), 3.94 - 3.87 (m, 1H), 2.20 - 2.06 (m, 2H), 1.57 - 1.43 (m, 6H), 1.32 (dt, J = 15.0, 7.4 Hz, 6H), 1.02 (t, J = 7.4 Hz, 3H), 0.91 (q, J = 7.5 Hz, 15H)
m/z (EI): 581 ([M+K+], 100), 565 ([M+Na+], 60)
Example 7
Step 7: Synthesis of IM7 (((1E, 5E) -3- (benzyloxy) -4,4-difluoroocta-1,5-dienyl) tributylstannane) NaH (4 in mechanically stirred DMF (170 mL) To a mixture of De-Bn-IM7 (42 g, 93.1 mmol) in DMF (20 mL) at −10 to 0 ° C. and the reaction mixture to this temperature. The solution of BnBr (16.7 g, 97.7 mmol) in DMF (20 mL) is added dropwise into the reaction mixture at −10 to 0 ° C. until the De-Bn-IM7 is consumed. added. Water (210 mL) was added and the mixture was extracted twice with MTBE (210 mL each). The combined organic layers were washed once with saturated aqueous NH 4 Cl (210 mL), once with water (210 mL), once with brine (210 mL), then concentrated under reduced pressure at <45 ° C. and HPLC This gave 52.3 g of crude IM7 with a purity of 91.1%.
1 H NMR (300MHz, CDCl 3 ): δ 7.39-7.26 (m, 5H), 6.38 (d, J = 19.2 Hz, 1H), 6.19-6.09 (m, 1H), 5.88 (dd, J = 19.2, 6.8 Hz, 1H), 5.60 (dtt, J = 15.4, 11.9, 1.7 Hz, 1H), 4.69 (d, J = 12.2 Hz, 1H), 4.51 (d, J = 12.2 Hz, 1H), 3.94-3.87 (m , 1H), 2.20-2.06 (m, 2H), 1.57-1.43 (m, 6H), 1.32 (dt, J = 15.0, 7.4 Hz, 6H), 1.02 (t, J = 7.4 Hz, 3H), 0.91 ( q, J = 7.5 Hz, 15H)
m / z (EI): 581 ([M + K + ], 100), 565 ([M + Na + ], 60)

例8
工程8:IM7i(((1E,5E)-3-(ベンジルオキシ)-4,4-ジフルオロオクタ-1,5-ジエニル)トリブチルスタンナン)の合成
機械攪拌したDMF(20mL)中におけるNaH(0.49g、60%、0.012mol)の混合物に、DMF(2.5mL)中におけるDe−Bn−IM7(5g、0.011mol)の溶液を−10〜0℃にて加え、反応混合物をこの温度で1時間攪拌し、De−Bn−IM7が消費されるまで、−10〜0℃の反応混合物中に、DMF(2.5mL)中における1-(ブロモメチル)-4-メトキシベンゼン(2.34g、0.0116mol)の溶液を滴下しながら加えた。水(25mL)を加え、その混合物をMTBE(各25mL)で2回抽出した。合わせた有機層を、NHCl飽和水溶液(25mL)で1回、水(25mL)で1回、食塩水(25mL)で1回洗浄し、次いで、減圧下<45℃にて濃縮し、6.3gの粗IM7iを与えた。カラムクロマトグラフィーによって粗IM7iを精製し、GC純度92%及びHPLC収率64%で4.2gのIM7iを与えた。
1H NMR (300MHz, CDCl3): δ 7.25 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 6.42 - 6.31 (m, 1H), 6.13(d, J = 15.8 Hz, 1H), 5.87 (dd, J = 19.2, 6.7 Hz, 1H), 5.58 (dd, J = 26.5, 13.2 Hz, 1H), 4.62 (d, J = 11.8 Hz, 1H), 4.44 (d, J = 11.8 Hz, 1H), 3.94 - 3.87 (m, 1H), 2.20 - 2.06 (m, 2H), 1.57 - 1.43 (m, 6H), 1.32 (dt, J = 15.0, 7.4 Hz, 6H), 1.02 (t, J = 7.4 Hz, 3H), 0.91 (q, J = 7.5 Hz, 15H)
m/z (ES API, Pos): 611 ([M+K+], 100), 595 ([M+Na+], 70)
Example 8
Step 8: Synthesis of IM7i (((1E, 5E) -3- (benzyloxy) -4,4-difluoroocta-1,5-dienyl) tributylstannane) NaH (0 in mechanically stirred DMF (20 mL)) To a mixture of .49 g, 60%, 0.012 mol) was added a solution of De-Bn-IM7 (5 g, 0.011 mol) in DMF (2.5 mL) at −10 to 0 ° C., and the reaction mixture was added to the reaction mixture. Stir at temperature for 1 hour and in the reaction mixture at −10 to 0 ° C. in the DMF (2.5 mL) until the De-Bn-IM7 is consumed, 1- (bromomethyl) -4-methoxybenzene (2. 34 g, 0.0116 mol) solution was added dropwise. Water (25 mL) was added and the mixture was extracted twice with MTBE (25 mL each). The combined organic layers were washed once with saturated aqueous NH 4 Cl (25 mL), once with water (25 mL), once with brine (25 mL), then concentrated under reduced pressure at <45 ° C., 6 .3 g of crude IM7i was given. The crude IM7i was purified by column chromatography to give 4.2 g of IM7i with GC purity of 92% and HPLC yield of 64%.
1 H NMR (300MHz, CDCl 3 ): δ 7.25 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H), 6.42-6.31 (m, 1H), 6.13 (d, J = 15.8 Hz, 1H), 5.87 (dd, J = 19.2, 6.7 Hz, 1H), 5.58 (dd, J = 26.5, 13.2 Hz, 1H), 4.62 (d, J = 11.8 Hz, 1H), 4.44 (d, J = 11.8 Hz, 1H), 3.94-3.87 (m, 1H), 2.20-2.06 (m, 2H), 1.57-1.43 (m, 6H), 1.32 (dt, J = 15.0, 7.4 Hz, 6H), 1.02 (t, J = 7.4 Hz, 3H), 0.91 (q, J = 7.5 Hz, 15H)
m / z (ES API, Pos): 611 ([M + K + ], 100), 595 ([M + Na + ], 70)

例9
工程9:IM6((E)-((4,4-ジフルオロオクタ-5-エン-1-イン-3-イルオキシ)メチル)ベンゼン)の合成
機械攪拌したTHF(300mL)中におけるIM5(100g、GC純度76%、0.62mol)及びt−BuOK(71.4g、0.74mol)の混合物に、THF(200mL)中におけるBnBr(116g、0.68mol)の溶液を60〜70℃にて加え、IM5が5%未満になるまで、反応混合物をこの温度で1時間攪拌した。その混合物を15〜30℃まで冷却し、水(1L)及びMTBE(1L)を加え、その混合物を15分間攪拌し、その水層をMTBE(500mL)で1回抽出した。合わせた有機層を、NHCl飽和水溶液(500mL)で1回、食塩水(500mL)で1回洗浄し、次いで、減圧下<45℃にて濃縮し、HPLC純度61%で155gの粗IM6を与えた。カラムクロマトグラフィーによって粗IM6を精製し、GC純度86%及びGC収率62%で86gのIM6を与えた。
1H NMR (300MHz, CDCl3): δ 7.37 - 7.31 (m, 5H), 6.35 - 6.22(m, 1H), 5.78 - 5.61 (m, 1H), 4.86 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.29 (dt, J = 8.0, 2.2 Hz, 1H), 2.55 (d, J = 8.0, 2.1 Hz, 1H), 2.22 - 2.09 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H)
Example 9
Step 9: Synthesis of IM6 ((E)-((4,4-difluorooct-5-en-1-in-3-yloxy) methyl) benzene) IM5 (100 g, GC in mechanically stirred THF (300 mL) To a mixture of 76% purity, 0.62 mol) and t-BuOK (71.4 g, 0.74 mol), a solution of BnBr (116 g, 0.68 mol) in THF (200 mL) was added at 60-70 ° C., The reaction mixture was stirred at this temperature for 1 hour until IM5 was less than 5%. The mixture was cooled to 15-30 ° C., water (1 L) and MTBE (1 L) were added, the mixture was stirred for 15 minutes, and the aqueous layer was extracted once with MTBE (500 mL). The combined organic layers were washed once with saturated aqueous NH 4 Cl (500 mL) and once with brine (500 mL), then concentrated under reduced pressure at <45 ° C. and 155 g of crude IM6 at 61% HPLC purity. Gave. The crude IM6 was purified by column chromatography to give 86 g of IM6 with a GC purity of 86% and a GC yield of 62%.
1 H NMR (300MHz, CDCl 3 ): δ 7.37-7.31 (m, 5H), 6.35-6.22 (m, 1H), 5.78-5.61 (m, 1H), 4.86 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.29 (dt, J = 8.0, 2.2 Hz, 1H), 2.55 (d, J = 8.0, 2.1 Hz, 1H), 2.22-2.09 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H)

例10
工程10:IM7の合成
トルエン(340mL)中におけるIM6(69g、86%、0.28mol)の高温(80℃)溶液に、BuSnH(88g、0.30mol)及びAIBN(5.1g、0.03mol)を攪拌下で加えた。IM6が消費されるまで、その混合物を80〜85℃で攪拌した。その反応混合物を<55℃で蒸発させ、150gの粗IM7を与えた。カラムクロマトグラフィーによって粗IM7を精製し、GC純度61.2%及びGC収率65%で75gのIM7を与えた。
Example 10
Step 10: Synthesis of IM7 To a hot (80 ° C.) solution of IM6 (69 g, 86%, 0.28 mol) in toluene (340 mL), Bu 3 SnH (88 g, 0.30 mol) and AIBN (5.1 g, 0 0.03 mol) was added under stirring. The mixture was stirred at 80-85 ° C. until IM6 was consumed. The reaction mixture was evaporated at <55 ° C. to give 150 g of crude IM7. The crude IM7 was purified by column chromatography to give 75 g of IM7 with a GC purity of 61.2% and a GC yield of 65%.

工程1a:化合物(7)の合成
((Z)-7-((1R,2R,3R)-2-((1E,5E)-3-(ベンジルオキシ)-4,4-ジフルオロオクタ-1,5-ジエニル)-3-(tert-ブチルジメチル-シリルオキシ)-5-オキソシクロペンチル)ヘプタ-5-エン酸イソプロピル)
例11
−10〜0℃のTHF(375mL)中におけるCuCN(26.7g、0.3mol)の混合物に、N下で滴下しながら、MeLiのジエトキシメタン溶液(91mL、3M、0.27mol)を加えた。反応混合物をこの温度で0.5時間攪拌した。−60〜−70℃のTHF(750mL)中におけるIM7(147g、HPLC純度90%、0.27mol)の溶液に、N下で滴下しながら、MeLiのジエトキシメタン溶液(91mL、3M、0.27mol)を加えた。IM7が消費されるまで、反応混合物をこの温度で攪拌した。その反応の中に、調製したMeCu(CN)Li溶液を更に30分間かけて−40〜−50℃で滴下しながら加えた。次いで、先の反応溶液中に、THF(375mL)中における化合物(1)(82.7g、0.22mol)の溶液を−50〜−60℃で滴下しながら加えた。反応が完了するまで、その反応混合物をこの温度で攪拌した。NHCl飽和水溶液(750mL)をこの温度で加え、次いで、その結果生じた混合物を室温まで温め、ろ過し、そのろ過ケーキをMTBE(750mL)で1回洗った。ろ液を分離し、水層をMTBE(375mL)で1回抽出した。合わせた有機層を食塩水(750mL)で1回洗浄し、次いで、減圧下<55℃にて濃縮し、228gの粗化合物(7)を与え、カラムクロマトグラフィーによってそれを精製し、HPLC純度90%及び化合物(1)に基づいた収率70%で107gの化合物(7)を与えた。
Step 1a: Synthesis of Compound (7) ((Z) -7-((1R, 2R, 3R) -2-((1E, 5E) -3- (benzyloxy) -4,4-difluoroocta-1, 5-dienyl) -3- (tert-butyldimethyl-silyloxy) -5-oxocyclopentyl) hept-5-enoic acid isopropyl)
Example 11
To a mixture of CuCN (26.7 g, 0.3 mol) in THF (375 mL) at −10 to 0 ° C., a solution of MeLi in diethoxymethane (91 mL, 3 M, 0.27 mol) was added dropwise under N 2. added. The reaction mixture was stirred at this temperature for 0.5 hour. To a solution of IM7 (147 g, HPLC purity 90%, 0.27 mol) in THF (750 mL) at −60 to −70 ° C. while dropping dropwise under N 2 , a solution of MeLi in diethoxymethane (91 mL, 3M, 0 .27 mol) was added. The reaction mixture was stirred at this temperature until IM7 was consumed. During the reaction, the prepared MeCu (CN) Li solution was further added dropwise at −40 to −50 ° C. over 30 minutes. Next, a solution of compound (1) (82.7 g, 0.22 mol) in THF (375 mL) was added dropwise to the previous reaction solution at −50 to −60 ° C. The reaction mixture was stirred at this temperature until the reaction was complete. NH 4 Cl saturated aqueous solution (750 mL) was added at this temperature, then the resulting mixture was warmed to room temperature, filtered, and the filter cake was washed once with MTBE (750 mL). The filtrate was separated and the aqueous layer was extracted once with MTBE (375 mL). The combined organic layers were washed once with brine (750 mL) and then concentrated under reduced pressure at <55 ° C. to give 228 g of crude compound (7), which was purified by column chromatography, HPLC purity 90 Gave 107 g of compound (7) in a yield of 70% based on% and compound (1).

例12
−60〜−70℃のTHF(30mL)中におけるIM7(5g、9.2mmol)の溶液に、N下で滴下しながら、MeLiのジエトキシメタン溶液(3.1mL、3M、9.3mmol)を加えた。IM7が消費されるまで、反応混合物をこの温度にて攪拌した。リチウム2−チエニルシアノクプラート(37mL、0.25M、9.25mmol)をN下で滴下しながら加えた。その反応混合物をこの温度で1時間攪拌した。次いで、先の反応溶液中に、THF(20mL)中における化合物(1)(2.8g、7.4mmol)の溶液を−50〜−60℃で滴下しながら加えた。反応が完了するまで、反応混合物をこの温度で攪拌した。NHCl飽和水溶液(15mL)をこの温度で加え、次いで、その結果生じた混合物を室温まで温め、ろ過し、そのろ過ケーキをEtOAc(25mL)で1回洗った。ろ液を分離し、水層をEtOAc(25mL)で1回抽出した。合わせた有機層を食塩水(25mL)で1回洗浄し、次いで、減圧下<55℃にて濃縮し、HPLC純度29.5%及び化合物(1)に基づいたHPLC収率51.8%で8.2gの粗化合物(7)を与えた。
1H NMR (300MHz, CDCl3): δ 7.39 - 7.27 (m, 5H), 6.24 - 6.10 (m, 1H), 5.81 - 5.69 (m, 1H), 5.68 - 5.50 (m, 2H), 5.49 - 5.27 (m, 2H), 4.99 (dt, J = 12.5, 6.3 Hz, 1H), 4.68 (dd, J = 12.0, 3.0 Hz, 1H), 4.52 (dd, J = 12.0, 5.9 Hz, 1H), 4.14 - 4.04 (m, 1H), 4.04 -3.92 (m, 1H), 2.74 - 2.66 (m, 1H), 2.65 - 2.51 (m, 2H), 2.49 - 2.28 (m, 2H, H8), 2.28 - 1.96 (m, 5H), 1.75 - 1.58 (m, 2H), 1.30 - 1.23 (m, 2H), 1.21 (d, J = 6.3 Hz, 6H), 1.03 (t, J = 7.4 Hz, 3H), 0.88 (s, 9H), 0.05 (dd, J = 5.9, 3.4 Hz, 6H)
m/z (API-ES, Pos): 655 ([M+Na+], 100)
Example 12
To a solution of IM7 (5 g, 9.2 mmol) in THF (30 mL) at −60 to −70 ° C. while dropping dropwise under N 2 , a solution of MeLi in diethoxymethane (3.1 mL, 3 M, 9.3 mmol) Was added. The reaction mixture was stirred at this temperature until IM7 was consumed. Lithium 2-thienyl cyanocuprate (37 mL, 0.25 M, 9.25 mmol) was added dropwise under N 2 . The reaction mixture was stirred at this temperature for 1 hour. Next, a solution of compound (1) (2.8 g, 7.4 mmol) in THF (20 mL) was added dropwise to the previous reaction solution at −50 to −60 ° C. The reaction mixture was stirred at this temperature until the reaction was complete. A saturated aqueous NH 4 Cl solution (15 mL) was added at this temperature, then the resulting mixture was warmed to room temperature, filtered, and the filter cake was washed once with EtOAc (25 mL). The filtrate was separated and the aqueous layer was extracted once with EtOAc (25 mL). The combined organic layers were washed once with brine (25 mL) and then concentrated under reduced pressure at <55 ° C. with an HPLC purity of 29.5% and an HPLC yield of 51.8% based on compound (1). 8.2 g of crude compound (7) was obtained.
1 H NMR (300MHz, CDCl 3 ): δ 7.39-7.27 (m, 5H), 6.24-6.10 (m, 1H), 5.81-5.69 (m, 1H), 5.68-5.50 (m, 2H), 5.49-5.27 (m, 2H), 4.99 (dt, J = 12.5, 6.3 Hz, 1H), 4.68 (dd, J = 12.0, 3.0 Hz, 1H), 4.52 (dd, J = 12.0, 5.9 Hz, 1H), 4.14- 4.04 (m, 1H), 4.04 -3.92 (m, 1H), 2.74-2.66 (m, 1H), 2.65-2.51 (m, 2H), 2.49-2.28 (m, 2H, H8), 2.28-1.96 (m , 5H), 1.75-1.58 (m, 2H), 1.30-1.23 (m, 2H), 1.21 (d, J = 6.3 Hz, 6H), 1.03 (t, J = 7.4 Hz, 3H), 0.88 (s, 9H), 0.05 (dd, J = 5.9, 3.4 Hz, 6H)
m / z (API-ES, Pos): 655 ([M + Na + ], 100)

例13
工程1b:化合物(7i)の合成
((Z)-7-((1R,2R,3R)-3-(tert-ブチルジメチルシリルオキシ)-2-((1E,5E)-4,4-ジフルオロ-3-(4-メトキシベンジルオキシ)オクタ-1,5-ジエニル)-5-オキソシクロペンチル)ヘプタ-5-エン酸イソプロピル)
−10〜0℃のTHF(10mL)中におけるCuCN(0.77g、8.5mmol)の混合物に、N下で滴下しながら、MeLiのジエトキシメタン溶液(2.6mL、3M、7.8mmol)を加えた。反応混合物をこの温度で0.5時間攪拌した。−60〜−70℃のTHF(20mL)中におけるIM7i(4.1g、HPLC純度92%、7.8mmol)の溶液に、N下で滴下しながら、MeLiのジエトキシメタン溶液(2.6mL、3M、7.8mmol)を加えた。IM7iが消費されるまで、反応混合物をこの温度で攪拌した。その反応の中に、調製したMeCu(CN)Li溶液を更に0.5時間かけて−40〜−50℃で滴下しながら加えた。次いで、先の反応溶液中に、THF(10mL)中における化合物(1)(2.37g、6.2mmol)の溶液を−50〜−60℃で滴下しながら加えた。反応が完了するまで、その反応混合物をこの温度で攪拌した。NHCl飽和水溶液(20mL)をこの温度で加え、次いで、その結果生じた混合物を室温まで温め、ろ過し、そのろ過ケーキをMTBE(20mL)で1回洗った。ろ液を分離し、水層をMTBE(10mL)で1回抽出した。合わせた有機層を食塩水(20mL)で1回洗浄し、次いで、減圧下<55℃にて濃縮し、6.8gの粗化合物(7i)を与え、カラムクロマトグラフィーによってそれを精製し、HPLC純度88.6%及び化合物(1)に基づいたHPLC収率51%で2.3gの化合物(7i)を与えた。
1H NMR (300MHz, CDCl3): δ 7.26 - 7.20 (m, 2H), 6.91 - 6.83 (m, 2H), 6.25 - 6.08 (m, 1H), 5.72 (ddd, J = 17.3, 12.8, 4.8 Hz, 1H), 5.65 - 5.50 (m, 2H), 5.49 - 5.28 (m, 2H, H5), 4.99 (dt, J = 12.5, 6.3 Hz, 1H), 4.62 (dd, J = 11.6, 2.3 Hz, 1H), 4.45 (dt, J = 11.6, 5.6 Hz, 1H), 4.17 - 4.02 (m, 1H), 4.02 - 3.89 (m, 1H), 3.81 (s, 3H), 2.74 - 2.50 (m, 2H), 2.49 - 1.96 (m, 9H), 1.73 - 1.59 (m, 2H), 1.28 (dd, J = 9.6, 4.4 Hz, 2H), 1.21 (d, J = 6.3 Hz, 6H), 1.02 (t, J = 7.4 Hz, 3H), 0.88 (s, 9H), 0.05 (dd, J = 6.0, 3.3 Hz, 6H).
m/z (API-ES, Pos): 680 ([M+NH4]+, 100), 664 (M+, 10)
Example 13
Step 1b: Synthesis of Compound (7i) ((Z) -7-((1R, 2R, 3R) -3- (tert-butyldimethylsilyloxy) -2-((1E, 5E) -4,4-difluoro -3- (4-methoxybenzyloxy) octa-1,5-dienyl) -5-oxocyclopentyl) hept-5-enoic acid isopropyl)
To a mixture of CuCN (0.77 g, 8.5 mmol) in THF (10 mL) at −10 to 0 ° C. while dropping dropwise under N 2 , a solution of MeLi in diethoxymethane (2.6 mL, 3 M, 7.8 mmol). ) Was added. The reaction mixture was stirred at this temperature for 0.5 hour. To a solution of IM7i (4.1 g, HPLC purity 92%, 7.8 mmol) in THF (20 mL) at −60 to −70 ° C. dropwise under N 2 , a solution of MeLi in diethoxymethane (2.6 mL). 3M, 7.8 mmol). The reaction mixture was stirred at this temperature until IM7i was consumed. During the reaction, the prepared MeCu (CN) Li solution was further added dropwise at −40 to −50 ° C. over 0.5 hours. Next, a solution of compound (1) (2.37 g, 6.2 mmol) in THF (10 mL) was added dropwise to the previous reaction solution at −50 to −60 ° C. The reaction mixture was stirred at this temperature until the reaction was complete. A saturated aqueous NH 4 Cl solution (20 mL) was added at this temperature, then the resulting mixture was warmed to room temperature, filtered, and the filter cake was washed once with MTBE (20 mL). The filtrate was separated and the aqueous layer was extracted once with MTBE (10 mL). The combined organic layers were washed once with brine (20 mL) and then concentrated under reduced pressure at <55 ° C. to give 6.8 g of crude compound (7i), which was purified by column chromatography, HPLC 2.3 g of compound (7i) was obtained with a purity of 88.6% and an HPLC yield of 51% based on compound (1).
1 H NMR (300MHz, CDCl 3 ): δ 7.26-7.20 (m, 2H), 6.91-6.83 (m, 2H), 6.25-6.08 (m, 1H), 5.72 (ddd, J = 17.3, 12.8, 4.8 Hz , 1H), 5.65-5.50 (m, 2H), 5.49-5.28 (m, 2H, H5), 4.99 (dt, J = 12.5, 6.3 Hz, 1H), 4.62 (dd, J = 11.6, 2.3 Hz, 1H ), 4.45 (dt, J = 11.6, 5.6 Hz, 1H), 4.17-4.02 (m, 1H), 4.02-3.89 (m, 1H), 3.81 (s, 3H), 2.74-2.50 (m, 2H), 2.49-1.96 (m, 9H), 1.73-1.59 (m, 2H), 1.28 (dd, J = 9.6, 4.4 Hz, 2H), 1.21 (d, J = 6.3 Hz, 6H), 1.02 (t, J = 7.4 Hz, 3H), 0.88 (s, 9H), 0.05 (dd, J = 6.0, 3.3 Hz, 6H).
m / z (API-ES, Pos): 680 ([M + NH 4 ] + , 100), 664 (M + , 10)

工程2:化合物(8)の合成
(7-((1R,2R,3R)-3-(tert-ブチルジメチルシリルオキシ)-2-(4,4-ジフルオロ-3-ヒドロキシオクチル)-5-オキソシクロペンチル)ヘプタン酸イソプロピル)
例14
調製された先の化合物(7)(57g、HPLC純度91%、0.90mol)、10%Pd/C(5.7g、53%HO)及びEtOAc(570mL)を、H下、0.4MPaにて、60℃まで加熱し、化合物(7)が消費されるまで、その反応を攪拌した。次いで、セライト栓を通して反応混合物をろ過し、ろ過ケーキをEtOAc(285mL)で1回洗浄し、次いで、ろ液を減圧下<55℃にて濃縮し、54gの化合物(8)を与えた。カラムクロマトグラフィー(EtOAc:n−ヘプタン=1:10)によってその残留物を精製し、粗収率96%で47gの化合物(8)を単離した。
Step 2: Synthesis of Compound (8) (7-((1R, 2R, 3R) -3- (tert-butyldimethylsilyloxy) -2- (4,4-difluoro-3-hydroxyoctyl) -5-oxo Cyclopentyl) isopropyl heptanoate)
Example 14
Prepared previous compound (7) (57 g, HPLC purity 91%, 0.90 mol), 10% Pd / C (5.7 g, 53% H 2 O) and EtOAc (570 mL) under 0 2 under 0. The reaction was stirred at 4 MPa at 60 ° C. until compound (7) was consumed. The reaction mixture was then filtered through a celite plug, the filter cake was washed once with EtOAc (285 mL), and the filtrate was then concentrated under reduced pressure at <55 ° C., yielding 54 g of compound (8). The residue was purified by column chromatography (EtOAc: n-heptane = 1: 10) and 47 g of compound (8) was isolated in 96% crude yield.

例15
調製された先の化合物(7i)(2.3g、HPLC純度89%、3.5mmol)、10%Pd/C(0.23g、40%HO)及びEtOAc(23mL)を、H下、0.4MPaにて、60℃まで加熱し、化合物(7i)が消費されるまで、その反応を攪拌した。次いで、セライト栓を通して反応混合物をろ過し、ろ過ケーキをEtOAc(12mL)で1回洗浄し、次いで、ろ液を減圧下<55℃にて濃縮し、2.0gの化合物(8)を与えた。
1H NMR (300MHz, CDCl3): δ 5.07 - 4.91 (m, 1H), 4.14 - 4.00 (m, 1H), 3.78 - 3.58 (m, 1H), 2.65 - 2.54 (m, 1H), 2.33 (dd, J=6.3, 30.2 Hz, 1H), 2.25 (t, J= 7.5 Hz, 3H), 2.17 (dd, J=6.7, 5.3 Hz, 1H), 2.02 - 1.71 (m, 7H), 1.67 - 1.25 (m, 14H), 1.22 (d, J=6.3, 6H), 0.93 (t, J=7.2 Hz, 3H), 0.89 (d, J=1.5 Hz, 9H), 0.07 (dd, J=9.3, 2.6 Hz, 6H)
m/z (API-ES, Pos): 549 (M+H+, 100)
Example 15
Prepared previous compound (7i) (2.3 g, HPLC purity 89%, 3.5 mmol), 10% Pd / C (0.23 g, 40% H 2 O) and EtOAc (23 mL) under H 2. The reaction was stirred at 0.4 MPa and heated to 60 ° C. until the compound (7i) was consumed. The reaction mixture was then filtered through a celite plug, the filter cake was washed once with EtOAc (12 mL), and the filtrate was then concentrated under reduced pressure at <55 ° C. to give 2.0 g of compound (8). .
1 H NMR (300MHz, CDCl 3 ): δ 5.07-4.91 (m, 1H), 4.14-4.00 (m, 1H), 3.78-3.58 (m, 1H), 2.65-2.54 (m, 1H), 2.33 (dd , J = 6.3, 30.2 Hz, 1H), 2.25 (t, J = 7.5 Hz, 3H), 2.17 (dd, J = 6.7, 5.3 Hz, 1H), 2.02-1.71 (m, 7H), 1.67-1.25 ( m, 14H), 1.22 (d, J = 6.3, 6H), 0.93 (t, J = 7.2 Hz, 3H), 0.89 (d, J = 1.5 Hz, 9H), 0.07 (dd, J = 9.3, 2.6 Hz , 6H)
m / z (API-ES, Pos): 549 (M + H + , 100)

例16
工程3:化合物(9)の合成
(7-((1R,2R,3R)-3-(tert-ブチルジメチルシリルオキシ)-2-(4,4-ジフルオロ-3-オキソオクチル)-5-オキソシクロペンチル)ヘプタン酸イソプロピル)
DCM(20mL)中における塩化オキサリル(1.27g、10.0mmol)の溶液を−60〜−70℃に冷却し、DCM(5mL)中におけるDMSO(1.56g、20.0mmol)を滴下しながら加え、その溶液を30分間攪拌した。DCM(10mL)中における化合物(8)(5.0g、9.1mmol)の溶液を滴下しながら加え、その混合物を−60〜−70℃で1時間攪拌した。その混合物中にEtN(3.04g、30.0mol)を滴下しながら加え、反応が完了するまでその反応をこの温度で攪拌した。その混合物を0℃に温め、その溶液に水(50mL)を加え、その混合物を5分間攪拌し、次いで分離した。水層をDCM(50mL)で抽出した。合わせた有機層を、飽和NHCl(50mL)で1回、水(50mL)で1回洗浄し、次いで、減圧下<50℃にて濃縮し、HPLC純度87%及びHPLC収率91%で4.57gの化合物(9)を与えた。
1H NMR (300MHz, CDCl3): δ 5.09 - 4.91 (m, 1H), 4.03 (q, J=6.7, 1H), 3.00 - 2.73 (m, 2H), 2.60 (ddd, J=18.1, 6.6, 1.1 Hz, 1H), 2.25 (t, J=7.5, 2H), 2.20 (d, J=7.2 Hz, 1H), 2.14 (d, J=7.2 Hz, 1H), 2.10 - 1.25 (m, 21H), 1.22 (d, J=6.3 Hz, 6H), 0.92 (t, J=6.9 Hz, 3H), 0.89 (s, 9H), 0.07 (d, J=8.6, 6H)
m/z (EI): 547 (M+H+, 100), 569 (M+Na+, 45)
Example 16
Step 3: Synthesis of Compound (9) (7-((1R, 2R, 3R) -3- (tert-butyldimethylsilyloxy) -2- (4,4-difluoro-3-oxooctyl) -5-oxo Cyclopentyl) isopropyl heptanoate)
A solution of oxalyl chloride (1.27 g, 10.0 mmol) in DCM (20 mL) was cooled to −60 to −70 ° C. while DMSO (1.56 g, 20.0 mmol) in DCM (5 mL) was added dropwise. In addition, the solution was stirred for 30 minutes. A solution of compound (8) (5.0 g, 9.1 mmol) in DCM (10 mL) was added dropwise and the mixture was stirred at −60 to −70 ° C. for 1 hour. Et 3 N (3.04 g, 30.0 mol) was added dropwise to the mixture and the reaction was stirred at this temperature until the reaction was complete. The mixture was warmed to 0 ° C., water (50 mL) was added to the solution, the mixture was stirred for 5 minutes and then separated. The aqueous layer was extracted with DCM (50 mL). The combined organic layers were washed once with saturated NH 4 Cl (50 mL), once with water (50 mL) and then concentrated under reduced pressure at <50 ° C. with HPLC purity of 87% and HPLC yield of 91%. 4.57 g of compound (9) was given.
1 H NMR (300MHz, CDCl 3 ): δ 5.09-4.91 (m, 1H), 4.03 (q, J = 6.7, 1H), 3.00-2.73 (m, 2H), 2.60 (ddd, J = 18.1, 6.6, 1.1 Hz, 1H), 2.25 (t, J = 7.5, 2H), 2.20 (d, J = 7.2 Hz, 1H), 2.14 (d, J = 7.2 Hz, 1H), 2.10-1.25 (m, 21H), 1.22 (d, J = 6.3 Hz, 6H), 0.92 (t, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.07 (d, J = 8.6, 6H)
m / z (EI): 547 (M + H + , 100), 569 (M + Na + , 45)

例17
工程4a:化合物(10)の合成
(7-((1R,2R,3R)-3-(tert-ブチルジメチルシリルオキシ)-2-(4,4-ジフルオロ-3-オキソオクチル)-5-オキソシクロペンチル)ヘプタン酸)
アセトン(15mL)及びpH7.0緩衝液(0.5%NaHPO、1NのNaOHによりpHを7.0に調整;35mL)中における化合物(9)(5.0g、9.14mmol)の溶液に、リパーゼPS SD(0.5g)を加え、化合物(9)がほとんど消費されるまで50℃にて攪拌し、シリカゲル栓を通してその反応をろ過し、MTBE(100mL)で洗浄し、ろ液を水で2回洗浄し(50mL×2)、次いで、減圧下<40℃にて濃縮し、4.78gの粗化合物(10)を与えた。
1H NMR (300MHz, CDCl3): δ: 4.03 (q, J=6.7 Hz, 1H), 3.00 - 2.72 (m, 2H), 2.66 - 2.55 (dd, J=12.3 Hz, 7.5 Hz, 1H), 2.34 (t, J=7.5, 2H), 2.17 (dd, J=18.1Hz, 7.3Hz, 1H), 2.08 - 1.17 (m, 22H), 0.92 (t, J=6.9 Hz, 3H), 0.89 (s, 9H), 0.07 (d, J=8.6, 6H)
m/z (ES-API, Neg): 503 ([M-H]-, 35), 371(100)
Example 17
Step 4a: Synthesis of Compound (10) (7-((1R, 2R, 3R) -3- (tert-butyldimethylsilyloxy) -2- (4,4-difluoro-3-oxooctyl) -5-oxo Cyclopentyl) heptanoic acid)
Compound (9) (5.0 g, 9.14 mmol) in acetone (15 mL) and pH 7.0 buffer (0.5% NaH 2 PO 4 , pH adjusted to 7.0 with 1N NaOH; 35 mL). To the solution was added lipase PS SD (0.5 g) and stirred at 50 ° C. until most of compound (9) was consumed. The reaction was filtered through a silica gel plug, washed with MTBE (100 mL), and the filtrate. Was washed twice with water (50 mL × 2) and then concentrated under reduced pressure at <40 ° C. to give 4.78 g of crude compound (10).
1 H NMR (300MHz, CDCl 3 ): δ: 4.03 (q, J = 6.7 Hz, 1H), 3.00-2.72 (m, 2H), 2.66-2.55 (dd, J = 12.3 Hz, 7.5 Hz, 1H), 2.34 (t, J = 7.5, 2H), 2.17 (dd, J = 18.1Hz, 7.3Hz, 1H), 2.08-1.17 (m, 22H), 0.92 (t, J = 6.9 Hz, 3H), 0.89 (s , 9H), 0.07 (d, J = 8.6, 6H)
m / z (ES-API, Neg): 503 ([MH] - , 35), 371 (100)

例18
工程4b:iPr−ルビプロストンの合成
7-((2R,4aR,5R,7aR)-2-(1,1-ジフルオロペンチル)-2-ヒドロキシ-6-オキソ-オクタヒドロシクロペンタ[b]ピラン-5-イル)ヘプタン酸イソプロピル
MeCN(10mL)中における化合物(9)(1.0g、1.8mmol)の溶液に、TFA(1.0g、8.8mmol)を加え、その混合物を15〜30℃で16時間攪拌し、TLC分析は、化合物(9)が20%未満であることを示した。次いで、水(10mL)及びMTBE(10mL)を加え、5分間攪拌し、その後、分離した。水層をMTBE(10mL)で1回抽出した。合わせた有機層を、水で2回(10mL×2)、NaHCO飽和水溶液(10mL)で1回洗浄し、次いで、減圧下<50℃にて濃縮し、0.85gの粗iPr−ルビプロストンを与えた。
Example 18
Step 4b: Synthesis of iPr-rubiprostone 7-((2R, 4aR, 5R, 7aR) -2- (1,1-difluoropentyl) -2-hydroxy-6-oxo-octahydrocyclopenta [b] pyran-5 -Yl) Isopropyl heptanoate To a solution of compound (9) (1.0 g, 1.8 mmol) in MeCN (10 mL) was added TFA (1.0 g, 8.8 mmol) and the mixture was at 15-30 ° C. After stirring for 16 hours, TLC analysis showed that compound (9) was less than 20%. Then water (10 mL) and MTBE (10 mL) were added and stirred for 5 minutes, then separated. The aqueous layer was extracted once with MTBE (10 mL). The combined organic layers were washed twice with water (10 mL × 2), once with a saturated aqueous NaHCO 3 solution (10 mL), then concentrated under reduced pressure at <50 ° C. to give 0.85 g of crude iPr-rubiprostone. Gave.

例19
工程5a:化合物(10)を経たルビプロストンの合成
(7-((2R,4aR,5R,7aR)-2-(1,1-ジフルオロペンチル)-2-ヒドロキシ-6-オキソ-オクタヒドロシクロペンタ-[b]ピラン-5-イル)ヘプタン酸)
MeCN(54mL)中における化合物(10)(3.6g、7.14mmol)の溶液に、HSO(2mol/L、3.57mL、7.14mmol)を加え、化合物(10)が消費されるまで、その混合物を15℃±5℃で攪拌した。水(54mL)を加え、MTBEで2回抽出した(36mL×2)。合わせた有機層を、NaHCO飽和水溶液(36mL)で1回、水(36mL)で1回洗浄し、無水MgSOで乾燥させ、次いで、減圧下<40℃にて濃縮し、HPLC純度65%で2.58gの粗生成物を与え、カラムクロマトグラフィーによってそれを精製し、HPLC純度80%で1.3gのルビプロストンを与えた。ルビプロストン(0.5g、HPLC純度80%)を20〜30℃のMTBE(0.5mL)中に溶解し、次いで、n−ヘプタン(2mL)を2時間激しく攪拌しながら0〜10℃に冷却した。固体ルビプロストンをろ過し、n−ヘプタン(2mL)で洗浄し、真空下40℃にて乾燥させ、0.32gの固体ルビプロストンを与えた。
1H NMR (300MHz, CDCl3): δ 4.19 (ddd, J = 11.4, 10.0, 7.2 Hz, 1H), 2.58 (dd, J = 17.6, 7.2 Hz, 1H), 2.35 (t, J = 7.4 Hz, 2H), 2.26 (dd, J = 17.7, 11.6 Hz, 1H), 2.10 - 1.75 (m, 7H), 1.72 - 1.45 (m, 7H), 1.45 - 1.22 (m, 8H,), 0.94 (t, J = 7.3 Hz, 3H)
m/z (ES-API, Neg): 389 ([M-H]-, 100)
Example 19
Step 5a: Synthesis of rubiprostone via compound (10) (7-((2R, 4aR, 5R, 7aR) -2- (1,1-difluoropentyl) -2-hydroxy-6-oxo-octahydrocyclopenta- [b] pyran-5-yl) heptanoic acid)
To a solution of compound (10) (3.6 g, 7.14 mmol) in MeCN (54 mL) was added H 2 SO 4 (2 mol / L, 3.57 mL, 7.14 mmol) and compound (10) was consumed. The mixture was stirred at 15 ° C. ± 5 ° C. until Water (54 mL) was added and extracted twice with MTBE (36 mL × 2). The combined organic layers were washed once with saturated aqueous NaHCO 3 (36 mL), once with water (36 mL), dried over anhydrous MgSO 4 and then concentrated under reduced pressure at <40 ° C., HPLC purity 65% Gave 2.58 g of crude product which was purified by column chromatography to give 1.3 g of rubiprostone with HPLC purity 80%. Rubiprostone (0.5 g, HPLC purity 80%) was dissolved in 20-30 ° C. MTBE (0.5 mL) and then n-heptane (2 mL) was cooled to 0-10 ° C. with vigorous stirring for 2 h. . Solid rubiprostone was filtered, washed with n-heptane (2 mL) and dried under vacuum at 40 ° C. to give 0.32 g of solid rubiprostone.
1 H NMR (300MHz, CDCl 3 ): δ 4.19 (ddd, J = 11.4, 10.0, 7.2 Hz, 1H), 2.58 (dd, J = 17.6, 7.2 Hz, 1H), 2.35 (t, J = 7.4 Hz, 2H), 2.26 (dd, J = 17.7, 11.6 Hz, 1H), 2.10-1.75 (m, 7H), 1.72-1.45 (m, 7H), 1.45-1.22 (m, 8H,), 0.94 (t, J = 7.3 Hz, 3H)
m / z (ES-API, Neg): 389 ([MH] - , 100)

例20
工程5b:ルビプロストンのイソプロピルエステルを経たルビプロストンの合成
ルビプロストンのイソプロピルエステル(0.3g)の溶液に対し、アセトン(1.5mL)及びpH8.0緩衝液(2mL)中におけるリパーゼPS SD(0.3g)を50〜60℃で22時間攪拌した。その反応溶液を減圧下<50℃にて濃縮し、0.4gの粗生成物を与え、その残留物中に水(6mL)及びMTBE(6mL)を加え、5分間攪拌し、分離し、水層をMTBE(6mL)で抽出した。合わせた有機層を、水(6mL)で1回、食塩水(6mL)で1回洗浄し、次いで、減圧下<50℃にて濃縮し、0.3gの粗生成物を与えた。
Example 20
Step 5b: Synthesis of rubiprostone via isopropyl ester of rubiprostone To a solution of isopropyl ester of rubiprostone (0.3 g), lipase PS SD (0.3 g) in acetone (1.5 mL) and pH 8.0 buffer (2 mL). ) Was stirred at 50-60 ° C. for 22 hours. The reaction solution was concentrated under reduced pressure at <50 ° C. to give 0.4 g of crude product, water (6 mL) and MTBE (6 mL) were added to the residue, stirred for 5 minutes, separated, The layer was extracted with MTBE (6 mL). The combined organic layers were washed once with water (6 mL) and once with brine (6 mL) and then concentrated under reduced pressure at <50 ° C. to give 0.3 g of crude product.

例21
工程6:ルビプロストン塩の合成

Figure 2015120693
MeOH(100mL)中におけるグアニジン塩酸塩(10g、0.105mol)の溶液に、MeOH(50mL)中におけるMeONa(4.0g、0.105mol)の溶液を約25℃にて加えた。その溶液をこの温度で1時間攪拌し、白色固体が沈殿した。得られたスラリーをろ過し、沈殿したNaClを取り除き、グアニジンのMeOH溶液を与えた。MeOH(2mL)中におけるルビプロストン(0.2g、0.513mmol)の溶液に、グアニジンのMeOH溶液(0.73mL、0.511mmol)を約25℃にて加えた。その混合物をこの温度で1時間攪拌し、次いで、溶媒を蒸発させた。残留物にMTBE(2mL)を<30℃にて加え、真空下で蒸発させた。これを更に2回以上繰り返し、次いで、THF(2mL)を加えて、白色固体を生じさせた。約25℃にて攪拌した後、その固体をろ過により単離し、ルビプロストンのグアニジン塩を白色固体として与えた。白色固体のH NMR解析は、カルボキシラート基のメチレンシグナルαが遊離ルビプロストンと比べてシフトしたことを示した。
1H NMR (300MHz, CD3OD): δ = 4.22 - 4.10 (m, 1H), 2.48 (dd, J=17.4, 7.2 Hz, 1H), 2.19 (dd, J=17.4, 11.7 Hz, 1H), 2.16 (t, J=7.5 Hz, 2H), 2.10 - 1.26 (m, 22H), 0.93 (t, J = 7.2 Hz, 3H). Example 21
Step 6: Synthesis of rubiprostone salt
Figure 2015120693
To a solution of guanidine hydrochloride (10 g, 0.105 mol) in MeOH (100 mL) was added a solution of MeONa (4.0 g, 0.105 mol) in MeOH (50 mL) at about 25 ° C. The solution was stirred at this temperature for 1 hour and a white solid precipitated. The resulting slurry was filtered to remove precipitated NaCl and give a guanidine in MeOH solution. To a solution of rubiprostone (0.2 g, 0.513 mmol) in MeOH (2 mL) was added guanidine in MeOH (0.73 mL, 0.511 mmol) at about 25 ° C. The mixture was stirred at this temperature for 1 hour and then the solvent was evaporated. To the residue was added MTBE (2 mL) at <30 ° C. and evaporated under vacuum. This was repeated two more times, then THF (2 mL) was added to give a white solid. After stirring at about 25 ° C., the solid was isolated by filtration to give the guanidine salt of rubiprostone as a white solid. 1 H NMR analysis of the white solid showed that the methylene signal α of the carboxylate group was shifted compared to free rubiprostone.
1 H NMR (300MHz, CD 3 OD): δ = 4.22-4.10 (m, 1H), 2.48 (dd, J = 17.4, 7.2 Hz, 1H), 2.19 (dd, J = 17.4, 11.7 Hz, 1H), 2.16 (t, J = 7.5 Hz, 2H), 2.10-1.26 (m, 22H), 0.93 (t, J = 7.2 Hz, 3H).

(付記)
(付記1)
ルビプロストンの合成方法であって、
a)シクロペンテノンIを有機銅化合物IIIとカップリングさせ、式IVの化合物を提供すること、
b)触媒の存在下、式IVの化合物を水素と反応させ、式Vの化合物を提供すること、
c)式Vの化合物を酸化させ、式VIの化合物を提供すること、及び
d)式VIの化合物をルビプロストンに転化させること
を含む、方法。
(付記2)
工程d)が、酵素を用いたイソプロピルエステルの加水分解を含む、付記1に記載の方法。
(付記3)
工程d)が、式VIの化合物を式VIIの化合物に転化させる工程を含む、付記1に記載の方法。
(付記4)
式IIIの化合物の合成方法であって、
a)式VIIIの化合物を、式XIのシリル保護した金属アセチレン化合物(ここで、Mは金属イオンである)と反応させ、式IXの化合物を提供すること、
b)式IXの化合物を還元剤及び脱シリル化剤で処理し、式Xの化合物を提供すること、
c)式Xの化合物を式IIの化合物に転化させること、及び
d)式IIの化合物を式IIIに転化させること
を含む、方法。
(付記5)
式XIの化合物のMがLiである、付記4に記載の方法。
(付記6)
式VIIIの化合物の式XIのシリル保護した金属アセチレン化合物との反応が、ルイス酸化合物の存在下で行われる、付記4に記載の方法。
(付記7)
前記ルイス酸化合物がBFである、付記6に記載の方法。
(付記8)
工程b)中の還元剤がヒドリド還元剤である、付記4に記載の方法。
(付記9)
前記ヒドリド還元剤が金属水素化物であり、該金属がアルミニウム、ホウ素及びルテニウムよりなる群から選択される、付記8に記載の方法。
(付記10)
工程b)中の脱シリル化剤がアルコキシド又はフッ化物試薬である、付記4に記載の方法。
(付記11)
前記アルコキシド試薬がNaOMeである、付記10に記載の方法。
(付記12)
工程b)が、中間体を単離せずに、1つの反応容器中で行われる、付記4に記載の方法。
(付記13)
式Xの化合物を式IIの化合物に転化させる工程c)が、まず、開始剤の存在下におけるXの三置換水素化スズとの反応によってSnR10を付け、式II’の化合物を生成することと、式II’の化合物の塩基及びベンジル化剤との反応によってRをHからR14Bnに転化し、式IIの化合物を生成することとを含む、付記4に記載の方法。

Figure 2015120693
(付記14)
式Xの化合物を式IIの化合物に転化させる工程c)が、まず、式Xの化合物(ここで、RはHである)の塩基及びベンジル化剤との反応によってRをHからR14Bnに転化し、式X’の化合物を生成することと、次いで、開始剤の存在下における式X’の化合物の三置換水素化スズとの反応によってSnR10を付け、式IIの化合物を生成することとを含む、付記4に記載の方法。
Figure 2015120693
(付記15)
式Xの化合物を式IIの化合物に転化させる工程c)が、まず、式Xの化合物(ここで、RはHである)の塩基及びベンジル化剤との反応によってRをHからR14Bnに転化し、式X’の化合物を生成することと、次いで、式X’の化合物の、CpZr(H)Clと、続いてMeLiとの反応によってZrCpMeを付け、式IIの化合物を生成することとを含む、付記4に記載の方法。
Figure 2015120693
(付記16)
式Xの化合物を式IIの化合物に転化させる工程c)が、まず、式Xの化合物(ここで、RはHである)の塩基及びベンジル化剤との反応によってRをHからR14Bnに転化し、式X’の化合物を生成することと、次いで、X’の化合物の、CpZrClと、t−BuMgClと、続いてIとの反応によってIを付け、式IIの化合物を生成することとを含む、付記4に記載の方法。
Figure 2015120693
(付記17)
式IIの化合物を式IIIに転化させる工程d)が、式IIの化合物(ここで、R15はSnR10又はIであり、RはBnR14である)を、有機金属化合物と、続いてMeCu(CN)Li又は2−チエニルCu(CN)Liと反応させることを含む、付記4に記載の方法。
Figure 2015120693
(付記18)
前記有機金属化合物がt−BuLi、s−BuLi又はn−BuLiである、付記17に記載の方法。
(付記19)
式(9)の化合物(7−((1R,2R,3R)−3−(tert−ブチルジメチルシリルオキシ)−2−(4,4−ジフルオロ−3−オキソオクチル)−5−オキソシクロペンチル)ヘプタン酸イソプロピル)。
Figure 2015120693
(付記20)
式(10)の化合物(7−((1R,2R,3R)−3−(tert−ブチルジメチルシリルオキシ)−2−(4,4−ジフルオロ−3−オキソオクチル)−5−オキソシクロペンチル)ヘプタン酸)。
Figure 2015120693
(付記21)
式(7)の化合物((Z)−7−((1R,2R,3R)−2−((1E,5E)−3−(ベンジルオキシ)−4,4−ジフルオロオクタ−1,5−ジエニル)−3−(tert−ブチルジメチルシリルオキシ)−5−オキソシクロペンチル)ヘプタ−5−エン酸イソプロピル)。
Figure 2015120693
(付記22)
式Xの化合物(ここで、RはHであり、二重結合が、C5とC6間若しくはC6とC7間に位置するか又は存在せず、IM5((E)−4,4−ジフルオロオクタ−5−エン−1−イン−3−オール)、式IM5bの化合物(即ち、X;R=H;4,4−ジフルオロオクタ−1−イン−3−オール)、式IM5cの化合物(即ち、X;R=H、C6−C7二重結合;(E)−4,4−ジフルオロオクタ−6−エン−1−イン−3−オール)よりなる群から選択される)。
Figure 2015120693
(付記23)
ルビプロストンの塩を形成する工程を含む、ルビプロストンの精製方法。
(付記24)
前記塩がグアニジン塩である、付記23に記載の方法。 (Appendix)
(Appendix 1)
A method for synthesizing rubiprostone,
a) coupling cyclopentenone I with organocopper compound III to provide a compound of formula IV;
b) reacting a compound of formula IV with hydrogen in the presence of a catalyst to provide a compound of formula V;
c) oxidizing the compound of formula V to provide a compound of formula VI; and d) converting the compound of formula VI to rubiprostone.
(Appendix 2)
The method of claim 1, wherein step d) comprises hydrolysis of isopropyl ester with an enzyme.
(Appendix 3)
The method of claim 1, wherein step d) comprises the step of converting the compound of formula VI to the compound of formula VII.
(Appendix 4)
A process for the synthesis of a compound of formula III comprising
a) reacting a compound of formula VIII with a silyl protected metal acetylene compound of formula XI, where M is a metal ion, to provide a compound of formula IX;
b) treating a compound of formula IX with a reducing agent and a desilylating agent to provide a compound of formula X;
c) converting the compound of formula X to a compound of formula II; and d) converting the compound of formula II to formula III.
(Appendix 5)
The method of appendix 4, wherein M of the compound of formula XI is Li.
(Appendix 6)
The process of claim 4, wherein the reaction of the compound of formula VIII with the silyl protected metal acetylene compound of formula XI is carried out in the presence of a Lewis acid compound.
(Appendix 7)
The method according to appendix 6, wherein the Lewis acid compound is BF 3 .
(Appendix 8)
The method according to appendix 4, wherein the reducing agent in step b) is a hydride reducing agent.
(Appendix 9)
The method according to appendix 8, wherein the hydride reducing agent is a metal hydride, and the metal is selected from the group consisting of aluminum, boron and ruthenium.
(Appendix 10)
The method according to appendix 4, wherein the desilylating agent in step b) is an alkoxide or fluoride reagent.
(Appendix 11)
The method according to appendix 10, wherein the alkoxide reagent is NaOMe.
(Appendix 12)
Method according to appendix 4, wherein step b) is carried out in one reaction vessel without isolating the intermediate.
(Appendix 13)
Step c) of converting the compound of formula X to the compound of formula II is first attached with SnR 8 R 9 R 10 by reaction of X with a trisubstituted tin hydride in the presence of an initiator to give a compound of formula II ′ And converting R 7 from H to R 14 Bn by reaction of a compound of formula II ′ with a base and a benzylating agent to produce a compound of formula II. Method.
Figure 2015120693
(Appendix 14)
Step c) of converting the compound of formula X to the compound of formula II involves first converting R 7 from H to R by reaction with a base of the compound of formula X (where R 7 is H) and a benzylating agent. Conversion to 14 Bn to form a compound of formula X ′ and then reacting with a trisubstituted tin hydride of the compound of formula X ′ in the presence of an initiator to attach SnR 8 R 9 R 10 The method of claim 4, comprising producing the compound of II.
Figure 2015120693
(Appendix 15)
Step c) of converting the compound of formula X to the compound of formula II involves first converting R 7 from H to R by reaction with a base of the compound of formula X (where R 7 is H) and a benzylating agent. Conversion to 14 Bn to produce a compound of formula X ′, and then attaching ZrCp 2 Me by reaction of the compound of formula X ′ with Cp 2 Zr (H) Cl followed by MeLi to give formula II The method of Claim 4 including producing | generating this compound.
Figure 2015120693
(Appendix 16)
Step c) of converting the compound of formula X to the compound of formula II involves first converting R 7 from H to R by reaction with a base of the compound of formula X (where R 7 is H) and a benzylating agent. Conversion to 14 Bn to produce a compound of formula X ′ and then appending I by reaction of the compound of X ′ with Cp 2 ZrCl 2 , t-BuMgCl followed by I 2 to give formula II The method of Claim 4 including producing | generating this compound.
Figure 2015120693
(Appendix 17)
Step d) of converting the compound of formula II to formula III converts the compound of formula II where R 15 is SnR 8 R 9 R 10 or I and R 7 is BnR 14 into an organometallic compound And the subsequent reaction with MeCu (CN) Li or 2-thienyl Cu (CN) Li.
Figure 2015120693
(Appendix 18)
The method according to appendix 17, wherein the organometallic compound is t-BuLi, s-BuLi, or n-BuLi.
(Appendix 19)
Compound of formula (9) (7-((1R, 2R, 3R) -3- (tert-butyldimethylsilyloxy) -2- (4,4-difluoro-3-oxooctyl) -5-oxocyclopentyl) heptane Isopropyl acid).
Figure 2015120693
(Appendix 20)
Compound of formula (10) (7-((1R, 2R, 3R) -3- (tert-butyldimethylsilyloxy) -2- (4,4-difluoro-3-oxooctyl) -5-oxocyclopentyl) heptane acid).
Figure 2015120693
(Appendix 21)
Compound of formula (7) ((Z) -7-((1R, 2R, 3R) -2-((1E, 5E) -3- (benzyloxy) -4,4-difluoroocta-1,5-dienyl) ) -3- (tert-butyldimethylsilyloxy) -5-oxocyclopentyl) hept-5-enoic acid isopropyl).
Figure 2015120693
(Appendix 22)
Compound of Formula X wherein R 7 is H and the double bond is located or absent between C5 and C6 or C6 and C7, and IM5 ((E) -4,4-difluoroocta -5-en-1-in-3-ol), a compound of formula IM5b (ie X; R 7 = H; 4,4-difluorooct-1-in-3-ol), a compound of formula IM5c (ie , X; R 7 = H, C6-C7 double bond; (E)-4,4-difluoromethoxy oct-6-en-1-yn-3-ol) the group consisting of).
Figure 2015120693
(Appendix 23)
A method for purifying rubiprostone, comprising a step of forming a salt of rubiprostone.
(Appendix 24)
24. The method according to appendix 23, wherein the salt is a guanidine salt.

Claims (4)

式(9)の化合物(7−((1R,2R,3R)−3−(tert−ブチルジメチルシリルオキシ)−2−(4,4−ジフルオロ−3−オキソオクチル)−5−オキソシクロペンチル)ヘプタン酸イソプロピル)。
Figure 2015120693
Compound of formula (9) (7-((1R, 2R, 3R) -3- (tert-butyldimethylsilyloxy) -2- (4,4-difluoro-3-oxooctyl) -5-oxocyclopentyl) heptane Isopropyl acid).
Figure 2015120693
式(10)の化合物(7−((1R,2R,3R)−3−(tert−ブチルジメチルシリルオキシ)−2−(4,4−ジフルオロ−3−オキソオクチル)−5−オキソシクロペンチル)ヘプタン酸)。
Figure 2015120693
Compound of formula (10) (7-((1R, 2R, 3R) -3- (tert-butyldimethylsilyloxy) -2- (4,4-difluoro-3-oxooctyl) -5-oxocyclopentyl) heptane acid).
Figure 2015120693
式Xの化合物(ここで、RはHであり、二重結合が、C5とC6間若しくはC6とC7間に位置するか又は存在せず、IM5((E)−4,4−ジフルオロオクタ−5−エン−1−イン−3−オール)、式IM5bの化合物(即ち、X;R=H;4,4−ジフルオロオクタ−1−イン−3−オール)、式IM5cの化合物(即ち、X;R=H、C6−C7二重結合;(E)−4,4−ジフルオロオクタ−6−エン−1−イン−3−オール)よりなる群から選択される)。
Figure 2015120693
Compound of Formula X wherein R 7 is H and the double bond is located or absent between C5 and C6 or C6 and C7, and IM5 ((E) -4,4-difluoroocta -5-en-1-in-3-ol), a compound of formula IM5b (ie X; R 7 = H; 4,4-difluorooct-1-in-3-ol), a compound of formula IM5c (ie , X; R 7 = H, C6-C7 double bond; (E)-4,4-difluoromethoxy oct-6-en-1-yn-3-ol) the group consisting of).
Figure 2015120693
ルビプロストンの塩を形成する工程を含み、前記塩がグアニジン塩である、ルビプロストンの精製方法。   A method for purifying rubiprostone, comprising a step of forming a salt of rubiprostone, wherein the salt is a guanidine salt.
JP2014257791A 2014-12-19 2014-12-19 Processes for preparation of lubiprostone Pending JP2015120693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014257791A JP2015120693A (en) 2014-12-19 2014-12-19 Processes for preparation of lubiprostone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014257791A JP2015120693A (en) 2014-12-19 2014-12-19 Processes for preparation of lubiprostone

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013533064A Division JP5755750B2 (en) 2010-10-15 2010-10-15 Method for preparing rubiprostone

Publications (1)

Publication Number Publication Date
JP2015120693A true JP2015120693A (en) 2015-07-02

Family

ID=53532689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014257791A Pending JP2015120693A (en) 2014-12-19 2014-12-19 Processes for preparation of lubiprostone

Country Status (1)

Country Link
JP (1) JP2015120693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713478A (en) * 2018-07-13 2020-01-21 佳和桂科技股份有限公司 Lubiprostone (lubiprosone) crystal and preparation method thereof
JP2020045334A (en) * 2018-07-13 2020-03-26 チャイロゲート インターナショナル インク.Chirogate International Inc. Process for the preparation of lubiprostone and intermediates thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045231A (en) * 2004-08-02 2006-02-16 R Tec Ueno:Kk Method for producing prostaglandin derivative
JP2007211011A (en) * 2006-02-07 2007-08-23 R Tec Ueno:Kk Method for producing 15-ketoprostaglandin e derivative
JP2008531468A (en) * 2005-03-04 2008-08-14 スキャンポ・アーゲー Methods and compositions for the treatment of peripheral vascular disease
US20090259058A1 (en) * 2008-04-09 2009-10-15 Scinopharm Taiwan Ltd. Process for the Preparation of Prostaglandin Analogues and Intermediates Thereof
WO2010083597A1 (en) * 2009-01-22 2010-07-29 Apotex Pharmachem Inc. Methods of making lubiprostone and intermediates thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045231A (en) * 2004-08-02 2006-02-16 R Tec Ueno:Kk Method for producing prostaglandin derivative
JP2008531468A (en) * 2005-03-04 2008-08-14 スキャンポ・アーゲー Methods and compositions for the treatment of peripheral vascular disease
JP2007211011A (en) * 2006-02-07 2007-08-23 R Tec Ueno:Kk Method for producing 15-ketoprostaglandin e derivative
US20090259058A1 (en) * 2008-04-09 2009-10-15 Scinopharm Taiwan Ltd. Process for the Preparation of Prostaglandin Analogues and Intermediates Thereof
WO2010083597A1 (en) * 2009-01-22 2010-07-29 Apotex Pharmachem Inc. Methods of making lubiprostone and intermediates thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713478A (en) * 2018-07-13 2020-01-21 佳和桂科技股份有限公司 Lubiprostone (lubiprosone) crystal and preparation method thereof
JP2020045334A (en) * 2018-07-13 2020-03-26 チャイロゲート インターナショナル インク.Chirogate International Inc. Process for the preparation of lubiprostone and intermediates thereof

Similar Documents

Publication Publication Date Title
JP5755750B2 (en) Method for preparing rubiprostone
TW201006792A (en) Improved process for the production of bimatoprost
JP4954378B2 (en) Method for preparing 4,5-diaminoshikimic acid derivative
CN115010692A (en) Design, preparation and application of novel macrolides
JP2015120693A (en) Processes for preparation of lubiprostone
JP6872583B2 (en) Lubiprostone preparation method and its intermediates
US5447865A (en) Method of resolution of hydroxy substituted cyclopentanone enantiomers using lipase and lithium salt complexation
AU693588B2 (en) Novel process for the preparation of diisopinocampheylchloroborane
JP7109029B2 (en) PGE1 core block derivative and method for producing same
JP2667135B2 (en) In-situ production of diisopinocanefail chloroborane
JPH0717627B2 (en) Process for producing 2,5-diaryltetrahydrofurans and analogs thereof useful as PAF antagonists
CN105801534B (en) A kind of key intermediate preparing limaprost and its application
JPH04352745A (en) Method for preparing optically active alcohol
CN115785057A (en) Preparation method of ticagrelor intermediate compound and salt thereof
JPH072825A (en) Dodecahydrotetramethylnaphthofuran and production of its intermediate
JPS61233646A (en) Polyprenyl-beta-hydroxycarboxylic acid or ester thereof
JP2003111600A (en) Method for producing optically active pyrazolopyridinepyridazinone derivative
JPH09241258A (en) 2-oxazolidinone derivative
JPWO2005085184A1 (en) Method for producing cyclopentenenitrile derivative

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160809

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160901

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160923