JP2015120644A - Radioactively labeled ligand of v1b receptor - Google Patents

Radioactively labeled ligand of v1b receptor Download PDF

Info

Publication number
JP2015120644A
JP2015120644A JP2013264135A JP2013264135A JP2015120644A JP 2015120644 A JP2015120644 A JP 2015120644A JP 2013264135 A JP2013264135 A JP 2013264135A JP 2013264135 A JP2013264135 A JP 2013264135A JP 2015120644 A JP2015120644 A JP 2015120644A
Authority
JP
Japan
Prior art keywords
group
compound
receptor
pharmaceutically acceptable
acceptable salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013264135A
Other languages
Japanese (ja)
Other versions
JP6376376B2 (en
Inventor
一実 古閑
Kazumi Koga
一実 古閑
光周 吉永
Mitsukane Yoshinaga
光周 吉永
直樹 宮腰
Naoki Miyakoshi
直樹 宮腰
哲也 須原
Tetsuya Suhara
哲也 須原
明栄 張
Akishige Cho
明栄 張
和紀 河村
Kazuki Kawamura
和紀 河村
真人 樋口
Masato Higuchi
真人 樋口
敬史 南本
Keiji Minamimoto
敬史 南本
純 前田
Jun Maeda
純 前田
裕司 永井
Yuji Nagai
裕司 永井
泰之 木村
Yasuyuki Kimura
泰之 木村
正行 破入
Masayuki Hairi
正行 破入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Radiological Sciences
Taisho Pharmaceutical Co Ltd
Original Assignee
National Institute of Radiological Sciences
Taisho Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Radiological Sciences, Taisho Pharmaceutical Co Ltd filed Critical National Institute of Radiological Sciences
Priority to JP2013264135A priority Critical patent/JP6376376B2/en
Publication of JP2015120644A publication Critical patent/JP2015120644A/en
Application granted granted Critical
Publication of JP6376376B2 publication Critical patent/JP6376376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel radioactive isotope-labeled ligand which specifically binds a vasopressin V1b receptor, and further a radioactive isotope-labeled ligand for image diagnosis which is stable even if administering inside a living body and reaches a target organ.SOLUTION: The novel radioactive isotope-labeled ligand of the present invention is a compound represented by general formula (I) or a pharmaceutically accepted salt of the same (in the above general formula (I), X, R, and Rare just as defined in the specifications).

Description

本発明は、アルギニン−バソプレッシン(AVP)の受容体である、バソプレッシンV1b受容体に特異的に結合する放射性同位元素標識リガンドに関する。特に、陽電子断層撮影(positron emission tomography;PET)等の画像診断に使用するための放射性同位元素標識リガンドに関する。   The present invention relates to a radioisotope-labeled ligand that specifically binds to the vasopressin V1b receptor, which is a receptor for arginine-vasopressin (AVP). In particular, the present invention relates to a radioisotope-labeled ligand for use in diagnostic imaging such as positron emission tomography (PET).

AVPは9個のアミノ酸よりなるペプチドである。AVPは、脳内の神経細胞で生合成され、下垂体後葉から血液中へと分泌され、血圧及び体液量の調節を行う。また、AVPは下垂体前葉へと分泌され、副腎皮質刺激ホルモン(ACTH)の分泌を刺激する。   AVP is a peptide consisting of 9 amino acids. AVP is biosynthesized by nerve cells in the brain, secreted from the posterior pituitary gland into the blood, and regulates blood pressure and fluid volume. AVP is also secreted into the anterior pituitary gland and stimulates the secretion of adrenocorticotropic hormone (ACTH).

AVP受容体は、これまでV1a、V1b及びV2受容体の3つのサブタイプがクローニングされており、いずれもGタンパク質共役型受容体である。V1a及びV1b受容体はGqタンパク質と共役し、受容体の活性化は、イノシトールリン脂質の代謝を亢進させまた、細胞内Ca2+濃度を上昇させる(非特許文献1及び非特許文献2参照)。また、V2受容体は、Gsタンパク質と共役し、受容体の活性化は、細胞内サイクリックAMP量を増加させる。V1a受容体は、脳、肝臓、副腎、血管平滑筋などに発現している。V2受容体は腎臓などに発現している。V1b受容体は、脳、下垂体などに発現し、脳内では、視床下部、嗅球、海馬、大脳皮質、線条体、小脳などに発現している(非特許文献3及び非特許文献4参照)。V1b受容体ノックアウトマウスでは、AVP誘発によるACTH分泌が減少している(非特許文献5参照)。そのため、V1b受容体はAVPによる下垂体前葉からのACTH分泌に関わることが示唆される。 The AVP receptor has so far been cloned into three subtypes of V1a, V1b and V2 receptors, all of which are G protein-coupled receptors. V1a and V1b receptors are coupled to Gq protein, and activation of the receptor enhances inositol phospholipid metabolism and increases intracellular Ca 2+ concentration (see Non-Patent Documents 1 and 2). . In addition, the V2 receptor is coupled to the Gs protein, and activation of the receptor increases the amount of intracellular cyclic AMP. V1a receptor is expressed in brain, liver, adrenal gland, vascular smooth muscle and the like. V2 receptor is expressed in the kidney and the like. V1b receptors are expressed in the brain, pituitary gland, etc., and are expressed in the hypothalamus, olfactory bulb, hippocampus, cerebral cortex, striatum, cerebellum, etc. in the brain (see Non-Patent Document 3 and Non-Patent Document 4). ). In V1b receptor knockout mice, AVP-induced ACTH secretion is reduced (see Non-Patent Document 5). Therefore, it is suggested that the V1b receptor is involved in ACTH secretion from the anterior pituitary gland by AVP.

近年、非侵襲的イメージング技術の医療や創薬への利用が進んでいる。臨床では、がんなどの病気の診断、心臓や脳での活動の測定、および開発候補品の標的タンパク質への結合割合の評価に使用されている。また、前臨床では、病態モデル動物の解析や放射性同位元素標識体リガンドの実験動物での体内動態のトレースに使用されている。特に、PETは非侵襲的イメージング技術の中で、微量なシグナルを高感度で検出することに優れ、定量性もあるため広範に利用されるようになっている。この技術を使用するためには、陽電子放出核種で標識したリガンドが必要であり、このリガンドは生体内に投与した後も安定して目的臓器に到達し、体内から速やかに排泄される性質を有することが好ましい。   In recent years, the use of non-invasive imaging techniques for medicine and drug discovery has progressed. In clinical practice, it is used to diagnose diseases such as cancer, measure activity in the heart and brain, and evaluate the rate of binding of development candidates to target proteins. In preclinical practice, it is used to analyze pathological model animals and trace the pharmacokinetics of radioisotope-labeled ligands in experimental animals. In particular, PET is widely used in non-invasive imaging techniques because it is excellent in detecting a very small amount of signal with high sensitivity and has quantitative properties. In order to use this technology, a ligand labeled with a positron emitting nuclide is required, and this ligand has the property of reaching the target organ stably after being administered in vivo and being rapidly excreted from the body. It is preferable.

バソプレッシンV1b受容体に特異的に結合する放射性同位元素標識リガンドは、PET等の画像診断技術を用いて非侵襲的にバソプレッシンV1b受容体の発現量、または受容体の分布の変化を測定するために有用である。また、非標識体のバソプレッシンV1b受容体リガンドを投与した後に、微量の放射性同位元素標識リガンドを投与しPETで評価することで、バソプレッシンV1b受容体への非標識体バソプレッシンV1b受容体リガンドの結合を間接的に定量することが可能となり、ヒトでの投与量を設定するのに有用である。これまでにバソプレッシンV1b受容体への放射性同位元素標識リガンドに関する報告がなされているが、非標識体バソプレッシンV1b受容体リガンドによる放射能取り込み抑制は確認されていない(非特許文献6参照)。従って、ヒトでの画像診断を行うために有用な、バソプレッシンV1b受容体に特異的に結合する放射性同位元素標識リガンドの創製が求められている。   A radioisotope-labeled ligand that specifically binds to the vasopressin V1b receptor is used to non-invasively measure changes in the expression level of the vasopressin V1b receptor or receptor distribution using imaging techniques such as PET. Useful. In addition, after administration of unlabeled vasopressin V1b receptor ligand, administration of a trace amount of radioisotope-labeled ligand and evaluation by PET enables binding of unlabeled vasopressin V1b receptor ligand to vasopressin V1b receptor. Indirect quantification is possible, which is useful for setting a human dose. So far, there have been reports on radioisotope-labeled ligands to vasopressin V1b receptor, but no inhibition of radioactivity uptake by unlabeled vasopressin V1b receptor ligand has been confirmed (see Non-Patent Document 6). Accordingly, there is a demand for the creation of a radioisotope-labeled ligand that specifically binds to the vasopressin V1b receptor, which is useful for diagnostic imaging in humans.

また、V1b受容体に特異的に結合するピリドピリミジン−4−オン誘導体は、特許文献1〜3に開示されているが、放射性同位元素標識体及びそれらの製造方法の開示はない。   Moreover, although the pyridopyrimidin-4-one derivative couple | bonded specifically with a V1b receptor is disclosed by patent documents 1-3, there is no disclosure of a radioisotope label and their manufacturing method.

WO2009/017236号公報WO2009 / 017236 特開2010−173974号公報JP 2010-173974 A 特開2010−173978号公報JP 2010-173978 A

Sugimoto T, Kawashima H, J. Biol. Chem., 269, 27088-27092, 1994.Sugimoto T, Kawashima H, J. Biol. Chem., 269, 27088-27092, 1994. Lolait S, Brownstein M, Proc. Natl. Acad. Sci. U S A, 92, 6783-6787, 1995.Lolait S, Brownstein M, Proc. Natl. Acad. Sci. U S A, 92, 6783-6787, 1995. Vaccari C, Ostrowski N, Endocrinology, 139, 5015-5033, 1998.Vaccari C, Ostrowski N, Endocrinology, 139, 5015-5033, 1998. Hernando F, Burbach J, Endocrinology, 142, 1659-1668, 2001.Hernando F, Burbach J, Endocrinology, 142, 1659-1668, 2001. Tanoue A, Tsujimoto G, J. Clin. Invest., 113, 302-309, 2004.Tanoue A, Tsujimoto G, J. Clin. Invest., 113, 302-309, 2004. Schonberger M, Hooker JM, Bioorg. Med. Chem. Lett., 20, 3103-3106, 2010.Schonberger M, Hooker JM, Bioorg. Med. Chem. Lett., 20, 3103-3106, 2010.

本発明の目的は、バソプレッシンV1b受容体に特異的に結合する新規な放射性同位元素標識リガンドを提供することにある。さらには、生体内に投与した後に代謝を受けずに安定であり、目的臓器(例えば、脳など)に十分な量が特異的に集積し、かつ生体内から速やかに排泄されるという画像診断用に好ましい特性を有した放射性同位元素標識リガンドを提供することにある。   It is an object of the present invention to provide a novel radioisotope-labeled ligand that specifically binds to the vasopressin V1b receptor. Furthermore, it is stable without being metabolized after being administered in vivo, and a sufficient amount specifically accumulates in the target organ (eg, brain) and is rapidly excreted from within the body. It is another object of the present invention to provide a radioisotope-labeled ligand having favorable characteristics.

本発明者らは前述した課題を解決する目的で鋭意探索研究した結果、優れた放射性同位元素標識リガンド(以下、「本発明の化合物」とも記載する)、及びその製造方法(以下、「本発明の製造方法」とも記載する)を見出し、本発明を完成した。   As a result of diligent search for the purpose of solving the above-mentioned problems, the present inventors have found that an excellent radioisotope-labeled ligand (hereinafter also referred to as “compound of the present invention”) and a method for producing the same (hereinafter referred to as “the present invention”). And the present invention was completed.

すなわち、本発明は、以下のものに関するが、これらに限定されない。
(1)下記一般式(I)に示される化合物又はその製薬学的に許容される塩
That is, the present invention relates to the following, but is not limited thereto.
(1) A compound represented by the following general formula (I) or a pharmaceutically acceptable salt thereof

[上記一般式(I)において、
Xは、CH又はNを示し、
1は、C1-5アルキル(該C1-5アルキルはヒドロキシ、ハロゲン原子、シアノ、C3-7シクロアルキル、及びC1-5アルコキシからなる群より選ばれる同一又は異なった1〜3個の置換基で置換されても良い)であり、
2は、同一又は異なった1〜3個のハロゲン原子で置換されても良いC1-5アルキル基であり、
ここで、R2は、11C、18F、123I、125I、131I、75Br、76Br及び82Brからなる群より選ばれる1つの放射性同位元素で標識されている]、
(2)R211Cで標識されたメチル基である、(1)に記載の化合物又はその製薬学的に許容される塩、
(3)(1)又は(2)に記載の化合物又はその製薬学的に許容される塩を含有する、バソプレッシンV1b受容体標識剤、
(4)(1)又は(2)に記載の化合物又はその製薬学的に許容される塩を含有する、陽電子断層撮影用のバソプレッシンV1b受容体標識剤、
(5)(1)又は(2)に記載の化合物又はその製薬学的に許容される塩を含有する、バソプレッシンV1b受容体に関連した疾患の診断薬、
(6)(1)又は(2)に記載の化合物又はその製薬学的に許容される塩を含有する、医薬組成物、
(7)(1)又は(2)に記載の化合物又はその製薬学的に許容される塩の製造方法であって、式(II):
[In the above general formula (I),
X represents CH or N;
R 1 is C 1-5 alkyl (the C 1-5 alkyl is the same or different 1-3 selected from the group consisting of hydroxy, halogen atom, cyano, C 3-7 cycloalkyl, and C 1-5 alkoxy. May be substituted with one substituent),
R 2 is a C 1-5 alkyl group which may be substituted with 1 to 3 halogen atoms which are the same or different,
Here, R 2 is labeled with one radioisotope selected from the group consisting of 11 C, 18 F, 123 I, 125 I, 131 I, 75 Br, 76 Br and 82 Br]
(2) The compound according to (1) or a pharmaceutically acceptable salt thereof, wherein R 2 is a methyl group labeled with 11 C.
(3) A vasopressin V1b receptor labeling agent containing the compound according to (1) or (2) or a pharmaceutically acceptable salt thereof,
(4) A vasopressin V1b receptor labeling agent for positron tomography, comprising the compound according to (1) or (2) or a pharmaceutically acceptable salt thereof,
(5) A diagnostic agent for a disease associated with the vasopressin V1b receptor, comprising the compound according to (1) or (2) or a pharmaceutically acceptable salt thereof,
(6) A pharmaceutical composition comprising the compound according to (1) or (2) or a pharmaceutically acceptable salt thereof,
(7) A method for producing the compound according to (1) or (2) or a pharmaceutically acceptable salt thereof, comprising the formula (II):

(式中、R1、Xは上記で定義した通りである)で表される化合物と、式R2−L1(R2は上記で定義した通りであり、L1は脱離基である)で表される化合物とを、塩基及び溶媒の存在下で反応させることを含む方法、
(8)L1が、4−ニトロベンゼンスルホニルオキシ基、p−トルエンスルホニルオキシ基、メタンスルホニルオキシ基、及びハロゲン原子からなる群から選ばれる、(7)に記載の方法、
(9)塩基が、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、トリエチルアミン又はジイソプロピルエチルアミンを含む、(7)又は(8)に記載の方法、又は
(10)溶媒が、テトラヒドロフラン、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド、水又はそれらの混合物である、(7)〜(9)のいずれか1項に記載の方法。
Wherein R 1 and X are as defined above, and the formula R 2 -L 1 where R 2 is as defined above and L 1 is a leaving group. And a compound represented by formula (I) in the presence of a base and a solvent,
(8) The method according to (7), wherein L 1 is selected from the group consisting of a 4-nitrobenzenesulfonyloxy group, a p-toluenesulfonyloxy group, a methanesulfonyloxy group, and a halogen atom.
(9) The method according to (7) or (8), wherein the base comprises potassium carbonate, cesium carbonate, sodium hydroxide, triethylamine or diisopropylethylamine, or (10) the solvent is tetrahydrofuran, acetonitrile, N, N- 10. The method according to any one of (7) to (9), which is dimethylformamide, dimethyl sulfoxide, water or a mixture thereof.

本発明の化合物は、目的臓器である下垂体への十分な量の移行が認められた。従って、当該化合物は、生体内に投与した後に代謝を受けずに安定であると考えられる。また、PETを用いた画像診断の結果、本発明の化合物は、下垂体におけるバソプレッシンV1b受容体が多く発現している部位である下垂体前葉へ特異的に集積することが明らかになった。従って、本発明の化合物は、バソプレッシンV1b受容体に特異的に結合すると考えられる。さらに、本発明の化合物は、投与後生体内から速やかに排泄された。このように、本発明の化合物は、PET等の画像診断に好ましい特性を有する。   A sufficient amount of the compound of the present invention was observed to be transferred to the pituitary gland as the target organ. Therefore, the compound is considered to be stable without being metabolized after being administered in vivo. Further, as a result of diagnostic imaging using PET, it was revealed that the compound of the present invention specifically accumulates in the anterior pituitary gland, which is a site where a large amount of vasopressin V1b receptor is expressed in the pituitary gland. Accordingly, the compounds of the present invention are believed to specifically bind to the vasopressin V1b receptor. Furthermore, the compound of the present invention was rapidly excreted from the living body after administration. Thus, the compound of the present invention has preferable characteristics for diagnostic imaging such as PET.

また、非標識体バソプレッシンV1b受容体リガンドを投与した後に、本発明の化合物を投与すると、本発明の化合物の取り込み抑制が生じる。従って、本発明の化合物を用いると、当該受容体への非標識体の結合を間接的に定量することが可能となる。   In addition, when the compound of the present invention is administered after administration of the unlabeled vasopressin V1b receptor ligand, uptake of the compound of the present invention is suppressed. Therefore, when the compound of the present invention is used, the binding of the unlabeled substance to the receptor can be indirectly quantified.

すなわち、本発明の化合物は非侵襲的な可視化を可能とし、微量なシグナルを高感度で検出することに優れ、定量性もあるといった好ましい特性を有する。   That is, the compound of the present invention has favorable characteristics such as enabling noninvasive visualization, being excellent in detecting a very small amount of signal with high sensitivity, and being quantitative.

さらに、本発明の製造方法は、放射性同位元素標識リガンドである本発明の化合物の効率的な供給を可能とする。先ず、放射標識化合物を用いる工程は、放射性物質を扱うための特殊な施設で行わなければならない。この点、本発明の製造方法では、そのような工程を最終段階で行うため、特殊な施設での作業量を最小限に抑えることができ、結果として作業の煩雑性を緩和すると共に作業に伴うコストを抑えることができる。また、当該工程を最終段階で行うことは、その後の追加工程があれば生ずるであろう標識化合物のロスを防止することにつながる。さらに、本発明の製造方法は、迅速に行うことができる。この特徴は、半減期の短い同位体を用いて放射標識化合物を製造する際に有利である。   Furthermore, the production method of the present invention enables efficient supply of the compound of the present invention which is a radioisotope labeled ligand. First, the process using a radiolabeled compound must be performed in a special facility for handling radioactive substances. In this respect, in the manufacturing method of the present invention, since such a process is performed in the final stage, the amount of work in a special facility can be minimized, and as a result, the complexity of the work is reduced and the work is accompanied. Cost can be reduced. Moreover, performing the said process in the last stage leads to preventing the loss of the labeling compound which will arise if there exists a subsequent additional process. Furthermore, the production method of the present invention can be performed quickly. This feature is advantageous when producing radiolabeled compounds using isotopes with a short half-life.

化合物A−1投与後30から90分の間の加算平均PET画像を示す。The addition average PET image between 30 to 90 minutes after compound A-1 administration is shown. 化合物B−1投与後30から90分の間の加算平均PET画像を示す。The addition average PET image between 30 to 90 minutes after compound B-1 administration is shown.

本発明において、「C1-5アルキル基」とは、炭素数1〜5個の直鎖状又は分岐鎖状のアルキル基を意味し、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、tert−ペンチル基又はネオペンチル基等を挙げることができる。 In the present invention, the “C 1-5 alkyl group” means a linear or branched alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group. N-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group or neopentyl group.

本発明において、「C3-7シクロアルキル基」としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等を挙げることができる。 In the present invention, examples of the “C 3-7 cycloalkyl group” include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.

本発明において、「C1-5アルコキシ基」とは、直鎖状又は分岐鎖状の炭素数1〜5個のアルコキシ基を意味し、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、tert−ペンチルオキシ基等を挙げることができる。 In the present invention, the “C 1-5 alkoxy group” means a linear or branched alkoxy group having 1 to 5 carbon atoms, such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group. Group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, neopentyloxy group, tert-pentyloxy group and the like.

本発明において、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子である。   In the present invention, the “halogen atom” is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.

本発明において、「脱離基」としては、アリールスルホニルオキシ基(該アリールスルホニルオキシ基のアリールは、C1-5アルキル基、ニトロ基又はハロゲン原子等で置換されても良い)、C1-5アルキルスルホニルオキシ基(該C1-5アルキルスルホニルオキシ基のC1-5アルキル基は、ハロゲン原子で置換されても良い)、ハロゲン原子等を挙げることができる。当該アリールは、単環から2環式の芳香族炭素環であり、フェニル、1−ナフチル、2−ナフチル等の基を挙げることができる。 In the present invention, the “leaving group” is an arylsulfonyloxy group (the aryl of the arylsulfonyloxy group may be substituted with a C 1-5 alkyl group, a nitro group, a halogen atom, or the like), C 1- Examples thereof include a 5- alkylsulfonyloxy group (the C 1-5 alkyl group of the C 1-5 alkylsulfonyloxy group may be substituted with a halogen atom), a halogen atom, and the like. The aryl is a monocyclic to bicyclic aromatic carbocycle, and examples thereof include phenyl, 1-naphthyl, and 2-naphthyl.

当該アリールスルホニルオキシ基(該アリールスルホニルオキシ基のアリールは、C1-5アルキル基、ニトロ基又はハロゲン原子等で置換されても良い)としては、4−ニトロベンゼンスルホニルオキシ基、p−トルエンスルホニルオキシ基等を挙げることができる。 Examples of the arylsulfonyloxy group (the aryl of the arylsulfonyloxy group may be substituted with a C 1-5 alkyl group, a nitro group, a halogen atom or the like) include a 4-nitrobenzenesulfonyloxy group, p-toluenesulfonyloxy Groups and the like.

当該C1-5アルキルスルホニルオキシ基(該C1-5アルキルスルホニルオキシ基のC1-5アルキル基は、ハロゲン原子で置換されても良い)としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基等を挙げることができる。 As the C 1-5 alkylsulfonyloxy group (the C 1-5 alkyl group of the C 1-5 alkylsulfonyloxy group may be substituted with a halogen atom), a methanesulfonyloxy group, a trifluoromethanesulfonyloxy group Etc.

本発明において、「塩基」としては、炭酸カリウム、炭酸セシウム、水酸化ナトリウム等の無機塩基や、トリエチルアミン、ジイソプロピルエチルアミン等の有機塩基を挙げることができる。   In the present invention, examples of the “base” include inorganic bases such as potassium carbonate, cesium carbonate and sodium hydroxide, and organic bases such as triethylamine and diisopropylethylamine.

本発明の放射性同位元素標識化合物で使用される好ましい放射性核種は、11C、18F、123I、125I、131I、75Br、76Br又は82Brである。インビトロでのバソプレッシンV1b受容体標識に使用する場合の好ましい核種は125Iなどである。画像診断に使用する場合の好ましい核種は、11C、18F、123I、76Brなどである。画像診断の手法としては、PET、単一光子放射断層撮影(SPECT)等が利用可能であるが、感度の点ではPETが好ましい。 Preferred radionuclides for use in the radioisotope labeled compounds of the present invention are 11 C, 18 F, 123 I, 125 I, 131 I, 75 Br, 76 Br or 82 Br. A preferred nuclide for use in in vitro vasopressin V1b receptor labeling, such as 125 I. Preferred nuclides for use in diagnostic imaging are 11 C, 18 F, 123 I, 76 Br, and the like. PET, single photon emission tomography (SPECT), or the like can be used as an image diagnosis method, but PET is preferable in terms of sensitivity.

本発明における「製薬学的に許容される塩」とは、薬剤的に許容することのできる酸付加塩を意味し、硫酸、塩酸、臭化水素酸、リン酸、硝酸等の無機酸との塩、或いは、酢酸、安息香酸、シュウ酸、乳酸、リンゴ酸、酒石酸、フマル酸、マレイン酸、クエン酸、マロン酸、マンデル酸、グルコン酸、ガラクタル酸、グルコヘプトン酸、グリコール酸、グルタミン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、カンファースルホン酸、ナフタレン−2−スルホン酸等の有機酸との塩が含まれる。遊離体から当該塩への変換は従来の方法で行うことができる。   “Pharmaceutically acceptable salt” in the present invention means a pharmaceutically acceptable acid addition salt, and is used with inorganic acids such as sulfuric acid, hydrochloric acid, hydrobromic acid, phosphoric acid and nitric acid. Salt or acetic acid, benzoic acid, oxalic acid, lactic acid, malic acid, tartaric acid, fumaric acid, maleic acid, citric acid, malonic acid, mandelic acid, gluconic acid, galactaric acid, glucoheptonic acid, glycolic acid, glutamic acid, methanesulfone Salts with organic acids such as acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, naphthalene-2-sulfonic acid are included. Conversion from the educt to the salt can be performed by conventional methods.

なお、本発明の化合物の遊離体が水和物又は溶媒和物を形成する場合、それらも本発明の化合物の範囲内に含まれる。同様に、本発明の化合物の医薬上許容される塩が水和物又は溶媒和物を形成する場合には、それらも本発明の化合物の範囲内に含まれる。また、本発明の化合物は、エナンチオマー、ジアステレオマー、平衡化合物、これらの任意の割合の混合物、ラセミ体等を全て含む。   In addition, when the free body of the compound of this invention forms a hydrate or a solvate, they are also contained in the range of the compound of this invention. Similarly, where pharmaceutically acceptable salts of the compounds of this invention form hydrates or solvates, they are also included within the scope of the compounds of this invention. In addition, the compounds of the present invention include all enantiomers, diastereomers, equilibrium compounds, mixtures of these in any proportion, racemates, and the like.

本発明の化合物において、好ましい態様を以下に挙げる。   Preferred embodiments of the compound of the present invention are listed below.

1は、C1-5アルキルである化合物が好ましく、イソプロピル又はtert−ブチルである化合物がより好ましく、tert−ブチルである化合物がさらに好ましい。 R 1 is preferably a compound which is C 1-5 alkyl, more preferably a compound which is isopropyl or tert-butyl, and even more preferably a compound which is tert-butyl.

2は、11Cで標識されたメチルであることが好ましい。 R 2 is preferably methyl labeled with 11 C.

好ましくは、R1はtert−ブチルであり、R211Cで標識されたメチルである。 Preferably R 1 is tert-butyl and R 2 is 11 C-labeled methyl.

本発明の化合物は、バソプレッシンV1b受容体を標識化するために、即ち、バソプレッシンV1b受容体標識剤として用いることができる。この標識剤は、例えば、PET等を用いる画像診断において有用である。   The compound of the present invention can be used for labeling vasopressin V1b receptor, that is, as a vasopressin V1b receptor labeling agent. This labeling agent is useful in diagnostic imaging using, for example, PET.

本発明の1つの態様は、動物に一般式(I)に示される化合物又はその製薬学的に許容される塩を有効量投与することを特徴とする、動物におけるバソプレッシンV1b受容体の画像診断方法である。   One aspect of the present invention is a method for imaging vasopressin V1b receptor in an animal, comprising administering an effective amount of a compound represented by the general formula (I) or a pharmaceutically acceptable salt thereof to the animal. It is.

また、本発明の他の1つの態様は、動物に一般式(I)に示される化合物又はその製薬学的に許容される塩を有効量投与することを特徴とする、動物の脳におけるバソプレッシンV1b受容体の画像診断方法である。   In another embodiment of the present invention, vasopressin V1b in the brain of an animal is characterized by administering an effective amount of a compound represented by the general formula (I) or a pharmaceutically acceptable salt thereof to the animal. This is a method for diagnostic imaging of a receptor.

また、本発明の他の1つの態様は、動物に一般式(I)に示される化合物又はその製薬学的に許容される塩を有効量投与することを特徴とする、動物におけるバソプレッシンV1b受容体の発現した組織を用いた画像診断方法である。ここで、バソプレッシンV1b受容体の発現した組織とは例えば脳スライス切片等が挙げられる。   In another embodiment of the present invention, the vasopressin V1b receptor in an animal is characterized by administering an effective amount of a compound represented by the general formula (I) or a pharmaceutically acceptable salt thereof to the animal. This is a diagnostic imaging method using a tissue in which the expression of the above occurs. Here, the tissue in which the vasopressin V1b receptor is expressed includes, for example, a brain slice section.

これらの態様は、別の側面では、一般式(I)に示される化合物又はその製薬学的に許容される塩を含む、バソプレッシンV1b受容体に関連した疾患の診断薬に関する。   In another aspect, these embodiments relate to a diagnostic agent for diseases associated with the vasopressin V1b receptor, comprising a compound represented by the general formula (I) or a pharmaceutically acceptable salt thereof.

これらの方法又は診断薬は、バソプレッシンV1b受容体に関連した疾患、例えば、気分障害、不安障害、統合失調症、アルツハイマー病、パーキンソン病、ハンチントン舞踏病、摂食障害、高血圧、消化器疾患、薬物依存症、てんかん、脳梗塞、脳虚血、脳浮腫、頭部外傷、炎症、免疫関連疾患、又は脱毛症の診断に有用である。   These methods or diagnostic agents are used for diseases related to vasopressin V1b receptor, such as mood disorders, anxiety disorders, schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's chorea, eating disorders, hypertension, digestive disorders, drugs Useful in the diagnosis of addiction, epilepsy, cerebral infarction, cerebral ischemia, cerebral edema, head trauma, inflammation, immune related diseases, or alopecia.

また、本発明の他の1つの態様は、動物に一般式(I)に示される化合物又はその製薬学的に許容される塩を有効量投与することを特徴とする、動物におけるバソプレッシンV1b受容体の機能を検出又は定量化する方法である。   In another embodiment of the present invention, the vasopressin V1b receptor in an animal is characterized by administering an effective amount of a compound represented by the general formula (I) or a pharmaceutically acceptable salt thereof to the animal. This is a method for detecting or quantifying the function.

ここで、「動物」は、ヒトやサル等の哺乳動物を含み、好ましくはヒトである。   Here, the “animal” includes mammals such as humans and monkeys, preferably humans.

本発明の化合物は、バソプレッシンV1b受容体が関与すると考えられている多様な病気においてバソプレッシンV1b受容体結合リガンド(バソプレッシンV1b受容体アゴニスト、アンタゴニスト、インバースアゴニスト等)の作用を評価することを目的とした臨床試験に使用することが可能である。例えば、バソプレッシンV1b受容体調節剤の臨床評価を行うにあたって、脳内での当該薬物の受容体占有の程度を評価するためのトレーサー化合物(バソプレッシンV1b受容体標識剤)としても利用可能である。   The compounds of the present invention are intended to evaluate the action of vasopressin V1b receptor binding ligands (vasopressin V1b receptor agonists, antagonists, inverse agonists, etc.) in various diseases thought to involve the vasopressin V1b receptor. It can be used for clinical trials. For example, when performing clinical evaluation of a vasopressin V1b receptor modulator, it can also be used as a tracer compound (vasopressin V1b receptor labeling agent) for evaluating the degree of receptor occupancy of the drug in the brain.

本発明の化合物は、例えば下記に示す方法に従って製造することができる。   The compound of the present invention can be produced, for example, according to the method shown below.

化合物(I)、(II)及びそれらの製薬学的に許容される塩は、当業者に公知である種々の有機合成手法を用いて合成することができる。例えば、以下に製造法を示すが本合成法に限られたものではない。なお、以下の製造法の例示において、化合物は反応に支障にならない塩を形成していてもよい。
式(I)で表される化合物は、スキーム1に示す合成法で製造することができる。
Compounds (I), (II) and their pharmaceutically acceptable salts can be synthesized using various organic synthesis techniques known to those skilled in the art. For example, the production method is shown below, but is not limited to this synthesis method. In the following examples of production methods, the compound may form a salt that does not hinder the reaction.
The compound represented by the formula (I) can be produced by the synthesis method shown in Scheme 1.

(式中、R1、R2及びXは前記と同義である。L1は脱離基を示す。脱離基とは、4−ニトロベンゼンスルホニルオキシ基、p−トルエンスルホニルオキシ基、メタンスルホニルオキシ基、ハロゲン原子等を意味する。)
式(I)で表される化合物は、式(II)で表される化合物と、式(1−a)で表される化合物とを反応させることにより得ることができる(工程1−1)。工程1−1における反応は、テトラヒドロフラン、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド、水等の溶媒中、又はそれらの混合溶媒中、室温から溶媒の沸点付近の温度条件下、炭酸カリウム、炭酸セシウム、水酸化ナトリウム等の無機塩基や、トリエチルアミン、ジイソプロピルエチルアミン等の有機塩基の存在により、反応が進行する。
(In the formula, R 1 , R 2 and X are as defined above. L 1 represents a leaving group. The leaving group is a 4-nitrobenzenesulfonyloxy group, p-toluenesulfonyloxy group, methanesulfonyloxy. Group, halogen atom, etc.)
The compound represented by formula (I) can be obtained by reacting the compound represented by formula (II) with the compound represented by formula (1-a) (step 1-1). The reaction in Step 1-1 is carried out in a solvent such as tetrahydrofuran, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, water, or a mixed solvent thereof under a temperature condition from room temperature to the boiling point of the solvent under the conditions of potassium carbonate, carbonic acid. The reaction proceeds due to the presence of an inorganic base such as cesium or sodium hydroxide, or an organic base such as triethylamine or diisopropylethylamine.

式(II)で表される化合物は、スキーム2に示す合成法で製造することができる。   The compound represented by the formula (II) can be produced by the synthesis method shown in Scheme 2.

(式中、R1、Xは前記と同義である。Halはハロゲン原子を示す。L2はフェノール性水酸基の保護基を示す[プロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)第4版、ジョン ウィリー アンド サンズ(John Wiley & Sons, INC.) 参照]。L3は脱離基を示す。脱離基とは、p−トルエンスルホニルオキシ基、メタンスルホニルオキシ基、ハロゲン原子等を意味する。)
式(2−b)で表される化合物は式(2−a)で表される化合物をボロン酸誘導体とした後、過酸を用いてヒドロキシ化することにより得ることができる(工程2−1)。本工程は、WO2006/021886号公報記載の方法に従って実施することができる。式(2−d)で表される化合物は、工程2−2、工程2−3及び工程2−4の3つの異なる工程により、それぞれ製造することができる。すなわち、工程2−2は、式(2−b)で表される化合物と式(2−c)で表される化合物を反応させることにより得ることができる。式(2−c)で表される化合物は塩を形成しても良い。工程2−2における反応は、工程1−1と同様の方法で行うことができる。また、式(2−d)で表される化合物は、式(2−b)で表される化合物と式(2−e)で表される化合物を光延反応の条件下反応させて得ることができる(工程2−3)。光延反応に関する包括的概観はSynthesis. 1981, 1-28; Chem. Asian J. 2007, 2, 1340-1355.; Chem. Pharm. Bull. 2003, 51(4), 474-476に見出される。さらに、式(2−d)で表される化合物は、式(2−a)で表される化合物と式(2−e)で表される化合物をパラジウム触媒を用いたエーテル化反応の条件下反応させることにより得ることができる(工程2−4)。パラジウム触媒を用いたエーテル化反応に関する包括的概観は、M. Paulucki, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc., 1996, 118, 10333.; G. Mann, J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 13109.; M. Watanabe, M. Nishiyama, Y. Koie, Tetrahedron Lett. 1999, 40, 8837.; Q. Shelby, N. Kataoka, G. Mann, J. F. Hartwig, J. Am. Chem. Soc. 2000, 122, 10718.; K. E. Torraca, S. Kuwabe, S. L. Buchwald, J. Am. Chem. Soc. 2000, 122, 12907.; C. A. Parrish, S. L. Buchwald, J. Org. Chem. 2001, 66, 2498.; P. M. Karen, E. Torraca, X. Huang, C. A. Parrish, and S. L. Buchwald, J. Am. Chem. Soc, 2001, 10770-10771.; Andrei V. Vorogushin, Xiaohua Huang, and Stephen L. Buchwald J. Am. Chem. Soc., 2005, 8146 -8149.に見出される。式(II)で表される化合物は式(2−d)で表される化合物のL2基を、一般的手法にて脱保護する[プロテクティブ グループス イン オーガニック シンセシス(Protective Groups in Organic Synthesis)第4版、ジョン ウィリー アンド サンズ(John Wiley & Sons, INC.) 参照]ことにより得ることができる(工程2−5)。
(In the formula, R 1 and X are as defined above. Hal represents a halogen atom. L 2 represents a protecting group for a phenolic hydroxyl group [Protective Groups in Organic Synthesis, 4th edition] See John Wiley & Sons, Inc.] L 3 represents a leaving group, which means a p-toluenesulfonyloxy group, a methanesulfonyloxy group, a halogen atom, or the like. .)
The compound represented by the formula (2-b) can be obtained by converting the compound represented by the formula (2-a) into a boronic acid derivative and then hydroxylating with a peracid (Step 2-1). ). This step can be carried out according to the method described in WO2006 / 021886. The compound represented by the formula (2-d) can be produced by three different steps of Step 2-2, Step 2-3, and Step 2-4. That is, step 2-2 can be obtained by reacting the compound represented by formula (2-b) with the compound represented by formula (2-c). The compound represented by the formula (2-c) may form a salt. The reaction in step 2-2 can be carried out in the same manner as in step 1-1. The compound represented by the formula (2-d) can be obtained by reacting the compound represented by the formula (2-b) with the compound represented by the formula (2-e) under the conditions of Mitsunobu reaction. Yes (step 2-3). A comprehensive overview of the Mitsunobu reaction can be found in Synthesis. 1981, 1-28; Chem. Asian J. 2007, 2, 1340-1355 .; Chem. Pharm. Bull. 2003, 51 (4), 474-476. Furthermore, the compound represented by the formula (2-d) is obtained by subjecting the compound represented by the formula (2-a) and the compound represented by the formula (2-e) to the conditions for the etherification reaction using a palladium catalyst. It can be obtained by reacting (step 2-4). A comprehensive overview of palladium-catalyzed etherification reactions can be found in M. Paulucki, JP Wolfe, SL Buchwald, J. Am. Chem. Soc., 1996, 118, 10333 .; G. Mann, JF Hartwig, J. Am Chem. Soc. 1996, 118, 13109 .; M. Watanabe, M. Nishiyama, Y. Koie, Tetrahedron Lett. 1999, 40, 8837 .; Q. Shelby, N. Kataoka, G. Mann, JF Hartwig, J Am. Chem. Soc. 2000, 122, 10718 .; KE Torraca, S. Kuwabe, SL Buchwald, J. Am. Chem. Soc. 2000, 122, 12907 .; CA Parrish, SL Buchwald, J. Org. Chem 2001, 66, 2498 .; PM Karen, E. Torraca, X. Huang, CA Parrish, and SL Buchwald, J. Am. Chem. Soc, 2001, 10770-10771 .; Andrei V. Vorogushin, Xiaohua Huang, and Found in Stephen L. Buchwald J. Am. Chem. Soc., 2005, 8146 -8149. The compound represented by the formula (II) deprotects the L 2 group of the compound represented by the formula (2-d) by a general method [Protective Groups in Organic Synthesis] 4th edition, see John Wiley & Sons, INC.] (Step 2-5).

式(2−a)で表される化合物のうち、式(3−d)で表される化合物はスキーム3に示す合成法で製造することができる。   Among the compounds represented by the formula (2-a), the compound represented by the formula (3-d) can be produced by the synthesis method shown in Scheme 3.

(式中、R1、L2、X、Halは上記と同じである。L4はC1-5アルキルを示す。)
式(3−d)で表される化合物は式(3−a)で表される化合物と、式(3−b)で表されるアルデヒドを、脱水縮合させることにより1,2−ジヒドロピリドピリミジン−4−オン誘導体(3−c)を得た後に(工程3−1)、引き続き酸化反応に付すことにより、得ることができる(工程3−2)。工程3−1における縮合反応は、酢酸等の有機酸存在下、エタノール、2−プロパノール等の溶媒中、反応溶媒の沸点付近の温度条件下進行し、モレキュラーシーブス等の脱水剤を用いて副生する水を除くことにより、より円滑に縮合反応は進行する。工程3−2における酸化反応は、活性二酸化マンガン等の酸化剤を用い、クロロホルム、N,N−ジメチルホルムアミド、テトラヒドロフラン等の溶媒中、又はそれらの混合溶媒中、室温から反応溶媒の沸点付近の温度条件下進行する。また、式(3−d)で表される化合物は式(3−a)で表される化合物と式(3−e)で表される化合物を、エタノール、2−プロパノール、テトラヒドロフラン等の溶媒中、反応溶媒の沸点付近の温度条件下縮合させ得ることができる(工程3−3)。
(In the formula, R 1 , L 2 , X and Hal are the same as above. L 4 represents C 1-5 alkyl.)
The compound represented by the formula (3-d) is obtained by subjecting the compound represented by the formula (3-a) and the aldehyde represented by the formula (3-b) to dehydration condensation, and 1,2-dihydropyrido After obtaining the pyrimidin-4-one derivative (3-c) (step 3-1), it can be obtained by subsequent oxidation (step 3-2). The condensation reaction in step 3-1 proceeds in the presence of an organic acid such as acetic acid in a solvent such as ethanol or 2-propanol under temperature conditions near the boiling point of the reaction solvent, and is a by-product using a dehydrating agent such as molecular sieves. By removing the water, the condensation reaction proceeds more smoothly. The oxidation reaction in Step 3-2 uses an oxidizing agent such as active manganese dioxide, and is in a solvent such as chloroform, N, N-dimethylformamide, tetrahydrofuran, or a mixed solvent thereof, from room temperature to a temperature near the boiling point of the reaction solvent. Progress under conditions. In addition, the compound represented by the formula (3-d) is obtained by mixing the compound represented by the formula (3-a) and the compound represented by the formula (3-e) in a solvent such as ethanol, 2-propanol, and tetrahydrofuran. , And can be condensed under temperature conditions near the boiling point of the reaction solvent (step 3-3).

以下、実施例と試験例を挙げて本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples.

本発明は下記の実施例によって更に詳細に説明されるが、これら実施例は本発明を限定するものではなく、また、本発明の範囲を逸脱しない範囲で変化させてもよい。   The present invention will be described in more detail with reference to the following examples. However, these examples do not limit the present invention, and may be changed without departing from the scope of the present invention.

実施例中記載の各機器データは以下の測定機器で測定した。
MSスペクトル:Agilent 6150/Agilent 1290Infinity
NMRスペクトル:[1H-NMR]JNM−ECA600(日本電子)
実施例中で使用した略語を以下に示す。
MS(質量分析)、APCI(大気圧化学イオン化)、ESI(エレクトロスプレーイオン化)。
Each instrument data described in the examples was measured with the following measuring instruments.
MS spectrum: Agilent 6150 / Agilent 1290 Infinity
NMR spectrum: [ 1 H-NMR] JNM-ECA600 (JEOL)
Abbreviations used in the examples are shown below.
MS (mass spectrometry), APCI (atmospheric pressure chemical ionization), ESI (electrospray ionization).

実施例A−1:N−tert−ブチル−2−[2−(3−11C−メトキシフェニル)−6−[3−(モルホリン−4−イル)プロポキシ]−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]アセトアミド(A−1)の合成 Example A-1: N-tert- Butyl-2-[2-(3-11 C-methoxyphenyl) -6- [3- (morpholin-4-yl) propoxy] -4-oxopyrido [2,3 d] Synthesis of pyrimidine-3 (4H) -yl] acetamide (A-1)

(1)2−[6−ブロモ−2−(3−メトキシフェニル)−4−オキソ−1,4−ジヒドロピリド[2,3−d]ピリミジン−3(2H)−イル]−N−tert−ブチルアセトアミド(A−1−1)の合成 (1) 2- [6-Bromo-2- (3-methoxyphenyl) -4-oxo-1,4-dihydropyrido [2,3-d] pyrimidin-3 (2H) -yl] -N-tert-butyl Synthesis of acetamide (A-1-1)

窒素気流下、2−アミノ−5−ブロモ−N−[2−(tert−ブチルアミノ)−2−オキソエチル]ニコチンアミド(25.0g)、3−メトキシベンズアルデヒド(31.0g)、酢酸(22.8g)のEtOH(500mL)懸濁液をディーン・スターク装置で脱水しながら5時間加熱還流した。放冷後、減圧下で反応溶媒を留去し、得られた残渣にEtOAcを加え、生じた固体をろ取、乾燥し表題化合物(33.4g、無色固体)を得た。
MS (ESI neg.) m/z : 445([M-H]-).
Under a nitrogen stream, 2-amino-5-bromo-N- [2- (tert-butylamino) -2-oxoethyl] nicotinamide (25.0 g), 3-methoxybenzaldehyde (31.0 g), acetic acid (22. A suspension of 8 g) of EtOH (500 mL) was heated to reflux for 5 hours while dewatering with a Dean-Stark apparatus. After allowing to cool, the reaction solvent was evaporated under reduced pressure, EtOAc was added to the resulting residue, and the resulting solid was collected by filtration and dried to give the title compound (33.4 g, colorless solid).
MS (ESI neg.) M / z: 445 ([MH] - ).

(2)2−[6−ブロモ−2−(3−メトキシフェニル)−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]−N−tert−ブチルアセトアミド(A−1−2)の合成 (2) 2- [6-Bromo-2- (3-methoxyphenyl) -4-oxopyrido [2,3-d] pyrimidin-3 (4H) -yl] -N-tert-butylacetamide (A-1- 2) Synthesis

窒素気流下、実施例A−1(1)で得られた化合物A−1−1(33.0g)、MnO2(32.1g)のTHF(512mL)、CHCl3(130mL)懸濁液を5時間加熱還流した。熱時セライト(登録商標)を用いてろ過後、THF(600mL)にて洗浄し、ろ液を減圧下で濃縮した。得られた残渣にEtOAcを加え、生じた固体をろ取、乾燥し表題化合物(28.7g、無色固体)得た。
MS (ESI pos.) m/z : 445([M+H]+).
Under a nitrogen stream, a suspension of compound A-1-1 (33.0 g) obtained in Example A-1 (1), MnO 2 (32.1 g) in THF (512 mL) and CHCl 3 (130 mL) was added. The mixture was heated to reflux for 5 hours. After filtration using hot Celite (registered trademark), the filtrate was washed with THF (600 mL), and the filtrate was concentrated under reduced pressure. EtOAc was added to the obtained residue, and the resulting solid was collected by filtration and dried to give the title compound (28.7 g, colorless solid).
MS (ESI pos.) M / z: 445 ([M + H] + ).

(3)N−tert−ブチル−2−[6−ヒドロキシ−2−(3−メトキシフェニル)−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]アセトアミド(A−1−3)の合成 (3) N-tert-butyl-2- [6-hydroxy-2- (3-methoxyphenyl) -4-oxopyrido [2,3-d] pyrimidin-3 (4H) -yl] acetamide (A-1- 3) Synthesis

窒素気流下、実施例A−1(2)で得られた化合物A−1−2(4.45g)、4,4,4’,4’,5,5,5’,5’−オクタメチル−2,2’−ビ−1,3,2−ジオキサボロラン(5.08g)、PdCl2(dppf)・CH2Cl2(408mg)及びAcOK(2.94g)のDMSO(45mL)溶液を100℃にて2時間加熱攪拌した。放冷後、水(200mL)を加え、生じた固体をろ取、乾燥し固体(9.91g、茶褐色固体)を得た。得られた固体(9.91g)のTHF(25mL)及びEtOH(25mL)溶液にNaHCO3水溶液(1.68g/水 15mL)を加えた後に氷冷し、反応液温度8℃以下を保ちながら、30%過酸化水素水(3.40mL)を加えた後、2時間攪拌した。反応液に亜硫酸ナトリウム水溶液(3.78g/水 50mL)を加えた後、15分間攪拌した。CHCl3(100mL)、飽和食塩水(100mL)を加え分液後、水層をCHCl3(50mL)で2回抽出した。有機層を合わせてNa2SO4で乾燥後に乾燥剤をろ別し、ろ液を減圧下で濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(SNAP Cartridge HP−Sphere、移動相:CHCl3/MeOH=100/0〜90/10;v/v)にて精製し表題化合物(3.69g、灰色固体)を得た。
MS (ESI pos.) m/z : 383([M+H]+).
Under a nitrogen stream, compound A-1-2 (4.45 g) obtained in Example A-1 (2), 4,4,4 ′, 4 ′, 5,5,5 ′, 5′-octamethyl- A solution of 2,2′-bi-1,3,2-dioxaborolane (5.08 g), PdCl 2 (dppf) .CH 2 Cl 2 (408 mg) and AcOK (2.94 g) in DMSO (45 mL) was brought to 100 ° C. And stirred for 2 hours. After allowing to cool, water (200 mL) was added, and the resulting solid was collected by filtration and dried to obtain a solid (9.91 g, brown solid). An aqueous solution of NaHCO 3 (1.68 g / 15 mL of water) was added to a solution of the obtained solid (9.91 g) in THF (25 mL) and EtOH (25 mL), and then ice-cooled, while maintaining the reaction solution temperature at 8 ° C. or lower, After adding 30% aqueous hydrogen peroxide (3.40 mL), the mixture was stirred for 2 hours. An aqueous sodium sulfite solution (3.78 g / 50 mL of water) was added to the reaction solution, and the mixture was stirred for 15 minutes. CHCl 3 (100 mL) and saturated brine (100 mL) were added for liquid separation, and the aqueous layer was extracted twice with CHCl 3 (50 mL). The organic layers were combined and dried over Na 2 SO 4 , the desiccant was filtered off, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (SNAP Cartridge HP-Sphere, mobile phase: CHCl 3 / MeOH = 100/0 to 90/10; v / v) to give the title compound (3.69 g, gray solid) Got.
MS (ESI pos.) M / z: 383 ([M + H] + ).

(4)N−tert−ブチル−2−[2−(3−メトキシフェニル)−6−[3−(モルホリン−4−イル)プロポキシ]−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]アセトアミド(A−1−4)の合成 (4) N-tert-butyl-2- [2- (3-methoxyphenyl) -6- [3- (morpholin-4-yl) propoxy] -4-oxopyrido [2,3-d] pyrimidine-3 ( 4H) -yl] acetamide (A-1-4)

実施例A−1(3)で得られた化合物A−1−3(3.65g)、4−(3−クロロプロピル)モルホリン 塩酸塩(2.29g)、炭酸セシウム(15.6g)及びヨウ化カリウム(0.792g)のDMF(36mL)懸濁液を外温85℃で4時間攪拌した。反応液を放冷後、飽和NaHCO3水溶液(120mL)、EtOAc(120mL)及びトルエン(20mL)を加え分液後、有機層を飽和食塩水(120mL)で洗浄した。水層をEtOAc(120mL)及びトルエン(20mL)で2回抽出し、有機層を合わせてNa2SO4で乾燥した。乾燥剤をろ別後、ろ液を減圧下で濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(SNAP Cartridge HP−Sphere、移動相:CHCl3/MeOH=99/1〜90/10;v/v)にて精製し表題化合物(4.55g、褐色アモルファス)を得た。
MS (ESI pos.) m/z : 510([M+H]+).
1H-NMR (600 MHz, CDCl3) δ (ppm) ; 1.35 (9 H, s), 2.01 - 2.08 (2 H, m), 2.48 (4 H, br. s.), 2.55 (2 H, t, J=7.0 Hz), 3.73 (4 H, t, J=4.5 Hz), 3.83 (3 H, s), 4.19 (2 H, t, J=6.4 Hz), 4.52 (2 H, s), 5.45 (1 H, s), 7.02 - 7.05 (1 H, m), 7.23 (1 H, d, J=7.4 Hz), 7.25 - 7.26 (1 H, m), 7.37 (1 H, t, J=7.8 Hz), 7.95 (1 H, d, J=3.3 Hz), 8.72 (1 H, d, J=3.3 Hz).
Compound A-1-3 (3.65 g), 4- (3-chloropropyl) morpholine hydrochloride (2.29 g), cesium carbonate (15.6 g) and iodine obtained in Example A-1 (3) A suspension of potassium fluoride (0.792 g) in DMF (36 mL) was stirred at an external temperature of 85 ° C. for 4 hours. The reaction mixture was allowed to cool, saturated aqueous NaHCO 3 solution (120 mL), EtOAc (120 mL) and toluene (20 mL) were added and separated, and the organic layer was washed with saturated brine (120 mL). The aqueous layer was extracted twice with EtOAc (120 mL) and toluene (20 mL), and the combined organic layers were dried over Na 2 SO 4 . After the desiccant was filtered off, the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (SNAP Cartridge HP-Sphere, mobile phase: CHCl 3 / MeOH = 99/1 to 90/10; v / v) to give the title compound (4.55 g, brown amorphous) Got.
MS (ESI pos.) M / z: 510 ([M + H] + ).
1 H-NMR (600 MHz, CDCl 3 ) δ (ppm); 1.35 (9 H, s), 2.01-2.08 (2 H, m), 2.48 (4 H, br.s.), 2.55 (2 H, t, J = 7.0 Hz), 3.73 (4 H, t, J = 4.5 Hz), 3.83 (3 H, s), 4.19 (2 H, t, J = 6.4 Hz), 4.52 (2 H, s), 5.45 (1 H, s), 7.02-7.05 (1 H, m), 7.23 (1 H, d, J = 7.4 Hz), 7.25-7.26 (1 H, m), 7.37 (1 H, t, J = 7.8 Hz), 7.95 (1 H, d, J = 3.3 Hz), 8.72 (1 H, d, J = 3.3 Hz).

(5)N−tert−ブチル−2−[2−(3−ヒドロキシフェニル)−6−[3−(モルホリン−4−イル)プロポキシ]−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]アセトアミド(プレカーサーA)の合成
の合成
(5) N-tert-butyl-2- [2- (3-hydroxyphenyl) -6- [3- (morpholin-4-yl) propoxy] -4-oxopyrido [2,3-d] pyrimidine-3 ( Synthesis of the synthesis of 4H) -yl] acetamide (Precursor A)

実施例A−1(4)で得られた化合物A−1−4(1.00g)をCHCl3(20mL)に溶解し、氷冷下でBBr3(1mmol/Lジクロロメタン溶液、9.81mL)を滴下し室温で24時間攪拌した。反応液に氷冷下でMeOHを加えた後に、CHCl3(80mL)、飽和NaHCO3水溶液(100mL)を加え分液後、有機層を飽和食塩水(100mL)で洗浄した。水層をCHCl3(100mL)で2回抽出し有機層を合わせてNa2SO4で乾燥した。乾燥剤をろ別後、ろ液を減圧下で濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(SNAP Cartridge KP-NH、移動相:CHCl3/MeOH=100/0〜90/10;v/v)にて精製した。得られた粗精製物にEtOAc(1.5mL)及びn−ヘキサン(1.5mL)を加え、10分間加熱還流後に、室温まで冷却し、12時間攪拌した。固体をろ取、乾燥し、表題化合物(400mg、淡褐色固体)を得た。
MS (ESI pos.) m/z : 496([M+H]+).
1H-NMR (600 MHz, CDCl3) δ (ppm) ; 1.32 (9 H, s), 2.01 - 2.07 (2 H, m), 2.42 - 2.51 (4 H, m), 2.54 (2 H, t, J=6.8 Hz), 3.73 (4 H, t, J=4.3 Hz), 4.15 - 4.20 (2 H, m), 4.51 (2 H, s), 5.48 (1 H, s), 6.89 - 6.93 (1 H, m), 7.06 (1 H, d, J=7.4 Hz), 7.12 - 7.15 (1 H, m), 7.24 (1 H, t, J=7.8 Hz), 7.93 - 7.97 (1 H, m), 8.39 (1 H, br. s.), 8.66 (1 H, d, J=3.3 Hz).
Compound A-1-4 (1.00 g) obtained in Example A-1 (4) was dissolved in CHCl 3 (20 mL), and BBr 3 (1 mmol / L dichloromethane solution, 9.81 mL) was cooled with ice. Was added dropwise and stirred at room temperature for 24 hours. MeOH was added to the reaction solution under ice-cooling, CHCl 3 (80 mL) and saturated aqueous NaHCO 3 solution (100 mL) were added to separate the solution, and the organic layer was washed with saturated brine (100 mL). The aqueous layer was extracted twice with CHCl 3 (100 mL), and the organic layers were combined and dried over Na 2 SO 4 . After the desiccant was filtered off, the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (SNAP Cartridge KP-NH, mobile phase: CHCl 3 / MeOH = 100/0 to 90/10; v / v). EtOAc (1.5 mL) and n-hexane (1.5 mL) were added to the obtained crude product, and the mixture was heated to reflux for 10 minutes, cooled to room temperature, and stirred for 12 hours. The solid was collected by filtration and dried to give the title compound (400 mg, light brown solid).
MS m / z (ESI pos. ): 496 ([M + H] +).
1 H-NMR (600 MHz, CDCl 3 ) δ (ppm); 1.32 (9 H, s), 2.01-2.07 (2 H, m), 2.42-2.51 (4 H, m), 2.54 (2 H, t , J = 6.8 Hz), 3.73 (4 H, t, J = 4.3 Hz), 4.15-4.20 (2 H, m), 4.51 (2 H, s), 5.48 (1 H, s), 6.89-6.93 ( 1 H, m), 7.06 (1 H, d, J = 7.4 Hz), 7.12-7.15 (1 H, m), 7.24 (1 H, t, J = 7.8 Hz), 7.93-7.97 (1 H, m ), 8.39 (1 H, br.s.), 8.66 (1 H, d, J = 3.3 Hz).

(6)N−tert−ブチル−2−[2−(3−11C−メトキシフェニル)−6−[3−(モルホリン−4−イル)プロポキシ]−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]アセトアミド(A−1)の合成 (6) N-tert-butyl-2-[2-(3-11 C-methoxyphenyl) -6- [3- (morpholin-4-yl) propoxy] -4-oxopyrido [2,3-d] pyrimidine -3 (4H) -yl] acetamide (A-1)

化合物A−1は、プレカーサーAのフェノール部分の酸素原子をサイクロトロン装置により製造した[11C]ヨウ化メチルを用いてアルキル化することにより合成した。 Compound A-1 was synthesized by alkylating the oxygen atom of the phenol moiety of precursor A with [ 11 C] methyl iodide produced by a cyclotron apparatus.

18.0MeVの陽子を用いて14N(P,α)11C反応に従って窒素を20μAのビームカレントを用いて15分照射することにより炭素−11を製造した。標的ガス中の少量の酸素(5ppm)の存在により炭素−11は[11C]二酸化炭素に変換された。得られた[11C]二酸化炭素を水素化リチウムアルミニウムを用いて還元し、続いてヨウ化水素酸と反応させることにより[11C]ヨウ化メチルを合成した。 Carbon-11 was produced by irradiating with nitrogen at 20 μA for 15 minutes according to the 14 N (P, α) 11 C reaction using 18.0 MeV protons. Carbon-11 was converted to [ 11 C] carbon dioxide by the presence of a small amount of oxygen (5 ppm) in the target gas. The obtained [ 11 C] carbon dioxide was reduced using lithium aluminum hydride, and subsequently reacted with hydroiodic acid to synthesize [ 11 C] methyl iodide.

プレカーサーA(1.0mg)、水酸化ナトリウム水溶液(0.5mol/L、5μL)及び無水N,N−ジメチルホルムアミド(300μL)の混合物をよく振り混ぜて混和した。反応混合物を−20℃に冷却し、[11C]ヨウ化メチルを吹き込み、その後80℃で5分間加熱した。反応混合物にアセトニトリル/水/トリエチルアミン(40/60/0.1)溶液(1mL)を加え、分取HPLCカラム(SHISEIDO CAPCELL PAC C−18 250×10 mm)に注入し、5mL/分の流量でアセトニトリル/水/トリエチルアミン(40/60/0.1)溶液により溶出した。8〜9分後に溶出され丸底フラスコに集められた化合物Aを含む放射活性フラクションを、減圧下エアヒーターで100℃に加熱して蒸発乾固させた。残渣を生理食塩水(3mL)に溶解し、滅菌したバイアル瓶に集めた。品質管理はアセトニトリル/水/トリエチルアミン(40/60/0.1)溶液を移動相として、1mL/分の流量で分析的HPLC(SHISEIDO CAPCELL PAC C−18 250×4.6 mm)を用いて行った。当該標識体の保持時間と非標識体の保持時間が同等であることを確認した。 A mixture of Precursor A (1.0 mg), aqueous sodium hydroxide (0.5 mol / L, 5 μL) and anhydrous N, N-dimethylformamide (300 μL) was well shaken and mixed. The reaction mixture was cooled to −20 ° C., blown with [ 11 C] methyl iodide and then heated at 80 ° C. for 5 minutes. Acetonitrile / water / triethylamine (40/60 / 0.1) solution (1 mL) was added to the reaction mixture and injected into a preparative HPLC column (SHISEIDO CAPCELL PAC C-18 250 × 10 mm) at a flow rate of 5 mL / min. Elution with acetonitrile / water / triethylamine (40/60 / 0.1) solution. The radioactive fraction containing Compound A eluted after 8-9 minutes and collected in a round bottom flask was heated to 100 ° C. with an air heater under reduced pressure to evaporate to dryness. The residue was dissolved in physiological saline (3 mL) and collected in a sterile vial. Quality control was performed using analytical HPLC (SHISEIDO CAPCELL PAC C-18 250 × 4.6 mm) at a flow rate of 1 mL / min using acetonitrile / water / triethylamine (40/60 / 0.1) solution as a mobile phase. It was. It was confirmed that the retention time of the labeled body was the same as that of the non-labeled body.

本製造により、収量2.10GBq〜3.24GBq、放射化学的純度98%以上、比放射能45〜89GBq/μmolの化合物A−1が得られた。HPLC精製および調剤を含む平均全合成時間は、照射の終了から約28分であった。   By this production, Compound A-1 having a yield of 2.10 GBq to 3.24 GBq, a radiochemical purity of 98% or more and a specific activity of 45 to 89 GBq / μmol was obtained. The average total synthesis time including HPLC purification and formulation was about 28 minutes from the end of irradiation.

実施例B−1:N−tert−ブチル−2−[2−(6−11C−メチルオキシピリジン−2−イル)−6−[3−(モルホリン−4−イル)プロポキシ]−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]アセトアミド(B−1)の合成 Example B-1: N-tert- Butyl-2- [2-(6- 11 C-methyloxy-2-yl) -6- [3- (morpholin-4-yl) propoxy] -4-oxopyrido Synthesis of [2,3-d] pyrimidin-3 (4H) -yl] acetamide (B-1)

(1)2−[6−ブロモ−2−(6−メトキシピリジン−2−イル)−4−オキソ−1,4−ジヒドロピリド[2,3−d]ピリミジン−3(2H)−イル]−N−tert−ブチルアセトアミド(B−1−1)の合成 (1) 2- [6-Bromo-2- (6-methoxypyridin-2-yl) -4-oxo-1,4-dihydropyrido [2,3-d] pyrimidin-3 (2H) -yl] -N Synthesis of tert-butylacetamide (B-1-1)

実施例A−1(1)と同様の手法にて、6−メトキシピリジン−2−カルバルデヒド(5.0g)から表題化合物(8.28g)を得た。   In the same manner as in Example A-1 (1), the title compound (8.28 g) was obtained from 6-methoxypyridine-2-carbaldehyde (5.0 g).

(2)2−[6−ブロモ−2−(6−メトキシピリジン−2−イル)−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]−N−tert−ブチルアセトアミド(B−1−2)の合成 (2) 2- [6-Bromo-2- (6-methoxypyridin-2-yl) -4-oxopyrido [2,3-d] pyrimidin-3 (4H) -yl] -N-tert-butylacetamide ( Synthesis of B-1-2)

実施例A−1(2)と同様の手法にて、実施例B−1(1)で得られた化合物B−1−1(8.28g)から表題化合物(6.86g、無色固体)を得た。
MS (ESI pos.) m/z : 446([M+H]+).
In the same manner as in Example A-1 (2), the title compound (6.86 g, colorless solid) was obtained from compound B-1-1 (8.28 g) obtained in Example B-1 (1). Obtained.
MS (ESI pos.) M / z: 446 ([M + H] + ).

(3)N−tert−ブチル−2−[6−ヒドロキシ−2−(6−メトキシピリジン−2−イル)−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]アセトアミド(B−1−3)の合成 (3) N-tert-butyl-2- [6-hydroxy-2- (6-methoxypyridin-2-yl) -4-oxopyrido [2,3-d] pyrimidin-3 (4H) -yl] acetamide ( Synthesis of B-1-3)

実施例A−1(3)と同様の手法にて、実施例B−1(2)で得られた化合物B−1−2(6.22g)から表題化合物(3.85g、灰色固体)を得た。
MS (ESI pos.) m/z : 384([M+H]+).
In the same manner as in Example A-1 (3), the title compound (3.85 g, gray solid) was obtained from compound B-1-2 (6.22 g) obtained in Example B-1 (2). Obtained.
MS (ESI pos.) M / z: 384 ([M + H] + ).

(4)N−tert−ブチル−2−[2−(6−メトキシピリジン−2−イル)−6−[3−(モルホリン−4−イル)プロポキシ]−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]アセトアミド(B−1−4)の合成 (4) N-tert-butyl-2- [2- (6-methoxypyridin-2-yl) -6- [3- (morpholin-4-yl) propoxy] -4-oxopyrido [2,3-d] Synthesis of pyrimidine-3 (4H) -yl] acetamide (B-1-4)

実施例A−1(4)と同様の手法にて、実施例B−1(3)で得られた化合物B−1−3(1.80g)から表題化合物(1.31g、黄色アモルファス)を得た。
MS (ESI pos.) m/z : 511([M+H]+).
1H-NMR (600 MHz, CDCl3) δ (ppm) ; 1.24 (9 H, s), 2.01 - 2.09 (2 H, m), 2.48 (4 H, br. s.), 2.55 (2 H, t, J=7.0 Hz), 3.70 - 3.77 (4 H, m), 3.94 (3 H, s), 4.20 (2 H, t, J=6.2 Hz), 5.08 (2 H, s), 5.39 (1 H, s), 6.87 (1 H, d, J=8.3 Hz), 7.67 - 7.71 (1 H, m), 7.72 - 7.77 (1 H, m), 7.96 (1 H, d, J=3.3 Hz), 8.73 (1 H, d, J=3.3 Hz).
In the same manner as in Example A-1 (4), the title compound (1.31 g, yellow amorphous) was obtained from compound B-1-3 (1.80 g) obtained in Example B-1 (3). Obtained.
MS (ESI pos.) M / z: 511 ([M + H] + ).
1 H-NMR (600 MHz, CDCl 3 ) δ (ppm); 1.24 (9 H, s), 2.01-2.09 (2 H, m), 2.48 (4 H, br.s.), 2.55 (2 H, t, J = 7.0 Hz), 3.70-3.77 (4 H, m), 3.94 (3 H, s), 4.20 (2 H, t, J = 6.2 Hz), 5.08 (2 H, s), 5.39 (1 H, s), 6.87 (1 H, d, J = 8.3 Hz), 7.67-7.71 (1 H, m), 7.72-7.77 (1 H, m), 7.96 (1 H, d, J = 3.3 Hz) , 8.73 (1 H, d, J = 3.3 Hz).

(5)N−tert−ブチル−2−[2−(6−ヒドロキシピリジン−2−イル)−6−[3−(モルホリン−4−イル)プロポキシ]−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]アセトアミド(プレカーサーB)の合成 (5) N-tert-butyl-2- [2- (6-hydroxypyridin-2-yl) -6- [3- (morpholin-4-yl) propoxy] -4-oxopyrido [2,3-d] Synthesis of pyrimidine-3 (4H) -yl] acetamide (precursor B)

実施例B−1(4)で得られた化合物B−1−4(700mg)、ヨウ化ナトリウム(1.44g)をアセトニトリル(20mL)に懸濁し、クロロトリメチルシラン(1.21mL)を加えた。15分間室温で攪拌後、外温85℃で1時間攪拌した。反応液を放冷後、氷冷下で水(20mL)を加えた後、飽和NaHCO3水溶液(100mL)及びCHCl3(100mL)を加え分液後、有機層を飽和食塩水(100mL)で洗浄した。水層をCHCl3(100mL)で3回抽出し、有機層を合わせてNa2SO4乾燥後、乾燥剤を濾別し、溶媒を減圧下留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(SNAP Cartridge HP-Sphere、移動相:CHCl3/MeOH=98/2〜85/15;v/v)にて精製した。得られた粗精製物にEtOAc(6mL)及びn−ヘキサン(3mL)を加え、析出物をろ取、乾燥し、表題化合物(290mg、淡褐色アモルファス)を得た。
MS (ESI pos.) m/z : 497([M+H]+).
1H-NMR (600 MHz, CDCl3) δ (ppm) ; 1.41 (9 H, s), 1.99 - 2.09 (2 H, m), 2.48 (4 H, br. s.), 2.55 (2 H, t, J=6.8 Hz), 3.69 - 3.76 (4 H, m), 4.20 (2 H, t, J=6.2 Hz), 4.61 (2 H, s), 6.09 (1 H, s), 6.73 (1 H, d, J=8.3 Hz), 6.96 (1 H, d, J=6.6 Hz), 7.48 - 7.54 (1 H, m), 7.87 - 7.93 (1 H, m), 8.74 (1 H, d, J=3.3 Hz), 10.54 - 11.09 (1 H, m).
Compound B-1-4 (700 mg) obtained in Example B-1 (4) and sodium iodide (1.44 g) were suspended in acetonitrile (20 mL), and chlorotrimethylsilane (1.21 mL) was added. . After stirring at room temperature for 15 minutes, the mixture was stirred at an external temperature of 85 ° C. for 1 hour. After allowing the reaction solution to cool, water (20 mL) was added under ice-cooling, saturated aqueous NaHCO 3 solution (100 mL) and CHCl 3 (100 mL) were added, and the mixture was separated, and the organic layer was washed with saturated brine (100 mL). did. The aqueous layer was extracted three times with CHCl 3 (100 mL), the organic layers were combined and dried over Na 2 SO 4 , the desiccant was filtered off, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (SNAP Cartridge HP-Sphere, mobile phase: CHCl 3 / MeOH = 98/2 to 85/15; v / v). EtOAc (6 mL) and n-hexane (3 mL) were added to the resulting crude product, and the precipitate was collected by filtration and dried to give the title compound (290 mg, light brown amorphous).
MS (ESI pos.) M / z: 497 ([M + H] + ).
1 H-NMR (600 MHz, CDCl 3 ) δ (ppm); 1.41 (9 H, s), 1.99-2.09 (2 H, m), 2.48 (4 H, br.s.), 2.55 (2 H, t, J = 6.8 Hz), 3.69-3.76 (4 H, m), 4.20 (2 H, t, J = 6.2 Hz), 4.61 (2 H, s), 6.09 (1 H, s), 6.73 (1 H, d, J = 8.3 Hz), 6.96 (1 H, d, J = 6.6 Hz), 7.48-7.54 (1 H, m), 7.87-7.93 (1 H, m), 8.74 (1 H, d, J = 3.3 Hz), 10.54-11.09 (1 H, m).

(6)N−tert−ブチル−2−[2−(6−11C−メチルオキシピリジン−2−イル)−6−[3−(モルホリン−4−イル)プロポキシ]−4−オキソピリド[2,3−d]ピリミジン−3(4H)−イル]アセトアミド(B−1)の合成 (6) N-tert-butyl-2- [2-(6- 11 C-methyloxy-2-yl) -6- [3- (morpholin-4-yl) propoxy] -4-oxopyrido [2, Synthesis of 3-d] pyrimidin-3 (4H) -yl] acetamide (B-1)

(方法1)
実施例B−1−(5)で得られたプレカーサーB (1.0 mg)と炭酸セシウム(10.0 mg)をジメチルスルホキシド(300 μL)に懸濁し、35.5 GBqの[11C]CO2から誘導した[11C]CH3Iを室温にて吹き込んだ。次いで100℃にて3分間加熱した。反応物を放冷後、溶媒 (50 mmol/L リン酸水溶液:アセトニトリル=4:1) を1 ml加え、HPLCを用いて精製した。HPLCカラムはX-Terra C18 (250×10 mm)を用い、移動相は50 mmol/Lリン酸水溶液とアセトニトリルの体積比が4:1である溶媒を用い、流速は4 ml/minで行った。11分から12分に溶出したフラクションを25% アスコルビン酸 (100 μL)とTween 80/エタノール混合溶媒 (100 μL)を加えたなすフラスコに分取した後、減圧濃縮を行った。次いで0.5 mMリン酸ナトリウム補正液(1 ml)と注射用水(2 ml)の混合溶液にて再溶解を行い、0.81 GBqの表題化合物を含む溶液を得た。分析HPLCにて当該標識体の保持時間と非標識体の保持時間が同等であることを確認した。HPLCカラムはX-Terra C18 (150×4.6 mm)を用い、移動相は50 mmol/Lリン酸水溶液とアセトニトリルの体積比が4:1である溶媒を用い、流速は1 ml/minで行った。
(方法2)
実施例B−1−(5)で得られたプレカーサーB (1.0 mg)と炭酸カリウム(10.3 mg)をジメチルホルムアミド(300 μL)に懸濁し、19.2 GBqの[11C]CO2から誘導した[11C]CH3Iを室温にて吹き込んだ。次いで100℃にて3分間加熱した。反応物を放冷後、溶媒 (50 mmol/L リン酸水溶液:アセトニトリル=4:1) を1 ml加え、HPLCを用いて精製した。HPLCカラムはSunfire C18 (250×10 mm)を用い、移動相は50 mmol/Lリン酸水溶液とアセトニトリルの体積比が4:1である溶媒を用い、流速は5 ml/minで行った。10分から12分に溶出したフラクションを25% アスコルビン酸 (100 μL)とTween 80/エタノール混合溶媒 (100 μL)を加えたなすフラスコに分取した後、減圧濃縮を行った。次いで0.5 mMリン酸ナトリウム補正液(1 ml)と注射用水(2 ml)の混合溶液にて再溶解を行い、1.91 GBqの表題化合物を含む溶液を得た。分析HPLCにて当該標識体の保持時間と非標識体の保持時間が同等であることを確認した。HPLCカラムはX-Terra C18 (150×4.6 mm)を用い、移動相は50 mmol/Lリン酸水溶液とアセトニトリルの体積比が4:1である溶媒を用い、流速は1 ml/minで行った。
(Method 1)
Precursor B (1.0 mg) and cesium carbonate (10.0 mg) obtained in Example B-1- (5) were suspended in dimethyl sulfoxide (300 μL) and derived from 35.5 GBq [ 11 C] CO 2 [ 11 C] CH 3 I was blown at room temperature. Subsequently, it heated at 100 degreeC for 3 minute (s). After allowing the reaction to cool, 1 ml of a solvent (50 mmol / L phosphoric acid aqueous solution: acetonitrile = 4: 1) was added and purified using HPLC. The HPLC column was X-Terra C18 (250 × 10 mm), the mobile phase was a solvent with a volume ratio of 50: 1 mmol / L phosphoric acid aqueous solution and acetonitrile, and the flow rate was 4 ml / min. . The fraction eluted from 11 to 12 minutes was collected in a flask containing 25% ascorbic acid (100 μL) and Tween 80 / ethanol mixed solvent (100 μL), and then concentrated under reduced pressure. Subsequently, it was redissolved with a mixed solution of 0.5 mM sodium phosphate correction solution (1 ml) and water for injection (2 ml) to obtain a solution containing 0.81 GBq of the title compound. It was confirmed by analytical HPLC that the retention time of the labeled body was the same as that of the unlabeled body. The HPLC column was X-Terra C18 (150 × 4.6 mm), the mobile phase was a solvent with a volume ratio of 50: 1 / mmol of phosphoric acid and acetonitrile, and the flow rate was 1 ml / min. .
(Method 2)
Precursor B (1.0 mg) and potassium carbonate (10.3 mg) obtained in Example B-1- (5) were suspended in dimethylformamide (300 μL) and derived from 19.2 GBq [ 11 C] CO 2 [ 11 C] CH 3 I was blown at room temperature. Subsequently, it heated at 100 degreeC for 3 minute (s). After allowing the reaction to cool, 1 ml of a solvent (50 mmol / L phosphoric acid aqueous solution: acetonitrile = 4: 1) was added and purified using HPLC. The HPLC column was Sunfire C18 (250 × 10 mm), the mobile phase was a solvent having a volume ratio of 50: 1 mmol / L phosphoric acid aqueous solution to acetonitrile, and the flow rate was 5 ml / min. The fraction eluted from 10 to 12 minutes was fractionated into a flask containing 25% ascorbic acid (100 μL) and Tween 80 / ethanol mixed solvent (100 μL), and then concentrated under reduced pressure. Subsequently, it was redissolved with a mixed solution of 0.5 mM sodium phosphate correction solution (1 ml) and water for injection (2 ml) to obtain a solution containing 1.91 GBq of the title compound. It was confirmed by analytical HPLC that the retention time of the labeled body was the same as that of the unlabeled body. The HPLC column was X-Terra C18 (150 × 4.6 mm), the mobile phase was a solvent with a volume ratio of 50: 1 / mmol of phosphoric acid and acetonitrile, and the flow rate was 1 ml / min. .

試験例1
・V1b受容体結合試験
ヒトV1b受容体を一過性に発現させた293FT細胞を回収し、15mmol/L トリス塩酸緩衝液(pH7.4、2mmol/L 塩化マグネシウム、0.3mmol/L エチレンジアミン四酢酸、1mmol/L グリコールエーテルジアミン四酢酸を含む)中でホモジナイズした。得られたホモジネートを50,000×g、4℃で20分間遠心分離し、沈殿物を75mmol/L トリス塩酸緩衝液(pH7.4、12.5mmol/L 塩化マグネシウム、0.3mmol/L エチレンジアミン四酢酸、1mmol/L グリコールエーテルジアミン四酢酸、250mmol/L ショ糖を含む)に再懸濁して粗膜標品とし、結合試験実施前まで−80℃にて保存した。結合試験の際は、この粗膜標品を50mmol/L トリス塩酸緩衝液(pH7.4、10mmol/L 塩化マグネシウム、0.1% ウシ血清アルブミンを含む)にて希釈し、各被検化合物、及び[3H]AVP(最終濃度0.4〜1nmol/L)と混合し、室温で60分間インキュベーションした。被検化合物はDMSOにて段階的に希釈し、混合時の被検化合物の最終濃度は、0.01nmol/L〜1μmol/Lである。インキュベーション後、混合溶液を0.3% ポリエチレンイミンを浸透させたGF/Cフィルターへと吸引濾過した。このGF/Cフィルターを乾燥させてシンチレーターを加えた後、トップカウント(パーキンエルマー社)を用いてフィルター上に残存する放射能を測定した。10μmol/Lの未標識AVP存在下での放射能を0%とし、未標識AVP非存在下での放射能を100%とした。各濃度の被検化合物存在下での放射能より用量反応曲線を作成し、被検化合物の50%阻害濃度(IC50値)を算出した。化合物A−1−4及びB−1−4のIC50値を表1に示す。
Test example 1
-V1b receptor binding test 293FT cells in which human V1b receptor was transiently expressed were collected, and 15 mmol / L Tris-HCl buffer (pH 7.4, 2 mmol / L magnesium chloride, 0.3 mmol / L ethylenediaminetetraacetic acid). In 1 mmol / L glycol ether diamine tetraacetic acid). The obtained homogenate was centrifuged at 50,000 × g for 20 minutes at 4 ° C., and the precipitate was added to 75 mmol / L Tris-HCl buffer (pH 7.4, 12.5 mmol / L magnesium chloride, 0.3 mmol / L ethylenediamine tetrachloride). Acetic acid, 1 mmol / L glycol ether diamine tetraacetic acid, 250 mmol / L sucrose included) was resuspended to prepare a crude film sample, and stored at −80 ° C. until the binding test was performed. In the binding test, the crude membrane preparation was diluted with 50 mmol / L Tris-HCl buffer (pH 7.4, 10 mmol / L magnesium chloride, containing 0.1% bovine serum albumin), and each test compound, And [ 3 H] AVP (final concentration 0.4-1 nmol / L) and incubated for 60 minutes at room temperature. The test compound is diluted stepwise with DMSO, and the final concentration of the test compound at the time of mixing is 0.01 nmol / L to 1 μmol / L. After the incubation, the mixed solution was suction filtered through a GF / C filter infiltrated with 0.3% polyethyleneimine. After drying this GF / C filter and adding a scintillator, the radioactivity remaining on the filter was measured using a top count (Perkin Elmer). The radioactivity in the presence of 10 μmol / L unlabeled AVP was 0%, and the radioactivity in the absence of unlabeled AVP was 100%. A dose response curve was prepared from the radioactivity in the presence of each concentration of the test compound, and the 50% inhibitory concentration (IC 50 value) of the test compound was calculated. The IC 50 values of compounds A-1-4 and B-1-4 are shown in Table 1.

試験例2
・PETイメージング
方法
PET撮像には雄性アカゲザルを用いた。サルはイソフルラン(1.5% v/v)によって持続的に麻酔し、伏在静脈に放射性標識化合物および薬液投与のための留置針を設置した。PET撮像は小動物用PET Focus 220 (Siemens)を使用し、イソフルラン麻酔下のサルを同機器に測定用の姿勢にて固定した。PET撮像中は、動物を保温マットにて覆い体温の維持を行い、パルスオキシメータで状態を管理した。
Test example 2
・ PET imaging
Method Male rhesus monkeys were used for PET imaging. The monkeys were continuously anesthetized with isoflurane (1.5% v / v) and an indwelling needle was placed in the saphenous vein for administration of the radiolabeled compound and drug solution. For PET imaging, PET Focus 220 (Siemens) for small animals was used, and a monkey under isoflurane anesthesia was fixed to the same device in a measurement posture. During PET imaging, the animal was covered with a heat insulating mat to maintain the body temperature, and the state was controlled with a pulse oximeter.

放射性標識化合物A−1(388 MBq/サル個体)を静脈内投与し、投与直後から90分間のPET撮像を行った。撮像はリストモードで実施し、0.5 mm Hanningフィルターを用いて画像再構成を行った。得られたPETイメージデータは、PMOD software (PMOD Technology)を使用し、放射性標識化合物分布の三次元マップの構築、および下垂体に設定したregion of interest(ROI)での放射能濃度の時間変化の解析に用いた。   Radiolabeled compound A-1 (388 MBq / monkey individual) was intravenously administered, and PET imaging was performed for 90 minutes immediately after administration. Imaging was performed in list mode, and image reconstruction was performed using a 0.5 mm Hanning filter. The obtained PET image data uses PMOD software (PMOD Technology) to construct a three-dimensional map of the distribution of radiolabeled compounds, and the time-dependent changes in radioactivity concentration in the region of interest (ROI) set in the pituitary gland. Used for analysis.

放射性標識化合物A−1の下垂体での放射能集積の低下を確認するため、同じ個体のサルを使用し、非標識化合物A−1―4を前投与(10 mg/kg、伏在静脈より投与)し、直後に放射性標識化合物A−1(352 MBq/サル個体)を投与し、放射性標識化合物投与直後から90分間のPET撮像を行った(Blocking試験)。   In order to confirm the decrease in radioactivity accumulation in the pituitary gland of radiolabeled compound A-1, the same monkey was used and pre-administered unlabeled compound A-1-4 (10 mg / kg, from saphenous vein) The radiolabeled compound A-1 (352 MBq / monkey individual) was administered immediately, and PET imaging was performed for 90 minutes immediately after the radiolabeled compound administration (Blocking test).

放射性標識化合物B−1(341 MBq/サル個体)を静脈内投与し、投与直後から90分までの間のPET撮像を行った。また、下垂体での放射能集積の低下は、非標識化合物B−1―4を前投与(10 mg/kg、伏在静脈より投与)し、直後に放射性標識化合物B−1(303 MBq/サル個体)を投与し、放射性標識化合物投与直後から90分間のPET撮像を行った。PET撮像、画像再構成およびPETイメージデータの解析は、放射性標識化合物A−1と同様の方法を用いた。   Radiolabeled compound B-1 (341 MBq / monkey individual) was intravenously administered, and PET imaging was performed for 90 minutes immediately after administration. In addition, the decrease in radioactivity accumulation in the pituitary gland was caused by pre-administration of unlabeled compound B-1-4 (10 mg / kg, administered from the saphenous vein), and immediately after that radiolabeled compound B-1 (303 MBq / Monkeys) and PET imaging was performed for 90 minutes immediately after administration of the radiolabeled compound. PET imaging, image reconstruction, and analysis of PET image data used the same methods as for radiolabeled compound A-1.

試験結果
試験結果を図1及び2に示す。
Test results The test results are shown in FIGS.

図1に示されている通り、放射性標識化合物A−1を使用した試験において、放射性標識化合物A−1の投与直後より、V1b受容体の高い発現を認める下垂体において放射能濃度の上昇を確認した。下垂体への放射能の取り込みは投与2分後にピークに達し、そのピークの取り込み量は0.11%Injected dose (ID)/mLであった。ピークに達した後は徐々にその放射能は低下し、投与90分後での取り込み量は0.044%ID/mLであった。下垂体以外の頭部内の組織において、下垂体と同様の放射能の取り込みは認められなかった。   As shown in FIG. 1, in a test using radiolabeled compound A-1, an increase in radioactivity concentration was confirmed in the pituitary gland where high expression of V1b receptor was observed immediately after administration of radiolabeled compound A-1. did. The uptake of radioactivity into the pituitary reached a peak 2 minutes after administration, and the peak uptake was 0.11% Injected dose (ID) / mL. The radioactivity gradually decreased after reaching the peak, and the uptake at 90 minutes after administration was 0.044% ID / mL. The uptake of radioactivity similar to that of the pituitary gland was not observed in tissues in the head other than the pituitary gland.

非標識化合物A−1を前投与することにより、下垂体での放射能取り込みは、投与1分後でピークに達し、そのピーク値の取り込み量は0.085%ID/mLであった。ピークに達した後、放射能は低下し、投与90分後での取り込み量は0.012%ID/mLであった。放射性標識化合物A−1単独投与での試験結果と比較し、下垂体での放射能の取り込みは低下した。   By pre-administering unlabeled compound A-1, radioactivity uptake in the pituitary gland reached a peak 1 minute after administration, and the peak value uptake was 0.085% ID / mL. After reaching the peak, the radioactivity decreased, and the uptake at 90 minutes after administration was 0.012% ID / mL. The radioactivity uptake in the pituitary gland was reduced as compared with the test results obtained with the radiolabeled compound A-1 alone.

図2に示されている通り、放射性標識化合物B−1を使用した試験において、放射性標識化合物B−1の投与直後より下垂体において放射能濃度の上昇を確認した。下垂体への放射能の取り込みは投与2分後にピークに達し、そのピークの取り込み量は0.13%Injected dose (ID)/mLであった。ピークに達した後は徐々にその放射能は低下し、投与90分後での取り込み量は0.068%ID/mLであった。下垂体以外の頭部内の組織において、下垂体と同様の放射能の取り込みは認められなかった。   As shown in FIG. 2, in the test using radiolabeled compound B-1, an increase in radioactivity concentration was confirmed in the pituitary gland immediately after administration of radiolabeled compound B-1. The uptake of radioactivity into the pituitary reached a peak 2 minutes after administration, and the peak uptake was 0.13% Injected dose (ID) / mL. The radioactivity gradually decreased after reaching the peak, and the uptake at 90 minutes after administration was 0.068% ID / mL. The uptake of radioactivity similar to that of the pituitary gland was not observed in tissues in the head other than the pituitary gland.

非標識化合物B−1−4を前投与することにより、下垂体での放射能取り込みは、投与2分後でピークに達し、そのピーク値の取り込み量は0.078%ID/mLであった。ピークに達した後、放射能は低下し、投与90分後での取り込み量は0.008%ID/mLであった。放射性標識化合物B−1単独投与での試験結果と比較し、下垂体での放射能の取り込みは低下した。   By pre-administering unlabeled compound B-1-4, the radioactivity uptake in the pituitary gland reached a peak 2 minutes after administration, and the uptake of the peak value was 0.078% ID / mL. After reaching the peak, the radioactivity decreased and the uptake 90 minutes after administration was 0.008% ID / mL. The radioactivity uptake in the pituitary gland was reduced as compared with the test results with the radiolabeled compound B-1 alone.

同じ個体のサル脳の核磁気共鳴画像と重ね合わせた放射性標識化合物A−1投与30から90分の間のPET加算画像を図1に示す。(a) 放射性標識化合物A−1のみ投与したサル(冠状断面図)、(b) 放射性標識化合物A−1のみ投与したサル(矢状断面図)、(c) 非標識化合物A−1−4を前投与後、放射性標識化合物A−1を投与したサル(冠状断面図)、(d) 非標識化合物A−1−4を前投与後、放射性標識化合物A−1を投与したサル(矢状断面図)。同じ個体のサル脳の核磁気共鳴画像と重ね合わせた放射性標識化合物B−1投与30から90分の間のPET加算画像を図2に示す。(a) 放射性標識化合物B−1のみ投与したサル(冠状断面図)、(b) 放射性標識化合物B−1のみ投与したサル(矢状断面図)、(c) 非標識化合物B−1−4を前投与後、放射性標識化合物B−1を投与したサル(冠状断面図)、(d) 非標識化合物B−1−4を前投与後、放射性標識化合物B−1を投与したサル(矢状断面図)。各図中の右上埋め込み図は矢印部分(下垂体に相当)の拡大図。   FIG. 1 shows a PET addition image for 30 to 90 minutes after administration of the radiolabeled compound A-1 superimposed on the nuclear magnetic resonance image of the monkey brain of the same individual. (a) monkey administered only with radiolabeled compound A-1 (coronary cross section), (b) monkey administered with only radiolabeled compound A-1 (sagittal cross section), (c) unlabeled compound A-1-4 After administration of radiolabeled compound A-1 (coronary sectional view), (d) monkey (sagittal) administered with radiolabeled compound A-1 after preadministration of unlabeled compound A-1-4 Sectional view). FIG. 2 shows a PET addition image for 30 to 90 minutes after administration of the radiolabeled compound B-1 superimposed on the nuclear magnetic resonance image of the monkey brain of the same individual. (a) monkey administered with radiolabeled compound B-1 only (coronal cross section), (b) monkey administered with radiolabeled compound B-1 only (sagittal cross section), (c) unlabeled compound B-1-4 Monkey (coronary cross-sectional view) administered with radiolabeled compound B-1 after pre-administration, (d) monkey (sagittal) administered with radiolabeled compound B-1 after pre-administration of non-labeled compound B-1-4 Sectional view). The upper right embedded diagram in each figure is an enlarged view of an arrow portion (corresponding to a pituitary gland).

本発明は、PET等の画像診断技術を用いてバソプレッシンV1b受容体の機能変化に起因する各種疾患の診断をするために有用である。また、バソプレッシンV1b受容体拮抗物質又は作動物質を各種病気の治療薬として使用するに当たって、PET等の画像診断技術を用いてその有効量を推定するためにも有用である。   The present invention is useful for diagnosing various diseases caused by functional changes of the vasopressin V1b receptor using diagnostic imaging techniques such as PET. In addition, when a vasopressin V1b receptor antagonist or agonist is used as a therapeutic agent for various diseases, it is also useful for estimating the effective amount using an image diagnostic technique such as PET.

Claims (10)

下記一般式(I)に示される化合物又はその製薬学的に許容される塩。
[上記一般式(I)において、
Xは、CH又はNを示し、
1は、C1-5アルキル(該C1-5アルキルはヒドロキシ、ハロゲン原子、シアノ、C3-7シクロアルキル、及びC1-5アルコキシからなる群より選ばれる同一又は異なった1〜3個の置換基で置換されても良い)であり、
2は、同一又は異なった1〜3個のハロゲン原子で置換されても良いC1-5アルキル基であり、
ここで、R2は、11C、18F、123I、125I、131I、75Br、76Br及び82Brからなる群より選ばれる1つの放射性同位元素で標識されている。]
A compound represented by the following general formula (I) or a pharmaceutically acceptable salt thereof.
[In the above general formula (I),
X represents CH or N;
R 1 is C 1-5 alkyl (the C 1-5 alkyl is the same or different 1-3 selected from the group consisting of hydroxy, halogen atom, cyano, C 3-7 cycloalkyl, and C 1-5 alkoxy. May be substituted with one substituent),
R 2 is a C 1-5 alkyl group which may be substituted with 1 to 3 halogen atoms which are the same or different,
Here, R 2 is labeled with one radioisotope selected from the group consisting of 11 C, 18 F, 123 I, 125 I, 131 I, 75 Br, 76 Br, and 82 Br. ]
211Cで標識されたメチル基である、請求項1に記載の化合物又はその製薬学的に許容される塩。 The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein R 2 is a methyl group labeled with 11 C. 請求項1又は2に記載の化合物又はその製薬学的に許容される塩を含有する、バソプレッシンV1b受容体標識剤。 A vasopressin V1b receptor labeling agent comprising the compound according to claim 1 or 2 or a pharmaceutically acceptable salt thereof. 請求項1又は2に記載の化合物又はその製薬学的に許容される塩を含有する、陽電子断層撮影用のバソプレッシンV1b受容体標識剤。 A vasopressin V1b receptor labeling agent for positron tomography, comprising the compound according to claim 1 or 2 or a pharmaceutically acceptable salt thereof. 請求項1又は2に記載の化合物又はその製薬学的に許容される塩を含有する、バソプレッシンV1b受容体に関連した疾患の診断薬。 A diagnostic agent for a disease associated with the vasopressin V1b receptor, comprising the compound according to claim 1 or 2 or a pharmaceutically acceptable salt thereof. 請求項1又は2に記載の化合物又はその製薬学的に許容される塩を含有する、医薬組成物。 A pharmaceutical composition comprising the compound according to claim 1 or 2 or a pharmaceutically acceptable salt thereof. 請求項1又は2に記載の化合物又はその製薬学的に許容される塩の製造方法であって、式(II):
(式中、R1、Xは上記で定義した通りである)で表される化合物と、式R2−L1(R2は上記で定義した通りであり、L1は脱離基である)で表される化合物とを、塩基及び溶媒の存在下で反応させることを含む方法。
A process for producing the compound according to claim 1 or 2 or a pharmaceutically acceptable salt thereof, comprising the formula (II):
Wherein R 1 and X are as defined above, and the formula R 2 -L 1 where R 2 is as defined above and L 1 is a leaving group. And a compound represented by formula (1) in the presence of a base and a solvent.
1が、4−ニトロベンゼンスルホニルオキシ基、p−トルエンスルホニルオキシ基、メタンスルホニルオキシ基、及びハロゲン原子からなる群より選択される、請求項7に記載の方法。 The method according to claim 7, wherein L 1 is selected from the group consisting of a 4-nitrobenzenesulfonyloxy group, a p-toluenesulfonyloxy group, a methanesulfonyloxy group, and a halogen atom. 塩基が、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、トリエチルアミン又はジイソプロピルエチルアミンを含む、請求項7又は8に記載の方法。   The method according to claim 7 or 8, wherein the base comprises potassium carbonate, cesium carbonate, sodium hydroxide, triethylamine or diisopropylethylamine. 溶媒が、テトラヒドロフラン、アセトニトリル、N,N−ジメチルホルムアミド、ジメチルスルホキシド、水又はそれらの混合物である、請求項7〜9のいずれか1項に記載の方法。   The method according to any one of claims 7 to 9, wherein the solvent is tetrahydrofuran, acetonitrile, N, N-dimethylformamide, dimethyl sulfoxide, water or a mixture thereof.
JP2013264135A 2013-12-20 2013-12-20 Radiolabeled ligand of V1b receptor Active JP6376376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264135A JP6376376B2 (en) 2013-12-20 2013-12-20 Radiolabeled ligand of V1b receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264135A JP6376376B2 (en) 2013-12-20 2013-12-20 Radiolabeled ligand of V1b receptor

Publications (2)

Publication Number Publication Date
JP2015120644A true JP2015120644A (en) 2015-07-02
JP6376376B2 JP6376376B2 (en) 2018-08-22

Family

ID=53532649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264135A Active JP6376376B2 (en) 2013-12-20 2013-12-20 Radiolabeled ligand of V1b receptor

Country Status (1)

Country Link
JP (1) JP6376376B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017236A1 (en) * 2007-08-01 2009-02-05 Taisho Pharmaceutical Co., Ltd. Pyridopyrimidin-4-one derivatives
JP2010173974A (en) * 2009-01-30 2010-08-12 Taisho Pharmaceutical Co Ltd New use of medicine containing pyridopyrimidine-4-one derivative
JP2010173978A (en) * 2009-01-30 2010-08-12 Taisho Pharmaceutical Co Ltd Pyridopyrimidin-4-one derivative

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017236A1 (en) * 2007-08-01 2009-02-05 Taisho Pharmaceutical Co., Ltd. Pyridopyrimidin-4-one derivatives
JP2010173974A (en) * 2009-01-30 2010-08-12 Taisho Pharmaceutical Co Ltd New use of medicine containing pyridopyrimidine-4-one derivative
JP2010173978A (en) * 2009-01-30 2010-08-12 Taisho Pharmaceutical Co Ltd Pyridopyrimidin-4-one derivative

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIOORG. MED. CHEM., vol. 14, JPN6017028978, 2006, pages 8599 - 8607, ISSN: 0003723396 *
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 46, JPN6017028980, 2011, pages 4760 - 4767, ISSN: 0003723397 *
J. MED. CHEM., vol. 51, JPN6017028981, 2008, pages 5833 - 5842, ISSN: 0003723398 *

Also Published As

Publication number Publication date
JP6376376B2 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
Luo et al. Syntheses and in vitro evaluation of new S1PR1 compounds and initial evaluation of a lead F-18 radiotracer in rodents
TWI568714B (en) Compositions, methods, and systems for the synthesis and use of imaging agents
TW201702217A (en) Compositions, methods and systems for the synthesis and use of imaging agents
US9987381B2 (en) Radioligands for imaging the LPA-1 receptor
JP2022508699A (en) Radioligand for imaging LPA1 receptor
Mu et al. Synthesis and pharmacological evaluation of [11C] granisetron and [18F] fluoropalonosetron as PET probes for 5-HT3 receptor imaging
TW200820988A (en) Radiofluorination
JP4554202B2 (en) Radiolabeled neuropeptide YY5 receptor antagonist
JP6376376B2 (en) Radiolabeled ligand of V1b receptor
JP5441060B2 (en) Kit for producing a molecular probe for PET screening for drug discovery
US20170174632A1 (en) 4-oxo-1, 4-dihydroquinoline-3-carboxamide as selective ligand for cannabinoid receptor 2 for diagnosis and therapy
JP5744057B2 (en) Aryloxyanilide imaging agent
JP6218366B2 (en) Radiolabeled ligand for H3 receptor
JP2012509887A (en) Imaging ligand
KR101519006B1 (en) Novel benzamide derivative or pharmaceutically acceptable salt thereof, preparation method thereof and pharmaceutical composition for diagnosis of cancer disease containing the same as an active ingredient
JP2014521628A (en) New compounds
JP6273251B2 (en) Aromatic amino acid derivative and PET probe using the same
JP6488045B2 (en) Compounds suitable for detection of acetylcholine vesicle transporters
JP6187460B2 (en) Pyridopyrimidin-4-one derivatives
NL2013049B1 (en) 6,7-Dioxyalkyltetrahydroisoquinoline Compounds.
WO2023278729A1 (en) Chromane imaging ligands
JP2016513083A (en) Radiolabeled compound
JP6496101B2 (en) Compounds suitable for detection of acetylcholine vesicle transporters
EP1545525A2 (en) Radiolabeled neurokinin-1 receptor antagonists

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180711

R150 Certificate of patent or registration of utility model

Ref document number: 6376376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250