JP2015118818A - Lighting appliance - Google Patents

Lighting appliance Download PDF

Info

Publication number
JP2015118818A
JP2015118818A JP2013261907A JP2013261907A JP2015118818A JP 2015118818 A JP2015118818 A JP 2015118818A JP 2013261907 A JP2013261907 A JP 2013261907A JP 2013261907 A JP2013261907 A JP 2013261907A JP 2015118818 A JP2015118818 A JP 2015118818A
Authority
JP
Japan
Prior art keywords
light
incident
led
guide lens
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013261907A
Other languages
Japanese (ja)
Inventor
知紘 吉村
Tomohiro Yoshimura
知紘 吉村
泰代 池田
Yasuyo Ikeda
泰代 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013261907A priority Critical patent/JP2015118818A/en
Publication of JP2015118818A publication Critical patent/JP2015118818A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To suitably illuminate a desired irradiation range.SOLUTION: A lighting appliance 1 comprises an LED 2 which substantially-radially emits light frontward with an optical axis Ax along a fore-and-aft direction as a center, and a light guide lens 3 arranged in front of the LED 2. The light guide lens 3 has: an incident face 31 which is arranged at a portion opposing the LED 2 out of a rear face, and formed into a substantially-semi spherical shape with a position of the LED 2 as a center; a conical protrusion 33 which is protrusively arranged frontward in front of the LED 2 out of a front face with a position on the optical axis Ax as a tip; a front optical face 34 which is arranged at a periphery of the protrusion 33 out of a front face, formed into a hyperboloid shape having a focus point F located in front of the optical axis Ax, and can emit light frontward while internally reflecting light from the incident face 31 to a rear oblique sideway; and a rear reflection face 32 which is arranged at a periphery of the incident face 31 out of a rear face, formed into a free curved face shape having the same focus point F as the front optical face 34, and internally reflects light which is internally reflected at the front optical face 34.

Description

本発明は、灯具に関し、特に、LED(発光ダイオード)からの光を導光レンズで配光制御する灯具に関する。   The present invention relates to a lamp, and more particularly, to a lamp that controls light distribution of light from an LED (light emitting diode) with a light guide lens.

近年、一般照明用などの各種の灯具として、環境性能に優れるLEDを光源としたものが多く提案され、実用化されてきている。このような灯具では、一般に、LEDの前方に配置した導光レンズによって、LEDからの光を所望の配光となるよう制御して照射させている。   In recent years, many types of lamps for general lighting have been proposed and put into practical use using LEDs having excellent environmental performance as a light source. In such a lamp, in general, light from the LED is controlled and irradiated so as to have a desired light distribution by a light guide lens disposed in front of the LED.

具体的には、例えば特許文献1に記載の灯具では、図5に示すように、LEDが導光レンズの後面中央に対向配置されており、導光レンズが、その前面中央に形成された断面V字状の第一反射面と、その側方に形成された放物面状の第二反射面とを有している。そして、LEDから前方へ出射されて導光レンズ内に入射した光を、第一反射面で側方へ反射させた後に第二反射面で平行光にしつつ前方へ反射させて、出射面から前方へ照射させている。   Specifically, for example, in the lamp described in Patent Document 1, as shown in FIG. 5, the LED is disposed opposite to the center of the rear surface of the light guide lens, and the light guide lens is formed in the center of the front surface. It has a V-shaped first reflecting surface and a parabolic second reflecting surface formed on the side thereof. Then, the light emitted forward from the LED and incident on the light guide lens is reflected sideways by the first reflecting surface and then reflected to the front while being converted into parallel light by the second reflecting surface, and forward from the emitting surface. Is being irradiated.

特開2005−190669号公報JP 2005-190669 A

しかしながら、上記特許文献1に記載の灯具では、前方への強い指向性を有する配光となるため、所望の照射範囲を照らすように配光制御することができない。したがって、当該灯具を照明器具に適用した場合には、灯具直下だけが極端に眩しくなり、目が疲れてしまう。   However, the lamp described in Patent Document 1 has a light distribution having a strong directivity to the front, and thus cannot perform light distribution control so as to illuminate a desired irradiation range. Therefore, when the lamp is applied to a lighting fixture, only the portion immediately below the lamp becomes extremely dazzling and the eyes become tired.

本発明は、上記課題を鑑みてなされたもので、所望の照射範囲を好適に照らすことができる灯具の提供を目的とする。   This invention is made | formed in view of the said subject, and aims at provision of the lamp which can illuminate a desired irradiation range suitably.

上記目的を達成するために、請求項1に記載の発明は、
前後方向に沿った光軸を有し、当該光軸を中心に前方へ略放射状に光を出射させるLEDと、
前記LEDの前方に配置され、当該LEDから出射された光を配光制御しつつ前方へ照射する導光レンズと、
を備える灯具であって、
前記導光レンズは、
当該導光レンズの後面のうち前記LEDと対向する部分に設けられるとともに、前記LEDの位置を中心とする略半球状に形成され、前記LEDから出射された光を当該導光レンズ内に入射させる入射面と、
当該導光レンズの前面のうち前記LEDの前方に位置する部分に、前記光軸上の位置を先端として前方へ突設された錐状の突起部と、
当該導光レンズの前面のうち前記突起部の周囲に設けられるとともに、前記光軸上の前方に位置する焦点を有する双曲面状に形成され、前記入射面から当該導光レンズ内に入射した光を後方斜め側方へ内部反射させつつ前方へ光を出射可能な前部光学面と、
当該導光レンズの後面のうち前記入射面の周囲に設けられるとともに、前記前部光学面と同一の前記焦点を有する自由曲面状に形成され、前記前部光学面で内部反射された光を前方へ内部反射させる後部反射面と、
を有することを特徴とする。
In order to achieve the above object, the invention described in claim 1
An LED that has an optical axis along the front-rear direction and emits light substantially radially forward about the optical axis;
A light guide lens disposed in front of the LED and irradiating the light emitted from the LED forward while controlling the light distribution;
A lamp comprising:
The light guide lens is
The light guide lens is provided on a portion of the rear surface of the light guide lens facing the LED, and is formed in a substantially hemispherical shape centered on the position of the LED, and allows the light emitted from the LED to enter the light guide lens. An incident surface;
A conical protrusion projecting forward with the position on the optical axis at the front end of the LED on the front surface of the light guide lens; and
Light that is provided around the protrusion on the front surface of the light guide lens, is formed into a hyperboloid having a focal point located in front of the optical axis, and is incident on the light guide lens from the incident surface. A front optical surface that is capable of emitting light forward while internally reflecting diagonally to the rear side,
The light guide lens is provided around the entrance surface of the rear surface of the light guide lens, is formed in a free-form surface having the same focal point as the front optical surface, and internally reflects light reflected by the front optical surface. A rear reflecting surface for internal reflection,
It is characterized by having.

請求項2に記載の発明は、請求項1に記載の灯具において、
前記突起部は、
前記入射面から当該突起部の周面への光の入射角が臨界角以上となる部分を含み、
前記入射面からの光を一方の周面で内部反射させた後に他方の周面で後方斜め側方へ屈折させつつ出射させ、
前記前部光学面は、前記突起部から出射された光を前方斜め側方へ反射させることを特徴とする。
The invention according to claim 2 is the lamp according to claim 1,
The protrusion is
Including a portion where the incident angle of light from the incident surface to the peripheral surface of the protrusion is a critical angle or more;
The light from the incident surface is internally reflected on one peripheral surface and then refracted rearward and obliquely on the other peripheral surface.
The front optical surface reflects light emitted from the protrusions obliquely forward and laterally.

請求項3に記載の発明は、請求項1又は2に記載の灯具において、
前記前部光学面は、前記入射面からの光の入射角が略臨界角未満となる低臨界角部分と、当該入射角が略臨界角以上となる高臨界角部分とを有するとともに、このうちの前記低臨界角部分がアルミ蒸着面であることを特徴とする。
The invention according to claim 3 is the lamp according to claim 1 or 2,
The front optical surface has a low critical angle portion where the incident angle of light from the incident surface is less than approximately the critical angle, and a high critical angle portion where the incident angle is approximately equal to or greater than the critical angle. The low critical angle portion is an aluminum deposition surface.

請求項4に記載の発明は、請求項3に記載の灯具において、
前記後部反射面がアルミ蒸着面であることを特徴とする。
The invention according to claim 4 is the lamp according to claim 3,
The rear reflection surface is an aluminum vapor deposition surface.

請求項5に記載の発明は、請求項4に記載の灯具において、
前記前部光学面のうちの前記低臨界角部分と、前記後部反射面との少なくとも一方が、ハーフミラー面であることを特徴とする。
The invention according to claim 5 is the lamp according to claim 4,
At least one of the low critical angle portion of the front optical surface and the rear reflective surface is a half mirror surface.

本発明によれば、LEDから前方へ略放射状に出射された光が、LEDの位置を中心とする略半球状の入射面を通じて殆ど屈折されることなく導光レンズ内に入射した後に、中央部のものが錐状の突起部に入射し、それよりも側方側へのものが光軸上前方の焦点を有する双曲面状の前部光学面に入射する。このうち、突起部に入射した光は、当該突起部の周面を通じて斜め前方へ屈折されつつ出射される。一方、前部光学面に入射した光は、当該前部光学面で後方斜め側方へ内部反射された後に、前部光学面と同一の焦点を有する自由曲面状の後部反射面によって、あたかも当該焦点からの光が反射されるようにして前方へさらに内部反射されてから、前部光学面を通じて斜め側方へ屈折されつつ前方へ出射される。
したがって、前方への強い指向性を有していた従来と異なり、出射光を好適に拡散させつつ、自由曲面状の後部反射面を適切に設定することによって任意の配光制御を行うことができ、ひいては、所望の照射範囲を好適に照らすことができる。
According to the present invention, after the light emitted from the LED substantially radially forward is incident on the light guide lens without being refracted through the substantially hemispherical incident surface centered on the position of the LED, Is incident on the cone-shaped protrusion, and the object on the lateral side is incident on a hyperboloid front optical surface having a focal point forward on the optical axis. Among these, the light incident on the protrusion is emitted while being refracted forward obliquely through the peripheral surface of the protrusion. On the other hand, after the light incident on the front optical surface is internally reflected backward and obliquely laterally by the front optical surface, it is as if the free-form rear reflection surface having the same focal point as the front optical surface After the light from the focal point is reflected and further internally reflected forward, it is emitted forward while being refracted obliquely through the front optical surface.
Therefore, unlike the conventional case, which has a strong directivity to the front, arbitrary light distribution control can be performed by appropriately setting the rear reflection surface of the free-form surface while appropriately diffusing the emitted light. As a result, a desired irradiation range can be suitably illuminated.

(a)実施形態における灯具の断面図であり、(b)(a)のE部の拡大図である。(A) It is sectional drawing of the lamp in embodiment, (b) It is an enlarged view of the E section of (a). 実施形態における灯具での光線軌跡を示す図である。It is a figure which shows the light ray locus | trajectory with the lamp in embodiment. 実施形態における灯具での光線軌跡を示す図である。It is a figure which shows the light ray locus | trajectory with the lamp in embodiment. 実施形態における灯具の変形例を示す図である。It is a figure which shows the modification of the lamp in embodiment. 従来の灯具の断面図である。It is sectional drawing of the conventional lamp.

以下、本発明の実施形態について、図面を参照して説明する。
図1(a)は、本実施形態における灯具1の要部の断面図であり、図1(b)は、図1(a)のE部の拡大図である。
なお、以下の説明において、「前」「後」との記載は、特に断りのない限り、灯具1から見た方向を意味するものとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Fig.1 (a) is sectional drawing of the principal part of the lamp 1 in this embodiment, FIG.1 (b) is an enlarged view of the E section of Fig.1 (a).
In the following description, the terms “front” and “rear” mean the direction viewed from the lamp 1 unless otherwise specified.

図1(a),(b)に示すように、灯具1は、光源であるLED(発光ダイオード)2と、このLED2からの光を配光制御する導光レンズ3とを備えている。
このうち、LED2は、その光軸Axが前後方向に沿うように発光面を前方に向けた状態に配置されており、当該光軸Axを中心に前方へ略放射状に光を出射させる。より詳しくは、LED2は、ランバーシャンの指向特性を有しており、光軸Axを基準とする出射角が小さい出射方向ほど光量がより多くなる。
As shown in FIGS. 1A and 1B, the lamp 1 includes an LED (light emitting diode) 2 that is a light source and a light guide lens 3 that controls light distribution from the LED 2.
Among these, LED2 is arrange | positioned in the state which orient | assigned the light emission surface to the front so that the optical axis Ax may follow the front-back direction, and radiate | emits light substantially radially ahead centering on the said optical axis Ax. More specifically, the LED 2 has a Lambertian directivity, and the amount of light increases as the direction of emission with a smaller emission angle relative to the optical axis Ax.

導光レンズ3は、LED2の前方に配置されて、当該LED2から出射された光を配光制御しつつ前方へ照射するものである。この導光レンズ3は、前方へ開口する略湾曲板状に形成されており、本実施形態では、LED2の光軸Axを回転対称軸とする軸対称形状に形成されている。   The light guide lens 3 is disposed in front of the LED 2 and emits light emitted from the LED 2 forward while controlling light distribution. The light guide lens 3 is formed in a substantially curved plate shape that opens forward. In this embodiment, the light guide lens 3 is formed in an axially symmetric shape with the optical axis Ax of the LED 2 as a rotationally symmetric axis.

導光レンズ3の後面のうち、LED2と対向する中央部には、LED2から出射された光を当該導光レンズ3内に入射させる入射面31が設けられている。この入射面31は、LED2の位置を中心として後方へ開口する略半球面状に形成されており、LED2から前方へ出射された光を殆ど屈折させることなく導光レンズ3内に入射させる。   Of the rear surface of the light guide lens 3, an incident surface 31 for allowing light emitted from the LED 2 to enter the light guide lens 3 is provided in the central portion facing the LED 2. The incident surface 31 is formed in a substantially hemispherical shape that opens backward with the position of the LED 2 as the center, and makes the light emitted forward from the LED 2 enter the light guide lens 3 with almost no refraction.

また、導光レンズ3の後面のうち、入射面31の周囲であって当該入射面31を除く後面の略全面は、後述の前部光学面34で後方へ内部反射された光を前方へ内部反射させる後部反射面32となっている。この後部反射面32は、光軸Ax上の前方に位置する焦点Fを有する自由曲面状に形成されるとともに、透過率がほぼ0%のアルミニウム皮膜が蒸着されたアルミ蒸着面となっている。   Further, of the rear surface of the light guide lens 3, substantially the entire rear surface excluding the incident surface 31 around the incident surface 31 internally transmits the light internally reflected backward by the front optical surface 34 described later. The rear reflection surface 32 is reflected. The rear reflecting surface 32 is formed as a free-form surface having a focal point F located in front of the optical axis Ax, and is an aluminum deposition surface on which an aluminum film having a transmittance of approximately 0% is deposited.

導光レンズ3の前面のうち、LED2の前方に位置する中央部には、光軸Ax上の位置を先端として前方へ突設された直円錐状の突起部33が設けられている。この突起部33は、後述するように、入射面31から導光レンズ3内に入射してきた光をその周面で反射又は屈折させるプリズム部である。また、突起部33は、当該突起部33の周面に入射する入射面31からの光の入射角が当該周面内で臨界角となるような高さ(頂角α)に形成されている。   In the front surface of the light guide lens 3, a central cone portion located in front of the LED 2 is provided with a right cone-shaped projection 33 projecting forward with the position on the optical axis Ax as a tip. As will be described later, the projecting portion 33 is a prism portion that reflects or refracts light that has entered the light guide lens 3 from the incident surface 31 on its peripheral surface. Further, the protrusion 33 is formed at a height (vertical angle α) such that the incident angle of light from the incident surface 31 incident on the peripheral surface of the protrusion 33 becomes a critical angle in the peripheral surface. .

また、導光レンズ3の前面のうち、突起部33の周囲であって当該突起部33を除く前面の略全面は、光を反射させたり前方へ出射させたりする前部光学面34となっている。この前部光学面34は、後部反射面32と同一の焦点Fを有する双曲面状に形成されている。   In addition, of the front surface of the light guide lens 3, a substantially entire surface of the front surface except for the projection portion 33 around the projection portion 33 is a front optical surface 34 that reflects or emits light forward. Yes. The front optical surface 34 is formed in a hyperboloid shape having the same focal point F as the rear reflection surface 32.

この前部光学面34のうち、突起部33の外周縁に連なる中央側の部分(図中の太線部)は、前部反射面341となっている。この前部反射面341は、透過率がほぼ0%のアルミニウム皮膜が蒸着されたアルミ蒸着面となっており、後述するように、入射面31から導光レンズ3内に入射してきた光を後方斜め側方へ内部反射させるとともに、突起部33(の周面)から後方斜め側方へ出射された光を前方斜め側方へ反射させる。
この前部反射面341の外周縁は、前部光学面34のうち、入射面31から導光レンズ3内に入射してきた光の入射角が略臨界角となる位置である。一方、前部反射面341の内周縁(つまり突起部33の外周縁)は、当該内周縁で後方斜め側方へ内部反射されて後部反射面32で前方へ内部反射された光が当該前部反射面341の外周縁に入射する位置よりもやや側方側の位置となっている。すなわち、前部反射面341は、前部光学面34のうち、入射面31からの光の入射角が略臨界角未満となる範囲内であって、その反射光が後部反射面32を介して再び当該前部反射面341に入射することのない範囲内に形成されている。
Of the front optical surface 34, a central portion (thick line portion in the drawing) that is continuous with the outer peripheral edge of the protrusion 33 is a front reflection surface 341. The front reflective surface 341 is an aluminum vapor-deposited surface on which an aluminum film having a transmittance of approximately 0% is vapor-deposited. As will be described later, the light incident on the light guide lens 3 from the incident surface 31 is rearward. While internally reflecting obliquely to the side, the light emitted from the protrusion 33 (circumferential surface) to the diagonally backward side is reflected to the diagonally forward side.
The outer peripheral edge of the front reflection surface 341 is a position on the front optical surface 34 where the incident angle of light that has entered the light guide lens 3 from the incident surface 31 becomes a substantially critical angle. On the other hand, the inner peripheral edge of the front reflecting surface 341 (that is, the outer peripheral edge of the protrusion 33) is reflected by the inner peripheral edge in the obliquely backward direction and the light internally reflected forward by the rear reflecting surface 32. The position is slightly on the side of the position incident on the outer peripheral edge of the reflecting surface 341. That is, the front reflection surface 341 is within the range in which the incident angle of light from the incident surface 31 is less than a substantially critical angle in the front optical surface 34, and the reflected light passes through the rear reflection surface 32. It is formed within a range where it does not enter the front reflection surface 341 again.

一方、前部光学面34のうち、前部反射面341よりも側方側の部分は、入射面31から導光レンズ3内に入射してきた光を内部反射させるとともに、後部反射面32で内部反射された光を前方へ出射させる出射面342となっている。この出射面342は、前部光学面34のうち、入射面31からの光の入射角が略臨界角以上となる部分であるため、アルミニウム皮膜などの反射膜を必要とすることなく、入射面31からの光を内部反射可能となっている。   On the other hand, a portion of the front optical surface 34 that is further to the side than the front reflection surface 341 internally reflects the light that has entered the light guide lens 3 from the incident surface 31, and the rear reflection surface 32 internally. An exit surface 342 is provided for emitting the reflected light forward. The exit surface 342 is a portion of the front optical surface 34 where the incident angle of light from the entrance surface 31 is approximately equal to or greater than the critical angle, and thus does not require a reflective film such as an aluminum film. The light from 31 can be internally reflected.

続いて、灯具1の光照射態様について説明する。
図2及び図3は、灯具1での光線軌跡を示す図である。
Then, the light irradiation aspect of the lamp 1 is demonstrated.
2 and 3 are diagrams showing a ray trajectory in the lamp 1.

灯具1では、LED2を発光させると、このLED2から前方へ略放射状に出射された光が入射面31から導光レンズ3内に入射する。このとき、入射面31がLED2の位置を中心とする略半球状に形成されているため、入射光は、入射面31を通じて殆ど屈折されることなく導光レンズ3内に入射する。   In the lamp 1, when the LED 2 is caused to emit light, the light emitted from the LED 2 forward in a substantially radial manner enters the light guide lens 3 from the incident surface 31. At this time, since the incident surface 31 is formed in a substantially hemispherical shape centered on the position of the LED 2, the incident light enters the light guide lens 3 with almost no refraction through the incident surface 31.

導光レンズ3内に入射した入射光のうち、光軸Ax周辺の中央部のものは、導光レンズ3の前部中央の突起部33に入射する。
突起部33に入射した光のうち、臨界角以上の入射角で突起部33の周面に入射した中央側のものは、図2(a)に示すように、光路R1を通って前方へ照射される。この光路R1では、突起部33の周面に入射した光が、光軸Axよりも一方の側方側の当該周面で内部反射された後に、この周面の位置とは光軸Axを挟んだ反対側(他方の側方側)の周面によって後方斜め側方へ屈折されつつ導光レンズ3外へ出射される。そして、この光は、アルミ蒸着面である前部反射面341によって前方斜め側方へ反射される。
一方、突起部33に入射した光のうち、臨界角未満の入射角で突起部33の周面に入射した側方側のものは、図2(b)に示すように、光路R2を通って前方へ照射される。この光路R2では、突起部33の周面に入射した光が、当該周面を通じて斜めに屈折されつつ前方へ出射される。
Of the incident light that has entered the light guide lens 3, the central light around the optical axis Ax enters the protrusion 33 at the front center of the light guide lens 3.
Of the light incident on the protrusion 33, the central light incident on the peripheral surface of the protrusion 33 at an incident angle greater than the critical angle is irradiated forward through the optical path R1, as shown in FIG. Is done. In this optical path R1, after the light incident on the peripheral surface of the protrusion 33 is internally reflected by the peripheral surface on one side of the optical axis Ax, the position of the peripheral surface sandwiches the optical axis Ax. However, the light is emitted out of the light guide lens 3 while being refracted rearward and obliquely by the peripheral surface on the opposite side (the other side). And this light is reflected to the front diagonal side by the front part reflective surface 341 which is an aluminum vapor deposition surface.
On the other hand, of the light incident on the protrusion 33, the side light incident on the peripheral surface of the protrusion 33 at an incident angle less than the critical angle passes through the optical path R2 as shown in FIG. Irradiated forward. In this optical path R2, the light incident on the peripheral surface of the protrusion 33 is emitted forward while being refracted obliquely through the peripheral surface.

ここで、突起部33に入射した光が2つの光路R1,R2にどのように配分されるかは、突起部33の高さ、つまり頂角α(図1(b)参照)に依存している。そして、この頂角αは、光路R1を通る光が多くなるように、小さ過ぎも大き過ぎもしない角度であることが好ましい。頂角αをこのような角度とすることで、比較的に光量の多い光軸Ax周辺の光をより側方へ拡散させることができる。   Here, how light incident on the protrusion 33 is distributed to the two optical paths R1 and R2 depends on the height of the protrusion 33, that is, the apex angle α (see FIG. 1B). Yes. The apex angle α is preferably an angle that is neither too small nor too large so that more light passes through the optical path R1. By setting the apex angle α to such an angle, light around the optical axis Ax having a relatively large amount of light can be diffused more laterally.

なお、この突起部33の頂角αは、2つの光路R1,R2から外れる光が生じない範囲に設定されることは勿論である。
例えば、前部反射面341の内周縁の幅D1=12.3mm、外周縁の幅D2=34.4mmであった場合(図1(b)参照)、光路R1となる頂角αの範囲は、83°<α<87°であり、光路R2となる頂角αの範囲は、94°≦αである。頂角αがこれらの範囲を外れると、突起部33に入射した光が2つの光路R1,R2の何れからも外れてしまう。具体的には、頂角αが87°≦α<94°であった場合には、光が突起部33の周面で二回反射して後方へ戻ってしまう。また、頂角αがα≦83°であった場合には、光が突起部33の周面で内部反射及び出射された後に、前部反射面341よりも側方側の出射面342に入射してしまう。
Of course, the apex angle α of the projection 33 is set in a range in which light deviating from the two optical paths R1 and R2 does not occur.
For example, when the width D1 of the inner peripheral edge of the front reflecting surface 341 is 12.3 mm and the width D2 of the outer peripheral edge is 34.4 mm (see FIG. 1B), the range of the apex angle α serving as the optical path R1 is 83 ° <α <87 °, and the range of the apex angle α that becomes the optical path R2 is 94 ° ≦ α. When the apex angle α is out of these ranges, the light incident on the protrusion 33 is out of either of the two optical paths R1 and R2. Specifically, when the apex angle α is 87 ° ≦ α <94 °, the light is reflected twice by the peripheral surface of the protrusion 33 and returns to the rear. Further, when the apex angle α is α ≦ 83 °, the light is internally reflected and emitted from the peripheral surface of the protrusion 33 and then enters the emission surface 342 on the side of the front reflection surface 341. Resulting in.

また、導光レンズ3内に入射した入射光のうち、突起部33よりも側方側に向かうものは、導光レンズ3の前面の前部光学面34によって後方斜め側方へ内部反射される。
より詳しくは、入射光のうち、略臨界角未満の入射角で前部光学面34に入射したものは、図3(a)に示すように、光路R3を通って前方へ照射される。この光路R3では、前部光学面34に入射した光が、まず、前部光学面34のうちアルミ蒸着面である前部反射面341によって後方斜め側方へ内部反射される。
一方、入射光のうち、略臨界角以上の入射角で前部光学面34に入射したものは、図3(b)に示すように、光路R4を通って前方へ照射される。この光路R4では、前部光学面34に入射した光が、まず、前部光学面34のうちの出射面342によって後方斜め側方へ内部反射される。
そして、前部光学面34(前部反射面341又は出射面342)で内部反射されたこれらの光は、光路R3及び光路R4の何れを通るものも、前部光学面34と同一の焦点Fを有する後部反射面32によって、あたかも焦点Fから出射された光が反射されるようにして前方へさらに内部反射された後に、出射面342を通じて斜め側方へ屈折されつつ前方へ出射される。
Of the incident light that has entered the light guide lens 3, the light that travels to the side of the projection 33 is internally reflected rearward and obliquely by the front optical surface 34 on the front surface of the light guide lens 3. .
More specifically, incident light that is incident on the front optical surface 34 at an incident angle less than approximately the critical angle is irradiated forward through an optical path R3, as shown in FIG. In this optical path R3, the light incident on the front optical surface 34 is first internally reflected diagonally backward by the front reflection surface 341 which is an aluminum vapor deposition surface of the front optical surface 34.
On the other hand, the incident light that is incident on the front optical surface 34 at an incident angle that is approximately equal to or greater than the critical angle is irradiated forward through the optical path R4 as shown in FIG. In this optical path R <b> 4, the light incident on the front optical surface 34 is first internally reflected diagonally backward by the emission surface 342 of the front optical surface 34.
The light internally reflected by the front optical surface 34 (the front reflection surface 341 or the emission surface 342) passes through either the optical path R3 or the optical path R4, and has the same focal point F as the front optical surface 34. After being reflected by the rear reflecting surface 32 having the focal point F as if reflected from the focal point F, it is further internally reflected forward and then emitted forward while being refracted obliquely laterally through the emitting surface 342.

以上のように、本実施形態の灯具1によれば、LED2から前方へ略放射状に出射された光が、LED2の位置を中心とする略半球状の入射面31を通じて殆ど屈折されることなく導光レンズ3内に入射した後に、中央部のものが円錐状の突起部33に入射し、それよりも側方側へのものが光軸Ax上前方の焦点Fを有する双曲面状の前部光学面34に入射する。このうち、突起部33に入射した光は、当該突起部33の周面を通じて斜め前方へ屈折されつつ出射される。一方、前部光学面34に入射した光は、当該前部光学面34で後方斜め側方へ内部反射された後に、前部光学面34と同一の焦点Fを有する自由曲面状の後部反射面32によって、あたかも当該焦点Fからの光が反射されるようにして前方へさらに内部反射されてから、前部光学面34(出射面342)を通じて斜め側方へ屈折されつつ前方へ出射される。
したがって、前方への強い指向性を有していた従来と異なり、出射光を好適に拡散させつつ、自由曲面状の後部反射面32を適切に設定することによって任意の配光制御を行うことができ、ひいては、所望の照射範囲を好適に照らすことができる。
As described above, according to the lamp 1 of the present embodiment, the light emitted substantially radially from the LED 2 to the front is guided without being refracted through the substantially hemispherical incident surface 31 centering on the position of the LED 2. After entering the optical lens 3, the central one enters the conical protrusion 33, and the one on the side of the side is a hyperboloid front portion having a front focal point F on the optical axis Ax. Incident on the optical surface 34. Among these, the light incident on the projection 33 is emitted while being refracted forward through the peripheral surface of the projection 33. On the other hand, the light incident on the front optical surface 34 is internally reflected rearward and obliquely by the front optical surface 34 and then has a free-form curved rear reflection surface having the same focal point F as the front optical surface 34. 32, the light from the focal point F is reflected and further internally reflected forward, and then emitted forward while being refracted obliquely laterally through the front optical surface 34 (exit surface 342).
Therefore, unlike the conventional case that has a strong directivity to the front, it is possible to perform arbitrary light distribution control by appropriately setting the rear reflection surface 32 of a free-form surface while appropriately diffusing outgoing light. As a result, a desired irradiation range can be suitably illuminated.

また、突起部33が、入射面31から当該突起部33の周面への光の入射角が臨界角以上となる部分を含むとともに、入射面31からの光を一方の周面で内部反射させた後に他方の周面で後方斜め側方へ屈折させつつ出射させ、前部光学面34(前部反射面341)が、この突起部33から出射された光を前方斜め側方へ反射させるので、LED2から光軸Ax周辺の中央部に出射された光量の多い光を、前方斜め側方へ照射させることができる。したがって、より発光ムラの少ない均一な発光態様を実現することができる。   Further, the protrusion 33 includes a portion where the incident angle of light from the incident surface 31 to the peripheral surface of the protrusion 33 is not less than the critical angle, and internally reflects the light from the incident surface 31 on one peripheral surface. After that, the light is emitted while being refracted rearward and obliquely on the other peripheral surface, and the front optical surface 34 (front reflection surface 341) reflects the light emitted from the protrusion 33 to the obliquely forward side. The light with a large amount of light emitted from the LED 2 to the central portion around the optical axis Ax can be irradiated obliquely forward and laterally. Therefore, it is possible to realize a uniform light emission mode with less light emission unevenness.

また、前部光学面34が、入射面31からの光の入射角が略臨界角未満となる前部反射面341と、当該入射角が略臨界角以上となる出射面342とを有するとともに、このうちの前部反射面341がアルミ蒸着面であるので、前部光学面34のうち、入射面31からの光を反射させるためにアルミ蒸着面とすべき範囲を最小限に抑え、ひいては、アルミ蒸着面での反射に伴う光量ロス(例えば15%程度)を最小限に抑えることができる。   In addition, the front optical surface 34 includes a front reflection surface 341 in which the incident angle of light from the incident surface 31 is less than a substantially critical angle, and an exit surface 342 in which the incident angle is greater than or equal to a substantially critical angle. Since the front reflective surface 341 is an aluminum vapor deposition surface, the range of the front optical surface 34 that should be the aluminum vapor deposition surface to reflect the light from the incident surface 31 is minimized. Light loss (for example, about 15%) associated with reflection on the aluminum deposition surface can be minimized.

また、前部反射面341に加えて後部反射面32もアルミ蒸着面であるので、入射面31から出射面342に入射して当該出射面342及び後部反射面32で反射される光(光路R4のもの)は、入射面31から前部反射面341に入射して当該前部反射面341及び後部反射面32で反射される光(光路R3のもの)よりも、LED2からの出射角が大きく、相対的に光量が少ないものの、アルミ蒸着面での反射回数が1回少ないために、その分だけ光量ロスも少なくなる。したがって、光路R3を経て照射される光と、光路R4を経て照射される光との光量の均等化を図ることができ、ひいては、より発光ムラの少ない均一な発光態様を実現することができる。
さらに、これらのアルミ蒸着面での反射を介した光は拡散光となるため、単純にレンズを透過して照射されるものと異なり、より柔らかい感じの照射光を得ることができる。
In addition to the front reflection surface 341, the rear reflection surface 32 is also an aluminum vapor deposition surface, so that light incident on the emission surface 342 from the incident surface 31 and reflected by the emission surface 342 and the rear reflection surface 32 (optical path R4). ) Has a larger emission angle from the LED 2 than the light incident on the front reflection surface 341 from the incident surface 31 and reflected by the front reflection surface 341 and the rear reflection surface 32 (in the optical path R3). Although the amount of light is relatively small, the number of times of reflection on the aluminum vapor deposition surface is small, so the amount of light loss is reduced accordingly. Therefore, it is possible to equalize the light amount of the light irradiated through the optical path R3 and the light irradiated through the optical path R4, thereby realizing a uniform light emitting mode with less light emission unevenness.
Furthermore, since the light that has passed through the reflection on the aluminum deposition surface becomes diffused light, it is possible to obtain irradiation light with a softer feeling, unlike light that is simply transmitted through the lens.

また、主に光路R4を経て照射される光により、LED2から前方への光を側方へ広げて導光レンズ3の前面を広く発光させることができるので、LEDからの光を単純に前方へ照射させる場合に比べ、発光面の輝度を下げてグレアを抑制することができる。   Further, the light emitted mainly from the light path R4 can spread the light forward from the LED 2 to the side so that the front surface of the light guide lens 3 can be widely emitted, so the light from the LED is simply forward. Compared with the case of irradiation, glare can be suppressed by lowering the luminance of the light emitting surface.

また、導光レンズ3の前面及び後面が、主に、光軸Ax上の前方に位置する焦点Fを有する双曲面状の前部光学面34と、この前部光学面34と同一の焦点Fを有する自由曲面状の後部反射面32とからなるので、例えば前方への凸面を有するレンズなどに比べ、当該導光レンズ3の前後の厚みを薄くしつつ、広角配光を実現することができる。さらに、導光レンズ3の前後の厚みを薄くできることにより、成形型での導光レンズ3の成形性を向上させることができる。   Further, the front surface and the rear surface of the light guide lens 3 mainly have a hyperboloid front optical surface 34 having a focal point F located in front of the optical axis Ax, and the same focal point F as the front optical surface 34. Therefore, a wide-angle light distribution can be realized while reducing the thickness of the front and rear of the light guide lens 3 as compared with, for example, a lens having a convex surface on the front side. . Furthermore, by making the front and rear thicknesses of the light guide lens 3 thinner, the moldability of the light guide lens 3 in the mold can be improved.

なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   The embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.

例えば、導光レンズ3は、図4(a)に示すように、アルミ蒸着面を設けないものとしてもよい。具体的には、後部反射面32に代えて、アルミニウム皮膜が蒸着されていない後部反射面32Aを設けるとともに、前部光学面34に代えて、前部反射面341がアルミ蒸着面とされていない前部光学面34Aを設けてもよい。このように構成することにより、入射面31から前部光学面34Aに入射した光のうち臨界角未満の入射角のものが、当該前部光学面34Aを通じて斜め側方へ屈折されつつ前方へ出射されることとなる。また、突起部33から後方斜め側方へ屈折されつつ出射された光が、前部光学面34Aから導光レンズ3内に再び入射した後に、後部反射面32から後方へ出射されることとなる。これにより、後方も含む導光レンズ3の全周へ光を出射させることができる。   For example, the light guide lens 3 may not have an aluminum vapor deposition surface as shown in FIG. Specifically, in place of the rear reflective surface 32, a rear reflective surface 32A on which no aluminum film is deposited is provided, and in addition to the front optical surface 34, the front reflective surface 341 is not an aluminum deposited surface. A front optical surface 34A may be provided. With this configuration, light having an incident angle less than the critical angle out of the light incident on the front optical surface 34A from the incident surface 31 is emitted forward while being refracted obliquely laterally through the front optical surface 34A. Will be. Further, the light emitted while being refracted from the protrusion 33 obliquely to the rear side is reentered into the light guide lens 3 from the front optical surface 34A, and is then emitted rearward from the rear reflection surface 32. . Thereby, light can be emitted to the entire circumference of the light guide lens 3 including the rear.

また、導光レンズ3は、図4(b)に示すように、突起部33の形状を変更しつつ、アルミ蒸着面を設けないものとしてもよい。具体的には、後部反射面32に代えて、アルミニウム皮膜が蒸着されていない後部反射面32Bを設けるとともに、前部光学面34に代えて、アルミ蒸着面である前部反射面341を有しておらず、入射面31からの光の入射角と後部反射面32Bに入射する光の入射角とが何れも臨界角以上となるような前部光学面34Bを設け、さらにこれに伴って、突起部33に代えて、外周縁が前部光学面34Bの内周縁まで拡大された突起部33Bを設けてもよい。このように構成することにより、アルミ蒸着面での反射に伴う光量ロスを生じさせることなく光を前方へ出射させることができ、ひいては、光束利用率を向上させつつ光を前方へ照射させることができる。   Moreover, as shown in FIG.4 (b), the light guide lens 3 is good also as what does not provide an aluminum vapor deposition surface, changing the shape of the projection part 33. As shown in FIG. Specifically, in place of the rear reflective surface 32, a rear reflective surface 32B on which an aluminum film is not deposited is provided, and instead of the front optical surface 34, a front reflective surface 341 that is an aluminum vapor deposited surface is provided. The front optical surface 34B is provided such that the incident angle of the light from the incident surface 31 and the incident angle of the light incident on the rear reflecting surface 32B are both greater than or equal to the critical angle. Instead of the protrusion 33, a protrusion 33B whose outer peripheral edge is enlarged to the inner peripheral edge of the front optical surface 34B may be provided. By configuring in this way, it is possible to emit light forward without causing a loss of light amount due to reflection on the aluminum vapor deposition surface, and as a result, it is possible to irradiate light forward while improving the luminous flux utilization factor. it can.

また、導光レンズ3は、図4(c)に示すように、後部反射面32及び前部反射面341に代えて、入射した光を一部透過させつつ反射させる(例えば透過率50%の)反射膜が被膜された、いわゆるハーフミラー面である後部反射面32C及び前部反射面341Cが設けられたものとしてもよい。このように構成することにより、後方も含めた任意の方向へ広く光を照射させることができる。
また、後部反射面32及び前部反射面341のどちらか一方だけをハーフミラー面としてもよい。
Further, as shown in FIG. 4C, the light guide lens 3 replaces the rear reflection surface 32 and the front reflection surface 341 and reflects a part of the incident light (for example, having a transmittance of 50%). ) A rear reflection surface 32C and a front reflection surface 341C which are so-called half mirror surfaces coated with a reflection film may be provided. By comprising in this way, light can be widely irradiated to arbitrary directions also including back.
Further, only one of the rear reflection surface 32 and the front reflection surface 341 may be a half mirror surface.

また、導光レンズ3は、光軸Axを対称軸とする軸対称形状でなくともよく、例えば正面視で矩形状であってもよいし、前後方向と直交する一方向に沿って長尺な形状であってもよい。   Further, the light guide lens 3 does not have to have an axially symmetric shape with the optical axis Ax as an axis of symmetry, and may be, for example, a rectangular shape in front view, or is elongated along one direction orthogonal to the front-rear direction. It may be a shape.

また、突起部33は、錐状に形成されていれば円錐状でなくともよく、導光レンズ3全体の形状やLED2のチップ配列などに応じて、当該突起部33で所望の配光制御が可能な形状であってよい。   Further, the projection 33 does not have to be conical as long as it is formed in a cone shape, and the projection 33 can perform desired light distribution control according to the overall shape of the light guide lens 3, the chip arrangement of the LED 2, and the like. It may be a possible shape.

また、灯具1は、特に限定はされないが、例えば一般照明用のものとして、屋内・屋外を問わず好適に適用することができる。なかでも、目に優しい柔らかな配光が可能であることから、例えば高齢者住宅や病院,或いはこれに類する施設などでの照明用として、特に好適に適用することができる。   Moreover, although the lamp 1 is not specifically limited, For example, as a thing for general lighting, it can apply suitably regardless of indoor and the outdoors. In particular, since a soft light distribution that is easy on the eyes is possible, the present invention can be particularly suitably applied, for example, for illumination in elderly houses, hospitals, or similar facilities.

1 灯具
2 LED
Ax 光軸
3 導光レンズ
31 入射面
32,32A,32B,32C 後部反射面
33,33B 突起部
α 頂角
34,34A,34B 前部光学面
F 焦点
341,341C 前部反射面(低臨界角部分)
342 出射面(高臨界角部分)
R1〜R4 光路
1 Light 2 LED
Ax Optical axis 3 Light guide lens 31 Incident surface 32, 32A, 32B, 32C Rear reflective surface 33, 33B Protrusion α Apex angle 34, 34A, 34B Front optical surface F Focus 341, 341C Front reflective surface (low critical angle) portion)
342 Output surface (high critical angle part)
R1-R4 optical path

Claims (5)

前後方向に沿った光軸を有し、当該光軸を中心に前方へ略放射状に光を出射させるLEDと、
前記LEDの前方に配置され、当該LEDから出射された光を配光制御しつつ前方へ照射する導光レンズと、
を備える灯具であって、
前記導光レンズは、
当該導光レンズの後面のうち前記LEDと対向する部分に設けられるとともに、前記LEDの位置を中心とする略半球状に形成され、前記LEDから出射された光を当該導光レンズ内に入射させる入射面と、
当該導光レンズの前面のうち前記LEDの前方に位置する部分に、前記光軸上の位置を先端として前方へ突設された錐状の突起部と、
当該導光レンズの前面のうち前記突起部の周囲に設けられるとともに、前記光軸上の前方に位置する焦点を有する双曲面状に形成され、前記入射面から当該導光レンズ内に入射した光を後方斜め側方へ内部反射させつつ前方へ光を出射可能な前部光学面と、
当該導光レンズの後面のうち前記入射面の周囲に設けられるとともに、前記前部光学面と同一の前記焦点を有する自由曲面状に形成され、前記前部光学面で内部反射された光を前方へ内部反射させる後部反射面と、
を有することを特徴とする灯具。
An LED that has an optical axis along the front-rear direction and emits light substantially radially forward about the optical axis;
A light guide lens disposed in front of the LED and irradiating the light emitted from the LED forward while controlling the light distribution;
A lamp comprising:
The light guide lens is
The light guide lens is provided on a portion of the rear surface of the light guide lens facing the LED, and is formed in a substantially hemispherical shape centered on the position of the LED, and allows the light emitted from the LED to enter the light guide lens. An incident surface;
A conical protrusion projecting forward with the position on the optical axis at the front end of the LED on the front surface of the light guide lens; and
Light that is provided around the protrusion on the front surface of the light guide lens, is formed into a hyperboloid having a focal point located in front of the optical axis, and is incident on the light guide lens from the incident surface. A front optical surface that is capable of emitting light forward while internally reflecting diagonally to the rear side,
The light guide lens is provided around the entrance surface of the rear surface of the light guide lens, is formed in a free-form surface having the same focal point as the front optical surface, and internally reflects light reflected by the front optical surface. A rear reflecting surface for internal reflection,
The lamp characterized by having.
前記突起部は、
前記入射面から当該突起部の周面への光の入射角が臨界角以上となる部分を含み、
前記入射面からの光を一方の周面で内部反射させた後に他方の周面で後方斜め側方へ屈折させつつ出射させ、
前記前部光学面は、前記突起部から出射された光を前方斜め側方へ反射させることを特徴とする請求項1に記載の灯具。
The protrusion is
Including a portion where the incident angle of light from the incident surface to the peripheral surface of the protrusion is a critical angle or more;
The light from the incident surface is internally reflected on one peripheral surface and then refracted rearward and obliquely on the other peripheral surface.
2. The lamp according to claim 1, wherein the front optical surface reflects light emitted from the projecting portion obliquely forward and laterally.
前記前部光学面は、前記入射面からの光の入射角が略臨界角未満となる低臨界角部分と、当該入射角が略臨界角以上となる高臨界角部分とを有するとともに、このうちの前記低臨界角部分がアルミ蒸着面であることを特徴とする請求項1又は2に記載の灯具。   The front optical surface has a low critical angle portion where the incident angle of light from the incident surface is less than approximately the critical angle, and a high critical angle portion where the incident angle is approximately equal to or greater than the critical angle. The lamp according to claim 1, wherein the low critical angle portion is an aluminum vapor deposition surface. 前記後部反射面がアルミ蒸着面であることを特徴とする請求項3に記載の灯具。   The lamp according to claim 3, wherein the rear reflection surface is an aluminum vapor deposition surface. 前記前部光学面のうちの前記低臨界角部分と、前記後部反射面との少なくとも一方が、ハーフミラー面であることを特徴とする請求項4に記載の灯具。   5. The lamp according to claim 4, wherein at least one of the low critical angle portion of the front optical surface and the rear reflection surface is a half mirror surface.
JP2013261907A 2013-12-19 2013-12-19 Lighting appliance Pending JP2015118818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261907A JP2015118818A (en) 2013-12-19 2013-12-19 Lighting appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261907A JP2015118818A (en) 2013-12-19 2013-12-19 Lighting appliance

Publications (1)

Publication Number Publication Date
JP2015118818A true JP2015118818A (en) 2015-06-25

Family

ID=53531393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261907A Pending JP2015118818A (en) 2013-12-19 2013-12-19 Lighting appliance

Country Status (1)

Country Link
JP (1) JP2015118818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105003852A (en) * 2015-07-20 2015-10-28 余浩军 Curved face light guide lamp
KR20200005416A (en) * 2017-05-11 2020-01-15 에스씨아이브이에이엑스 가부시키가이샤 Optical element and optical system device
US11029561B2 (en) 2019-06-28 2021-06-08 Nichia Corporation Light emitting module and planar light source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105003852A (en) * 2015-07-20 2015-10-28 余浩军 Curved face light guide lamp
KR20200005416A (en) * 2017-05-11 2020-01-15 에스씨아이브이에이엑스 가부시키가이샤 Optical element and optical system device
KR102571548B1 (en) * 2017-05-11 2023-08-25 에스씨아이브이에이엑스 가부시키가이샤 Optical elements and optical system devices
US11029561B2 (en) 2019-06-28 2021-06-08 Nichia Corporation Light emitting module and planar light source

Similar Documents

Publication Publication Date Title
JP5957340B2 (en) Luminous flux control member and lighting device
US8591077B2 (en) Lens and lighting fixture utilizing the same
US7566141B2 (en) Cassegrain optical configuration to expand high intensity LED flashlight to larger diameter lower intensity beam
JP2009224303A (en) Vehicular lighting fixture
JP6507035B2 (en) Light flux control member, light emitting device and lighting device
JP2010080306A (en) Lighting fixture unit for vehicular headlight
JP6378468B2 (en) Optical member
US20120106190A1 (en) Light guide focussing device and method
US20200011511A1 (en) Zoom lamp lens group
JP2015118818A (en) Lighting appliance
CN207162434U (en) A kind of lens, conjuncted lens and light fixture
TW201213871A (en) Lens and light source module
JP5623937B2 (en) Lens for lighting device and lighting device
CN109973931A (en) A kind of car light lower beam illumination dichroic reflection device, Optical devices and vehicle front lighting lamp assembly
CN214535836U (en) Lighting device and lens
JP5027898B2 (en) Lighting fixture
TWI547667B (en) Light-emitting module and light-emitting device
CN111033349A (en) Total internal reflection lens for reducing glare while maintaining color mixing and beam steering of LED light sources
CN209540791U (en) A kind of combined type optical texture and its lamps and lanterns
TW201213873A (en) Lens and light source module
JP2009245601A (en) Lighting fixture
CN211875941U (en) Cylindrical lens and indirect lighting lamp using same
CN220205506U (en) Optical element and fish gathering lamp
JP2021503699A (en) Vehicle light lighting system, vehicle light assembly and vehicle
JP2014154305A (en) Projection lens and optical surface determination method