JP2015117665A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2015117665A
JP2015117665A JP2013262702A JP2013262702A JP2015117665A JP 2015117665 A JP2015117665 A JP 2015117665A JP 2013262702 A JP2013262702 A JP 2013262702A JP 2013262702 A JP2013262702 A JP 2013262702A JP 2015117665 A JP2015117665 A JP 2015117665A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
air amount
intake air
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013262702A
Other languages
Japanese (ja)
Other versions
JP6156125B2 (en
Inventor
成広 杉平
Shigehiro Sugihira
成広 杉平
小林 大介
Daisuke Kobayashi
大介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013262702A priority Critical patent/JP6156125B2/en
Publication of JP2015117665A publication Critical patent/JP2015117665A/en
Application granted granted Critical
Publication of JP6156125B2 publication Critical patent/JP6156125B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide a control device of an internal combustion engine which can suppress the lowering of drivability resulting from the retardation of the ignition timing of the internal combustion engine when adjusting an engine rotation speed to an idle rotation speed on the basis of a decrease of an accelerator operation amount to "0".SOLUTION: When an accelerator operation amount is decreased to "0" at the speed reduction of a traveling vehicle, there arises a delay of a response in a reduction amount of a suction air amount of an internal combustion engine 1 toward a target suction air amount Gar for adjusting an engine rotation speed to an idle rotation speed. Furthermore, a delay also occurs in the lowering of the torque of the internal combustion engine toward target torque Tt (corresponding to the target suction air amount Gat) for adjusting the engine rotation speed to the idle rotation speed accompanied by the delay of the response of the reduction amount of the suction air amount. The retardant control of the ignition timing of the internal combustion engine 1 for suppressing the delay of the lowering of the torque is made not to be performed until the convergence of the suction air amount of the internal combustion engine 1 with respect to the target suction air amount Gat reaches a regulated level.

Description

本発明は、内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

内燃機関を搭載した車両では、その減速時に運転者によるアクセル操作量が「0」まで低下すると、機関回転速度をアイドル回転速度とするための目標吸入空気量まで内燃機関の吸入空気量が減量される。この吸入空気量の減量により、内燃機関のトルクが低下して機関回転速度がアイドル回転速度に調整される。ただし、上記目標吸入空気量への内燃機関の吸入空気量の減量には応答遅れが生じるため、その応答遅れにより内燃機関に余分な空気が吸入される。その結果、内燃機関に余分なトルクが発生し、それによって機関回転速度をアイドル回転速度に調整するための内燃機関のトルク低下に遅れが生じる。従って、特許文献1に示すように内燃機関の点火時期を遅角することにより、同機関での上記余分なトルク発生を抑制することが考えられる。   In a vehicle equipped with an internal combustion engine, when the accelerator operation amount by the driver decreases to “0” during deceleration, the intake air amount of the internal combustion engine is reduced to the target intake air amount for setting the engine rotation speed to the idle rotation speed. The Due to the reduction of the intake air amount, the torque of the internal combustion engine is reduced and the engine speed is adjusted to the idle speed. However, since there is a response delay in reducing the intake air amount of the internal combustion engine to the target intake air amount, excess air is sucked into the internal combustion engine due to the response delay. As a result, extra torque is generated in the internal combustion engine, thereby causing a delay in the torque reduction of the internal combustion engine for adjusting the engine rotational speed to the idle rotational speed. Therefore, as shown in Patent Document 1, it is conceivable to suppress the generation of the excessive torque in the engine by retarding the ignition timing of the internal combustion engine.

特開平2−123279公報JP-A-2-123279

ところで、上記目標吸入空気量への内燃機関の吸入空気量の減量に応答遅れが生じ、吸入空気量が上記目標吸入空気量に対し大きく乖離している場合に、上記点火時期の遅角により内燃機関の余分なトルク発生を抑えようとすると、点火時期の遅角量を大きくして同機関のトルクを大幅に低下させなければならなくなる。しかし、この場合には上記点火時期の遅角の実行前のトルクと実行後のトルクとの乖離が大きくなり、ドライバビリティの低下を招くおそれがある。   By the way, when there is a response delay in the reduction of the intake air amount of the internal combustion engine to the target intake air amount, and the intake air amount greatly deviates from the target intake air amount, the internal combustion engine is In order to suppress the excessive torque generation of the engine, it is necessary to increase the retard amount of the ignition timing and greatly reduce the torque of the engine. However, in this case, the difference between the torque before execution of the retard of the ignition timing and the torque after execution becomes large, and drivability may be lowered.

本発明の目的は、アクセル操作量が「0」まで低下したことに基づき機関回転速度をアイドル回転速度に調整する際、内燃機関の点火時期の遅角に起因してドライバビリティが低下することを抑制できる内燃機関の制御装置を提供することにある。   An object of the present invention is that drivability is reduced due to the retard of the ignition timing of the internal combustion engine when the engine speed is adjusted to the idle speed based on the accelerator operation amount being reduced to “0”. An object of the present invention is to provide a control device for an internal combustion engine that can be suppressed.

以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する内燃機関の制御装置は、アクセル操作量が「0」まで低下したことに基づき、機関回転速度をアイドル回転速度とする目標吸入空気量まで内燃機関の吸入空気量の減量を行う。また、内燃機関の制御装置は、上記吸入空気量の減量の応答遅れに起因して内燃機関に余分なトルクが発生したとき、その余分なトルクを抑える同機関の点火時期の遅角制御を実行することが可能である。同制御装置は、アクセル操作量の「0」への低下に基づき、内燃機関の吸入空気量を上記目標吸入空気量まで減量する際、その目標吸入空気量に対する内燃機関の吸入空気量の収束が規定レベルに達するまでは同機関の点火時期の遅角制御を実行しないようにする。そして、上記目標吸入空気量に対する内燃機関の吸入空気量の収束が規定レベルに達してから、内燃機関の点火時期の上記遅角制御を実行する。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
A control device for an internal combustion engine that solves the above problem reduces the intake air amount of the internal combustion engine to a target intake air amount that sets the engine rotation speed to an idle rotation speed based on the fact that the accelerator operation amount has decreased to "0". . In addition, when an excessive torque is generated in the internal combustion engine due to a response delay in the reduction of the intake air amount, the control device for the internal combustion engine executes a retard control of the ignition timing of the engine to suppress the excessive torque. Is possible. When the amount of intake air of the internal combustion engine is reduced to the target intake air amount based on the reduction of the accelerator operation amount to “0”, the control device converges the intake air amount of the internal combustion engine with respect to the target intake air amount. Until the specified level is reached, the retard control of the ignition timing of the engine is not executed. Then, after the convergence of the intake air amount of the internal combustion engine with respect to the target intake air amount reaches a specified level, the retard control of the ignition timing of the internal combustion engine is executed.

このように、上記目標吸入空気量に対する内燃機関の吸入空気量の収束が規定レベルに達した状態では、内燃機関における上記余分なトルクが小さくなることから、その余分なトルクを抑えるために上記遅角制御を通じて内燃機関のトルクを大幅に低下させる必要はない。従って、上記遅角制御を通じて点火時期の遅角を実行したときの内燃機関のトルク変動が大きくなることを抑制でき、ひいては同トルク変動に起因したドライバビリティ低下を抑制することができる。   Thus, in a state where the convergence of the intake air amount of the internal combustion engine with respect to the target intake air amount reaches a specified level, the excessive torque in the internal combustion engine becomes small. Therefore, in order to suppress the excessive torque, the delay is performed. There is no need to significantly reduce the torque of the internal combustion engine through angular control. Therefore, it is possible to suppress an increase in torque fluctuation of the internal combustion engine when the ignition timing is retarded through the retard angle control, and thus it is possible to suppress a drivability decrease due to the torque fluctuation.

内燃機関の制御装置の全体構成を示す略図。1 is a schematic diagram showing the overall configuration of a control device for an internal combustion engine. 内燃機関の吸入空気量制御及び点火時期制御の際に電子制御装置を通じて行われる処理の概要を示すブロック図。The block diagram which shows the outline | summary of the process performed through an electronic controller in the case of intake air amount control and ignition timing control of an internal combustion engine. (a)〜(e)は車両の減速時におけるアクセル操作量、内燃機関のトルク、吸入空気量、スロットル開度、及び点火時期の変化を示すタイムチャート。(A)-(e) is a time chart which shows the change of the accelerator operation amount at the time of deceleration of a vehicle, the torque of an internal combustion engine, the amount of intake air, throttle opening, and ignition timing. 内燃機関での点火時期の遅角制御を許可する手順を示すフローチャート。The flowchart which shows the procedure which permits the retard angle control of the ignition timing in an internal combustion engine.

以下、内燃機関の制御装置の一実施形態について、図1〜図4を参照して説明する。
図1に示される内燃機関1は、自動車等の車両に搭載されている。この内燃機関1では、燃焼室2に繋がる吸気通路3にスロットルバルブ13が開閉可能に設けられており、同吸気通路3を通じて燃焼室2に空気が吸入されるとともに、燃料噴射弁4から同機関1の吸気ポート3aに向けて噴射された燃料が同燃焼室2に供給される。この空気と燃料とからなる混合気に対し点火プラグ5による点火が行われると、同混合気が燃焼してピストン6が往復移動し、内燃機関1の出力軸であるクランクシャフト7が回転する。一方、燃焼室2で燃焼した後の混合気は、排気として排気通路8に送り出される。
Hereinafter, an embodiment of a control device for an internal combustion engine will be described with reference to FIGS.
An internal combustion engine 1 shown in FIG. 1 is mounted on a vehicle such as an automobile. In the internal combustion engine 1, a throttle valve 13 is provided in an intake passage 3 connected to the combustion chamber 2 so as to be openable and closable. Air is sucked into the combustion chamber 2 through the intake passage 3, and from the fuel injection valve 4 to the engine. The fuel injected toward one intake port 3 a is supplied to the combustion chamber 2. When the air / fuel mixture is ignited by the spark plug 5, the air / fuel mixture burns, the piston 6 reciprocates, and the crankshaft 7 that is the output shaft of the internal combustion engine 1 rotates. On the other hand, the air-fuel mixture after burning in the combustion chamber 2 is sent to the exhaust passage 8 as exhaust gas.

内燃機関1が搭載される車両には、同機関1の運転に関する各種制御を実行する電子制御装置51が設けられている。同電子制御装置51には、上記制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等が設けられている。   A vehicle on which the internal combustion engine 1 is mounted is provided with an electronic control device 51 that executes various controls relating to the operation of the engine 1. The electronic control unit 51 includes a CPU that executes various arithmetic processes related to the above control, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores CPU calculation results, and the like. Input / output ports for inputting / outputting signals are provided.

電子制御装置51の入力ポートには、以下に示す各種センサが接続されている。
・吸気通路3を通過する空気の量(吸入空気量)を検出するエアフローメータ52。
・クランクシャフト7の回転に対応する信号を出力するクランクポジションセンサ54。
Various sensors shown below are connected to the input port of the electronic control unit 51.
An air flow meter 52 that detects the amount of air passing through the intake passage 3 (intake air amount).
A crank position sensor 54 that outputs a signal corresponding to the rotation of the crankshaft 7.

・吸気通路3に設けられたスロットルバルブ13の開度(スロットル開度)を検出するスロットルポジションセンサ55。
・車両の運転者によって踏み込み操作されるアクセルペダル56の踏み込み量(アクセル操作量)を検出するアクセルポジションセンサ57。
A throttle position sensor 55 that detects the opening (throttle opening) of the throttle valve 13 provided in the intake passage 3.
An accelerator position sensor 57 that detects the amount of depression (accelerator operation amount) of the accelerator pedal 56 that is depressed by the driver of the vehicle.

電子制御装置51の出力ポートには、燃料噴射弁4の駆動回路、点火プラグ5の駆動回路、及びスロットルバルブ13の駆動回路といった内燃機関1の運転にかかわる各種機器の駆動回路が接続されている。   Connected to the output port of the electronic control unit 51 are drive circuits for various devices related to the operation of the internal combustion engine 1, such as a drive circuit for the fuel injection valve 4, a drive circuit for the spark plug 5, and a drive circuit for the throttle valve 13. .

そして、電子制御装置51は、上記各種センサから入力した検出信号に基づき現状の機関運転状態や要求される機関運転状態を把握し、それら把握した機関運転状態に基づき上記出力ポートに接続された各種駆動回路に指令信号を出力する。こうして内燃機関1における吸入空気量制御、燃料噴射量制御、及び点火時期制御等が電子制御装置51を通じて実施される。   Then, the electronic control unit 51 grasps the current engine operating state and the required engine operating state based on the detection signals input from the various sensors, and various types connected to the output port based on the grasped engine operating state. A command signal is output to the drive circuit. Thus, intake air amount control, fuel injection amount control, ignition timing control, and the like in the internal combustion engine 1 are performed through the electronic control unit 51.

内燃機関1の燃料噴射量制御では、同機関1の吸入空気量に対応した量の燃料が燃料噴射弁4から噴射されるよう同燃料噴射弁4が駆動される。このため、内燃機関1の吸入空気量の調整を通じて燃焼室2に供給される混合気の量が調整され、それに伴い内燃機関1のトルクが調整されるようになる。また、内燃機関1の吸入空気量制御では、アクセル操作量等に基づき内燃機関1の目標吸入空気量が設定され、その目標吸入空気量を実現すべくスロットルバルブ13が駆動される。更に、内燃機関1の点火時期制御では、目標点火時期にて点火が行われるよう同機関1の点火時期が調整される。なお、上記目標点火時期は、通常、上記目標吸入空気量を実現すべくスロットルバルブ13が駆動される機関運転状態のもとで、同機関1のトルクが最も大きくなる時期(MBT点火時期)に設定される。   In the fuel injection amount control of the internal combustion engine 1, the fuel injection valve 4 is driven such that an amount of fuel corresponding to the intake air amount of the engine 1 is injected from the fuel injection valve 4. For this reason, the amount of the air-fuel mixture supplied to the combustion chamber 2 is adjusted through the adjustment of the intake air amount of the internal combustion engine 1, and the torque of the internal combustion engine 1 is adjusted accordingly. In the intake air amount control of the internal combustion engine 1, the target intake air amount of the internal combustion engine 1 is set based on the accelerator operation amount and the like, and the throttle valve 13 is driven to realize the target intake air amount. Further, in the ignition timing control of the internal combustion engine 1, the ignition timing of the engine 1 is adjusted so that ignition is performed at the target ignition timing. It should be noted that the target ignition timing is normally the time when the torque of the engine 1 is maximized (MBT ignition timing) under the engine operating state in which the throttle valve 13 is driven to achieve the target intake air amount. Is set.

次に、内燃機関1の吸入空気量制御及び点火時期制御の詳細について説明する。
図2は、内燃機関1の吸入空気量制御及び点火時期制御の際に電子制御装置51を通じて行われる処理の概要を示すブロック図である。
Next, details of intake air amount control and ignition timing control of the internal combustion engine 1 will be described.
FIG. 2 is a block diagram showing an outline of processing performed through the electronic control unit 51 during intake air amount control and ignition timing control of the internal combustion engine 1.

電子制御装置51は、トルク調停処理S1を通じて、内燃機関1に対する各種のトルク要求に基づき同機関1の目標トルクTtを定める。ここでの各種のトルク要求としては、アクセル操作量に基づくドライバ要求トルク、及び、内燃機関1のアイドル運転時に機関回転速度をアイドル回転速度に調整するためのISC目標トルク等々があげられる。なお、機関回転速度はクランクポジションセンサ54からの検出信号に基づき求められる。また、ISC目標トルクは、電子制御装置51によるISC制御要求トルク算出処理S2を通じて求められる値である。このISC制御要求トルク算出処理S2では、アクセル操作量が「0」となる内燃機関1のアイドル運転時、機関回転速度を予め定められたアイドル回転速度に調整するための内燃機関1のトルクとして上記ISC目標トルクが、それら機関回転速度とアイドル回転速度との回転速度差に基づいて算出される。   The electronic control unit 51 determines the target torque Tt of the engine 1 based on various torque requests for the internal combustion engine 1 through the torque arbitration process S1. Examples of the various torque requests include a driver request torque based on the accelerator operation amount, an ISC target torque for adjusting the engine speed to the idle speed when the internal combustion engine 1 is idling, and the like. The engine speed is obtained based on a detection signal from the crank position sensor 54. The ISC target torque is a value obtained through the ISC control required torque calculation process S2 by the electronic control unit 51. In this ISC control request torque calculation process S2, the above-mentioned torque of the internal combustion engine 1 for adjusting the engine rotational speed to a predetermined idle rotational speed during idle operation of the internal combustion engine 1 at which the accelerator operation amount is “0”. The ISC target torque is calculated based on the rotational speed difference between the engine rotational speed and the idle rotational speed.

トルク調停処理S1では、アクセル操作量が「0」よりも大きいときにはドライバ要求トルク等に基づき内燃機関1の目標トルクTtを設定する一方、アクセル操作量が「0」であるときにはISC目標トルクを目標トルクTtに設定する。続いて、電子制御装置51は、空気量変換処理S3を通じて、上記目標トルクTtに基づき内燃機関1における目標吸入空気量Gatを算出する。この目標吸入空気量Gatは、内燃機関1のトルクを上記目標トルクTtとするために必要な内燃機関の吸入空気量に相当する値である。更に、電子制御装置51は、スロットル開度変換処理S4を通じて、上記目標吸入空気量Gatに基づき内燃機関1における目標スロットル開度TAtを算出する。この目標スロットル開度TAtは、内燃機関の吸入空気量を上記目標吸入空気量Gatとするために必要なスロットル開度に相当する値である。   In the torque adjustment process S1, the target torque Tt of the internal combustion engine 1 is set based on the driver request torque or the like when the accelerator operation amount is greater than “0”, while the ISC target torque is set as the target when the accelerator operation amount is “0”. Set to torque Tt. Subsequently, the electronic control unit 51 calculates a target intake air amount Gat in the internal combustion engine 1 based on the target torque Tt through an air amount conversion process S3. This target intake air amount Gat is a value corresponding to the intake air amount of the internal combustion engine necessary for setting the torque of the internal combustion engine 1 to the target torque Tt. Further, the electronic control unit 51 calculates a target throttle opening degree TAt in the internal combustion engine 1 based on the target intake air amount Gat through the throttle opening degree conversion process S4. This target throttle opening degree TAt is a value corresponding to the throttle opening degree necessary for setting the intake air amount of the internal combustion engine to the target intake air amount Gat.

電子制御装置51は、スロットル駆動処理S5を通じて、上記目標スロットル開度TAtが実現されるよう同目標スロットル開度TAtに基づきスロットルバルブ13を駆動する。こうしたスロットルバルブ13の駆動により、内燃機関1のトルクが目標トルクTtと等しくなるよう、同機関1の吸入空気量が目標吸入空気量Gatに調整される。そして、内燃機関1における上記吸入空気量の調整によって同機関1のトルクが目標トルクTtに調整されることにより、内燃機関1に対する各種のトルク要求が満たされる。   The electronic control unit 51 drives the throttle valve 13 based on the target throttle opening degree TAt so that the target throttle opening degree TAt is realized through the throttle driving process S5. By driving the throttle valve 13, the intake air amount of the engine 1 is adjusted to the target intake air amount Gat so that the torque of the internal combustion engine 1 becomes equal to the target torque Tt. Then, by adjusting the intake air amount in the internal combustion engine 1, the torque of the engine 1 is adjusted to the target torque Tt, whereby various torque requirements for the internal combustion engine 1 are satisfied.

一方、電子制御装置51は、目標点火時期算出処理S6を通じて上記目標トルクTtに基づき目標点火時期SAtを算出し、その目標点火時期SAtにて点火プラグ5での点火を行う。なお、目標点火時期算出処理S6を通じて算出される上記目標点火時期SAtは、通常、内燃機関1の吸入空気量を目標吸入空気量Gatに一致させるべくスロットルバルブ13の開度が目標スロットル開度TAtに調整される状況のもとで、内燃機関1の点火時期が上記MBT点火時期になる値とされる。   On the other hand, the electronic control unit 51 calculates the target ignition timing SAt based on the target torque Tt through the target ignition timing calculation process S6, and ignites the spark plug 5 at the target ignition timing SAt. The target ignition timing SAt calculated through the target ignition timing calculation process S6 is normally set so that the opening of the throttle valve 13 is the target throttle opening TAt so that the intake air amount of the internal combustion engine 1 matches the target intake air amount Gat. In such a situation, the ignition timing of the internal combustion engine 1 is set to a value that makes the MBT ignition timing.

ところで、アクセル操作量が「0」となる内燃機関1のアイドル運転時には、上述したISC目標トルクが内燃機関1の目標トルクTtとして設定される。このため、車両の走行中に運転者がアクセル操作量を「0」まで低下させる状況では、目標トルクTtがドライバ要求トルク等に基づいて設定される値から、上述したISC目標トルクへと設定変更される。この場合、目標トルクTtが大幅に低下して目標吸入空気量Gatも同様に大幅に低下する。更に、その目標吸入空気量Gatに合わせて内燃機関1の吸入空気量を減量させるべく、上記低下する目標吸入空気量Gatに基づいてスロットル開度が急速に減少される。   By the way, during the idling operation of the internal combustion engine 1 in which the accelerator operation amount is “0”, the above-described ISC target torque is set as the target torque Tt of the internal combustion engine 1. For this reason, in a situation where the driver reduces the accelerator operation amount to “0” while the vehicle is traveling, the target torque Tt is changed from the value set based on the driver request torque or the like to the ISC target torque described above. Is done. In this case, the target torque Tt is significantly reduced, and the target intake air amount Gat is also significantly reduced. Further, in order to reduce the intake air amount of the internal combustion engine 1 in accordance with the target intake air amount Gat, the throttle opening is rapidly reduced based on the decreasing target intake air amount Gat.

ただし、このようにスロットル開度を急速に減少させたとしても、上述したように低下する目標吸入空気量Gatに対し、内燃機関1の吸入空気量の減量に応答遅れが生じることは避けられない。このため、吸入空気量の減量の上記応答遅れにより内燃機関1に余分な空気が吸入され、それに伴い内燃機関1に余分なトルクが発生する。そして、内燃機関1での上記余分なトルク発生により、機関回転速度をアイドル回転速度に調整するための内燃機関1のトルク低下に遅れが生じる。こうしたトルク低下の遅れを抑制するために内燃機関1の点火時期を遅角制御することが考えられるが、そうした点火時期の遅角制御を許可すべきか否かを判定するために、電子制御装置51を通じて空気量推定処理S7及び遅角許可判定処理S8が行われる。   However, even if the throttle opening is rapidly reduced in this way, it is inevitable that a response delay occurs in the reduction of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat that decreases as described above. . For this reason, excess air is sucked into the internal combustion engine 1 due to the response delay of the reduction in the intake air amount, and accordingly, excessive torque is generated in the internal combustion engine 1. The extra torque generation in the internal combustion engine 1 causes a delay in the torque reduction of the internal combustion engine 1 for adjusting the engine rotational speed to the idle rotational speed. In order to suppress such a delay in torque reduction, it is conceivable to retard the ignition timing of the internal combustion engine 1, but in order to determine whether or not the retard control of the ignition timing should be permitted, the electronic control unit 51 is used. Through this, an air amount estimation process S7 and a retard permission determination process S8 are performed.

詳しくは、電子制御装置51は、スロットルポジションセンサ55からの検出信号に基づき実際のスロットル開度を求め、その実際のスロットル開度に基づき空気量推定処理S7を通じて収束先推定空気量Ga1及び現在推定空気量Ga2を算出する。なお、収束先推定空気量Ga1はスロットル開度変化の過渡期における、算出時点のスロットル開度で内燃機関1を定常運転させたと仮定した場合の吸入空気量を推定値である。また、現在推定空気量Ga2はスロットル開度変化の過渡期における、算出時点の実際の吸入空気量の推定値である。また、電子制御装置51は、上述した収束先推定空気量Ga1及び現在推定空気量Ga2、並びに、目標吸入空気量Gat及びISC目標トルクに基づき、上記トルク低下の遅れを抑制するための点火時期の遅角制御を許可すべきか否かを遅角許可判定処理S8を通じて判定する。   Specifically, the electronic control unit 51 obtains the actual throttle opening based on the detection signal from the throttle position sensor 55, and based on the actual throttle opening, through the air amount estimation processing S7, the convergence destination estimated air amount Ga1 and the current estimation. The air amount Ga2 is calculated. The convergence destination estimated air amount Ga1 is an estimated value of the intake air amount when it is assumed that the internal combustion engine 1 is normally operated at the calculated throttle opening in the transition period of the throttle opening change. The current estimated air amount Ga2 is an estimated value of the actual intake air amount at the time of calculation in the transition period of the throttle opening change. Further, the electronic control unit 51 determines the ignition timing for suppressing the delay of the torque reduction based on the convergence destination estimated air amount Ga1 and the current estimated air amount Ga2, and the target intake air amount Gat and the ISC target torque. It is determined whether or not the retard control should be permitted through the retard permission determination process S8.

そして、遅角許可判定処理S8を通じて、上記トルク低下の遅れを抑制するための点火時期の遅角制御を許可すべき旨判断した場合には、その旨の判断に基づき点火時期の遅角制御が実行される。詳しくは、目標点火時期算出処理S6で算出される目標点火時期SAtが遅角補正され、それによって上記トルク低下の遅れを抑制すべく内燃機関1の点火時期が遅角される。   When it is determined through the retard permission determination process S8 that the ignition timing retard control for suppressing the delay in the torque reduction is to be permitted, the ignition timing retard control is performed based on the determination to that effect. Executed. Specifically, the target ignition timing SAt calculated in the target ignition timing calculation process S6 is retarded, and thereby the ignition timing of the internal combustion engine 1 is retarded to suppress the delay in torque reduction.

次に、上記トルク低下の遅れを抑制するための内燃機関1の点火時期の遅角制御について更に詳しく説明する。
図3(a)〜(e)は、走行する車両の減速時におけるアクセル操作量、内燃機関1のトルク、吸入空気量、スロットル開度、及び点火時期の変化を示している。走行する車両の減速時に運転者によってアクセル操作量が図3(a)に示すように「0」まで低下させられると(タイミングt1)、図3(b)に実線で示すように目標トルクTtがISC目標トルクへと設定変更されることにより、アクセル操作量が「0」に低下する前後で目標トルクTtが大幅に低下する。こうした目標トルクTtの大幅な低下に合わせて、図3(c)に実線で示すように目標吸入空気量Gatも大幅に低下する。更に、同目標吸入空気量Gatの大幅な低下に合わせて、図3(d)に示すようにスロットル開度が急速に減少するようにもなる。
Next, the retard angle control of the ignition timing of the internal combustion engine 1 for suppressing the delay in torque reduction will be described in more detail.
3A to 3E show changes in the accelerator operation amount, the torque of the internal combustion engine 1, the intake air amount, the throttle opening, and the ignition timing when the traveling vehicle is decelerated. When the driver decelerates the accelerator operation amount to “0” as shown in FIG. 3 (a) (timing t1), the target torque Tt becomes as shown by the solid line in FIG. 3 (b). By changing the setting to the ISC target torque, the target torque Tt significantly decreases before and after the accelerator operation amount decreases to “0”. As the target torque Tt decreases significantly, the target intake air amount Gat also decreases significantly as shown by the solid line in FIG. Further, as the target intake air amount Gat significantly decreases, the throttle opening rapidly decreases as shown in FIG.

このようにスロットル開度を急速に減少させたとしても、図3(c)に実線で示すように大幅に低下する目標吸入空気量Gatに対し、内燃機関1の吸入空気量の減量には応答遅れが生じる。こうした吸入空気量の減量の応答遅れに関係して、図3(c)に破線で示すように収束先推定空気量Ga1が推移するとともに、図3(c)に二点鎖線で示すように現在推定空気量Ga2が推移する。そして、吸入空気量の上記応答遅れにより内燃機関1に余分な空気が吸入され、それに伴い内燃機関1に余分なトルクが発生する。そして、内燃機関1での上記余分なトルク発生により、機関回転速度をアイドル回転速度に調整するための内燃機関1のトルク低下、すなわち目標トルクTtに向けた内燃機関の実トルクの低下に遅れが生じる。従って、目標トルクTtの図3(b)に実線で示す低下に対し、内燃機関1の実トルクは図3(b)に破線で示すように緩やかにしか低下しない。   Even if the throttle opening is rapidly reduced in this way, the response to the reduction of the intake air amount of the internal combustion engine 1 is responsive to the target intake air amount Gat that significantly decreases as shown by the solid line in FIG. There is a delay. In relation to such a response delay in the reduction of the intake air amount, the convergence destination estimated air amount Ga1 changes as shown by a broken line in FIG. 3C, and as shown by a two-dot chain line in FIG. The estimated air amount Ga2 changes. Then, excess air is sucked into the internal combustion engine 1 due to the response delay of the intake air amount, and accordingly, excessive torque is generated in the internal combustion engine 1. Then, due to the generation of the extra torque in the internal combustion engine 1, there is a delay in the decrease in the torque of the internal combustion engine 1 for adjusting the engine rotational speed to the idle rotational speed, that is, the decrease in the actual torque of the internal combustion engine toward the target torque Tt. Arise. Therefore, the actual torque of the internal combustion engine 1 decreases only slowly as shown by the broken line in FIG. 3B, whereas the target torque Tt decreases by the solid line in FIG.

こうした内燃機関1のトルク低下の遅れを抑制するため、内燃機関1の点火時期を遅角させることが考えられる。ここで、上記トルク低下の遅れが生じるときには、目標トルクTtがISC目標トルクへと設定変更されることによって上述したように大幅に低下する。従って、このときの目標トルクTt(ISC目標トルクに相当)は、内燃機関1において吸入空気量が目標吸入空気量Gatに収束しており且つMBT点火時期にて点火が行われているときの内燃機関1のトルク(以下、ISC目標MBTトルクという)未満になる。このため、目標トルクTtがISC目標MBTトルク未満であることに基づき、上記トルク低下の応答遅れが生じる状況であって同応答遅れを抑制すべく内燃機関1の点火時期の遅角制御を許可すべき状況である旨判断することができ、その旨の判断がなされたときに点火時期の遅角を行うことが考えられる。   In order to suppress such a delay in torque reduction of the internal combustion engine 1, it is conceivable to retard the ignition timing of the internal combustion engine 1. Here, when a delay in the torque reduction occurs, the target torque Tt is significantly changed as described above by changing the setting to the ISC target torque. Therefore, the target torque Tt (corresponding to the ISC target torque) at this time is the internal combustion engine when the intake air amount is converged to the target intake air amount Gat in the internal combustion engine 1 and ignition is performed at the MBT ignition timing. It becomes less than the torque of the engine 1 (hereinafter referred to as ISC target MBT torque). For this reason, based on the fact that the target torque Tt is less than the ISC target MBT torque, the delay control of the ignition timing of the internal combustion engine 1 is permitted in order to suppress the response delay in a situation where the response delay of the torque reduction occurs. It can be determined that the situation should be, and it is conceivable to retard the ignition timing when the determination is made.

このような条件で点火時期の遅角制御を許可する場合、上記アクセル操作量が「0」になり、目標トルクTt(ISC目標トルク)がISC目標MBTトルク未満になったタイミング、すなわち目標吸入空気量Gatに対し内燃機関1の吸入空気量が増量側に大きく乖離しているタイミングで点火時期の遅角が実行される。この場合、その点火時期の遅角によって内燃機関1における吸入空気量の減量の応答遅れによる同機関1での余分なトルク発生を抑制しようとすると、図3(e)に破線で示すように点火時期の遅角量を大きくして内燃機関1のトルクを大幅に低下させなければならない。このように点火時期の遅角量を大きくすれば、内燃機関1の実トルクを図3(b)に実線で示すように低下する目標トルクTtに合わせて速やかに低下させることができる。   When permitting retarding control of the ignition timing under such conditions, the timing at which the accelerator operation amount becomes “0” and the target torque Tt (ISC target torque) becomes less than the ISC target MBT torque, that is, target intake air. The ignition timing is retarded at a timing when the intake air amount of the internal combustion engine 1 greatly deviates toward the increase side with respect to the amount Gat. In this case, if an attempt is made to suppress the generation of excess torque in the engine 1 due to a delay in response to the reduction of the intake air amount in the internal combustion engine 1 due to the retard of the ignition timing, the ignition is performed as shown by a broken line in FIG. It is necessary to greatly reduce the torque of the internal combustion engine 1 by increasing the timing retardation amount. If the retard amount of the ignition timing is increased in this way, the actual torque of the internal combustion engine 1 can be quickly reduced in accordance with the target torque Tt that decreases as shown by the solid line in FIG.

しかし、この場合には上記点火時期の遅角の実行前のトルクと実行後のトルクとの乖離が大きくなり、それによってドライバビリティの低下を招くおそれがある。
こうした問題に対処するため、内燃機関1における上記点火時期の遅角制御は次のように実行される。すなわち、上記アクセル操作量が「0」に低下することに基づき、内燃機関1の吸入空気量を目標吸入空気量Gatまで減量する際、その目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達するまでは、同機関1における点火時期の遅角制御を許可しないことにより同制御が実行されないようにする。そして、目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達した時点で上記点火時期の遅角制御を許可し、それによって目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達してから点火時期の遅角制御が実行されるようにする。
However, in this case, the difference between the torque before execution of the ignition timing retardation and the torque after execution becomes large, which may cause a decrease in drivability.
In order to cope with such a problem, the retard control of the ignition timing in the internal combustion engine 1 is executed as follows. That is, when the intake air amount of the internal combustion engine 1 is reduced to the target intake air amount Gat based on the decrease in the accelerator operation amount to “0”, the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat is reduced. Until the convergence reaches a specified level, the control is not executed by not permitting the retard control of the ignition timing in the engine 1. Then, when the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat reaches a specified level, the retard control of the ignition timing is permitted, whereby the intake air of the internal combustion engine 1 with respect to the target intake air amount Gat. The retard control of the ignition timing is executed after the convergence of the quantity reaches a specified level.

上記アクセル操作量が「0」に低下することに基づき、内燃機関1の吸入空気量を目標吸入空気量Gatまで減量する際、その目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達したか否かについての判断は、上記遅角許可判定処理S8を通じて、次の[条件A]及び[条件B]が成立したか否かに基づいて判断される。   When the intake air amount of the internal combustion engine 1 is reduced to the target intake air amount Gat based on the decrease in the accelerator operation amount to “0”, the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat is converged. The determination as to whether or not the specified level has been reached is made based on whether or not the following [Condition A] and [Condition B] are satisfied through the retard angle permission determination process S8.

[条件A]収束先推定空気量Ga1が目標吸入空気量Gatに所定値OS1を加算した値(「Gat+OS1」)未満になる。
[条件B]現在推定空気量Ga2が収束先推定空気量Ga1に所定値OS2を加算した値(「Ga1+OS2」)未満になる。
[Condition A] The convergence destination estimated air amount Ga1 becomes less than a value obtained by adding a predetermined value OS1 to the target intake air amount Gat (“Gat + OS1”).
[Condition B] The current estimated air amount Ga2 becomes less than a value (“Ga1 + OS2”) obtained by adding a predetermined value OS2 to the convergence destination estimated air amount Ga1.

そして、これら[条件A]と[条件B]との両方の成立に基づき、上記目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達した旨判断される。一方、[条件A]と[条件B]とのいずれかで不成立であれば、上記目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルには達していない旨判断される。   Based on the establishment of both [Condition A] and [Condition B], it is determined that the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat has reached a specified level. On the other hand, if either [Condition A] or [Condition B] is not satisfied, it is determined that the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat has not reached the specified level.

図3の例では、タイミングt1よりも遅いタイミングt2で[条件A]が成立し、その後にタイミングt3で「条件B」も成立する。従って、タイミングt3で、上記目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達した旨判断され、その旨の判断に基づき点火時期の遅角制御が許可される。こうした点火時期の遅角制御の許可により、図3(e)に実線で示されるように内燃機関1の点火時期の遅角がタイミングt1よりも遅いタイミングt3で開始される。点火時期の遅角が開始されるまでの間であって、上記目標吸入空気量Gatに対し内燃機関1の吸入空気量が収束する過程では、同吸入空気量の減量に応じて内燃機関1の実トルクが図3(b)に破線で示すように徐々に低下してゆく。従って、タイミングt3では、上記吸入空気量の減量の応答遅れに起因して内燃機関1で発生する余分なトルクが小さくなる。このため、上記余分なトルクを抑えるべく、上記遅角制御で点火時期を大幅に遅角させて内燃機関1のトルクを大幅に低下させる必要はなくなる。   In the example of FIG. 3, [Condition A] is satisfied at timing t2 later than timing t1, and “Condition B” is also satisfied at timing t3. Therefore, at timing t3, it is determined that the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat has reached a specified level, and based on this determination, retarding control of the ignition timing is permitted. By permitting such retard control of the ignition timing, the retard of the ignition timing of the internal combustion engine 1 is started at a timing t3 that is later than the timing t1, as indicated by a solid line in FIG. During the process until the ignition timing delay is started and the intake air amount of the internal combustion engine 1 converges with respect to the target intake air amount Gat, the internal combustion engine 1 is controlled according to the reduction of the intake air amount. The actual torque gradually decreases as shown by the broken line in FIG. Therefore, at the timing t3, the extra torque generated in the internal combustion engine 1 due to the response delay in the reduction of the intake air amount is reduced. For this reason, it is not necessary to significantly reduce the torque of the internal combustion engine 1 by significantly retarding the ignition timing by the retardation control in order to suppress the excessive torque.

次に、内燃機関1の制御装置の作用について説明する。
図4は、内燃機関1における点火時期の上記遅角制御を許可するための遅角制御許可ルーチンを示すフローチャートである。この遅角制御許可ルーチンは、電子制御装置51における上記遅角許可判定処理S8を通じて、所定時間毎の時間割り込みにて周期的に実行される。
Next, the operation of the control device for the internal combustion engine 1 will be described.
FIG. 4 is a flowchart showing a retard control permission routine for permitting the retard control of the ignition timing in the internal combustion engine 1. This retardation control permission routine is periodically executed by a time interruption every predetermined time through the retardation permission determination processing S8 in the electronic control unit 51.

電子制御装置51は、同ルーチンのステップ101(S101)における肯定判断、すなわち上記遅角制御の許可中ではない旨の判断に基づきS102に進む。電子制御装置51は、S102の処理として、目標トルクTtがISC目標MBTトルク未満になる状態(以下、トルクアイドル状態という)であるか否かを判断する。このトルクアイドル状態は、走行中の車両を減速すべくアクセル操作量が「0」まで低下される際に、機関回転速度をアイドル回転速度に調整するための内燃機関1のトルク低下に遅れが生じたとき、機関回転速度をアイドル回転速度まで速やかに低下させようとして目標トルクTt(ISC目標トルクに相当)が小さくされることによって生じる。そして、このように小さくされた目標トルクTtがISC目標MBTトルク未満になることにより、S102でトルクアイドル状態である旨判断される。   The electronic control unit 51 proceeds to S102 based on an affirmative determination in step 101 (S101) of the routine, that is, a determination that the retard control is not permitted. The electronic control unit 51 determines whether or not the target torque Tt is less than the ISC target MBT torque (hereinafter referred to as torque idle state) as the process of S102. In this torque idle state, when the accelerator operation amount is reduced to “0” in order to decelerate the running vehicle, a delay occurs in the torque reduction of the internal combustion engine 1 for adjusting the engine rotational speed to the idle rotational speed. This occurs when the target torque Tt (corresponding to the ISC target torque) is reduced in order to promptly reduce the engine speed to the idle speed. Then, when the target torque Tt thus reduced becomes less than the ISC target MBT torque, it is determined in S102 that the engine is in the torque idle state.

従って、S102でトルクアイドル状態でない旨判断されたときには、上記トルク低下の応答遅れが生じる状況ではないことを意味する。この場合にはS106に進む。電子制御装置51は、S106の処理として、上記トルク低下の遅れを抑制するための内燃機関1での点火時期の遅角制御を許可しないようにする、言い換えれば同遅角制御の実行を禁止する。このS106の処理を実行した後、電子制御装置51は、遅角制御許可ルーチンを一旦終了する。一方、S102でトルクアイドル状態である旨判断されたときには、上記トルク低下の応答遅れが生じる状況であることを意味する。この場合にはS103に進む。   Therefore, when it is determined in S102 that the torque idle state is not established, it means that the response delay of the torque reduction is not caused. In this case, the process proceeds to S106. The electronic control unit 51 does not allow the retard control of the ignition timing in the internal combustion engine 1 for suppressing the delay of the torque reduction as the process of S106, in other words, prohibits the execution of the retard control. . After executing the process of S106, the electronic control unit 51 once terminates the retard control permission routine. On the other hand, when it is determined in S102 that the engine is in the torque idle state, it means that the response delay of the torque reduction occurs. In this case, the process proceeds to S103.

S103及びS104の処理は、目標吸入空気量Gatに対し内燃機関1の吸入空気量が収束する過程において、その収束が規定レベルに達したか否かを判断するためのものである。電子制御装置51は、S103の処理として上記[条件A]が成立しているか否か、すなわち収束先推定空気量Ga1が目標吸入空気量Gatに所定値OS1を加算した値(「Gat+OS1」)未満であるか否かを判断する。ここで肯定判断であればS104に進む。電子制御装置51は、S104の処理として上記[条件B]が成立しているか否か、すなわち現在推定空気量Ga2が収束先推定空気量Ga1に所定値OS2を加算した値(「Ga1+OS2」)未満であるか否かを判断する。   The processes of S103 and S104 are for determining whether or not the convergence has reached a specified level in the process in which the intake air amount of the internal combustion engine 1 converges with respect to the target intake air amount Gat. The electronic control unit 51 determines whether or not [Condition A] is satisfied as the processing of S103, that is, the convergence destination estimated air amount Ga1 is less than a value (“Gat + OS1”) obtained by adding the predetermined value OS1 to the target intake air amount Gat. It is determined whether or not. If a positive determination is made here, the process proceeds to S104. The electronic control unit 51 determines whether or not [Condition B] is satisfied as the process of S104, that is, the current estimated air amount Ga2 is less than the value obtained by adding the predetermined value OS2 to the convergence destination estimated air amount Ga1 (“Ga1 + OS2”). It is determined whether or not.

S103とS104の処理とのいずれかで否定判断がなされると、電子制御装置51は、上記目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達していない旨判断する。この場合には、上述したS106の処理が実行される。また、S103の処理とS104の処理とで共に肯定判断がなされると、電子制御装置51は、上記目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達した旨判断する。この場合にはS105に進む。電子制御装置51は、S105の処理として上記トルク低下の遅れを抑制するための同機関1での点火時期の遅角制御を許可した後、遅角制御許可ルーチンを一旦終了する。   If a negative determination is made in either of the processes of S103 and S104, the electronic control unit 51 determines that the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat has not reached a specified level. In this case, the process of S106 described above is executed. Further, when both the processing of S103 and the processing of S104 are positively determined, the electronic control unit 51 determines that the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat has reached a specified level. . In this case, the process proceeds to S105. The electronic control unit 51 permits the retard control of the ignition timing in the engine 1 to suppress the delay of the torque reduction as the process of S105, and then temporarily terminates the retard control permission routine.

上記S105の処理での点火時期の遅角制御の許可により、機関回転速度をアイドル回転速度に調整するための内燃機関1での上記トルク低下の遅れを抑制すべく、同機関1の点火時期が遅角されるようになる。これにより、点火時期の遅角を実行することによる内燃機関1のトルク変動が大きくなってドライバビリティが低下することは抑制される。これは、上記点火時期の遅角が開始されるタイミングでは、上記目標吸入空気量Gatに対する内燃機関1の吸入空気量の減量の応答遅れに起因して同機関1で発生する余分なトルクが小さくなっており、その余分なトルクを抑えるための点火時期の遅角量が小さくてすむことが関係している。そして、上記点火時期の遅角量が小さくてすむため、その遅角量分の点火時期の遅角によって内燃機関のトルクが大幅に低下してしまうことはなくなり、その際のトルク変動が大きくなることもない。その結果、上述したようにドライバビリティの低下が抑制されるようになる。   By permitting the retard control of the ignition timing in the process of S105, the ignition timing of the engine 1 is set to suppress the delay of the torque decrease in the internal combustion engine 1 for adjusting the engine speed to the idle speed. Be retarded. Thereby, it is suppressed that the torque fluctuation of the internal combustion engine 1 due to execution of the retard of the ignition timing becomes large and the drivability is lowered. This is because, at the timing at which the retard of the ignition timing is started, the extra torque generated in the engine 1 due to the response delay of the reduction in the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat is small. This is related to the fact that the retard amount of the ignition timing for suppressing the excessive torque is small. Since the retard amount of the ignition timing is small, the torque of the internal combustion engine is not greatly reduced by the retard amount of the ignition timing corresponding to the retard amount, and the torque fluctuation at that time increases. There is nothing. As a result, a decrease in drivability is suppressed as described above.

なお、上記S105の処理によって内燃機関1での点火時期の上記遅角制御が許可されると、以後のS101の処理では否定判断がなされ、S107に進むようになる。電子制御装置51は、S107の処理としてトルクアイドル状態であるか否か、言い換えれば上記遅角制御の許可に基づく点火時期の遅角実行後にトルクアイドル状態が続いているか否かを判断する。ここで肯定判断であれば、S105に進んで上記遅角制御の許可を続け、同許可に基づく点火時期の遅角も続ける。一方、この点火時期の遅角の継続中、目標吸入空気量Gatに対し内燃機関1の吸入空気量が収束すると、上記点火時期の遅角による同機関1のトルク低下に起因して機関回転速度がアイドル回転速度未満になるため、目標トルクTt(ISC目標トルク)が上昇してゆく。そして、ISC目標トルクがISC目標MBTトルク以上になると、S107の処理で否定判断がなされてS106に進む。この場合には上記遅角制御の実行を禁止して上記点火時期の遅角を終了する。   If the retard control of the ignition timing in the internal combustion engine 1 is permitted by the process of S105, a negative determination is made in the subsequent process of S101, and the process proceeds to S107. The electronic control unit 51 determines whether or not the engine is in a torque idle state as a process of S107, in other words, whether or not the torque idle state continues after execution of retarding the ignition timing based on permission of the retardation control. If the determination is affirmative, the routine proceeds to S105, where the above retard control is continuously permitted, and the retard of the ignition timing based on the permit is also continued. On the other hand, if the intake air amount of the internal combustion engine 1 converges with respect to the target intake air amount Gat while the retard of the ignition timing continues, the engine speed is reduced due to the torque reduction of the engine 1 due to the retard of the ignition timing. Becomes less than the idle rotation speed, the target torque Tt (ISC target torque) increases. If the ISC target torque is equal to or greater than the ISC target MBT torque, a negative determination is made in the process of S107, and the process proceeds to S106. In this case, execution of the retard control is prohibited and the retard of the ignition timing is terminated.

以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)走行する車両の減速時にアクセル操作量が「0」に低下させられるとき、機関回転速度をアイドル回転速度に調整するための目標吸入空気量Gatに向けての内燃機関1の吸入空気量の減量に応答遅れが生じる。更に、その吸入空気量の減量の応答遅れに伴い、機関回転速度をアイドル回転速度に調整するための目標トルクTt(ISC目標トルクに相当)に向けた内燃機関のトルク低下にも遅れが生じる。そして、このトルク低下の遅れを抑制するための内燃機関1における点火時期の遅角制御が次のように実行される。すなわち、上記目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達するまでは、同機関1における点火時期の遅角制御を許可しないことにより、同制御が実行されないようにする。そして、目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達した時点で上記点火時期の遅角制御を許可し、それによって目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達してから点火時期の遅角制御が実行されるようにする。このように点火時期の遅角制御を実行する場合、同遅角制御による点火時期の遅角の開始時には上記吸入空気量の減量の応答遅れに起因して内燃機関1で発生する余分なトルクが小さくなる。このため、上記余分なトルクを抑えるべく、上記遅角制御における点火時期の遅角量を大きくして内燃機関1のトルクを大幅に低下させる必要はなくなる。従って、上記点火時期の遅角を実行したときの内燃機関1のトルク変動が大きくなることによるドライバビリティの低下を抑制することができる。
According to the embodiment described in detail above, the following effects can be obtained.
(1) When the accelerator operation amount is reduced to “0” when the traveling vehicle is decelerated, the intake air amount of the internal combustion engine 1 toward the target intake air amount Gat for adjusting the engine rotation speed to the idle rotation speed Response delay occurs in the weight loss. Further, with the response delay of the reduction of the intake air amount, a delay also occurs in the torque reduction of the internal combustion engine toward the target torque Tt (corresponding to the ISC target torque) for adjusting the engine rotational speed to the idle rotational speed. Then, the retard control of the ignition timing in the internal combustion engine 1 for suppressing the delay of the torque decrease is executed as follows. That is, until the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat reaches a specified level, the control is not executed by not permitting the retard control of the ignition timing in the engine 1. . Then, when the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat reaches a specified level, the retard control of the ignition timing is permitted, whereby the intake air of the internal combustion engine 1 with respect to the target intake air amount Gat. The retard control of the ignition timing is executed after the convergence of the quantity reaches a specified level. When the ignition timing retarding control is executed in this way, excess torque generated in the internal combustion engine 1 due to the response delay of the reduction of the intake air amount at the start of the ignition timing retarding by the retarding control is generated. Get smaller. For this reason, in order to suppress the excessive torque, there is no need to greatly reduce the torque of the internal combustion engine 1 by increasing the retard amount of the ignition timing in the retard control. Accordingly, it is possible to suppress a decrease in drivability due to an increase in torque fluctuation of the internal combustion engine 1 when the ignition timing is retarded.

(2)上記遅角制御の実行時には内燃機関1の点火時期がMBT点火時期よりも遅角されるため、その遅角により内燃機関1の燃費が悪化することは否めない。しかし、上記遅角制御は目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達するまでは許可されず、その許可がなされるときまで点火時期の遅角の開始タイミングを遅らせることができる。そして、そのように点火時期の遅角の開始タイミングを遅らせることにより、同遅角による内燃機関1の燃費悪化を抑制することができる。   (2) Since the ignition timing of the internal combustion engine 1 is retarded from the MBT ignition timing during execution of the retardation control, it cannot be denied that the fuel consumption of the internal combustion engine 1 deteriorates due to the retardation. However, the retard control is not permitted until the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat reaches a specified level, and delays the start timing of the retard of the ignition timing until the permission is granted. be able to. And by delaying the start timing of the retard of the ignition timing in this way, it is possible to suppress the deterioration of the fuel consumption of the internal combustion engine 1 due to the retard.

(3)上記目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達したか否かは、[条件A]及び[条件B]が成立したか否かに基づいて判断される。すなわち、[条件A]と[条件B]との両方の成立に基づき、上記目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達した旨判断される。従って、上記目標吸入空気量Gatに対する内燃機関1の吸入空気量の収束が規定レベルに達した旨判断されたとき、その判断を正確なものとすることができる。   (3) Whether the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat has reached a specified level is determined based on whether [Condition A] and [Condition B] are satisfied. The That is, based on the establishment of both [Condition A] and [Condition B], it is determined that the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat has reached a specified level. Therefore, when it is determined that the convergence of the intake air amount of the internal combustion engine 1 with respect to the target intake air amount Gat has reached a specified level, the determination can be made accurate.

1…内燃機関、2…燃焼室、3…吸気通路、3a…吸気ポート、4…燃料噴射弁、5…点火プラグ、6…ピストン、7…クランクシャフト、8…排気通路、13…スロットルバルブ、51…電子制御装置、52…エアフローメータ、54…クランクポジションセンサ、55…スロットルポジションセンサ、56…アクセルペダル、57…アクセルポジションセンサ。   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Combustion chamber, 3 ... Intake passage, 3a ... Intake port, 4 ... Fuel injection valve, 5 ... Spark plug, 6 ... Piston, 7 ... Crankshaft, 8 ... Exhaust passage, 13 ... Throttle valve, DESCRIPTION OF SYMBOLS 51 ... Electronic control unit, 52 ... Air flow meter, 54 ... Crank position sensor, 55 ... Throttle position sensor, 56 ... Accelerator pedal, 57 ... Accelerator position sensor

Claims (1)

アクセル操作量が「0」まで低下したことに基づき、機関回転速度をアイドル回転速度とする目標吸入空気量まで内燃機関の吸入空気量の減量を行い、その吸入空気量の減量の応答遅れに起因する内燃機関の余分なトルクを抑える同機関の点火時期の遅角制御を実行する内燃機関の制御装置において、
前記アクセル操作量の「0」への低下に基づき、内燃機関の吸入空気量を前記目標吸入空気量まで減量する際、その目標吸入空気量に対する内燃機関の吸入空気量の収束が規定レベルに達するまでは同機関の点火時期の前記遅角制御を実行しないようにする
ことを特徴とする内燃機関の制御装置。
Based on the fact that the accelerator operation amount has decreased to “0”, the intake air amount of the internal combustion engine is reduced to the target intake air amount with the engine speed set to the idle rotation speed, and this is due to a response delay in the reduction of the intake air amount. In a control device for an internal combustion engine that executes retarded control of ignition timing of the engine for suppressing excess torque of the internal combustion engine,
When the intake air amount of the internal combustion engine is reduced to the target intake air amount based on the reduction of the accelerator operation amount to “0”, the convergence of the intake air amount of the internal combustion engine with respect to the target intake air amount reaches a specified level. The control apparatus for an internal combustion engine, wherein the retard control of the ignition timing of the engine is not executed until.
JP2013262702A 2013-12-19 2013-12-19 Control device for internal combustion engine Expired - Fee Related JP6156125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262702A JP6156125B2 (en) 2013-12-19 2013-12-19 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262702A JP6156125B2 (en) 2013-12-19 2013-12-19 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015117665A true JP2015117665A (en) 2015-06-25
JP6156125B2 JP6156125B2 (en) 2017-07-05

Family

ID=53530610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262702A Expired - Fee Related JP6156125B2 (en) 2013-12-19 2013-12-19 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6156125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021113512A (en) * 2020-01-17 2021-08-05 トヨタ自動車株式会社 Controller of internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549634B2 (en) 2017-04-28 2019-07-24 コイト電工株式会社 Seat control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123279A (en) * 1988-10-31 1990-05-10 Mazda Motor Corp Ignition timing control device for engine
JPH1030477A (en) * 1996-07-12 1998-02-03 Nissan Motor Co Ltd Fuel cut controller for internal combustion engine
JP2001263118A (en) * 2000-03-17 2001-09-26 Toyota Motor Corp Control device for internal combustion engine
JP2008151054A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Control device for internal combustion engine
JP2008231985A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Control device for torque demand type internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123279A (en) * 1988-10-31 1990-05-10 Mazda Motor Corp Ignition timing control device for engine
JPH1030477A (en) * 1996-07-12 1998-02-03 Nissan Motor Co Ltd Fuel cut controller for internal combustion engine
JP2001263118A (en) * 2000-03-17 2001-09-26 Toyota Motor Corp Control device for internal combustion engine
JP2008151054A (en) * 2006-12-19 2008-07-03 Toyota Motor Corp Control device for internal combustion engine
JP2008231985A (en) * 2007-03-19 2008-10-02 Toyota Motor Corp Control device for torque demand type internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021113512A (en) * 2020-01-17 2021-08-05 トヨタ自動車株式会社 Controller of internal combustion engine

Also Published As

Publication number Publication date
JP6156125B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5126425B2 (en) Control device for internal combustion engine
JP4497089B2 (en) Control device for internal combustion engine
US20160123250A1 (en) Device for controlling internal combustion engine
JP6156125B2 (en) Control device for internal combustion engine
US20190048843A1 (en) Control device of internal combustion engine
WO2012114495A1 (en) Internal combustion engine control apparatus
JP2012077689A (en) Engine controller
WO2019016876A1 (en) Method for controlling internal combustion engine and device for controlling same
JP6335432B2 (en) Engine control device
JP6051793B2 (en) Control device for internal combustion engine
JP2016098786A (en) Internal combustion engine control device
JP2009036036A (en) Ignition timing control device of internal combustion engine
JP2015132237A (en) Control device of internal combustion engine
JP6003867B2 (en) Engine control device
JP6844467B2 (en) Internal combustion engine ignition timing controller
JP5585599B2 (en) Engine control device
JP2007056778A (en) Controller for eliminating smoldering of ignition plug
JP2015203388A (en) Control device of internal combustion engine
JP4702476B2 (en) Control device for internal combustion engine
JP2012052468A (en) Engine control device
JP2007100662A (en) Control device of internal combustion engine for vehicle
JP2010007585A (en) Control device for internal combustion engine
JP6268775B2 (en) Control device and control method for internal combustion engine
JP5527612B2 (en) Engine rotation stop control device
JP6191532B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6156125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees