JP2015116545A - Hydrogen gas treatment equipment - Google Patents

Hydrogen gas treatment equipment Download PDF

Info

Publication number
JP2015116545A
JP2015116545A JP2013262389A JP2013262389A JP2015116545A JP 2015116545 A JP2015116545 A JP 2015116545A JP 2013262389 A JP2013262389 A JP 2013262389A JP 2013262389 A JP2013262389 A JP 2013262389A JP 2015116545 A JP2015116545 A JP 2015116545A
Authority
JP
Japan
Prior art keywords
hydrogen
gas
mixed gas
hydrogen gas
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013262389A
Other languages
Japanese (ja)
Inventor
宗平 福井
Sohei Fukui
宗平 福井
大輔 渡邉
Daisuke Watanabe
大輔 渡邉
健司 野下
Kenji Noshita
健司 野下
太一 滝井
Taichi Takii
太一 滝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013262389A priority Critical patent/JP2015116545A/en
Publication of JP2015116545A publication Critical patent/JP2015116545A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide hydrogen gas treatment equipment capable of lowering treatment temperature of hydrogen gas with respect to mixed gas containing hydrogen gas and oxygen gas, and capable of improving treatment efficiency at the treatment temperature.SOLUTION: Hydrogen gas treatment equipment for treating hydrogen gas from mixed gas containing hydrogen gas and oxygen gas, includes: a hydrogen separator which is partitioned into a mixed gas chamber and a permeated hydrogen chamber by a hydrogen permeation membrane; a mixed gas temporary storage container which is connected to the mixed gas chamber via a mixed gas supply pipe line and a deoxidation mixed gas recovery pipeline; a condenser arranged on the way of the deoxidation mixed gas recovery pipeline; an oxidative gas supply mechanism connected to the permeated hydrogen chamber via the oxidative gas supply pipeline; and a water vapor exhaust pipe line connected to the permeated hydrogen chamber. Therein, the hydrogen permeable membrane is formed of porous layers of a catalytic metal which facilitates water vapor conversion reaction of hydrogen and oxygen on both surfaces of a dense membrane of a hydrogen permeable alloy and, in the hydrogen separator, a heating mechanism for continuously heating the hydrogen separator is not disposed.

Description

本発明は、水素ガスを含む混合ガスから該水素ガスを処理する技術に関し、特に、水素透過膜上で水蒸気変換反応を利用して水素ガスを安全に処理する水素ガス処理装置に関するものである。   The present invention relates to a technique for processing hydrogen gas from a mixed gas containing hydrogen gas, and more particularly to a hydrogen gas processing apparatus that safely processes hydrogen gas using a water vapor conversion reaction on a hydrogen permeable membrane.

水素ガス(以下、単に水素と称する場合もある)は、石油精製や化学薬品製造や食品加工など幅広い技術分野で利用されている。また、近年では、燃焼しても二酸化炭素などの温室効果ガスを出さないクリーンなエネルギー源としても注目されている。   Hydrogen gas (hereinafter sometimes simply referred to as hydrogen) is used in a wide range of technical fields such as petroleum refining, chemical production and food processing. In recent years, it has attracted attention as a clean energy source that does not emit greenhouse gases such as carbon dioxide even when burned.

水素ガスは、大気中にほとんど存在していないことから(1 ppm以下)、通常、炭化水素の水蒸気改質とその後の分離・精製とにより製造されている。代表的な水素の分離・精製方法としては、圧力変動吸着方式と膜分離方式とがある。 Since hydrogen gas hardly exists in the atmosphere (below 1 ppm), it is usually produced by steam reforming of hydrocarbons and subsequent separation and purification. Typical hydrogen separation / purification methods include a pressure fluctuation adsorption method and a membrane separation method.

圧力変動吸着方式は、複数の吸着塔を用いることで高純度水素を精製することができるというメリットがあるが、システム全体が大型化・複雑化しやすいというデメリットもある。膜分離方式は、水素透過膜(例えば、パラジウム(Pd)系合金膜)を利用することでシステムを小型化・簡素化できるというメリットがある。ただし、水素透過膜の周りに水素が存在する状態で運転温度を低下させると、水素透過膜が劣化(いわゆる水素脆化)し易いというデメリットがある。また、膜分離方式の性能や効率は使用する水素透過膜の性能に大きく依存するが、高い水素透過性能を有する水素透過膜は、その製造コストが高い(例えば、製造歩留りが低い)という問題もあった。   The pressure fluctuation adsorption method has a merit that high-purity hydrogen can be purified by using a plurality of adsorption towers, but also has a demerit that the entire system is easily increased in size and complexity. The membrane separation method has an advantage that the system can be reduced in size and simplified by using a hydrogen permeable membrane (for example, a palladium (Pd) alloy membrane). However, if the operating temperature is lowered in the presence of hydrogen around the hydrogen permeable membrane, there is a demerit that the hydrogen permeable membrane is likely to deteriorate (so-called hydrogen embrittlement). In addition, the performance and efficiency of the membrane separation method largely depend on the performance of the hydrogen permeable membrane to be used, but the hydrogen permeable membrane having high hydrogen permeable performance has a problem that the production cost is high (for example, the production yield is low). there were.

膜分離方式における問題を解決するために様々な研究開発が行われてきた。例えば、特許文献1(特開2003−112905)には、水蒸気を生成する水蒸発器と、燃料と水の改質反応により水素リッチな改質ガスを生成する改質器とを備え、前記改質器が少なくとも水素分離合金膜を介して隣接する改質層と純水素層からなる膜反応器である燃料改質システムであって、システム停止時に、前記改質層及び純水素層に前記水素分離合金膜の水素脆化を回避し得る所定温度を維持するように前記水蒸発器で生成した水蒸気のみを供給し、前記改質層及び前記純水素層の残留ガスをパージするのに必要な水蒸気量を供給した後に、前記改質器に空気を供給するようにした燃料改質システムが、開示されている。特許文献1によると、燃料改質システム内に水素等の残留ガスが存在するときは、水素分離合金膜を水素脆化しない温度に維持するので、水素分離合金膜の水素脆化を防ぐことができるとされている。   Various research and development have been conducted to solve the problems in the membrane separation system. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-112905) includes a water evaporator that generates steam and a reformer that generates a hydrogen-rich reformed gas by a reforming reaction between fuel and water. The fuel reformer is a membrane reactor comprising a reforming layer and a pure hydrogen layer adjacent to each other through at least a hydrogen separation alloy membrane, and the hydrogen is added to the reforming layer and the pure hydrogen layer when the system is stopped. Only the water vapor generated by the water evaporator is supplied so as to maintain a predetermined temperature at which hydrogen embrittlement of the separation alloy film can be avoided, and it is necessary to purge the residual gas in the reformed layer and the pure hydrogen layer. A fuel reforming system is disclosed in which air is supplied to the reformer after the amount of water vapor is supplied. According to Patent Document 1, when a residual gas such as hydrogen is present in the fuel reforming system, the hydrogen separation alloy membrane is maintained at a temperature that does not cause hydrogen embrittlement, so that hydrogen embrittlement of the hydrogen separation alloy membrane can be prevented. It is supposed to be possible.

また、特許文献2(特開2008−289948)には、スパッタリング法により基板上にPd膜又はPd合金膜を形成する工程と、前記Pd膜又はPd合金膜を形成した基板を真空中又は不活性ガス雰囲気中にて400〜700℃の温度で加熱処理する工程と、前記加熱処理したPd膜又はPd合金膜を基板から剥離する工程とを含むPd系水素透過金属膜の製造方法が、開示されている。特許文献2によると、スパッタリング法により基板上に均一でピンホールのない薄い水素透過金属膜を形成した後、所定の加熱処理を行うことで、基板からの水素透過金属膜の剥離を容易にし、極めて薄い膜厚(例えば、0.1〜5μm程度)であっても割れや破損及び変形(例えば、カール)などのない水素透過金属膜を安定して製造することができるとされている。   Patent Document 2 (Japanese Patent Laid-Open No. 2008-289948) discloses a step of forming a Pd film or a Pd alloy film on a substrate by a sputtering method and a substrate on which the Pd film or the Pd alloy film is formed in a vacuum or inactive. Disclosed is a method for producing a Pd-based hydrogen-permeable metal film, which includes a step of heat-treating at a temperature of 400 to 700 ° C. in a gas atmosphere and a step of peeling the heat-treated Pd film or Pd alloy film from the substrate. ing. According to Patent Document 2, after forming a uniform thin hydrogen-permeable metal film without pinholes on a substrate by a sputtering method, a predetermined heat treatment is performed to facilitate peeling of the hydrogen-permeable metal film from the substrate, It is said that even if the film thickness is extremely thin (for example, about 0.1 to 5 μm), a hydrogen-permeable metal film that is free from cracks, breakage, and deformation (for example, curl) can be stably produced.

一方、水素混合ガスから水素ガスを分離する技術の応用例の一つとして、混合ガスに含まれる水素ガスを分離した後、水素ガスの引火・爆発を防ぐために安全に処理する技術がある。例えば、特許文献3(特公昭59−12332)には、水素を排気し得る排気経路に適度に加熱し得るパラジウム合金等の水素透過膜を設けて被排気室と排気室とに区画し、その排気室に酸素を導入して該水素透過膜面を酸素雰囲気に維持し、前記被排気室からの水素が前記水素透過膜を透過したのち前記水素透過膜面の酸素と反応することにより水蒸気を生成させる水素の排気方法およびその排気装置が、開示されている。特許文献3によると、水素プラズマ装置や水素イオン源などに適用される水素の排気方法およびその排気装置であって、熱い水素(例えば、高エネルギー水素イオン、水素原子など)を大排気量で排気することができるとされている。   On the other hand, as one application example of a technique for separating hydrogen gas from a hydrogen mixed gas, there is a technique for separating the hydrogen gas contained in the mixed gas and then safely processing the hydrogen gas to prevent ignition and explosion. For example, in Patent Document 3 (Japanese Patent Publication No. 59-12332), a hydrogen permeable film such as a palladium alloy that can be heated appropriately is provided in an exhaust path capable of exhausting hydrogen, and is divided into an exhausted chamber and an exhaust chamber. Oxygen is introduced into the exhaust chamber to maintain the hydrogen permeable membrane surface in an oxygen atmosphere, and hydrogen from the exhausted chamber permeates the hydrogen permeable membrane and then reacts with oxygen on the hydrogen permeable membrane surface to generate water vapor. A method for exhausting hydrogen to be generated and an exhaust device for the method are disclosed. According to Patent Document 3, a hydrogen exhaust method and exhaust apparatus applied to a hydrogen plasma apparatus, a hydrogen ion source, etc., and exhaust hot hydrogen (for example, high energy hydrogen ions, hydrogen atoms, etc.) with a large displacement. It is supposed to be possible.

特開2003−112905号公報JP 2003-112905 A 特開2008−289948号公報JP 2008-289948 A 特公昭59−12332号公報Japanese Patent Publication No.59-12332

水素ガスは引火性が高く(最小着火エネルギー0.019 mJ)爆発範囲が広い(空気と混合した場合で4〜75体積%)ことから、混合ガスに含まれる水素ガスを分離・処理する技術は、安全上、非常に重要な技術である。特許文献3に記載の技術は、その指針を与える一つの技術と考えられる。   Since hydrogen gas is highly flammable (minimum ignition energy 0.019 mJ) and has a wide explosion range (4 to 75% by volume when mixed with air), the technology for separating and treating the hydrogen gas contained in the mixed gas is safe. This is a very important technology. The technique described in Patent Document 3 is considered to be one technique that provides the guideline.

ただし、特許文献3に記載の技術は、水素透過膜の水素透過能や水蒸気変換反応などの観点から、加熱装置を用いて水素透過膜を500℃前後に加熱して運用することが最も適しているとされている。一方、温度500℃は水素ガスの発火点に近いことから、特許文献3に記載の技術を混合ガス中の水素ガスの分離・処理に適用しようとすると、運転に細心の注意と十分な安全対策コストが必要になると考えられる。   However, the technique described in Patent Document 3 is most suitable to operate by heating the hydrogen permeable membrane to around 500 ° C. using a heating device from the viewpoint of hydrogen permeability of the hydrogen permeable membrane, water vapor conversion reaction, and the like. It is said that there is. On the other hand, since the temperature of 500 ° C is close to the ignition point of hydrogen gas, if the technique described in Patent Document 3 is applied to the separation and treatment of hydrogen gas in the mixed gas, careful operation and sufficient safety measures will be taken. Cost is considered necessary.

さらに、水素ガスに加えて酸素ガスが混合ガス中に含まれる場合、水素/酸素混合ガスを特許文献3に記載の技術のように500℃前後の高温の金属膜に接触させることは、安全上および安全対策コスト上の観点から避けることが望ましい。言い換えると、水素ガスと酸素ガスとを含む混合ガスを安全かつ確実に処理するためには、水素ガスの処理温度の低温化とその温度における処理効率の向上とを同時に満たすことが望まれる。   Furthermore, when oxygen gas is contained in the mixed gas in addition to hydrogen gas, it is safe for the hydrogen / oxygen mixed gas to contact a high-temperature metal film at around 500 ° C. as in the technique described in Patent Document 3. It is desirable to avoid it from the viewpoint of safety measures cost. In other words, in order to safely and reliably process a mixed gas containing hydrogen gas and oxygen gas, it is desirable to simultaneously satisfy a reduction in the processing temperature of hydrogen gas and an improvement in processing efficiency at that temperature.

したがって、本発明の目的は、水素ガスと酸素ガスとを含む混合ガスに対して水素ガスの処理温度の低温化を可能にし、かつその温度における処理効率の向上を可能にする水素ガス処理装置を提供することにある。   Accordingly, an object of the present invention is to provide a hydrogen gas processing apparatus that can reduce the processing temperature of hydrogen gas for a mixed gas containing hydrogen gas and oxygen gas and that can improve the processing efficiency at that temperature. It is to provide.

本発明の一つの態様は、上記目的を達成するため、水素ガスと酸素ガスとを含む混合ガスから水素ガスを処理する水素ガス処理装置であって、
水素透過膜によって混合ガス室と透過水素室とに仕切られている水素分離器と、
混合ガス供給配管および脱酸素混合ガス回収配管を介して前記混合ガス室に接続される混合ガス一時貯蔵容器と、
前記脱酸素混合ガス回収配管の途中に配設される凝縮器と、
酸化性ガス供給配管を介して前記透過水素室に接続される酸化性ガス供給機構と、
前記透過水素室に接続される水蒸気排気配管とを具備し、
前記水素透過膜は、水素透過合金の緻密質膜の両表面に、水素と酸素との水蒸気変換反応を促進する触媒金属の多孔質層が形成されており、
前記水素分離器には、該水素分離器を加熱し続けるための加熱機構が配設されていないことを特徴とする水素ガス処理装置を提供する。
One aspect of the present invention is a hydrogen gas processing apparatus for processing hydrogen gas from a mixed gas containing hydrogen gas and oxygen gas in order to achieve the above object,
A hydrogen separator partitioned into a mixed gas chamber and a permeated hydrogen chamber by a hydrogen permeable membrane;
A mixed gas temporary storage container connected to the mixed gas chamber via a mixed gas supply pipe and a deoxygenated mixed gas recovery pipe;
A condenser disposed in the middle of the deoxygenated mixed gas recovery pipe;
An oxidizing gas supply mechanism connected to the permeated hydrogen chamber via an oxidizing gas supply pipe;
A water vapor exhaust pipe connected to the permeate hydrogen chamber;
In the hydrogen permeable membrane, a porous layer of a catalytic metal that promotes a water vapor conversion reaction between hydrogen and oxygen is formed on both surfaces of the dense membrane of the hydrogen permeable alloy.
The hydrogen separator is not provided with a heating mechanism for continuously heating the hydrogen separator. A hydrogen gas processing apparatus is provided.

本発明によれば、水素ガスと酸素ガスとを含む混合ガスに対して水素ガスの処理温度を低温化し、かつその温度における処理効率を向上させた水素ガス処理装置を提供することができる。その結果、水素ガスと酸素ガスとを含む混合ガスをより安全にかつ確実に処理することができる。また、水素ガス処理温度の低温化が可能になることから、水素透過膜を昇温させ加熱し続けるための加熱器が不要になり、加熱器の運転に要するランニングコストを削減することができる効果もある。   ADVANTAGE OF THE INVENTION According to this invention, the hydrogen gas processing apparatus which lowered the processing temperature of hydrogen gas with respect to the mixed gas containing hydrogen gas and oxygen gas, and improved the processing efficiency in the temperature can be provided. As a result, the mixed gas containing hydrogen gas and oxygen gas can be processed more safely and reliably. In addition, since the hydrogen gas treatment temperature can be lowered, there is no need for a heater for heating and continuously heating the hydrogen permeable membrane, and the running cost required for the operation of the heater can be reduced. There is also.

本発明の第1実施形態に係る水素ガス処理装置の主要部分の一例を示す系統模式図である。It is a systematic diagram which shows an example of the principal part of the hydrogen gas processing apparatus which concerns on 1st Embodiment of this invention. 供給した水素ガス量に対する透過した水素ガス量の比率「透過した水素ガス量/供給した水素ガス量」と運転時間との関係を示したグラフである。6 is a graph showing the relationship between the ratio of the amount of permeated hydrogen gas to the amount of hydrogen gas supplied, “permeated hydrogen gas amount / the amount of hydrogen gas supplied”, and the operating time. 本発明の第2実施形態に係る水素ガス処理装置の主要部分の一例を示す系統模式図である。It is a systematic diagram which shows an example of the principal part of the hydrogen gas processing apparatus which concerns on 2nd Embodiment of this invention.

本発明は、前述した本発明に係る水素ガス処理装置において、以下のような改良や変更を加えることができる。
(i)前記触媒金属多孔質層は、平均粒径が10 nm以上50 nm以下の前記触媒金属の粒子を主体とする多孔質層である。
(ii)前記水素透過合金緻密質膜はその厚さが15μm以上50μm以下であり、前記触媒金属多孔質層はその平均厚さが20 nm以上100 nm未満である。
(iii)前記水蒸気排気配管の下流側に第2の凝縮器が更に配設されている。
(iv)前記第2の凝縮器の下流側に排気ポンプが更に配設されている。
(v)前記水素透過合金はパラジウム(Pd)合金からなり、前記触媒金属は、ルビジウム(Rb)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム、レニウム(Re)、イリジウム(Ir)、および白金(Pt)のうちの少なくとも一つからなる。
(vi)前記混合ガス供給配管または前記脱酸素混合ガス回収配管の途中に循環ポンプが更に配設されている。
In the hydrogen gas processing apparatus according to the present invention described above, the present invention can be improved or changed as follows.
(I) The catalyst metal porous layer is a porous layer mainly composed of particles of the catalyst metal having an average particle diameter of 10 nm to 50 nm.
(Ii) The hydrogen permeable alloy dense membrane has a thickness of 15 μm or more and 50 μm or less, and the catalytic metal porous layer has an average thickness of 20 nm or more and less than 100 nm.
(Iii) A second condenser is further disposed downstream of the water vapor exhaust pipe.
(Iv) An exhaust pump is further disposed downstream of the second condenser.
(V) The hydrogen permeable alloy is a palladium (Pd) alloy, and the catalytic metals are rubidium (Rb), ruthenium (Ru), rhodium (Rh), palladium, rhenium (Re), iridium (Ir), and platinum. (Pt).
(Vi) A circulation pump is further provided in the middle of the mixed gas supply pipe or the deoxygenated mixed gas recovery pipe.

(本発明の基本思想)
本発明者等は、水素透過膜を用いて水素ガスを含む混合ガスから該水素ガスを分離・処理する技術において、水素ガスの処理温度を低温化しかつその温度における処理効率を向上させる技術について鋭意研究を行った。その結果、水素透過膜として、水素透過合金の緻密質膜の両表面に、水素と酸素との水蒸気変換反応を促進する触媒金属の多孔質層を形成した水素透過膜を用いることにより、従来よりもはるかに低い温度(例えば、室温)から水蒸気変換反応が活発に起きることを知見した。さらに、触媒金属多孔質層の厚さ(触媒金属の表面積と関連し、水蒸気変換反応の効率に影響する)と水素透過合金緻密質膜の厚さ(熱容量と水素透過流束とに関連する)とのバランスを調整することで、水蒸気変換反応の反応熱(発熱)により水素透過膜全体を水素処理に好適な温度(例えば、200℃以上400℃以下)まで昇温し維持できることを知見した。本発明は、これらの知見により完成されたものである。
(Basic idea of the present invention)
The inventors of the present invention are diligent about a technique for lowering the treatment temperature of hydrogen gas and improving the treatment efficiency at the temperature in a technique for separating and treating the hydrogen gas from a mixed gas containing hydrogen gas using a hydrogen permeable membrane. I did research. As a result, a hydrogen permeable membrane in which a porous layer of a catalytic metal that promotes a water vapor conversion reaction between hydrogen and oxygen is formed on both surfaces of a dense membrane of a hydrogen permeable alloy as a hydrogen permeable membrane. It was also found that the water vapor conversion reaction occurs actively from a much lower temperature (for example, room temperature). In addition, the thickness of the catalytic metal porous layer (related to the surface area of the catalytic metal and affects the efficiency of the water vapor conversion reaction) and the thickness of the hydrogen permeable alloy dense membrane (related to the heat capacity and hydrogen permeation flux) It was found that the entire hydrogen permeable membrane can be heated to and maintained at a temperature suitable for hydrogen treatment (for example, 200 ° C. or more and 400 ° C. or less) by the reaction heat (exotherm) of the steam conversion reaction by adjusting the balance. The present invention has been completed based on these findings.

以下、本発明の実施形態について説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the embodiments described here, and can be appropriately combined and improved without departing from the technical idea of the present invention.

(第1の実施形態)
図1は、本発明の第1実施形態に係る水素ガス処理装置の主要部分の一例を示す系統模式図である。本実施形態に係る水素ガス処理装置100は、基本的に、水素分離器10に内蔵される水素透過膜11の両表面において、水素と酸素との水蒸気変換反応を積極的に活用して混合ガス中の水素ガスを処理する装置である。
(First embodiment)
FIG. 1 is a system schematic diagram showing an example of a main part of the hydrogen gas processing apparatus according to the first embodiment of the present invention. The hydrogen gas processing apparatus 100 according to the present embodiment basically uses a water vapor conversion reaction between hydrogen and oxygen on both surfaces of the hydrogen permeable membrane 11 built in the hydrogen separator 10 to provide a mixed gas. It is an apparatus for processing the hydrogen gas inside.

図1に示したように、水素分離器10は、その内部が水素透過膜11によって混合ガス室12と透過水素室13とに仕切られており、水素透過膜11は、水素透過合金緻密質膜11aの両表面に、水素と酸素との水蒸気変換反応を促進する触媒金属多孔質層11bが形成されたものである。上述したように、本発明では、活発な水蒸気変換反応の反応熱(発熱)により、水素透過膜11を水素処理に好適な温度(例えば、200℃以上400℃以下)まで速やかに昇温し維持することができる。その結果、本発明の水素ガス処理装置には、水素分離器10を加熱し続けるための加熱機構が配設されていないという特徴がある。   As shown in FIG. 1, the interior of the hydrogen separator 10 is partitioned into a mixed gas chamber 12 and a permeated hydrogen chamber 13 by a hydrogen permeable membrane 11, and the hydrogen permeable membrane 11 is a hydrogen permeable alloy dense membrane. A catalytic metal porous layer 11b that promotes a water vapor conversion reaction between hydrogen and oxygen is formed on both surfaces of 11a. As described above, in the present invention, the temperature of the hydrogen permeable membrane 11 is promptly raised to a temperature suitable for hydrogen treatment (for example, 200 ° C. or more and 400 ° C. or less) by the reaction heat (exotherm) of the active steam conversion reaction. can do. As a result, the hydrogen gas treatment apparatus of the present invention is characterized in that no heating mechanism for continuing to heat the hydrogen separator 10 is provided.

水素分離器10の混合ガス室12には、混合ガス供給配管21および脱酸素混合ガス回収配管22を介して、混合ガス一時貯蔵容器20が接続されている。脱酸素混合ガス回収配管22の途中には、混合ガス室12での水蒸気変換反応により生成した水蒸気を分離するための凝縮器30(冷凍機31、冷媒管32、凝縮水容器33)が接続されている。また、必須の構成ではないが、混合ガス供給配管21または脱酸素混合ガス回収配管22の途中には、循環ポンプ23が配設されていることが好ましい。   A mixed gas temporary storage container 20 is connected to the mixed gas chamber 12 of the hydrogen separator 10 through a mixed gas supply pipe 21 and a deoxygenated mixed gas recovery pipe 22. A condenser 30 (refrigerator 31, refrigerant pipe 32, condensed water container 33) for separating water vapor generated by the water vapor conversion reaction in the mixed gas chamber 12 is connected in the middle of the deoxygenated mixed gas recovery pipe 22. ing. Further, although not essential, it is preferable that a circulation pump 23 is disposed in the middle of the mixed gas supply pipe 21 or the deoxygenated mixed gas recovery pipe 22.

水素分離器10の透過水素室13には、水素透過膜11を透過した水素と水蒸気変換反応を生じさせるための酸化性ガス(例えば、酸素ガス、空気)を供給する酸化性ガス供給機構40が酸化性ガス供給配管41を介して接続されると共に、当該水蒸気変換反応により生成した水蒸気を排出する水蒸気排気配管16が接続されている。   In the permeated hydrogen chamber 13 of the hydrogen separator 10, there is an oxidizing gas supply mechanism 40 that supplies hydrogen permeated through the hydrogen permeable membrane 11 and an oxidizing gas (for example, oxygen gas, air) for causing a water vapor conversion reaction. A steam exhaust pipe 16 for discharging water vapor generated by the water vapor conversion reaction is connected while being connected via an oxidizing gas supply pipe 41.

次に、水素ガス処理装置100の運転方法を説明しながら、水素ガス処理装置100の各構成をより詳細に説明する。   Next, while explaining the operation method of the hydrogen gas processing apparatus 100, each configuration of the hydrogen gas processing apparatus 100 will be described in more detail.

はじめに、図示しない外部装置から排出された混合ガス(水素ガスと酸素ガスとを含む)が、混合ガス一時貯蔵容器20に貯蔵される。混合ガス一時貯蔵容器20内の混合ガスの処理を開始するため、循環ポンプ23と冷凍機31とを起動し、バルブ50を開く。循環ポンプ23の駆動により、混合ガスが混合ガス供給配管21を通して水素分離器10の混合ガス室12に供給される。混合ガス室12に供給された混合ガスは、水素透過膜11の触媒金属多孔質層11bと接触し、水蒸気変換反応が生じて水蒸気が生成する。   First, a mixed gas (including hydrogen gas and oxygen gas) discharged from an external device (not shown) is stored in the mixed gas temporary storage container 20. In order to start processing the mixed gas in the mixed gas temporary storage container 20, the circulation pump 23 and the refrigerator 31 are started, and the valve 50 is opened. By driving the circulation pump 23, the mixed gas is supplied to the mixed gas chamber 12 of the hydrogen separator 10 through the mixed gas supply pipe 21. The mixed gas supplied to the mixed gas chamber 12 comes into contact with the catalytic metal porous layer 11b of the hydrogen permeable membrane 11, and a water vapor conversion reaction occurs to generate water vapor.

このとき、水蒸気変換反応により発生した熱が、水素透過膜11自身を加熱する。水素透過膜11の温度上昇に伴って水素透過合金緻密質膜11aの水素透過能が向上し、混合ガス室12での水蒸気変換反応で余剰となった水素が水素透過合金緻密質膜11aを透過する。水素透過膜11の温度をモニタするため、水素透過膜11(特に、水素透過合金緻密質膜11a)には温度計14が配設されていることが好ましい。   At this time, the heat generated by the water vapor conversion reaction heats the hydrogen permeable membrane 11 itself. As the temperature of the hydrogen permeable membrane 11 rises, the hydrogen permeable capacity of the hydrogen permeable alloy dense membrane 11a improves, and hydrogen surplus in the water vapor conversion reaction in the mixed gas chamber 12 permeates the hydrogen permeable alloy dense membrane 11a. To do. In order to monitor the temperature of the hydrogen permeable membrane 11, a thermometer 14 is preferably disposed on the hydrogen permeable membrane 11 (particularly the hydrogen permeable alloy dense membrane 11a).

一方、混合ガス室12での水蒸気変換反応により生成した水蒸気は、脱酸素混合ガス回収配管22を通って凝縮器30に導かれる。凝縮器30では冷凍機31によって冷却された冷媒が冷媒管32内を循環しており、導かれた水蒸気は、冷媒と熱交換して凝縮水34となり凝縮水容器33内に溜まる。   On the other hand, the water vapor generated by the water vapor conversion reaction in the mixed gas chamber 12 is guided to the condenser 30 through the deoxygenated mixed gas recovery pipe 22. In the condenser 30, the refrigerant cooled by the refrigerator 31 circulates in the refrigerant pipe 32, and the introduced water vapor exchanges heat with the refrigerant to become condensed water 34 and accumulates in the condensed water container 33.

凝縮水容器33には、水素濃度計35が接続されていることが好ましい。これにより、脱酸素混合ガス回収配管22を通って凝縮水容器33に回収されたガス中に水素ガスが混入しているか否かを検知できる。水素ガスの混入が検知された場合、バルブ51を開いて、水蒸気を除去した混合ガス(脱酸素混合ガス)を混合ガス一時貯蔵容器20に戻す。凝縮水容器33に回収されたガス中に水素ガスの混入がない場合、バルブ52を開いて、脱酸素混合ガス排気配管36から脱酸素混合ガスを排出する。   A hydrogen concentration meter 35 is preferably connected to the condensed water container 33. Thereby, it can be detected whether or not hydrogen gas is mixed in the gas recovered in the condensed water container 33 through the deoxygenated mixed gas recovery pipe 22. When mixing of hydrogen gas is detected, the valve 51 is opened, and the mixed gas from which water vapor has been removed (deoxygenated mixed gas) is returned to the mixed gas temporary storage container 20. When hydrogen gas is not mixed in the gas collected in the condensed water container 33, the valve 52 is opened and the deoxygenated mixed gas is discharged from the deoxygenated mixed gas exhaust pipe.

また、凝縮水容器33には、圧力計配管38およびバルブ53を介して、圧力計37が接続されていることが好ましい。凝縮水容器33内の凝縮水34の量が増加すると(凝縮水34の水位が上昇すると)、凝縮水容器33内の気相部分の容積が減少して内部圧力が上昇する。これにより、凝縮水容器33内の凝縮水34の量を検知することができる。凝縮水容器33の内部圧力が設定圧力まで上昇したら、バルブ54を開いて、ドレイン配管39から凝縮水34を排出する。   The condensed water container 33 is preferably connected to a pressure gauge 37 via a pressure gauge pipe 38 and a valve 53. When the amount of the condensed water 34 in the condensed water container 33 increases (when the water level of the condensed water 34 rises), the volume of the gas phase portion in the condensed water container 33 decreases and the internal pressure rises. Thereby, the amount of the condensed water 34 in the condensed water container 33 can be detected. When the internal pressure of the condensed water container 33 rises to the set pressure, the valve 54 is opened and the condensed water 34 is discharged from the drain pipe 39.

前述したように、水素分離器10の透過水素室13には、酸化性ガス供給配管41およびバルブ55を介して、酸化性ガス供給機構40が接続されている。水素透過膜11(水素透過合金緻密質膜11a)を透過した水素は、酸化性ガス供給機構40から供給される酸化性ガス(例えば、酸素ガス、空気)と共に触媒金属多孔質層11b上で水蒸気変換反応を生じさせ、水蒸気に変換される。このときの反応熱(発熱)により、水素透過膜11の温度が水素処理に好適な温度範囲(例えば、200℃以上400℃以下)に維持される。   As described above, the oxidizing gas supply mechanism 40 is connected to the permeated hydrogen chamber 13 of the hydrogen separator 10 via the oxidizing gas supply pipe 41 and the valve 55. The hydrogen that has permeated through the hydrogen permeable membrane 11 (hydrogen permeable alloy dense membrane 11a) is vaporized on the catalytic metal porous layer 11b together with the oxidizing gas (for example, oxygen gas, air) supplied from the oxidizing gas supply mechanism 40. A conversion reaction takes place and is converted to water vapor. The reaction heat (exotherm) at this time maintains the temperature of the hydrogen permeable membrane 11 within a temperature range suitable for hydrogen treatment (for example, 200 ° C. or more and 400 ° C. or less).

透過水素室13には、水素濃度計15が接続されていることが好ましい。透過水素室13の水素ガス濃度をモニタすることにより、透過水素室13に供給する酸化性ガスの量を適切に制御することができる。なお、透過水素室13に供給する酸化性ガス量は、透過水素室13内の雰囲気が水素ガスの爆発範囲から外れるように制御されることが望ましい。   A hydrogen concentration meter 15 is preferably connected to the permeate hydrogen chamber 13. By monitoring the hydrogen gas concentration in the permeate hydrogen chamber 13, the amount of oxidizing gas supplied to the permeate hydrogen chamber 13 can be appropriately controlled. Note that the amount of oxidizing gas supplied to the permeate hydrogen chamber 13 is desirably controlled so that the atmosphere in the permeate hydrogen chamber 13 deviates from the hydrogen gas explosion range.

透過水素室13内の水素ガス濃度がほぼゼロである(水素透過膜11(水素透過合金緻密質膜11a)を透過した水素がほぼ全て水蒸気に変換された)ことを確認した後、バルブ56を開いて、水蒸気排気配管16から水蒸気を排出する。   After confirming that the hydrogen gas concentration in the permeated hydrogen chamber 13 is almost zero (the hydrogen permeated through the hydrogen permeable membrane 11 (hydrogen permeable alloy dense membrane 11a) is almost completely converted into water vapor), the valve 56 is turned on. Open and discharge water vapor from the water vapor exhaust pipe 16.

本発明において、水素透過膜11の水素透過合金緻密質膜11aとしては、水素処理温度範囲(例えば、200℃以上400℃以下)において十分な水素透過能(例えば、水素透過係数)を有する限り特段の限定はなく、公知の水素透過合金(例えば、Pd-23%Ag、Pd-5%Au、Pd-40%Cuなどのパラジウム合金)の緻密質膜(ピンホールやクラック等のない膜)を用いることができる。   In the present invention, the hydrogen permeable alloy dense membrane 11a of the hydrogen permeable membrane 11 is not limited as long as it has sufficient hydrogen permeability (for example, hydrogen permeability coefficient) in the hydrogen treatment temperature range (for example, 200 ° C. or more and 400 ° C. or less). There is no limitation, and a dense film of a known hydrogen permeation alloy (for example, a palladium alloy such as Pd-23% Ag, Pd-5% Au, Pd-40% Cu) (film without pinholes or cracks). Can be used.

ただし、水素処理量(水素処理効率)の向上の観点および所望の温度への昇温・維持の観点から、水素透過合金緻密質膜11aの厚さは15μm以上50μm以下が好ましい。水素透過合金緻密質膜11aの厚さが15μm未満になると、膜の機械的強度の絶対値が低くなり過ぎて水素透過合金緻密質膜11aが破損し易くなる。水素透過合金緻密質膜11aの厚さが50μm超になると、透過する水素流束が小さくなり過ぎると共に、熱容量が大きくなり過ぎて所望の温度への昇温・維持が困難になる。   However, the thickness of the hydrogen permeable alloy dense film 11a is preferably 15 μm or more and 50 μm or less from the viewpoint of improving the amount of hydrogen treatment (hydrogen treatment efficiency) and raising and maintaining the temperature to a desired temperature. When the thickness of the hydrogen permeable alloy dense film 11a is less than 15 μm, the absolute value of the mechanical strength of the film becomes too low, and the hydrogen permeable alloy dense film 11a is easily damaged. If the thickness of the hydrogen permeable alloy dense film 11a exceeds 50 μm, the permeated hydrogen flux becomes too small, and the heat capacity becomes too large, making it difficult to raise and maintain the desired temperature.

また、水素透過膜11の触媒金属多孔質層11bの金属種としては、水素と酸素との水蒸気変換反応を促進する触媒金属であれば特段の限定はなく、公知の触媒金属を用いることができる。例えば、ルビジウム、ルテニウム、ロジウム、パラジウム、レニウム、イリジウム、および白金のうちの少なくとも一つを好適に用いることができる。   The metal species of the catalyst metal porous layer 11b of the hydrogen permeable membrane 11 is not particularly limited as long as it is a catalyst metal that promotes a water vapor conversion reaction between hydrogen and oxygen, and a known catalyst metal can be used. . For example, at least one of rubidium, ruthenium, rhodium, palladium, rhenium, iridium, and platinum can be suitably used.

ここで、本発明においては、水素透過膜11の表面に形成される触媒金属層が多孔質層であるところに大きな特徴がある。例えば、触媒金属粒子を主体とする多孔質層にすることにより、触媒金属の表面積を大きくして水蒸気変換反応の効率(反応速度)を高めることができる(その結果、単位時間あたりの発熱量を高めることができる)。また、触媒金属層自体が水素透過バリアにならない(水素透過の律速層にならない)という利点もある。触媒金属粒子を主体とする多孔質層の形態の一例としては、触媒金属の粒子同士の間に空隙が残存するように島状成膜されたものが挙げられる。   Here, the present invention is characterized in that the catalytic metal layer formed on the surface of the hydrogen permeable membrane 11 is a porous layer. For example, by forming a porous layer mainly composed of catalytic metal particles, the surface area of the catalytic metal can be increased to increase the efficiency (reaction rate) of the water vapor conversion reaction (as a result, the calorific value per unit time can be reduced). Can be increased). In addition, there is an advantage that the catalytic metal layer itself does not become a hydrogen permeation barrier (it does not become a hydrogen permeation limiting layer). As an example of the form of the porous layer mainly composed of catalyst metal particles, an island-shaped film may be formed so that voids remain between the catalyst metal particles.

触媒金属粒子を主体とする多孔質層を形成できれば、触媒金属多孔質層11bの形成方法に特段の限定はない。気相成長法(例えば、スパッタ法、蒸着法、分子線エピタキシー法、プラズマ溶射法、プラズマスプレー法、レーザーアブレーション法、イオンプレーティング法、クラスタイオンビーム法、化学気相成長法)や液相成膜法(例えば、電解めっき法、無電解めっき法、金属有機化合物分解法、スラリーコート法、スピンコート法、ディップ法)を好適に利用することができる。   There is no particular limitation on the method for forming the catalytic metal porous layer 11b as long as a porous layer mainly composed of catalytic metal particles can be formed. Vapor growth methods (for example, sputtering, vapor deposition, molecular beam epitaxy, plasma spraying, plasma spraying, laser ablation, ion plating, cluster ion beam, chemical vapor deposition) and liquid phase formation A film method (for example, an electrolytic plating method, an electroless plating method, a metal organic compound decomposition method, a slurry coating method, a spin coating method, a dip method) can be suitably used.

触媒金属粒子を主体とする多孔質層の形成し易さの観点、それによる水蒸気変換反応の効率(反応速度)の観点および材料コストの観点から、触媒金属多孔質層11bは、その平均厚さが20 nm以上100 nm未満となるように成膜することが好ましく、30 nm以上50 nm以下がより好ましい。触媒金属多孔質層11bの平均厚さが20 nm未満になると、触媒金属の表面積を大きくすることが難しく水蒸気変換反応の効率を十分に確保できない。触媒金属多孔質層11bの平均厚さが100 nm以上になると、触媒金属粒子同士が密着して緻密質膜と同等になり易く、多孔質層の利点が薄れると共に材料コストが増大する。   From the viewpoint of easy formation of a porous layer mainly composed of catalytic metal particles, the efficiency of the water vapor conversion reaction (reaction rate), and the viewpoint of material cost, the catalytic metal porous layer 11b has an average thickness. Is preferably 20 nm or more and less than 100 nm, more preferably 30 nm or more and 50 nm or less. If the average thickness of the catalytic metal porous layer 11b is less than 20 nm, it is difficult to increase the surface area of the catalytic metal, and the efficiency of the water vapor conversion reaction cannot be secured sufficiently. When the average thickness of the catalytic metal porous layer 11b is 100 nm or more, the catalytic metal particles are in close contact with each other and easily become the same as the dense film, and the advantages of the porous layer are diminished and the material cost is increased.

(水素透過膜の処理能力確認実験)
水素透過合金緻密質膜としてPd-23%Ag膜(厚さ15μm)を用意し、該Pd-23%Ag膜の両表面に触媒金属多孔質層としてPd層(平均厚さ30 nm)をスパッタ法により形成して本発明の水素透過膜(実施例1)を作製した。また、比較として、Pd層を形成していないPd-23%Ag膜単体(厚さ15μm、比較例1)と、Pd膜単体(厚さ15μm、比較例2)とを用意した。
(Experiment for confirming hydrogen permeable membrane throughput)
A Pd-23% Ag film (thickness 15μm) is prepared as a hydrogen permeable alloy dense film, and a Pd layer (average thickness 30 nm) is sputtered as a catalytic metal porous layer on both surfaces of the Pd-23% Ag film. A hydrogen permeable membrane (Example 1) of the present invention was produced by the method. For comparison, a Pd-23% Ag film alone (thickness 15 μm, Comparative Example 1) without a Pd layer and a Pd film alone (thickness 15 μm, Comparative Example 2) were prepared.

用意した水素透過膜(実施例1、比較例1〜2)を図1の水素ガス処理装置100に組み込み、水素透過膜における水蒸気変換反応を調査する実験を行った。処理するガスとしては「3%水素+3%酸素+94%窒素」の混合ガスを用いた。また、水素分離器10内での結露(水蒸気変換反応により生成した水蒸気の凝縮)を防止することを目的として、水素分離器10を100℃に予熱した。   The prepared hydrogen permeable membrane (Example 1, Comparative Examples 1 and 2) was incorporated into the hydrogen gas processing apparatus 100 of FIG. 1 and an experiment was conducted to investigate the water vapor conversion reaction in the hydrogen permeable membrane. As a gas to be treated, a mixed gas of “3% hydrogen + 3% oxygen + 94% nitrogen” was used. In addition, the hydrogen separator 10 was preheated to 100 ° C. for the purpose of preventing condensation in the hydrogen separator 10 (condensation of water vapor generated by the water vapor conversion reaction).

本実験では、水素分離器10の透過水素室13への酸化性ガス供給機構40による酸素ガスの供給は行わず、透過水素室13へ透過した水素ガス量を測定した。混合ガス室12に供給した水素ガス量と透過水素室13へ透過した水素ガス量との差が、水素透過膜の混合ガス室側の表面で水蒸気変換反応を起こした量と考えられ、供給した水素ガス量と透過した水素ガス量との比率を評価した。   In this experiment, oxygen gas was not supplied to the permeate hydrogen chamber 13 of the hydrogen separator 10 by the oxidizing gas supply mechanism 40, and the amount of hydrogen gas permeated to the permeate hydrogen chamber 13 was measured. The difference between the amount of hydrogen gas supplied to the mixed gas chamber 12 and the amount of hydrogen gas permeated to the permeated hydrogen chamber 13 is considered to be the amount that caused a water vapor conversion reaction on the surface of the hydrogen permeable membrane on the mixed gas chamber side. The ratio between the amount of hydrogen gas and the amount of permeated hydrogen gas was evaluated.

図2は、供給した水素ガス量に対する透過した水素ガス量の比率「透過した水素ガス量/供給した水素ガス量」と運転時間との関係を示したグラフである。図2に示したように、比較例1(Pd-23%Ag膜単体)は、混合ガス室12に供給した水素ガスがほとんどそのまま水素ガスとして透過水素室13へ透過した。この結果から、Pd-23%Ag膜単体の表面では、本実験条件下で水蒸気変換反応がほとんど起こらないことが確認された。   FIG. 2 is a graph showing the relationship between the ratio of the amount of hydrogen gas permeated to the amount of hydrogen gas supplied “permeated hydrogen gas amount / the amount of hydrogen gas supplied” and the operation time. As shown in FIG. 2, in Comparative Example 1 (Pd-23% Ag film simple substance), the hydrogen gas supplied to the mixed gas chamber 12 almost permeated into the permeated hydrogen chamber 13 as hydrogen gas. From this result, it was confirmed that the water vapor conversion reaction hardly occurred on the surface of the single Pd-23% Ag film under the experimental conditions.

比較例2(Pd膜単体)は、時間の経過と共に透過した水素ガス量が減少し、約40分経過後に「透過した水素ガス量/供給した水素ガス量」が約5%以下になった。Pd膜単体の場合、本実験条件下で表面での水蒸気変換反応の反応効率が低く、水蒸気変換反応が安定する(水蒸気変換反応が活発に起きる)までに長時間を要することが判った。   In Comparative Example 2 (Pd membrane alone), the amount of hydrogen gas permeated decreased with the passage of time, and after about 40 minutes, “permeated hydrogen gas amount / supplied hydrogen gas amount” became about 5% or less. In the case of the Pd film alone, it was found that the reaction efficiency of the water vapor conversion reaction on the surface is low under the experimental conditions, and it takes a long time for the water vapor conversion reaction to become stable (the water vapor conversion reaction occurs actively).

一方、実施例1(本発明の水素透過膜)では、混合ガスの供給開始直後から透過した水素ガス量が非常に少なく、「透過した水素ガス量/供給した水素ガス量」が2%程度であった。この結果から、実施例1は、本実験条件下でも触媒金属多孔質層で水蒸気変換反応が活発に起きていることが確認された。   On the other hand, in Example 1 (hydrogen permeable membrane of the present invention), the amount of hydrogen gas permeated from immediately after the start of the supply of the mixed gas was very small, and “permeated hydrogen gas amount / supplied hydrogen gas amount” was about 2%. there were. From this result, it was confirmed that in Example 1, the water vapor conversion reaction was actively occurring in the catalytic metal porous layer even under the present experimental conditions.

なお、各水素透過膜(実施例1、比較例1〜2)の温度を温度計14でモニタしたところ、比較例1は100℃からほとんど変化がなかったが、比較例2および実施例1では「透過した水素ガス量/供給した水素ガス量」が約2%になった時点で約350℃となっていた。 In addition, when the temperature of each hydrogen permeable membrane (Example 1, Comparative Examples 1 and 2) was monitored with a thermometer 14, Comparative Example 1 showed almost no change from 100 ° C. However, Comparative Example 2 and Example 1 When the “permeated hydrogen gas amount / supplied hydrogen gas amount” reached about 2%, it was about 350 ° C.

次に、本発明の水素透過膜における触媒金属多孔質層の厚さの影響を調査した。実施例1と同様に、水素透過合金緻密質膜としてPd-23%Ag膜(厚さ15μm)を用意し、該Pd-23%Ag膜の両表面に触媒金属多孔質層として種々の厚さのPd層(平均厚さ10,30,50,100 nm)をスパッタ法により形成して水素透過膜を作製した。   Next, the influence of the thickness of the catalytic metal porous layer in the hydrogen permeable membrane of the present invention was investigated. As in Example 1, a Pd-23% Ag film (thickness 15 μm) was prepared as a hydrogen permeable alloy dense film, and various thicknesses were formed as catalytic metal porous layers on both surfaces of the Pd-23% Ag film. Pd layers (average thickness 10, 30, 50, 100 nm) were formed by sputtering to produce a hydrogen permeable membrane.

先の実験と同様の条件下で、各水素透過膜における水蒸気変換反応の反応効率を調査した。ここでの「反応効率」とは「{1−(透過した水素ガス量/供給した水素ガス量)}×100%」と定義した。また、混合ガスの供給開始から3分後の反応効率を調査した。結果を表1に示す。なお、先の比較例1を「触媒金属多孔質層の平均厚さ0 nm」として表1に併記した。   Under the same conditions as in the previous experiment, the reaction efficiency of the water vapor conversion reaction in each hydrogen permeable membrane was investigated. Here, “reaction efficiency” was defined as “{1− (amount of permeated hydrogen gas / amount of supplied hydrogen gas)} × 100%”. In addition, the reaction efficiency 3 minutes after the start of the supply of the mixed gas was investigated. The results are shown in Table 1. The previous comparative example 1 is also shown in Table 1 as “average thickness of catalytic metal porous layer 0 nm”.

Figure 2015116545
Figure 2015116545

表1に示したように、比較例1では、混合ガス室12に供給した水素ガスの98%が水素ガスのまま透過水素室13へ透過しており、反応効率は2%と評価された。   As shown in Table 1, in Comparative Example 1, 98% of the hydrogen gas supplied to the mixed gas chamber 12 permeated into the permeated hydrogen chamber 13 as hydrogen gas, and the reaction efficiency was evaluated as 2%.

これに対し、Pd層(触媒金属多孔質層)を形成した試料では、透過水素室13への透過水素ガス量が明らかに減少しており、触媒金属多孔質層で水蒸気変換反応が生じていることが確認された。詳細に見ていくと、Pd層平均厚さ10 nmの比較例3と100 nmの比較例4とは、反応効率が不十分であった。一方、実施例1〜2では、非常に高い反応効率が達成されていた。   On the other hand, in the sample in which the Pd layer (catalytic metal porous layer) was formed, the amount of permeated hydrogen gas to the permeated hydrogen chamber 13 was clearly reduced, and the water vapor conversion reaction occurred in the catalytic metal porous layer. It was confirmed. In detail, Comparative Example 3 having an average Pd layer thickness of 10 nm and Comparative Example 4 having a thickness of 100 nm were insufficient in reaction efficiency. On the other hand, in Examples 1-2, very high reaction efficiency was achieved.

これら反応効率の差異の要因を調査するため、走査型電子顕微鏡(SEM)を用いてPd層(触媒金属多孔質層)の微細組織観察を行った。その結果、実施例1〜2および比較例3〜4のいずれにおいても、平均粒径10〜50 nmのPd粒子(Pd結晶粒)を主体とする層が確認された。   In order to investigate the cause of the difference in reaction efficiency, the microstructure of the Pd layer (catalytic metal porous layer) was observed using a scanning electron microscope (SEM). As a result, in each of Examples 1 and 2 and Comparative Examples 3 and 4, a layer mainly composed of Pd particles (Pd crystal grains) having an average particle diameter of 10 to 50 nm was confirmed.

より具体的には、Pd層平均厚さ10 nmの比較例3は、Pd粒子が島状に形成されていたが、島密度(島の存在率)が非常に少なく、触媒金属の表面積が少な過ぎたために水蒸気変換反応の反応効率が不十分であったと考えられた。Pd層平均厚さ100 nmの比較例4は、Pd粒子が非常に密に成膜されており、緻密質膜と同等になったために多孔質層の利点が失われた(先の比較例2(Pd膜単体)と同等になった)と考えられた。一方、実施例1〜2では、Pd粒子を主体とする多孔質層が形成されていることが確認された。   More specifically, in Comparative Example 3 where the average thickness of the Pd layer was 10 nm, the Pd particles were formed in an island shape, but the island density (islet existence ratio) was very small, and the surface area of the catalyst metal was small. Therefore, it was considered that the reaction efficiency of the steam conversion reaction was insufficient. In Comparative Example 4 having an average thickness of Pd layer of 100 nm, Pd particles were formed very densely, and the advantage of the porous layer was lost because it was equivalent to a dense film (Comparative Example 2 above). (Pd film alone). On the other hand, in Examples 1 and 2, it was confirmed that a porous layer mainly composed of Pd particles was formed.

これらの実験結果から、触媒金属多孔質層の平均厚さは20 nm以上100 nm未満が好ましいと確認された。   From these experimental results, it was confirmed that the average thickness of the catalytic metal porous layer is preferably 20 nm or more and less than 100 nm.

(第2の実施形態)
図3は、本発明の第2実施形態に係る水素ガス処理装置の主要部分の一例を示す系統模式図である。本実施形態に係る水素ガス処理装置200は、第1実施形態に係る水素ガス処理装置100の構成に加えて、水蒸気排気配管16の下流側に第2の凝縮器60が更に配設されたものである。以下、水素ガス処理装置200に関し、水素ガス処理装置100と同義の部材については同じ符号を付して、重複する説明を省略する。
(Second Embodiment)
FIG. 3 is a system schematic diagram showing an example of a main part of the hydrogen gas processing apparatus according to the second embodiment of the present invention. The hydrogen gas processing apparatus 200 according to this embodiment has a configuration in which a second condenser 60 is further arranged on the downstream side of the steam exhaust pipe 16 in addition to the configuration of the hydrogen gas processing apparatus 100 according to the first embodiment. It is. Hereinafter, regarding the hydrogen gas processing apparatus 200, members having the same meaning as those of the hydrogen gas processing apparatus 100 are denoted by the same reference numerals, and redundant description is omitted.

図3に示したように、水素ガス処理装置200は、水蒸気排気配管16の下流側に、透過水素室13での水蒸気変換反応により生成した水蒸気を分離するための第2の凝縮器60(冷凍機61、冷媒管62、凝縮水容器63)が接続されている。第2の凝縮器60では冷凍機61によって冷却された冷媒が冷媒管62内を循環しており、導かれた水蒸気は、冷媒と熱交換して凝縮水34となり凝縮水容器63内に溜まる。   As shown in FIG. 3, the hydrogen gas processing apparatus 200 has a second condenser 60 (freezer) for separating water vapor generated by the water vapor conversion reaction in the permeated hydrogen chamber 13 downstream of the water vapor exhaust pipe 16. Machine 61, refrigerant pipe 62, and condensate container 63) are connected. In the second condenser 60, the refrigerant cooled by the refrigerator 61 circulates in the refrigerant pipe 62, and the introduced water vapor exchanges heat with the refrigerant to become condensed water 34 and accumulate in the condensed water container 63.

凝縮水容器63には、圧力計配管65およびバルブ57を介して、圧力計64が接続されていることが好ましい。凝縮水容器63内の凝縮水34の量が増加すると(凝縮水34の水位が上昇すると)、凝縮水容器63内の気相部分の容積が減少して内部圧力が上昇する。これにより、凝縮水容器63内の凝縮水34の量を検知することができる。凝縮水容器63の内部圧力が設定圧力まで上昇したら、バルブ58を開いて、ドレイン配管66から凝縮水34を排出する。   A pressure gauge 64 is preferably connected to the condensed water container 63 via a pressure gauge pipe 65 and a valve 57. When the amount of condensed water 34 in the condensed water container 63 increases (when the water level of the condensed water 34 rises), the volume of the gas phase portion in the condensed water container 63 decreases and the internal pressure increases. Thereby, the amount of the condensed water 34 in the condensed water container 63 can be detected. When the internal pressure of the condensed water container 63 rises to the set pressure, the valve 58 is opened and the condensed water 34 is discharged from the drain pipe 66.

また、凝縮水容器63には、排気配管68およびバルブ59を介して、排気ポンプ67が接続されていることが好ましい。水素ガス処理を行う前に、排気ポンプ67を起動し、バルブ59を開いて凝縮水容器63内をあらかじめ減圧する。これにより、透過水素室13での水蒸気変換反応により生成した水蒸気を積極的に排出することができる。なお、凝縮水容器63内に貯蔵される凝縮水34が沸騰しないように、凝縮水容器63内の圧力を調整することが望ましい。例えば、凝縮水容器63内の温度が常温(25℃)である場合、25℃における水の蒸気圧(3.1 kPa)以下にならないように、5 kPa程度に調節されることが望ましい。   In addition, an exhaust pump 67 is preferably connected to the condensed water container 63 via an exhaust pipe 68 and a valve 59. Before performing the hydrogen gas treatment, the exhaust pump 67 is activated, the valve 59 is opened, and the inside of the condensed water container 63 is decompressed in advance. Thereby, water vapor generated by the water vapor conversion reaction in the permeated hydrogen chamber 13 can be positively discharged. It is desirable to adjust the pressure in the condensed water container 63 so that the condensed water 34 stored in the condensed water container 63 does not boil. For example, when the temperature in the condensate container 63 is normal temperature (25 ° C.), it is desirable that the temperature is adjusted to about 5 kPa so that the water vapor pressure (3.1 kPa) does not fall below 25 ° C.

また、水素ガス処理中は、バルブ59を閉じて排気ポンプ67を停止することが望ましい。言い換えると、第2の凝縮器60で封じられた状態で水素ガス処理装置200を運転することが望ましい。これにより、万が一、水素ガス処理中に水素透過膜10が破損した場合であっても、未処理の水素ガスが大気中へ放出されることを防止することができる。   During the hydrogen gas treatment, it is desirable to close the valve 59 and stop the exhaust pump 67. In other words, it is desirable to operate the hydrogen gas processing apparatus 200 in a state sealed with the second condenser 60. Thereby, even if the hydrogen permeable membrane 10 is broken during the hydrogen gas treatment, untreated hydrogen gas can be prevented from being released into the atmosphere.

なお、前述したように、本発明に係る水素ガス処理装置100,200は、水素分離器10を加熱し続けるための加熱機構が配設されていないという特徴がある。ただし、水素分離器10内での結露(水蒸気変換反応により生成した水蒸気の凝縮)を防止することを目的として、および/または水素ガス処理装置100,200のウォームアップ時間の短縮化を目的として、水素分離器10を100〜150℃程度に予熱する機構を設けてもよい。予熱機構を設けた場合であっても、水素ガス処理が定常状態に到達したら(例えば、水素透過膜10が200℃以上になったら)、予熱機構を停止する。これにより、水素分離器を加熱し続けるためのランニングコストを軽減することができる。   As described above, the hydrogen gas processing apparatuses 100 and 200 according to the present invention are characterized in that no heating mechanism for continuing to heat the hydrogen separator 10 is provided. However, for the purpose of preventing condensation in the hydrogen separator 10 (condensation of water vapor generated by the water vapor conversion reaction) and / or for the purpose of shortening the warm-up time of the hydrogen gas treatment devices 100 and 200, A mechanism for preheating the hydrogen separator 10 to about 100 to 150 ° C. may be provided. Even when the preheating mechanism is provided, when the hydrogen gas treatment reaches a steady state (for example, when the hydrogen permeable membrane 10 reaches 200 ° C. or more), the preheating mechanism is stopped. Thereby, the running cost for continuing to heat the hydrogen separator can be reduced.

上述した実施形態は、本発明の理解を助けるために具体的に説明したものであり、本発明は、説明した全ての構成を備えることに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。   The above-described embodiment has been specifically described to help understanding of the present invention, and the present invention is not limited to having all the configurations described. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Furthermore, a part of the configuration of each embodiment can be deleted, replaced with another configuration, or added with another configuration.

100,200…水素ガス処理装置、
10…水素分離器、11…水素透過膜、12…混合ガス室、13…透過水素室、
11a…水素透過合金緻密質膜、11b…触媒金属多孔質層、
14…温度計、15…水素濃度計、16…水蒸気排気配管、
20…混合ガス一時貯蔵容器、21…混合ガス供給配管、22…脱酸素混合ガス回収配管、
23…循環ポンプ、
30…凝縮器、31…冷凍機、32…冷媒管、33…凝縮水容器、34…凝縮水、
35…水素濃度計、36…脱酸素混合ガス排気配管、37…圧力計、38…圧力計配管、
39…ドレイン配管、
40…酸化性ガス供給機構、41…酸化性ガス供給配管、
50〜59…バルブ、
60…凝縮器、61…冷凍機、62…冷媒管、63…凝縮水容器、
64…圧力計、65…圧力計配管、66…ドレイン配管、67…排気ポンプ、68…排気配管。
100, 200 ... Hydrogen gas treatment equipment,
10 ... Hydrogen separator, 11 ... Hydrogen permeable membrane, 12 ... Mixed gas chamber, 13 ... Permeated hydrogen chamber,
11a ... hydrogen permeable alloy dense membrane, 11b ... catalytic metal porous layer,
14 ... Thermometer, 15 ... Hydrogen concentration meter, 16 ... Steam exhaust pipe,
20 ... Mixed gas temporary storage container, 21 ... Mixed gas supply piping, 22 ... Deoxygenated mixed gas recovery piping,
23 ... circulation pump,
30 ... Condenser, 31 ... Refrigerator, 32 ... Refrigerant tube, 33 ... Condensed water container, 34 ... Condensed water,
35 ... Hydrogen concentration meter, 36 ... Deoxygenated mixed gas exhaust piping, 37 ... Pressure gauge, 38 ... Pressure gauge piping,
39… Drain piping,
40 ... oxidizing gas supply mechanism, 41 ... oxidizing gas supply piping,
50-59… Valve,
60 ... Condenser, 61 ... Refrigerator, 62 ... Refrigerant tube, 63 ... Condensate container,
64 ... pressure gauge, 65 ... pressure gauge piping, 66 ... drain piping, 67 ... exhaust pump, 68 ... exhaust piping.

Claims (7)

水素ガスと酸素ガスとを含む混合ガスから水素ガスを処理する水素ガス処理装置であって、
水素透過膜によって混合ガス室と透過水素室とに仕切られている水素分離器と、
混合ガス供給配管および脱酸素混合ガス回収配管を介して前記混合ガス室に接続される混合ガス一時貯蔵容器と、
前記脱酸素混合ガス回収配管の途中に配設される凝縮器と、
酸化性ガス供給配管を介して前記透過水素室に接続される酸化性ガス供給機構と、
前記透過水素室に接続される水蒸気排気配管とを具備し、
前記水素透過膜は、水素透過合金の緻密質膜の両表面に、水素と酸素との水蒸気変換反応を促進する触媒金属の多孔質層が形成されており、
前記水素分離器には、該水素分離器を加熱し続けるための加熱機構が配設されていないことを特徴とする水素ガス処理装置。
A hydrogen gas processing apparatus for processing hydrogen gas from a mixed gas containing hydrogen gas and oxygen gas,
A hydrogen separator partitioned into a mixed gas chamber and a permeated hydrogen chamber by a hydrogen permeable membrane;
A mixed gas temporary storage container connected to the mixed gas chamber via a mixed gas supply pipe and a deoxygenated mixed gas recovery pipe;
A condenser disposed in the middle of the deoxygenated mixed gas recovery pipe;
An oxidizing gas supply mechanism connected to the permeated hydrogen chamber via an oxidizing gas supply pipe;
A water vapor exhaust pipe connected to the permeate hydrogen chamber;
In the hydrogen permeable membrane, a porous layer of a catalytic metal that promotes a water vapor conversion reaction between hydrogen and oxygen is formed on both surfaces of the dense membrane of the hydrogen permeable alloy.
A hydrogen gas processing apparatus, wherein the hydrogen separator is not provided with a heating mechanism for continuously heating the hydrogen separator.
請求項1に記載の水素ガス処理装置において、
前記触媒金属多孔質層は、平均粒径が10 nm以上50 nm以下の前記触媒金属の粒子を主体とする多孔質層であることを特徴とする水素ガス処理装置。
The hydrogen gas processing apparatus according to claim 1,
The hydrogen gas treatment apparatus, wherein the catalyst metal porous layer is a porous layer mainly composed of the catalyst metal particles having an average particle diameter of 10 nm to 50 nm.
請求項1又は請求項2に記載の水素ガス処理装置において、
前記水素透過合金緻密質膜は、その厚さが15μm以上50μm以下であり、
前記触媒金属多孔質層は、その平均厚さが20 nm以上100 nm未満であることを特徴とする水素ガス処理装置。
In the hydrogen gas processing apparatus according to claim 1 or 2,
The hydrogen permeable alloy dense membrane has a thickness of 15 μm or more and 50 μm or less,
The catalytic metal porous layer has an average thickness of 20 nm or more and less than 100 nm.
請求項1乃至請求項3のいずれかに記載の水素ガス処理装置において、
前記水蒸気排気配管の下流側に第2の凝縮器が更に配設されていることを特徴とする水素ガス処理装置。
In the hydrogen gas processing apparatus according to any one of claims 1 to 3,
A hydrogen gas processing apparatus, wherein a second condenser is further disposed downstream of the water vapor exhaust pipe.
請求項4に記載の水素ガス処理装置において、
前記第2の凝縮器の下流側に排気ポンプが更に配設されていることを特徴とする水素ガス処理装置。
The hydrogen gas processing apparatus according to claim 4, wherein
A hydrogen gas processing apparatus, wherein an exhaust pump is further disposed downstream of the second condenser.
請求項1乃至請求項5のいずれかに記載の水素ガス処理装置において、
前記水素透過合金は、パラジウム合金からなり、
前記触媒金属は、ルビジウム、ルテニウム、ロジウム、パラジウム、レニウム、イリジウム、および白金のうちの少なくとも一つからなることを特徴とする水素ガス処理装置。
In the hydrogen gas processing apparatus according to any one of claims 1 to 5,
The hydrogen permeable alloy is made of a palladium alloy,
The hydrogen gas treatment apparatus, wherein the catalyst metal is made of at least one of rubidium, ruthenium, rhodium, palladium, rhenium, iridium, and platinum.
請求項1乃至請求項6のいずれかに記載の水素ガス処理装置において、
前記混合ガス供給配管または前記脱酸素混合ガス回収配管の途中に循環ポンプが更に配設されていることを特徴とする水素ガス処理装置。
In the hydrogen gas processing apparatus according to any one of claims 1 to 6,
A hydrogen gas processing apparatus, wherein a circulation pump is further provided in the middle of the mixed gas supply pipe or the deoxygenated mixed gas recovery pipe.
JP2013262389A 2013-12-19 2013-12-19 Hydrogen gas treatment equipment Pending JP2015116545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262389A JP2015116545A (en) 2013-12-19 2013-12-19 Hydrogen gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262389A JP2015116545A (en) 2013-12-19 2013-12-19 Hydrogen gas treatment equipment

Publications (1)

Publication Number Publication Date
JP2015116545A true JP2015116545A (en) 2015-06-25

Family

ID=53529797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262389A Pending JP2015116545A (en) 2013-12-19 2013-12-19 Hydrogen gas treatment equipment

Country Status (1)

Country Link
JP (1) JP2015116545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008799A1 (en) * 2017-07-04 2019-01-10 株式会社Ihi Hydrogen–oxygen reaction device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008799A1 (en) * 2017-07-04 2019-01-10 株式会社Ihi Hydrogen–oxygen reaction device
JPWO2019008799A1 (en) * 2017-07-04 2020-05-21 株式会社Ihi Hydrogen oxygen reactor
US10801116B2 (en) 2017-07-04 2020-10-13 Ihi Corporation Hydrogen-oxygen reaction device

Similar Documents

Publication Publication Date Title
JP6192669B2 (en) Equipment for producing high purity carbon monoxide
Paglieri et al. Innovations in palladium membrane research
US20230003461A1 (en) Heat generation device, heat utilization system and film-like heat generation element
JP2013095618A (en) Method and apparatus for producing hydrogen
JP2019005684A (en) Hydrogen separation device and hydrogen separation system
US9260304B2 (en) Hydrogen separation device and method for operating same
Li et al. Development of palladium-alloy membranes for hydrogen separation and purification
Tong et al. Thin Pd membrane prepared on macroporous stainless steel tube filter by an in-situ multi-dimensional plating mechanism
Yu et al. Controllable growth of defect-free zeolite protective layer on the surface of Pd membrane for chemical stability enhancement
JPS63171617A (en) Composite membrane excellent in permselectivity of hydrogen and its production
JP2015116545A (en) Hydrogen gas treatment equipment
JP2008303134A (en) Hydrogen production apparatus and method for shutting down the same
JP2012189254A (en) Separation and refinement process
JP6093985B2 (en) Hydrogen separation membrane treatment method and hydrogen separation method
KR20130094259A (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
JP2009291742A (en) Hydrogen permeation member and hydrogen generating reactor using the same
JP7388627B2 (en) Hydrogen permeation device and method for manufacturing hydrogen permeation device
JP6382756B2 (en) Hydrogen separation membrane, hydrogen separation module, hydrogen separation device and hydrogen production device
KR101904212B1 (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
JP5782137B2 (en) CO transformation device and transformation method
WO2023026889A1 (en) Heat-generating device and boiler
JP2024118353A (en) Supply method and supply device
JP4601992B2 (en) Fuel reformer
JP2008050211A (en) Permselective membrane reactor and method of manufacturing hydrogen gas
JP2005296738A (en) Hydrogen permeable membrane and its production method