JP2015115103A - Manufacturing method of electrode for all-solid-state battery - Google Patents
Manufacturing method of electrode for all-solid-state battery Download PDFInfo
- Publication number
- JP2015115103A JP2015115103A JP2013254199A JP2013254199A JP2015115103A JP 2015115103 A JP2015115103 A JP 2015115103A JP 2013254199 A JP2013254199 A JP 2013254199A JP 2013254199 A JP2013254199 A JP 2013254199A JP 2015115103 A JP2015115103 A JP 2015115103A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- solid
- active material
- solid electrolyte
- electrode film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は全固体電池用の電極の製造方法に関する。 The present invention relates to a method for producing an electrode for an all-solid battery.
従来、各種電池の電解質としては、一般に水系あるいは非水系の電解液が使用されているが、近年、ビデオ撮影装置、ノートパソコン、あるいは携帯電話などの携帯用情報端末機器に代表される各種電子応用機器の薄型化かつ軽量小型化の要求に伴い、前述のような液状の電解質に代えて、高分子材料で構成された固体電解質を用いた全固体電池が注目されている。また、電解質として、無機固体電解質や高分子固体電解質を用いた固体電解質電池も各種提案されている。これら電池では固体であるがゆえに塗布や積層などの方法で薄型化が可能になり、携帯機器への積極的な搭載が図られている。さらに、電極活物質と電解質とを無機化合物で形成した全固体二次電池も、安全性が高く、温度使用範囲が広範に取れるといったメリットを生かせるものとして提唱されている。 Conventionally, aqueous or non-aqueous electrolytes are generally used as electrolytes for various batteries, but in recent years, various electronic applications typified by portable information terminal devices such as video photographing devices, notebook computers, and mobile phones. With the demand for thinner, lighter, and smaller devices, all-solid-state batteries using a solid electrolyte made of a polymer material have been attracting attention in place of the liquid electrolyte as described above. Various solid electrolyte batteries using an inorganic solid polymer electrolyte or a polymer solid electrolyte as an electrolyte have also been proposed. Since these batteries are solid, they can be thinned by a method such as coating or lamination, and are actively mounted on portable devices. Furthermore, an all-solid secondary battery in which an electrode active material and an electrolyte are formed of an inorganic compound is also proposed as one that can take advantage of high safety and a wide temperature use range.
このような全固体電池においては、電解質が液体ではなく固体であるため、充放電時に活物質及び活物質層が膨張収縮し、応力の発生により電極層内に割れが生じてしまう。そしてこの割れにより、イオン伝導が阻害され電池特性が低下するという問題がある。そこでこのような電極層内の膨張収縮を抑制するため、活物質薄膜をレーザーを用いてエッチングし、穴をあけることが提案されている(例えば、特許文献1及び2参照)。
In such an all-solid battery, since the electrolyte is a solid rather than a liquid, the active material and the active material layer expand and contract during charging and discharging, and a crack is generated in the electrode layer due to the generation of stress. And this crack has the problem that ion conduction is inhibited and battery characteristics deteriorate. Therefore, in order to suppress such expansion and contraction in the electrode layer, it has been proposed to etch the active material thin film with a laser to make a hole (see, for example,
従来の方法では、レーザーを用いているため製造コストが高くなってしまう。また機械的に穴や溝を設けることも考えられるが、溝の幅が広くなってしまうという問題がある。 In the conventional method, since a laser is used, the manufacturing cost is increased. Although it is conceivable to provide holes and grooves mechanically, there is a problem that the width of the grooves becomes wide.
そこで、本願発明は、電極層内の活物質の膨張収縮による応力を緩和することのできる、全固体電池用の電極を提供することを目的とする。 Then, this invention aims at providing the electrode for all-solid-state batteries which can relieve | moderate the stress by the expansion / contraction of the active material in an electrode layer.
上記課題を解決するために、本願発明によれば、集電箔上に活物質を含む電極膜を製膜し、この電極膜に0.5〜6トン/cm2の圧力で仮プレスを施し、電極膜に機械的手段によって溝を設け、次いで仮プレス以上の圧力において本プレスを施す工程を含む、全固体電池用の電極の製造方法が提供される。 In order to solve the above problems, according to the present invention, an electrode film containing an active material is formed on a current collector foil, and this electrode film is subjected to temporary pressing at a pressure of 0.5 to 6 ton / cm 2 , There is provided a method for producing an electrode for an all-solid-state battery, comprising the step of providing a groove in a film by mechanical means and then subjecting the film to a press at a pressure higher than that of a temporary press.
本願発明によれば、メス等を用いて機械的に電極膜に溝を設け、次いでプレスを行うことにより、機械的手段で設けた溝を縮小させ、電極層に簡易に適切な溝を設けることができる。 According to the present invention, a groove is provided in the electrode film mechanically using a knife or the like, and then pressing is performed to reduce the groove provided by mechanical means, and an appropriate groove is easily provided in the electrode layer. Can do.
本発明の全固体電池の構成は、従来の全固体電池の構成と同じであり、正極及び負極と、これらの間に配置された電解質とが備えられ、この電解質は固体によって構成されている。一般的に、正極及び負極は、電極活物質、さらに必要に応じて、導電性材料、固体電解質、バインダー等を含む活物質層と、集電体とを有する。固体電解質層は、固体電解質の他、必要に応じて固体電解質層に可撓性を付与するためのバインダー等を含む。 The configuration of the all solid state battery of the present invention is the same as the configuration of the conventional all solid state battery, and includes a positive electrode and a negative electrode, and an electrolyte disposed therebetween, and this electrolyte is made of solid. In general, the positive electrode and the negative electrode include an electrode active material, an active material layer containing a conductive material, a solid electrolyte, a binder, and the like, and a current collector, if necessary. The solid electrolyte layer includes, in addition to the solid electrolyte, a binder for imparting flexibility to the solid electrolyte layer as necessary.
活物質層は、例えば、電極活物質に、必要に応じて、固体電解質や導電性材料等を添加、混合した活物質材を、粉末成形法により加圧成形することによって形成することができる。また、固体電解質層は、固体電解質に、必要に応じてバインダー等を添加、混合した電解質材を、粉末成形法により加圧成形することによって形成することができる。一般的には、上記したような加圧成形した活物質層及び固体電解質層を積層し、さらに加圧することで、全固体電池が作製される。 The active material layer can be formed, for example, by pressure-forming an active material material obtained by adding and mixing a solid electrolyte, a conductive material, or the like to the electrode active material as necessary, by a powder molding method. In addition, the solid electrolyte layer can be formed by pressure-molding an electrolyte material obtained by adding and mixing a binder or the like to a solid electrolyte as necessary by a powder molding method. In general, an all-solid battery is manufactured by laminating an active material layer and a solid electrolyte layer that have been pressure-molded as described above, and further pressing them.
本発明においては、電極の製造を、活物質材の1回の加圧成形により製造するのではなく、集電箔上に活物質を含む電極膜を製膜し、この電極膜に仮プレスを施し、電極膜に機械的手段によって溝を設け、次いで仮プレス以上の圧力において本プレスを施すことにより製造している。 In the present invention, the electrode is not manufactured by pressing the active material once, but an electrode film containing the active material is formed on the current collector foil, and a temporary press is applied to the electrode film. It is manufactured by providing a groove on the electrode film by mechanical means, and then applying this press at a pressure higher than the temporary press.
まず電極膜の製造は、活物質及び固体電解質をバインダーと共に溶媒に分散させてペーストを形成し、このペーストを適当な基材の上に塗布し、乾燥することにより行われる。この電極は正極又は負極のいずれであってもよく、両者であってもよい。活物質、固体電界質及びバインダーは、従来より用いられているものを用いることができる。 First, an electrode film is produced by dispersing an active material and a solid electrolyte in a solvent together with a binder to form a paste, applying the paste onto a suitable substrate, and drying. This electrode may be either a positive electrode or a negative electrode, or both. As the active material, the solid electrolyte, and the binder, those conventionally used can be used.
正極の場合、正極活物質としては、スピネルLiMn2O4、溶液系のリチウムイオン電池で使用される遷移金属とリチイウムの複合酸化物を例示できる。具体的には、LiCoO2などのLi・Co系複合酸化物、LiNiO2などのLi・Ni系複合酸化物、スピネルLiMn2O4などのLi・Mn系複合酸化物、LiFeO2などのLi・Fe系複合酸化物を例示できる。この他、LiFePO4などの遷移金属とリチウムのリン酸化合物や硫酸化合物;V2O5、MnO2、TiS2、MoS2、MoO3などの遷移金属酸化物や硫化物;PbO2、AgO、NiOOHなどを使用することもできる。負極の場合、負極活物質としては、カーボン、各種金属、遷移金属酸化物、遷移金属とリチウムの複合酸化物、チタンの酸化物、チタンとリチウムとの複合酸化物を用いることができる。固体電解質としては、一般的な硫化物固体電解質(結晶性とガラス質な硫化物固体電解質を種々の割合にて混合したもの)を用いることが好ましい。 In the case of the positive electrode, examples of the positive electrode active material include spinel LiMn 2 O 4 and a composite oxide of transition metal and lithium used in a solution-type lithium ion battery. Specifically, Li · Co-based composite oxide such as LiCoO 2, Li · Ni-based composite oxide such as LiNiO 2, Li · Mn-based composite oxide such as spinel LiMn 2 O 4, Li · such LiFeO 2 Examples thereof include Fe-based composite oxides. In addition, transition metal and lithium phosphate compounds and sulfate compounds such as LiFePO 4 ; transition metal oxides and sulfides such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , and MoO 3 ; PbO 2 , AgO, NiOOH or the like can also be used. In the case of the negative electrode, as the negative electrode active material, carbon, various metals, transition metal oxides, composite oxides of transition metals and lithium, oxides of titanium, and composite oxides of titanium and lithium can be used. As the solid electrolyte, it is preferable to use a general sulfide solid electrolyte (a mixture of crystalline and glassy sulfide solid electrolyte in various proportions).
基材へのペーストの塗布は、ドクターブレード法、スプレー法、スクリーン印刷等の各種方法を用いることができる。基材としては、アルミ箔等の金属箔を用い、後に集電箔に転写する。副資材を用いない場合には、アルミニウム等の正極集電体として適した金属箔を基材として用いてもよい。 Various methods such as a doctor blade method, a spray method, and screen printing can be used for applying the paste to the substrate. As the base material, a metal foil such as an aluminum foil is used, and is later transferred to a current collector foil. When the auxiliary material is not used, a metal foil suitable as a positive electrode current collector such as aluminum may be used as the base material.
こうして得られた電極膜に仮プレスを施す。この仮プレスは電極材料同士又は電極材料と集電体との結着を高めるために行うものであり、その圧力は0.5〜6トン/cm2とすることが好ましい。 A temporary press is applied to the electrode film thus obtained. This temporary pressing is performed in order to enhance the binding between the electrode materials or between the electrode material and the current collector, and the pressure is preferably 0.5 to 6 ton / cm 2 .
次いで、この仮プレスを施した電極膜に機械的手段によって溝を設ける。機械的手段としては、例えばメスを用い、複数のメスを組み合わせて用いてもよい。溝の数は多いほど好ましく、また深さも電極膜を分離するほど深くてもよい。一方、溝の幅(厚み)は薄いほど好ましい。 Next, a groove is provided by mechanical means on the electrode film subjected to the temporary pressing. As the mechanical means, for example, a scalpel may be used, and a plurality of scalpels may be used in combination. The larger the number of grooves, the better, and the depth may be deep enough to separate the electrode films. On the other hand, the thinner the groove width (thickness), the better.
最後に、この溝を設けた電極膜を再び加圧し、本プレスを施す。この本プレスの圧力は、仮プレスの圧力以上とし、電極膜の充填率が向上する程度の圧力とする。このように溝を設けた後にプレスすることにより、その圧力が小さくても粒子が溝が狭くなるように移動し、適切な幅とすることができる。 Finally, the electrode film provided with the groove is pressurized again, and this press is performed. The pressure of this press is set to be equal to or higher than the pressure of the temporary press so that the filling rate of the electrode film is improved. By pressing after the grooves are provided in this way, even if the pressure is small, the particles can move so that the grooves become narrow, and the width can be made appropriate.
こうして得られた電極の間に固体電解質層をはさみ、全固体電池を形成することができる。 An all-solid battery can be formed by sandwiching a solid electrolyte layer between the electrodes thus obtained.
[固体電解質の合成]
Li2O(日本化学工業製)とP2S5(アルドリッチ製)とLiI(アルドリッチ製)を出発原料とし、0.542gのLi2O、0.558gのP2S5(アルドリッチ製)及び0.900gのLiIをメノウ乳鉢に入れ、5分間混合し、その後4gのヘプタンを加え、ZrO2製の45mlの遊星型ボールミルにてZrO2製のφ5mmのボール53gを用いて500rpmで40時間ボールミルを行った。得られた粉末を100℃で乾燥することにより固体電解質を得た。
[Synthesis of solid electrolyte]
Starting from Li 2 O (manufactured by Nippon Kagaku Kogyo), P 2 S 5 (manufactured by Aldrich) and LiI (manufactured by Aldrich), 0.542 g of Li 2 O, 0.558 g of P 2 S 5 (manufactured by Aldrich) and 0.900 g put the LiI in an agate mortar, and mixed for 5 minutes, after which heptane 4g added thereto to carry out a 40 hour ball mill 500rpm with a planetary ball mill made of ZrO 2 45ml with ball 53g of ZrO 2 made of φ5mm . The obtained powder was dried at 100 ° C. to obtain a solid electrolyte.
得られたサンプルを0.5g秤量し、ガラス管の中に入れ、さらにSUS製の密閉容器に入れた後、卓上マッフル炉にて様々な温度で熱処理を行い、ガラスセラミック電解質を得た。なお、秤量、合成はすべてArガスの不活性雰囲気で行った。 0.5 g of the obtained sample was weighed and placed in a glass tube, and further placed in a closed container made of SUS, followed by heat treatment at various temperatures in a desktop muffle furnace to obtain a glass ceramic electrolyte. The weighing and synthesis were all performed in an inert atmosphere of Ar gas.
[電極の作製]
負極
1100mgのグラファイト(三菱化学製)と946mgの固体電解質と46mgのアルミニウム(高純度化学製)をヘプタン中で混合し、塗膜した膜を負極とした。この負極を0.5トン/cm2でプレスし、厚み300μmのメスを用いて2〜4本の線を引いて溝を形成し、次いで6トン/cm2でプレスした。
[Production of electrodes]
Negative electrode
1100 mg of graphite (manufactured by Mitsubishi Chemical), 946 mg of solid electrolyte and 46 mg of aluminum (manufactured by high purity chemical) were mixed in heptane, and the coated film was used as the negative electrode. This negative electrode was pressed at 0.5 ton / cm 2 , a groove was formed by drawing 2 to 4 lines using a 300 μm thick knife, and then pressed at 6 ton / cm 2 .
正極
LiNi1/3Co1/3Mn1/3O2(日亜化学製)1700mg、VGCF(昭和電工製)51mg及び固体電解質541mgを秤量し、混合して塗膜した膜を正極とした。
Positive electrode LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia) 1700 mg, VGCF (manufactured by Showa Denko) 51 mg, and solid electrolyte 541 mg were weighed and mixed to form a coated film.
こうして得られた正極、固体電解質及び負極を用いて全固体電池を作製し、溝によって形成した分割面積に対する充電可能SOCを測定し、結果を図2に示す。溝により区分化した面積が小さいほど、入力特性が向上することがわかった。 An all-solid battery was prepared using the positive electrode, solid electrolyte, and negative electrode thus obtained, and the chargeable SOC with respect to the divided area formed by the groove was measured. The result is shown in FIG. It was found that the smaller the area segmented by the grooves, the better the input characteristics.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013254199A JP2015115103A (en) | 2013-12-09 | 2013-12-09 | Manufacturing method of electrode for all-solid-state battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013254199A JP2015115103A (en) | 2013-12-09 | 2013-12-09 | Manufacturing method of electrode for all-solid-state battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015115103A true JP2015115103A (en) | 2015-06-22 |
Family
ID=53528752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013254199A Pending JP2015115103A (en) | 2013-12-09 | 2013-12-09 | Manufacturing method of electrode for all-solid-state battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015115103A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018194163A1 (en) * | 2017-04-21 | 2018-10-25 | 三洋化成工業株式会社 | Method for manufacturing electrode active material molding for lithium-ion battery and method for manufacturing lithium-ion battery |
US11309537B2 (en) | 2019-03-28 | 2022-04-19 | Apb Corporation | Production method for lithium-ion battery member |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007066665A (en) * | 2005-08-30 | 2007-03-15 | Nissan Motor Co Ltd | Electrode structure, its manufacturing method, secondary battery, battery pack, composite battery pack and vehicle with these batteries mounted thereon |
WO2007074654A1 (en) * | 2005-12-28 | 2007-07-05 | Matsushita Electric Industrial Co., Ltd. | Nonaqueous electrolyte secondary battery |
JP2013157554A (en) * | 2012-01-31 | 2013-08-15 | Daihatsu Motor Co Ltd | Method of manufacturing electrode and electrode |
-
2013
- 2013-12-09 JP JP2013254199A patent/JP2015115103A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007066665A (en) * | 2005-08-30 | 2007-03-15 | Nissan Motor Co Ltd | Electrode structure, its manufacturing method, secondary battery, battery pack, composite battery pack and vehicle with these batteries mounted thereon |
WO2007074654A1 (en) * | 2005-12-28 | 2007-07-05 | Matsushita Electric Industrial Co., Ltd. | Nonaqueous electrolyte secondary battery |
JP2013157554A (en) * | 2012-01-31 | 2013-08-15 | Daihatsu Motor Co Ltd | Method of manufacturing electrode and electrode |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018194163A1 (en) * | 2017-04-21 | 2018-10-25 | 三洋化成工業株式会社 | Method for manufacturing electrode active material molding for lithium-ion battery and method for manufacturing lithium-ion battery |
US11211596B2 (en) | 2017-04-21 | 2021-12-28 | Sanyo Chemical Industries, Ltd. | Method for manufacturing electrode active material molding for lithium-ion battery and method for manufacturing lithium-ion battery |
US11309537B2 (en) | 2019-03-28 | 2022-04-19 | Apb Corporation | Production method for lithium-ion battery member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Progress and challenges of prelithiation technology for lithium‐ion battery | |
JP6085370B2 (en) | All solid state battery, electrode for all solid state battery and method for producing the same | |
WO2010021205A1 (en) | Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery | |
WO2014115604A1 (en) | Positive electrode for secondary cell, method for manufacturing positive electrode for secondary cell, and whole solid secondary cell | |
JP6259704B2 (en) | Method for producing electrode for all solid state battery and method for producing all solid state battery | |
JP2011096630A (en) | Solid-state lithium secondary battery, and method for producing the same | |
EP3576192A1 (en) | Manufacturing method for electrode for all-solid-state battery and manufacturing method for all solid-state-battery | |
JP5516749B2 (en) | All-solid battery and method for manufacturing the same | |
JP2009266589A (en) | Solid lithium secondary battery and method of manufacturing the same | |
JP7167752B2 (en) | All-solid battery | |
JP7160753B2 (en) | Solid-state battery manufacturing method and solid-state battery | |
JP2016039052A (en) | Positive electrode active material for lithium battery, lithium battery and method for producing positive electrode active material for lithium battery | |
KR20160086795A (en) | A solid-state battery and a method for manufacturing it | |
JP2018181473A (en) | Method for manufacturing all-solid battery | |
JPWO2011111555A1 (en) | All-solid secondary battery and manufacturing method thereof | |
JP2023536628A (en) | METHOD FOR MANUFACTURING LAMINATED SOLID ELECTROLYTE COMPONENT AND ELECTROCHEMICAL CELL USING THE SAME | |
CN111313079B (en) | All-solid battery | |
JP2010225390A (en) | All-solid battery and its manufacturing method | |
JP2011192606A (en) | Method of manufacturing electrolyte/electrode laminate, electrolyte and electrode laminate, and all-solid battery | |
JP2013161646A (en) | Nonaqueous electrolyte battery and manufacturing method therefor, and electric vehicle using the same | |
JP2014049198A (en) | Sintered body for battery, all solid state lithium battery, and method for producing sintered body for battery | |
WO2012060402A1 (en) | All-solid-state battery and method for manufacturing same | |
KR20180000183A (en) | A manufacturing method of cathode for all-solid state battery using sol-gel process and slurry-casting process | |
JP2015115103A (en) | Manufacturing method of electrode for all-solid-state battery | |
KR101655607B1 (en) | A solid-state battery and a method for manufacturing it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160707 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180109 |