JP2015112943A - Vehicle cooling circulation system - Google Patents

Vehicle cooling circulation system Download PDF

Info

Publication number
JP2015112943A
JP2015112943A JP2013254965A JP2013254965A JP2015112943A JP 2015112943 A JP2015112943 A JP 2015112943A JP 2013254965 A JP2013254965 A JP 2013254965A JP 2013254965 A JP2013254965 A JP 2013254965A JP 2015112943 A JP2015112943 A JP 2015112943A
Authority
JP
Japan
Prior art keywords
electric motor
control circuit
circulation system
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013254965A
Other languages
Japanese (ja)
Inventor
原 潤一郎
Junichiro Hara
潤一郎 原
浩布 河上
Hironobu Kawakami
浩布 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2013254965A priority Critical patent/JP2015112943A/en
Priority to PCT/JP2014/081881 priority patent/WO2015087743A1/en
Publication of JP2015112943A publication Critical patent/JP2015112943A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Inverter Devices (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle cooling circulation system which unfailingly cools a motor control circuit part.SOLUTION: A vehicle cooling circulation system 1 includes a coolant circulation path 10 in which a coolant circulates a radiator 2, a motor control circuit part 4, an electric motor 5, and a pump 7. The vehicle cooling circulation system 1 includes: temperature detection means 11 which detects a temperature of the coolant flowing into the motor control circuit part 4; and circulation amount adjust means 12 which adjusts a circulation amount of the coolant flowing to the electric motor 5. When the detection temperature of the temperature detection means 11 becomes a specified value or higher, the circulation amount of the coolant flowing to the electric motor 5 is reduced by the circulation amount adjust means 12.

Description

本発明は、車両搭載の電気部品を循環冷却液で冷却する車両用冷却循環システムに関する。   The present invention relates to a vehicle cooling and circulation system that cools electric components mounted on a vehicle with a circulating coolant.

例えばハイブリッド車には、動力系の電気部品を冷却するため、車両用冷却循環システムが搭載される。この種の従来の車両用冷却循環システムは、冷却水がラジエータ、インバータ及び電動モータ等の動力回路、ポンプを循環する冷却液循環経路を備え、ラジエータで冷却した冷却水でインバータなどのモータ制御回路部及び電動モータ等を冷却する(例えば特許文献1参照)。   For example, in a hybrid vehicle, a cooling circulation system for a vehicle is mounted in order to cool electric parts of a power system. This type of conventional vehicle cooling and circulation system includes a cooling liquid circulation path in which cooling water circulates through a power circuit such as a radiator, an inverter and an electric motor, and a pump, and a motor control circuit such as an inverter using the cooling water cooled by the radiator. The part and the electric motor are cooled (see, for example, Patent Document 1).

特開2004−262330号公報JP 2004-262330 A

しかしながら、前記従来例の車両用冷却循環システムでは、冷却水が温度に拘わらず、インバータ、電動モータ等の一定の循環経路を循環する。そのため、モータ制御回路部内で高温に弱い電子部品(例えばインバータ)の保護を確実に行うことができない恐れがある。   However, in the conventional vehicle cooling circulation system, the cooling water circulates through a certain circulation path such as an inverter or an electric motor regardless of the temperature. For this reason, there is a possibility that the electronic components (for example, inverters) that are vulnerable to high temperatures cannot be reliably protected in the motor control circuit unit.

そこで、本発明は、前記した課題を解決すべくなされたものであり、モータ制御回路部を確実に冷却することができる車両用冷却循環システムを提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a vehicular cooling circulation system capable of reliably cooling a motor control circuit unit.

本発明は、冷却液がラジエータ、モータ制御回路部、電動モータ、ポンプを循環する冷却液循環経路を備えた車両用冷却循環システムであって、前記モータ制御回路部に流入される冷却液の温度を検知する温度検知手段と、冷却液の前記電動モータへの流通量を調整する流通量調整手段とを備え、前記温度検知手段の検知温度が規定値以上になると、前記流通量調整手段によって前記電動モータへの冷却液の流通量を減らす制御を行うことを特徴とする車両用冷却循環システムである。   The present invention is a vehicle cooling circulation system having a coolant circulation path in which coolant circulates through a radiator, a motor control circuit unit, an electric motor, and a pump, and the temperature of the coolant flowing into the motor control circuit unit And a flow rate adjusting unit that adjusts the flow rate of the coolant to the electric motor, and when the detected temperature of the temperature detection unit exceeds a specified value, the flow rate adjusting unit causes the flow rate adjusting unit to A cooling circulation system for a vehicle, characterized in that control is performed to reduce a circulation amount of a coolant to an electric motor.

前記冷却液循環経路では、前記モータ制御回路部と前記電動モータがこの順序で直列に配置され、前記流通量調整手段は、前記モータ制御回路部から前記電動モータに流す主経路部とは別に、前記電動モータをバイパスさせるバイパス路と、前記主経路部と前記バイパス路への流通割合を可変できる制御バルブとを有するものであっても良い。前記冷却液循環経路では、前記モータ制御回路部と前記電動モータが並列に配置され、前記流通量調整手段は、前記モータ制御回路部と前記電動モータへの流通割合を可変できる制御バルブを有するものであっても良い。前記冷却液循環経路は、空気調和装置の冷凍システムを構成するコンデンサを有し、前記コンデンサを冷却液で冷却する者であっても良い。前記水冷コンデンサは、前記ラジエータの熱交換部に流入される前の冷却水が流通する位置に配置されたものであっても良い。前記水冷コンデンサは、前記ラジエータの熱交換部より流出された後の冷却水が流通する位置に配置されたものであっても良い。前記モータ制御回路部は、インバータを有するものを含む。   In the coolant circulation path, the motor control circuit unit and the electric motor are arranged in series in this order, and the flow rate adjusting means is separate from the main path unit that flows from the motor control circuit unit to the electric motor. You may have a bypass path which bypasses the said electric motor, and the control valve which can vary the distribution | circulation ratio to the said main path part and the said bypass path. In the coolant circulation path, the motor control circuit unit and the electric motor are arranged in parallel, and the flow rate adjusting means has a control valve capable of changing a flow rate to the motor control circuit unit and the electric motor. It may be. The coolant circulation path may include a condenser that constitutes the refrigeration system of the air conditioner and the person who cools the condenser with the coolant. The water-cooled condenser may be disposed at a position where the cooling water before flowing into the heat exchange part of the radiator flows. The water-cooled condenser may be disposed at a position where the cooling water after flowing out from the heat exchange part of the radiator flows. The motor control circuit unit includes an inverter.

本発明によれば、冷却液循環経路の冷却液の温度が規定以上に上昇した場合に、電動モータの冷却による冷却水の温度上昇を抑制できるため、モータ制御回路部を確実に冷却することができる。これにより、モータ制御回路部の高温に弱い電子部品を確実に保護できる。   According to the present invention, when the temperature of the coolant in the coolant circulation path rises above a specified level, it is possible to suppress an increase in the temperature of the coolant due to the cooling of the electric motor, so that the motor control circuit unit can be reliably cooled. it can. Thereby, the electronic component weak to the high temperature of a motor control circuit part can be protected reliably.

本発明の第1実施形態を示し、車両用冷却循環システムの概略構成図である。1 shows a first embodiment of the present invention and is a schematic configuration diagram of a vehicle cooling circulation system. FIG. 本発明の第1実施形態を示し、制御バルブの開閉を説明する図である。It is a figure which shows 1st Embodiment of this invention and demonstrates opening and closing of a control valve. 本発明の第1実施形態の第1変形例を示し、制御バルブの開閉を説明する図である。It is a figure which shows the 1st modification of 1st Embodiment of this invention, and demonstrates opening and closing of a control valve. (a)は第1実施形態の第2変形例における制御バルブの設置位置を示す図、(b)は第1実施形態の第3変形例における制御バルブの設置位置を示す図である。(A) is a figure which shows the installation position of the control valve in the 2nd modification of 1st Embodiment, (b) is a figure which shows the installation position of the control valve in the 3rd modification of 1st Embodiment. 第1実施形態の第2変形例及び第3変形例を示し、制御バルブの開閉を説明する図である。It is a figure which shows the 2nd modification of a 1st embodiment, and the 3rd modification, and explains opening and closing of a control valve. 本発明の第2実施形態を示し、車両用冷却循環システムの概略構成図である。FIG. 3 is a schematic configuration diagram of a vehicle cooling circulation system according to a second embodiment of the present invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1及び図2は本発明の第1実施形態を示す。図1に示すように、車両用冷却循環システム1は、冷却液である冷却水がラジエータ2、コンデンサである水冷コンデンサ3、モータ制御回路部4、電動モータ5、リザーブタンク6、ポンプ7の順で循環する冷却液循環経路10を備えている。
(First embodiment)
1 and 2 show a first embodiment of the present invention. As shown in FIG. 1, the vehicle cooling circulation system 1 includes a cooling water as a coolant, a water cooling condenser 3 as a condenser, a motor control circuit unit 4, an electric motor 5, a reserve tank 6, and a pump 7 in this order. The coolant circulation path 10 circulates at

ラジエータ2は、車両エンジンルーム内に配置されている。ラジエータ2は、冷却水と空気との間で熱交換を行う熱交換部(図示せず)と、外部から流入した冷却水を熱交換部に流入する入口側タンク(図示せず)と、熱交換部を通った冷却水を外部に流出する出口側タンク(図示せず)とを有する。ラジエータ2は、冷却水と空気との間で熱交換し、冷却水を冷却する。   The radiator 2 is disposed in the vehicle engine room. The radiator 2 includes a heat exchange unit (not shown) that exchanges heat between cooling water and air, an inlet side tank (not shown) that flows cooling water flowing from the outside into the heat exchange unit, and heat And an outlet side tank (not shown) through which the cooling water having passed through the exchange part flows out. The radiator 2 exchanges heat between the cooling water and the air to cool the cooling water.

水冷コンデンサ3は、空気調和装置の冷凍システム(図示せず)の放熱部品の一つであり、冷却水で冷媒を冷却する。冷凍サイクルは、冷媒の放熱部品(コンデンサ)として水冷コンデンサ3と空冷コンデンサ(図示せず)を有し、空冷コンデンサの他に水冷コンデンサ3を有することによって空冷コンデンサの放熱負荷を低減している。水冷コンデンサ3は、ラジエータ2の入口側タンク(図示せず)内に配置されている。つまり、水冷コンデンサ3は、ラジエータ2の熱交換部に流入される前の冷却水が流通する位置に配置されている。勿論、水冷コンデンサ3をラジエータ2の出口側タンク(図示せず)内に設置しても良い。   The water-cooled condenser 3 is one of the heat radiating components of the refrigeration system (not shown) of the air conditioner, and cools the refrigerant with cooling water. The refrigeration cycle includes a water-cooled capacitor 3 and an air-cooled capacitor (not shown) as heat-dissipating components (capacitors) for the refrigerant, and the water-cooled capacitor 3 in addition to the air-cooled capacitor reduces the heat radiation load of the air-cooled capacitor. The water-cooled condenser 3 is disposed in an inlet side tank (not shown) of the radiator 2. That is, the water-cooled condenser 3 is disposed at a position where the coolant before flowing into the heat exchange part of the radiator 2 flows. Of course, the water-cooled condenser 3 may be installed in an outlet side tank (not shown) of the radiator 2.

モータ制御回路部4は、インバータ(図示せず)等の電子部品を有し、電動モータ5の駆動制御を行う。特に、インバータは、動作時の発熱が大きく、冷却水によって冷却される。   The motor control circuit unit 4 includes electronic components such as an inverter (not shown) and performs drive control of the electric motor 5. In particular, the inverter generates a large amount of heat during operation and is cooled by cooling water.

電動モータ5は、車両の駆動源である。電動モータ5の永久磁石等が冷却水によって冷却される。電動モータ5は、モータ制御回路部4のインバータ等よりも耐久温度が高い。   The electric motor 5 is a drive source of the vehicle. The permanent magnet or the like of the electric motor 5 is cooled by the cooling water. The electric motor 5 has a higher endurance temperature than the inverter of the motor control circuit unit 4.

ポンプ7は、冷却液循環経路10の冷却水を循環させる。   The pump 7 circulates the cooling water in the coolant circulation path 10.

車両用冷却循環システム1は、モータ制御回路部4に流入される冷却水の温度を検知する温度検知手段11と、冷却水の電動モータ5への流通量を調整する流通量調整手段12とを備えている。   The vehicle cooling circulation system 1 includes a temperature detection unit 11 that detects the temperature of cooling water flowing into the motor control circuit unit 4, and a circulation amount adjustment unit 12 that adjusts the circulation amount of the cooling water to the electric motor 5. I have.

流通量調整手段12は、モータ制御回路部4から電動モータ5に流す主経路部13とは別に、電動モータ5をバイパスさせるバイパス路14と、主経路部13とバイパス路14への流通割合を可変できる制御バルブ15とを有する。   The flow amount adjusting means 12 is different from the main path portion 13 that flows from the motor control circuit portion 4 to the electric motor 5, and the bypass path 14 that bypasses the electric motor 5, and the distribution ratio to the main path portion 13 and the bypass path 14. And a control valve 15 that can be varied.

制御バルブ15は、開閉バルブであり、主経路部13に配置されている。制御バルブ15は、図2に示すように、温度検知手段11の検知温度が規定温度未満で開位置(オープン位置)に、規定温度以上になると閉位置(クローズ位置)に切換制御される。規定温度は、モータ制御回路部4内で、高温に最も弱い部品であるインバータが不具合を発生する可能性のある温度より低い温度である。この実施形態では、規定温度は、例えば62.5℃である。   The control valve 15 is an open / close valve and is disposed in the main path portion 13. As shown in FIG. 2, the control valve 15 is controlled to be switched to the open position (open position) when the temperature detected by the temperature detecting means 11 is lower than the specified temperature, and to the closed position (closed position) when the temperature is equal to or higher than the specified temperature. The specified temperature is a temperature lower than the temperature at which the inverter, which is the weakest component at high temperatures, may cause a malfunction in the motor control circuit unit 4. In this embodiment, the specified temperature is 62.5 ° C., for example.

次に、車両用冷却循環システム1の動作を説明する。温度検知手段11の検知温度が規定温度未満の時は、制御バルブ15が開位置に位置される。すると、ラジエータ2で冷却された冷却水は、水冷コンデンサ3、モータ制御回路部4、主経路部13を通って電動モータ5に流入する。これにより、水冷コンデンサ3、モータ制御回路部4と共に電動モータ5も冷却される。   Next, the operation of the vehicle cooling circulation system 1 will be described. When the temperature detected by the temperature detecting means 11 is lower than the specified temperature, the control valve 15 is positioned at the open position. Then, the cooling water cooled by the radiator 2 flows into the electric motor 5 through the water cooling condenser 3, the motor control circuit unit 4, and the main path unit 13. Thereby, the electric motor 5 is cooled together with the water-cooled condenser 3 and the motor control circuit unit 4.

尚、制御バルブ15の開位置では、冷却水の一部がバイパス路14にも流れる。冷却水の電動モータ5に流入する割合とバイパスする割合は、両流路の流通抵抗に依存する。   Note that when the control valve 15 is in the open position, part of the cooling water also flows into the bypass passage 14. The ratio of flowing into the electric motor 5 of the cooling water and the ratio of bypassing depend on the flow resistance of both flow paths.

ここで、アイドリング、登坂走行などの理由でラジエータ2での冷却効率が低下し、モータ制御回路部4に入る冷却水が温度上昇する。そして、温度検知手段11の検知温度が規定温度以上になると、制御バルブ15が閉位置に切換えられる。すると、ラジエータ2で冷却された冷却水は、水冷コンデンサ3、モータ制御回路部4、バイパス路14を通り、電動モータ5をバイパスする。つまり、冷却水によって水冷コンデンサ3、モータ制御回路部4は、冷却されるが、電動モータ5が冷却されない。そのため、冷却水の温度上昇を抑制できる。   Here, the cooling efficiency in the radiator 2 decreases due to idling, climbing, and the like, and the temperature of the cooling water entering the motor control circuit unit 4 increases. Then, when the detected temperature of the temperature detecting means 11 becomes equal to or higher than the specified temperature, the control valve 15 is switched to the closed position. Then, the cooling water cooled by the radiator 2 passes through the water cooling condenser 3, the motor control circuit unit 4, and the bypass path 14 and bypasses the electric motor 5. That is, the water-cooled condenser 3 and the motor control circuit unit 4 are cooled by the cooling water, but the electric motor 5 is not cooled. Therefore, the temperature rise of cooling water can be suppressed.

その後、温度検知手段11が検知する温度が規定温度未満に戻ると、制御バルブ15が開位置に戻り、電動モータ5も冷却される。   Thereafter, when the temperature detected by the temperature detecting means 11 returns below the specified temperature, the control valve 15 returns to the open position, and the electric motor 5 is also cooled.

以上説明したように、冷却液循環経路10の冷却液の温度が規定以上に上昇した場合に、電動モータ5を冷却しないことによって冷却水の温度上昇を抑制できるため、モータ制御回路部4を確実に冷却することができる。これにより、モータ制御回路部4内で高温に弱い電子部品であるインバータを確実に保護できる。   As described above, when the temperature of the coolant in the coolant circulation path 10 rises above a specified level, the motor control circuit unit 4 can be securely connected because the temperature of the coolant can be suppressed by not cooling the electric motor 5. Can be cooled to. Thereby, the inverter which is an electronic component weak to high temperature in the motor control circuit unit 4 can be reliably protected.

冷却液循環経路10では、モータ制御回路部4と電動モータ5がこの順序で直列に配置され、流通量調整手段12は、モータ制御回路部4から電動モータ5に流す主経路部13とは別に、電動モータ5をバイパスさせるバイパス路14と、主経路部13とバイパス路14への流通割合を可変できる制御バルブ15とを有する。従って、モータ制御回路部4と電動モータ5を並列に配置する場合(第2実施形態)に較べて、冷却液循環経路10の配管とモータ制御回路部4及び電動モータ5との接続箇所を少なくできる。   In the coolant circulation path 10, the motor control circuit section 4 and the electric motor 5 are arranged in series in this order, and the flow rate adjusting means 12 is separate from the main path section 13 that flows from the motor control circuit section 4 to the electric motor 5. The bypass path 14 for bypassing the electric motor 5 and the control valve 15 capable of varying the flow rate to the main path portion 13 and the bypass path 14 are provided. Therefore, compared with the case where the motor control circuit unit 4 and the electric motor 5 are arranged in parallel (second embodiment), the number of connection points between the piping of the coolant circulation path 10 and the motor control circuit unit 4 and the electric motor 5 is reduced. it can.

冷却液循環経路10は、空気調和装置の冷凍システム(図示せず)を構成する水冷コンデンサ3を有し、水冷コンデンサ3内の冷媒を冷却水で冷却する。従って、空気調和装置の冷凍システムの放熱をも行うシステムにおいて、モータ制御回路部4を確実に冷却することができる。つまり、冷却液循環経路10が水冷コンデンサ3を有する場合には、冷却水が水冷コンデンサ3の冷媒の冷却に使用されるため、冷却水の温度上昇を招来し、モータ制御回路部4の冷却を確実に行うことができない可能性が増大する。しかし、本実施形態では、冷却水が規定温度以上に上昇すると、電動モータ5の冷却を止めて冷却水の温度上昇を抑制するため、水冷コンデンサ3の冷却しつつモータ制御回路部4を確実に冷却することができる。従って、本実施形態は、水冷コンデンサ3を有するシステムにおいて特に有効である。   The coolant circulation path 10 has a water-cooled condenser 3 constituting a refrigeration system (not shown) of the air conditioner, and cools the refrigerant in the water-cooled condenser 3 with cooling water. Therefore, the motor control circuit unit 4 can be reliably cooled in a system that also performs heat dissipation of the refrigeration system of the air conditioner. That is, when the coolant circulation path 10 has the water-cooled condenser 3, the coolant is used for cooling the refrigerant of the water-cooled condenser 3, so that the temperature of the coolant is increased and the motor control circuit unit 4 is cooled. The possibility that it cannot be performed reliably increases. However, in the present embodiment, when the cooling water rises above a specified temperature, the motor control circuit unit 4 is reliably connected while cooling the water cooling condenser 3 in order to stop the cooling of the electric motor 5 and suppress the temperature rise of the cooling water. Can be cooled. Therefore, this embodiment is particularly effective in a system having the water-cooled condenser 3.

水冷コンデンサ3は、ラジエータ2の熱交換部に流入される前の冷却水が流通する位置に配置されている。従って、水冷コンデンサ3で温度上昇された冷却水がラジエータ2で確実に冷却されるため、モータ制御回路部4に流入する冷却水の温度上昇を招来せず、冷却水の低温化の維持に寄与する。   The water-cooled condenser 3 is disposed at a position where the cooling water before flowing into the heat exchange part of the radiator 2 flows. Therefore, the cooling water whose temperature has been raised by the water-cooled condenser 3 is reliably cooled by the radiator 2, so that the temperature of the cooling water flowing into the motor control circuit unit 4 does not increase and contributes to the maintenance of low temperature of the cooling water. To do.

水冷コンデンサ3は、ラジエータ2の出口タンク部(図示せず)内、つまり、熱交換部より流出された後の冷却水が流通する位置に配置されても良い。このように構成すれば、ラジエータ2で冷却された低温の冷却水で水冷コンデンサ3の冷媒を冷却するため、空気調和装置の冷凍システムにおける他のコンデンサ(例えば空冷コンデンサ)の放熱負担を軽減できる。   The water-cooled condenser 3 may be disposed in the outlet tank part (not shown) of the radiator 2, that is, at a position where the cooling water after flowing out from the heat exchange part flows. If comprised in this way, since the refrigerant | coolant of the water-cooled condenser 3 is cooled with the low temperature cooling water cooled with the radiator 2, the heat radiation burden of the other capacitor | condenser (for example, air-cooled condenser) in the refrigeration system of an air conditioning apparatus can be reduced.

(第1実施形態の第1変形例)
図3(a)、(b)は、前記第1実施形態の第1変形例を示す。この第1変形例は、図3(a)に示すように、制御バルブ15がバイパス路14に配置されている。この第1変形例の制御バルブ15の切換制御は、図3(b)に示すように、前記実施形態と逆の制御となる。冷却水の温度が規定温度以上になった場合にも、電動モータ5に冷却水が流れるが、その循環量が制限されるため、前記第1実施形態と同様の効果を期待できる。
(First modification of the first embodiment)
3A and 3B show a first modification of the first embodiment. In the first modification, as shown in FIG. 3A, the control valve 15 is disposed in the bypass path 14. The switching control of the control valve 15 of the first modified example is the reverse control to the above embodiment, as shown in FIG. Even when the temperature of the cooling water becomes equal to or higher than the specified temperature, the cooling water flows through the electric motor 5, but since the circulation amount is limited, the same effect as in the first embodiment can be expected.

ほぼ同様な作用・効果が得られる。 Almost the same operation and effect can be obtained.

(第1実施形態の第2変形例、第3変形例)
図4(a)、(b)は、前記第1実施形態の第2変形例及び第3変形例を示す。前記実施形態及び第1変形例では、制御バルブ15が1つ配置されているが、第2変形例及び第3変形例では、制御バルブ16,17が2つ配置されている。つまり、第2変形例では、第1制御バルブ16が電動モータ5の入口側の主経路部13に、第2制御バルブ17がバイパス路14に配置されている。第3変形例では、第1制御バルブ16が電動モータ5の出口側の主経路部13に、第2制御バルブ17がバイパス路14に配置されている。
(Second modification and third modification of the first embodiment)
4A and 4B show a second modification and a third modification of the first embodiment. In the embodiment and the first modification, one control valve 15 is disposed, but in the second modification and the third modification, two control valves 16 and 17 are disposed. That is, in the second modification, the first control valve 16 is disposed in the main path portion 13 on the inlet side of the electric motor 5, and the second control valve 17 is disposed in the bypass path 14. In the third modification, the first control valve 16 is disposed in the main path portion 13 on the outlet side of the electric motor 5, and the second control valve 17 is disposed in the bypass path 14.

図5に示すように、規定温度は、第1規定温度と第2規定温度の2つである。第1規定温度は、前記第1実施形態と同様に、モータ制御回路部4のインバータ等が不具合を発生する可能性のある温度より少し低い温度である。第2規定温度は、第1規定温度より更に低い位置である。この2変形例、3変形例では、第1規定温度は、例えば65℃であり、第2規定温度は、例えば60℃である。   As shown in FIG. 5, there are two specified temperatures, a first specified temperature and a second specified temperature. Similar to the first embodiment, the first specified temperature is a temperature slightly lower than the temperature at which the inverter of the motor control circuit unit 4 may cause a malfunction. The second specified temperature is a position that is lower than the first specified temperature. In the second modification and the third modification, the first specified temperature is, for example, 65 ° C., and the second specified temperature is, for example, 60 ° C.

温度検知手段11の検知温度が第2規定温度未満の時は、第1制御バルブ16が開位置(オープン位置)に、第2制御バルブ17が閉位置(クローズ位置)に位置される。ラジエータ2で冷却された冷却水は、水冷コンデンサ3、モータ制御回路部4、主経路部13を通り、電動モータ5に流入する。これにより、水冷コンデンサ3、モータ制御回路部4と共に電動モータ5も冷却される。但し、第1実施形態のように、バイパス路14には冷却水が一切流れないため、第1実施形態よりも電動モータ5の冷却性能が良い。   When the temperature detected by the temperature detecting means 11 is lower than the second specified temperature, the first control valve 16 is positioned at the open position (open position) and the second control valve 17 is positioned at the closed position (closed position). The cooling water cooled by the radiator 2 flows into the electric motor 5 through the water cooling condenser 3, the motor control circuit unit 4, and the main path unit 13. Thereby, the electric motor 5 is cooled together with the water-cooled condenser 3 and the motor control circuit unit 4. However, unlike the first embodiment, the cooling water does not flow through the bypass passage 14 at all. Therefore, the cooling performance of the electric motor 5 is better than that of the first embodiment.

温度検知手段11の検知温度が第2規定温度以上で第1規定温度未満の時は、第1制御バルブ16、第2制御バルブ17共に開位置に位置される。冷却水は、電動モータ5とバイパス路14の両方に流れるため、電動モータ5への冷却性能は少し低下し、その分、水冷コンデンサ3、モータ制御回路部4の冷却性能が向上する。   When the temperature detected by the temperature detecting means 11 is equal to or higher than the second specified temperature and lower than the first specified temperature, both the first control valve 16 and the second control valve 17 are positioned in the open position. Since the cooling water flows through both the electric motor 5 and the bypass 14, the cooling performance to the electric motor 5 is slightly lowered, and the cooling performance of the water cooling condenser 3 and the motor control circuit unit 4 is improved correspondingly.

温度検知手段11の検知温度が第1規定温度以上になると、第1制御バルブ16が閉位置、第2制御バルブ17が開位置に切換えられる。すると、ラジエータ2で冷却された冷却水は、水冷コンデンサ3、モータ制御回路部4、バイパス路14を通り、電動モータ5をバイパスする。つまり、冷却水によって水冷コンデンサ3、モータ制御回路部4は、冷却される一方で、電動モータ5を冷却しないため、冷却水の温度上昇を抑制できる。   When the temperature detected by the temperature detecting means 11 is equal to or higher than the first specified temperature, the first control valve 16 is switched to the closed position and the second control valve 17 is switched to the open position. Then, the cooling water cooled by the radiator 2 passes through the water cooling condenser 3, the motor control circuit unit 4, and the bypass path 14 and bypasses the electric motor 5. That is, since the water-cooled condenser 3 and the motor control circuit unit 4 are cooled by the cooling water, the electric motor 5 is not cooled, so that the temperature rise of the cooling water can be suppressed.

この第2変形例、第3変形例においても、冷却液循環経路10の冷却水の温度が規定以上に上昇した場合に、電動モータ5を冷却しないことで冷却水の温度上昇を抑制できるため、モータ制御回路部4を確実に冷却することができる。これにより、モータ制御回路部4内で高温に弱い電子部品であるインバータを確実に保護できる。   In the second modification and the third modification as well, when the temperature of the cooling water in the coolant circulation path 10 rises above a specified level, the temperature rise of the cooling water can be suppressed by not cooling the electric motor 5, The motor control circuit unit 4 can be reliably cooled. Thereby, the inverter which is an electronic component weak to high temperature in the motor control circuit unit 4 can be reliably protected.

(第2実施形態)
図6は本発明の第2実施形態を示す。図6に示すように、冷却液循環経路10では、モータ制御回路部4と電動モータ5が並列に配置されている。流通量調整手段12は、モータ制御回路部4と電動モータ5への流通割合を可変できる制御バルブ18を有する。制御バルブ18は、温度検知手段11の検知温度が規定温度未満では電動モータ5とモータ制御回路部4への流通割合をそれぞれ50%とし、温度検知手段11の検知温度が規定温度以上では、電動モータ5への流通割合を0%とし、モータ制御回路部4への流通割合を100%に制御される。つまり、制御バルブ18は、前記第1実施形態の第2変形例、第3変形例とほぼ同様な冷却水流れとなるよう切り換え制御される。
(Second Embodiment)
FIG. 6 shows a second embodiment of the present invention. As shown in FIG. 6, in the coolant circulation path 10, the motor control circuit unit 4 and the electric motor 5 are arranged in parallel. The flow rate adjusting means 12 has a control valve 18 that can vary the flow rate to the motor control circuit unit 4 and the electric motor 5. The control valve 18 sets the flow rate to the electric motor 5 and the motor control circuit unit 4 to 50% when the temperature detected by the temperature detector 11 is less than the specified temperature, and when the temperature detected by the temperature detector 11 is equal to or higher than the specified temperature, The distribution ratio to the motor 5 is set to 0%, and the distribution ratio to the motor control circuit unit 4 is controlled to 100%. That is, the control valve 18 is switching-controlled so that the coolant flow is substantially the same as in the second and third modifications of the first embodiment.

他の構成は、前記第1実施形態と同様であるため、同一構成箇所には同一符を付して重複説明を回避する。   Since other configurations are the same as those of the first embodiment, the same components are denoted by the same reference numerals to avoid redundant description.

この第2実施形態でも、前記第1実施形態と同様に、冷却液循環経路10の冷却水の温度が規定温度以上に上昇した場合に、電動モータ5の冷却による冷却水の温度上昇を抑制できるため、モータ制御回路部4を確実に冷却することができる。これにより、モータ制御回路部4内で高温に弱い電子部品であるインバータを確実に保護できる。   In the second embodiment, similarly to the first embodiment, when the temperature of the cooling water in the coolant circulation path 10 rises to a specified temperature or more, the temperature rise of the cooling water due to the cooling of the electric motor 5 can be suppressed. Therefore, the motor control circuit unit 4 can be reliably cooled. Thereby, the inverter which is an electronic component weak to high temperature in the motor control circuit unit 4 can be reliably protected.

冷却液循環経路10では、モータ制御回路部4と電動モータ5が並列に配置され、流通量調整手段12は、モータ制御回路部4と電動モータ5への流通割合を可変できる制御バルブ18を有する。   In the coolant circulation path 10, the motor control circuit unit 4 and the electric motor 5 are arranged in parallel, and the flow rate adjusting means 12 has a control valve 18 that can vary the flow rate to the motor control circuit unit 4 and the electric motor 5. .

この第2実施形態では、温度検知手段11の検知温度が規定温度未満では電動モータ5への流通割合を50%とし、温度検知手段11の検知温度が規定温度以上では、電動モータ5への流通割合を0%としたが、その流通割合については種々考えられる。つまり、モータ制御回路部4への冷却水の流通を確保しつつ、冷却水温度が規定温度以上になると電動モータ5の流通量を減らす制御を行えば良い。   In this second embodiment, the flow rate to the electric motor 5 is 50% when the temperature detected by the temperature detecting means 11 is lower than the specified temperature, and the flow to the electric motor 5 is set when the detected temperature of the temperature detecting means 11 is equal to or higher than the specified temperature. Although the ratio is set to 0%, various distribution ratios are conceivable. That is, it is only necessary to perform control to reduce the flow rate of the electric motor 5 when the cooling water temperature is equal to or higher than the specified temperature while ensuring the flow of the cooling water to the motor control circuit unit 4.

この第2実施形態では、制御バルブ18は、モータ制御回路部4と電動モータ5の入口配管の分岐箇所に設けたが、モータ制御回路部4と電動モータ5の出口配管の集合箇所に設けても良い。又、制御バルブ18は、モータ制御回路部4と電動モータ5の各入口配管に2箇所設けても、モータ制御回路部4と電動モータ5の各出口配管に2箇所設けても良い。   In this second embodiment, the control valve 18 is provided at the branching point of the inlet piping of the motor control circuit unit 4 and the electric motor 5, but is provided at the collecting point of the outlet piping of the motor control circuit unit 4 and the electric motor 5. Also good. The control valve 18 may be provided at two locations on the inlet piping of the motor control circuit unit 4 and the electric motor 5 or at two locations on the outlet piping of the motor control circuit unit 4 and the electric motor 5.

(その他)
前記第1実施形態、及び、その各変形例では、制御バルブ15〜17は、経路を全開・全閉(100%又は0%)する開閉バルブであるが、経路への流通割合を可変(10%、20%等)できる流量調整バルブであっても良い。このような流量調整バルブを使用した方がきめ細かい制御が可能である。
(Other)
In the first embodiment and the modifications thereof, the control valves 15 to 17 are open / close valves that fully open / close (100% or 0%) the path, but the flow rate to the path is variable (10 %, 20%, etc.). Finer control is possible by using such a flow rate adjusting valve.

前記第1実施形態、その各変形例、第2実施形態では、モータ制御回路部4の不具合温度を基準として規定温度を設定したが、電動モータ5の不具合温度をも配慮した別の規定温度を設定して制御バルブ15〜18の制御を行っても良い。又、電動モータ5の不具合温度のみを基準として規定温度を設定して制御バルブ15〜18の制御を行っても良い。   In the first embodiment, the modifications thereof, and the second embodiment, the specified temperature is set based on the failure temperature of the motor control circuit unit 4, but another specified temperature that takes into account the failure temperature of the electric motor 5 is also set. You may set and control the control valves 15-18. Alternatively, the control valves 15 to 18 may be controlled by setting a specified temperature based only on the failure temperature of the electric motor 5.

1 車両用冷却循環システム
2 ラジエータ
3 水冷コンデンサ(コンデンサ)
4 モータ制御回路部
5 電動モータ
7 ポンプ
10 冷却液循環経路
11 温度検知手段
12 流通量調整手段
13 主経路部
14 バイパス路
15、18 制御バルブ
16 第1制御バルブ(制御バルブ)
17 第2制御バルブ(制御バルブ)
1 Cooling circulation system for vehicles 2 Radiator 3 Water-cooled condenser (condenser)
DESCRIPTION OF SYMBOLS 4 Motor control circuit part 5 Electric motor 7 Pump 10 Coolant circulation path 11 Temperature detection means 12 Flow volume adjustment means 13 Main path part 14 Bypass path 15, 18 Control valve 16 1st control valve (control valve)
17 Second control valve (control valve)

本発明は、冷却液がラジエータ、モータ制御回路部、電動モータ、ポンプを循環する冷却液循環経路を備えた車両用冷却循環システムであって、前記モータ制御回路部に流入前の冷却液の温度を検知する温度検知手段と、冷却液の前記電動モータへの流通量を調整する流通量調整手段とを備え、前記温度検知手段の検知温度が規定値以上になると、前記流通量調整手段によって前記電動モータへの冷却液の流通量を減らす制御を行うことを特徴とする車両用冷却循環システムである。 The present invention, coolant radiator, motor control circuit unit, an electric motor, a vehicle cooling circuit system with a coolant circulation path for circulating pump, cooling liquid before you flows into the motor control circuit part Temperature detecting means for detecting the temperature of the coolant and a flow rate adjusting means for adjusting the flow rate of the coolant to the electric motor, and when the detected temperature of the temperature detecting means becomes a specified value or more, the flow rate adjusting means The vehicle cooling circulation system is characterized in that control is performed to reduce the flow rate of the coolant to the electric motor.

前記冷却液循環経路では、前記モータ制御回路部と前記電動モータがこの順序で直列に配置され、前記流通量調整手段は、前記モータ制御回路部から前記電動モータに冷却液を流す主経路部とは別に、前記電動モータをバイパスさせるバイパス路と、前記主経路部と前記バイパス路への冷却液の流通割合を可変できる制御バルブとを有するものであっても良い。前記冷却液循環経路では、前記モータ制御回路部と前記電動モータが並列に配置され、前記流通量調整手段は、前記モータ制御回路部と前記電動モータへの冷却液の流通割合を可変できる制御バルブを有するものであっても良い。前記冷却液循環経路は、空気調和装置の冷凍システムを構成するコンデンサを有し、前記コンデンサを冷却液で冷却するものであっても良い。前記コンデンサは、前記ラジエータの熱交換部に流入る前の冷却が流通する位置に配置されたものであっても良い。前記コンデンサは、前記ラジエータの熱交換部より流出た後の冷却が流通する位置に配置されたものであっても良い。前記モータ制御回路部は、インバータを有するものを含む。 Wherein a cooling liquid circulation path, the motor control circuit unit and said electric motor are arranged in series in this order, the flow amount adjusting means, the motor control circuit the main route section for flowing a cooling fluid to the electric motor from the unit Apart from, a bypass passage for bypassing the electric motor, may have a control valve capable of varying the flow rate of the cooling fluid into the said main path section and the bypass passage. Wherein a cooling liquid circulation path, and the motor control circuit part and the electric motor are arranged in parallel, the flow amount adjusting means capable of varying the flow rate of the cooling fluid to said electric motor and said motor control circuit part It may have a control valve. The coolant circulation path has a capacitor constituting a refrigeration system of the air conditioner, the capacitor may be configured to cool the cooling liquid. Before Kiko capacitor, the cooling liquid before it is flows into the heat exchange section of the radiator or may be arranged at a position distribution. Before Kiko capacitor, the cooling liquid after flowing out from the heat exchanger of the radiator or may be arranged at a position distribution. The motor control circuit unit includes an inverter.

本発明によれば、冷却液循環経路の冷却液の温度が規定以上に上昇した場合に、電動モータの冷却による冷却の温度上昇を抑制できるため、モータ制御回路部を確実に冷却することができる。これにより、モータ制御回路部の高温に弱い電子部品を確実に保護できる。 According to the present invention, when the temperature of the cooling liquid of the cooling fluid circulation path rises above the specified value, since the temperature rise of the cooling liquid by the cooling of the electric motor can be suppressed, possible to reliably cool the motor control circuit part Can do. Thereby, the electronic component weak to the high temperature of a motor control circuit part can be protected reliably.

Claims (7)

冷却液がラジエータ(2)、モータ制御回路部(4)、電動モータ(5)、ポンプ(7)を循環する冷却液循環経路(10)を備えた車両用冷却循環システム(1)であって、
前記モータ制御回路部(4)に流入される冷却液の温度を検知する温度検知手段(11)と、冷却液の前記電動モータ(5)への流通量を調整する流通量調整手段(12)とを備え、
前記温度検知手段(11)の検知温度が規定値以上になると、前記流通量調整手段(12)によって前記電動モータ(5)への冷却液の流通量を減らす制御を行うことを特徴とする車両用冷却循環システム(1)。
A vehicular cooling circulation system (1) having a cooling liquid circulation path (10) in which a cooling liquid circulates through a radiator (2), a motor control circuit unit (4), an electric motor (5), and a pump (7). ,
Temperature detecting means (11) for detecting the temperature of the coolant flowing into the motor control circuit section (4), and a flow rate adjusting means (12) for adjusting the flow rate of the coolant to the electric motor (5). And
When the detected temperature of the temperature detecting means (11) becomes a specified value or more, the flow rate adjusting means (12) performs control to reduce the flow rate of the coolant to the electric motor (5). Cooling circulation system (1).
請求項1記載の車両用冷却循環システム(1)であって、
前記冷却液循環経路(10)では、前記モータ制御回路部(4)と前記電動モータ(5)がこの順序で直列に配置され、前記流通量調整手段(12)は、前記モータ制御回路部(4)から前記電動モータ(5)に流す主経路部(13)とは別に、前記電動モータ(5)をバイパスさせるバイパス路(14)と、前記主経路部(13)と前記バイパス路(14)への流通割合を可変できる制御バルブ(15)、(16)、(17)とを有することを特徴とする車両用冷却循環システム(1)。
The vehicle cooling circulation system (1) according to claim 1,
In the coolant circulation path (10), the motor control circuit (4) and the electric motor (5) are arranged in series in this order, and the flow rate adjusting means (12) is connected to the motor control circuit ( In addition to the main path portion (13) flowing from 4) to the electric motor (5), a bypass path (14) for bypassing the electric motor (5), the main path section (13), and the bypass path (14) The vehicle cooling circulation system (1), characterized in that it has control valves (15), (16), (17) capable of varying the flow rate of the flow into the vehicle.
請求項1記載の車両用冷却循環システム(1)であって、
前記冷却液循環経路(10)では、前記モータ制御回路部(4)と前記電動モータ(5)が並列に配置され、前記流通量調整手段(12)は、前記モータ制御回路部(4)と前記電動モータ(5)への流通割合を可変できる制御バルブ(18)を有することを特徴とする車両用冷却循環システム(1)。
The vehicle cooling circulation system (1) according to claim 1,
In the coolant circulation path (10), the motor control circuit unit (4) and the electric motor (5) are arranged in parallel, and the flow rate adjusting means (12) is connected to the motor control circuit unit (4). A vehicle cooling / circulation system (1) having a control valve (18) capable of varying a flow rate to the electric motor (5).
請求項1〜請求項3のいずれかに記載の車両用冷却循環システム(1)であって、
前記冷却液循環経路(10)は、空気調和装置の冷凍システムを構成するコンデンサ(3)を有し、前記コンデンサ(3)を冷却液で冷却することを特徴とする車両用冷却循環システム(1)。
It is a cooling circulation system (1) for vehicles in any one of Claims 1-3, Comprising:
The coolant circulation path (10) includes a condenser (3) constituting a refrigeration system of an air conditioner, and the condenser (3) is cooled with a coolant. ).
請求項4記載の車両用冷却循環システム(1)であって、
前記コンデンサ(3)は、前記ラジエータ(2)の熱交換部に流入される前の冷却水が流通する位置に配置されたことを特徴とする車両用冷却循環システム(1)。
The vehicle cooling circulation system (1) according to claim 4,
The vehicular cooling circulation system (1), wherein the condenser (3) is disposed at a position where the cooling water before flowing into the heat exchange section of the radiator (2) flows.
請求項4記載の車両用冷却循環システム(1)であって、
前記コンデンサ(3)は、前記ラジエータ(2)の熱交換部より流出された後の冷却水が流通する位置に配置されたことを特徴とする車両用冷却循環システム(1)。
The vehicle cooling circulation system (1) according to claim 4,
The vehicular cooling circulation system (1), wherein the condenser (3) is disposed at a position where the cooling water after flowing out from the heat exchanging portion of the radiator (2) flows.
請求項1〜請求項6のいずれかに記載の車両用冷却循環システム(1)であって、
前記モータ制御回路部(4)は、インバータを有することを特徴とする車両用冷却循環システム(1)。
It is a cooling circulation system (1) for vehicles in any one of Claims 1-6, Comprising:
The motor control circuit section (4) has an inverter, and has a vehicle cooling circulation system (1).
JP2013254965A 2013-12-10 2013-12-10 Vehicle cooling circulation system Pending JP2015112943A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013254965A JP2015112943A (en) 2013-12-10 2013-12-10 Vehicle cooling circulation system
PCT/JP2014/081881 WO2015087743A1 (en) 2013-12-10 2014-12-02 Cooling circulation system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254965A JP2015112943A (en) 2013-12-10 2013-12-10 Vehicle cooling circulation system

Publications (1)

Publication Number Publication Date
JP2015112943A true JP2015112943A (en) 2015-06-22

Family

ID=53371052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254965A Pending JP2015112943A (en) 2013-12-10 2013-12-10 Vehicle cooling circulation system

Country Status (2)

Country Link
JP (1) JP2015112943A (en)
WO (1) WO2015087743A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106828078A (en) * 2015-11-24 2017-06-13 丰田自动车株式会社 For the cooling device of vehicle
JP2017121934A (en) * 2015-11-24 2017-07-13 トヨタ自動車株式会社 Vehicular cooling apparatus
JP2017192285A (en) * 2016-04-11 2017-10-19 三菱電機株式会社 Rotary machine and vehicle including the same
JP2018070122A (en) * 2016-11-04 2018-05-10 トヨタ自動車株式会社 Cooling system for vehicle
JP2018170825A (en) * 2017-03-29 2018-11-01 本田技研工業株式会社 Cooling system for vehicle
WO2020137565A1 (en) * 2018-12-28 2020-07-02 日立オートモティブシステムズ株式会社 Computing device
WO2021024947A1 (en) * 2019-08-06 2021-02-11 日本電産株式会社 Motor unit, temperature regulation system, and vehicle
JP2021090307A (en) * 2019-12-05 2021-06-10 トヨタ自動車株式会社 Cooling device for power train
US11186164B2 (en) 2015-12-17 2021-11-30 Schaeffler Technologies AG & Co. KG Thermal management system for an electric drive system, preferably for a vehicle
WO2021246088A1 (en) * 2020-06-02 2021-12-09 ダイムラー・アクチェンゲゼルシャフト Vehicle cooling device
WO2024090342A1 (en) * 2022-10-25 2024-05-02 株式会社アイシン Cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589095B2 (en) * 2015-06-24 2019-10-16 株式会社明電舎 Mechanical and electrical integrated rotating machine

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116605A (en) * 1994-10-18 1996-05-07 Mazda Motor Corp Cooling device for electric automobile
JPH1169510A (en) * 1997-08-06 1999-03-09 Toyota Motor Corp Power outputting apparatus
JP2004262330A (en) * 2003-02-28 2004-09-24 Calsonic Kansei Corp Multi-type heat exchanger for vehicle
JP2008256313A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Cooling system control device and rotating electric apparatus system control device
JP2009126256A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp Cooling device for vehicle
JP2010068623A (en) * 2008-09-10 2010-03-25 Toyota Motor Corp Power system and vehicle equipped with it
JP2010068641A (en) * 2008-09-11 2010-03-25 Toyota Motor Corp Drive unit, method of controlling the same, and vehicle
JP2011166866A (en) * 2010-02-05 2011-08-25 Hitachi Ltd Electric drive system for vehicle
JP2011182607A (en) * 2010-03-03 2011-09-15 Honda Motor Co Ltd Vehicle power supply system
JP2012247120A (en) * 2011-05-27 2012-12-13 Calsonic Kansei Corp Combined heat exchanger system
JP2013086717A (en) * 2011-10-20 2013-05-13 Denso Corp Cooling system for hybrid vehicle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08116605A (en) * 1994-10-18 1996-05-07 Mazda Motor Corp Cooling device for electric automobile
JPH1169510A (en) * 1997-08-06 1999-03-09 Toyota Motor Corp Power outputting apparatus
JP2004262330A (en) * 2003-02-28 2004-09-24 Calsonic Kansei Corp Multi-type heat exchanger for vehicle
JP2008256313A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Cooling system control device and rotating electric apparatus system control device
JP2009126256A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp Cooling device for vehicle
JP2010068623A (en) * 2008-09-10 2010-03-25 Toyota Motor Corp Power system and vehicle equipped with it
JP2010068641A (en) * 2008-09-11 2010-03-25 Toyota Motor Corp Drive unit, method of controlling the same, and vehicle
JP2011166866A (en) * 2010-02-05 2011-08-25 Hitachi Ltd Electric drive system for vehicle
JP2011182607A (en) * 2010-03-03 2011-09-15 Honda Motor Co Ltd Vehicle power supply system
JP2012247120A (en) * 2011-05-27 2012-12-13 Calsonic Kansei Corp Combined heat exchanger system
JP2013086717A (en) * 2011-10-20 2013-05-13 Denso Corp Cooling system for hybrid vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017121934A (en) * 2015-11-24 2017-07-13 トヨタ自動車株式会社 Vehicular cooling apparatus
US10442285B2 (en) 2015-11-24 2019-10-15 Toyota Jidosha Kabushiki Kaisha Cooling apparatus for vehicle
CN106828078A (en) * 2015-11-24 2017-06-13 丰田自动车株式会社 For the cooling device of vehicle
US11186164B2 (en) 2015-12-17 2021-11-30 Schaeffler Technologies AG & Co. KG Thermal management system for an electric drive system, preferably for a vehicle
JP2017192285A (en) * 2016-04-11 2017-10-19 三菱電機株式会社 Rotary machine and vehicle including the same
JP2018070122A (en) * 2016-11-04 2018-05-10 トヨタ自動車株式会社 Cooling system for vehicle
JP2018170825A (en) * 2017-03-29 2018-11-01 本田技研工業株式会社 Cooling system for vehicle
JP7201710B2 (en) 2018-12-28 2023-01-10 日立Astemo株式会社 Arithmetic unit
WO2020137565A1 (en) * 2018-12-28 2020-07-02 日立オートモティブシステムズ株式会社 Computing device
JPWO2020137565A1 (en) * 2018-12-28 2021-09-30 日立Astemo株式会社 Arithmetic logic unit
US11808345B2 (en) 2018-12-28 2023-11-07 Hitachi Astemo, Ltd. Computing device
WO2021024947A1 (en) * 2019-08-06 2021-02-11 日本電産株式会社 Motor unit, temperature regulation system, and vehicle
JP2021090307A (en) * 2019-12-05 2021-06-10 トヨタ自動車株式会社 Cooling device for power train
JP7172970B2 (en) 2019-12-05 2022-11-16 トヨタ自動車株式会社 powertrain cooling system
WO2021246088A1 (en) * 2020-06-02 2021-12-09 ダイムラー・アクチェンゲゼルシャフト Vehicle cooling device
WO2024090342A1 (en) * 2022-10-25 2024-05-02 株式会社アイシン Cooling system

Also Published As

Publication number Publication date
WO2015087743A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP2015112943A (en) Vehicle cooling circulation system
US11207947B2 (en) Cooling system for a motor vehicle and motor vehicle having such a cooling system
JP7185469B2 (en) vehicle thermal management system
JP5912689B2 (en) Hybrid electric vehicle cooling system
JP3659213B2 (en) Vehicle cooling system
KR101776718B1 (en) Heat exchanger for vehicle
CN111132859A (en) Integrated thermal management system for a vehicle
KR20170008603A (en) device for control temperature of battery for a vehicle
JP2006224879A (en) Vehicle cooling system
JP2011143796A (en) Air conditioning system for vehicle
CN111902303B (en) Cooling device
JP5931412B2 (en) Heat pump system
JP2010127282A (en) Method and system for additional cooling of cooling liquid inside cooling system of vehicle
JP2013199853A (en) Cooling device
WO2016031089A1 (en) Drive system
JP2020111084A (en) Battery cooling system
KR20120058952A (en) Front end module for a motor vehicle
CN111731065A (en) Frequency converter cooling device
JP2011257100A (en) Engine-driven hot water supply circuit and engine-driven hot water supply system using the same
US20240042829A1 (en) Refrigerant circuit for a vehicle, and method for controlling such a circuit
KR20130064431A (en) Cooling system for fuel cell electric vehicle
KR20210079741A (en) Automotive air conditioning system
JP2013126858A (en) Arrangement structure of vehicle heat exchanger
JP5700717B2 (en) Cooling system
US20220332169A1 (en) Coolant circuit for vehicle and method for controlling such a circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616