JP2015109178A - Organic electroluminescent device - Google Patents

Organic electroluminescent device Download PDF

Info

Publication number
JP2015109178A
JP2015109178A JP2013250940A JP2013250940A JP2015109178A JP 2015109178 A JP2015109178 A JP 2015109178A JP 2013250940 A JP2013250940 A JP 2013250940A JP 2013250940 A JP2013250940 A JP 2013250940A JP 2015109178 A JP2015109178 A JP 2015109178A
Authority
JP
Japan
Prior art keywords
light
layer
organic
glass substrate
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013250940A
Other languages
Japanese (ja)
Inventor
真銅 英則
Hidenori Shindo
英則 真銅
裕一郎 阿部
Yuichiro Abe
裕一郎 阿部
啓 花島
Hiroshi Hanashima
啓 花島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013250940A priority Critical patent/JP2015109178A/en
Publication of JP2015109178A publication Critical patent/JP2015109178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electroluminescent (organic EL) device which enables the achievement of a higher extraction efficiency by suppressing the reduction in the amount of light passed through a glass substrate owing to total reflection when light from an organic luminescent layer is incident on the glass substrate of a low refraction index from an ITO transparent electrode higher in refraction index.SOLUTION: An organic electroluminescent device comprises a glass substrate, and at least a light scattering layer, a positive electrode layer (ITO transparent electrode), an organic luminescent layer, a negative electrode layer which are laminated on the glass substrate in turn. The light scattering layer has one of a structure like a square pattern of a go board, a honeycomb structure, and circular structure, and has a pitch of 20-200 μm, a thickness of 0.5-3.0 μm, and a cross-section angle of 10-80 degrees.

Description

本発明は、有機エレクトロルミネッセンス素子に関し、特に有機EL素子の光取り出し効率を向上させる構造に関する。   The present invention relates to an organic electroluminescence element, and more particularly to a structure that improves the light extraction efficiency of an organic EL element.

有機エレクトロルミネッセンス素子(有機EL素子)は、自発光による広視野角、高速応答、薄型軽量などの利点から、携帯電話やデジタルカメラのディスプレイ、さらには照明機器に応用されている。   Organic electroluminescence elements (organic EL elements) are applied to displays for mobile phones and digital cameras, and lighting devices because of their advantages such as a wide viewing angle due to self-emission, high-speed response, and thin and light weight.

有機EL素子は一般的には、正孔輸送層、発光層、電子輸送層を電極に挟んだ構造であり、電極間に電界をかけ、電子、正孔を注入して発光層で励起子を生成し、再結合することで発光する。励起子には一重項状態と三重項状態があり、一重項状態と三重項状態の発生確率は量子的に1:3であり、三重項状態の発光を利用する燐光発光材料を用いた場合でも、発光効率は最大75%である。   An organic EL element generally has a structure in which a hole transport layer, a light-emitting layer, and an electron transport layer are sandwiched between electrodes. An electric field is applied between the electrodes, and electrons and holes are injected to generate excitons in the light-emitting layer. It produces light by generating and recombining. The exciton has a singlet state and a triplet state, the generation probability of the singlet state and the triplet state is 1: 3, and even when a phosphorescent material that uses triplet state emission is used. The luminous efficiency is up to 75%.

更に、正孔輸送層、発光層、電子輸送層はそれぞれの有機層からなり、その屈折率は概ね1.7程度、ITO透明電極は2.1〜2.2程度、ガラス基板は1.4〜1.5程度、空気が1.0であるので、有機EL素子界面での全反射が起こり、実際に素子外部に取り出せる光は発光する光の20%程度であり、合わせるとエネルギー変換効率としては15%程度である。   Furthermore, the hole transport layer, the light emitting layer, and the electron transport layer are each composed of an organic layer, and the refractive index is approximately 1.7, the ITO transparent electrode is approximately 2.1 to 2.2, and the glass substrate is 1.4. Since about 1.5 and air is 1.0, total reflection occurs at the interface of the organic EL element, and the light that can actually be extracted to the outside of the element is about 20% of the emitted light. Is about 15%.

この取り出し効率を改善する方法としては、例えば、素子側面に反射面を形成した全反射により素子側面方向に進む光を前方に反射させる方法が開示されている(特許文献1)。
また、例えば、回折格子やゾーンプレートを用いて、屈折、回折により光の進行方向を変える方法が開示されている(特許文献2)。しかしながら、これらのいずれの方法も大幅な光の取り出し効率を向上させるには至っていない。
As a method for improving the extraction efficiency, for example, a method is disclosed in which light traveling in the direction of the element side surface is reflected forward by total reflection in which a reflection surface is formed on the element side surface (Patent Document 1).
In addition, for example, a method of changing the traveling direction of light by refraction and diffraction using a diffraction grating or a zone plate is disclosed (Patent Document 2). However, none of these methods has significantly improved the light extraction efficiency.

特開2005−327522号公報JP 2005-327522 A 特許2991183号公報Japanese Patent No. 2911183

本発明は、有機発光層からの光が屈折率の高いITO透明電極より低いガラス基板に入射する際に、全反射によってガラス基板の透過光量が低下することを抑制して、高い取り出し効率が得られる有機エレクトロルミネッセンス(有機EL)素子を提供することである。   In the present invention, when light from the organic light emitting layer is incident on a glass substrate lower than the ITO transparent electrode having a high refractive index, the amount of transmitted light of the glass substrate is reduced due to total reflection, and high extraction efficiency is obtained. An organic electroluminescence (organic EL) device is provided.

上記の課題を解決するための手段として、請求項1に記載の発明は、ガラス基板上に、少なくとも光散乱層、陽極層(ITO透明電極)、有機発光層、陰極層を順次積層して成る有機エレクトロルミネッセンス素子であって、
前記光散乱層が、碁盤目構造、ハニカム構造、円形構造のいずれか一つからなる、ピッチ20〜200μm、膜厚0.5〜3.0μm、断面角度10〜80度であることを特徴とする有機エレクトロルミネッセンス素子である。
As a means for solving the above problems, the invention according to claim 1 is formed by sequentially laminating at least a light scattering layer, an anode layer (ITO transparent electrode), an organic light emitting layer, and a cathode layer on a glass substrate. An organic electroluminescence device,
The light scattering layer is formed of any one of a grid structure, a honeycomb structure, and a circular structure, and has a pitch of 20 to 200 μm, a film thickness of 0.5 to 3.0 μm, and a cross-sectional angle of 10 to 80 degrees. It is an organic electroluminescence device.

また、請求項2に記載の発明は、前記光散乱層が屈折率が1.6〜2.0の範囲の高屈折率樹脂からなることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子である。   The invention according to claim 2 is characterized in that the light scattering layer is made of a high refractive index resin having a refractive index in the range of 1.6 to 2.0. It is.

また、請求項3に記載の発明は、前記光散乱層が、屈折率1.5〜1.6、粒径0.7〜1.5μmの微粒子を含むことを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子である。   The invention according to claim 3 is characterized in that the light scattering layer contains fine particles having a refractive index of 1.5 to 1.6 and a particle size of 0.7 to 1.5 μm. It is an organic electroluminescent element as described in above.

本発明の請求項1に記載の発明によれば、ガラス基板上に、少なくとも光散乱層、陽極層(ITO透明電極)、有機発光層、陰極層を順次積層して成る有機エレクトロルミネッセンス素子において、ガラス基板とITO透明電極の間に光散乱層を形成することにより、全反射する光の割合を低減し、正面方向への光の取り出し効率を増大することができる。   According to the invention described in claim 1 of the present invention, in an organic electroluminescence device comprising, on a glass substrate, at least a light scattering layer, an anode layer (ITO transparent electrode), an organic light emitting layer, and a cathode layer are sequentially laminated. By forming a light scattering layer between the glass substrate and the ITO transparent electrode, it is possible to reduce the proportion of the light that is totally reflected and increase the light extraction efficiency in the front direction.

また、前記光散乱層を、碁盤目構造、ハニカム構造、円形構造のいずれか一つからなる、ピッチ20〜200μm、膜厚0.5〜3.0μm、断面角度10〜80度の形状とすることで、正面方向から外れた発光層の光を散乱させることができ、再度、正面方向に向かわせる効果があり、ガラス基板の横方向への光の漏れを抑制することができる。また、前記光散乱層を上記の形状にすることにより、容易に形成することができる。   Further, the light scattering layer has a shape of any one of a grid structure, a honeycomb structure, and a circular structure, with a pitch of 20 to 200 μm, a film thickness of 0.5 to 3.0 μm, and a cross-sectional angle of 10 to 80 degrees. By this, the light of the light emitting layer which deviated from the front direction can be scattered, and it has the effect of making it turn to a front direction again, and can suppress the leakage of the light to the horizontal direction of a glass substrate. Moreover, it can form easily by making the said light-scattering layer into said shape.

また、請求項2に記載の発明によれば、ガラス基板とITO透明電極との中間に、それぞれの屈折率の中間に値する、屈折率1.6〜2.0の範囲の高屈折率樹脂で前記光散乱層を形成することで、屈折率が段階的に変化することになり、全反射する光の割合を低減し、正面方向への光の取り出し効率を増大することができる。   Moreover, according to invention of Claim 2, it is a high refractive index resin of the range of refractive index 1.6-2.0 which is worth the middle of each refractive index in the middle of a glass substrate and an ITO transparent electrode. By forming the light scattering layer, the refractive index changes stepwise, the ratio of light that is totally reflected can be reduced, and the light extraction efficiency in the front direction can be increased.

また、請求項3に記載の発明によれば、前記光散乱層が、屈折率1.6〜2.0の範囲の高屈折率樹脂中に、屈折率1.5〜1.6、粒径0.7〜1.5μmの微粒子を含むことにより、より散乱が起こりやすくなり、全反射する光の割合を低減し、正面方向への光の取り出し効率を増大することができる。   According to the invention described in claim 3, the light scattering layer has a refractive index of 1.5 to 1.6, a particle size in a high refractive index resin having a refractive index of 1.6 to 2.0. By including fine particles of 0.7 to 1.5 μm, scattering is more likely to occur, the ratio of light that is totally reflected can be reduced, and the light extraction efficiency in the front direction can be increased.

本発明の有機EL素子の一実施形態を示す断面概略図である。It is a section schematic diagram showing one embodiment of an organic EL device of the present invention. 従来の有機EL素子の一実施形態を示す断面概略図である。It is a cross-sectional schematic diagram which shows one Embodiment of the conventional organic EL element.

従来の有機EL素子は一般的には図2(a)に示すように、ガラス基板1上に、陽極層3(ITO透明電極)、有機発光層4、陰極層5を順次積層して成る。この構成は、上述したように、有機発光層4を構成する正孔輸送層、発光層、電子輸送層が、それぞれ屈折率は概ね1.7程度の有機層からなり、ITO透明電極3は2.1〜2.2程度、ガラス基板1は1.4〜1.5程度、空気が1.0であるので、有機EL素子界面での全反射が起こる。すなわち、図2(b)に示すように、発光層から出た光がガラス基板1で全反射することで、前記光がガラス基板1に対して横方向に移動し(光の横漏れ)、その結果、ガラス基板1の正面方向に進行する光の透過光量が低下するという問題がある。   As shown in FIG. 2A, a conventional organic EL element is generally formed by sequentially laminating an anode layer 3 (ITO transparent electrode), an organic light emitting layer 4 and a cathode layer 5 on a glass substrate 1. In this configuration, as described above, the hole transport layer, the light emitting layer, and the electron transport layer constituting the organic light emitting layer 4 are each composed of an organic layer having a refractive index of approximately 1.7, and the ITO transparent electrode 3 is 2 Since the glass substrate 1 is about 1.4 to 1.5 and the air is 1.0, total reflection occurs at the interface of the organic EL element. That is, as shown in FIG. 2B, the light emitted from the light emitting layer is totally reflected by the glass substrate 1, so that the light moves laterally with respect to the glass substrate 1 (lateral leakage of light), As a result, there is a problem that the amount of light transmitted in the front direction of the glass substrate 1 is reduced.

本発明は上記の課題を解決するためのものであり、以下、図に基づき本発明を具体的に説明する。   The present invention is for solving the above-described problems, and the present invention will be specifically described below with reference to the drawings.

本発明の有機EL素子は、図1(a)に示すように、ガラス基板1上に、少なくとも光散乱層2、陽極層(ITO透明電極)3、有機発光層4、陰極層5を順次積層して成ることを特徴としている。   As shown in FIG. 1A, the organic EL device of the present invention is formed by sequentially laminating at least a light scattering layer 2, an anode layer (ITO transparent electrode) 3, an organic light emitting layer 4 and a cathode layer 5 on a glass substrate 1. It is characterized by comprising.

また、前記光散乱層2は、碁盤目構造、ハニカム構造、円形構造のいずれか一つからなる形状で、ピッチ20〜200μm、膜厚0.5〜3.0μm、断面角度10〜80度からなり、例えば図1(b)に示すようなハニカム構造からなることを特徴としている。   The light scattering layer 2 has a grid structure, a honeycomb structure, or a circular structure with a pitch of 20 to 200 μm, a film thickness of 0.5 to 3.0 μm, and a cross-sectional angle of 10 to 80 degrees. For example, it is characterized by having a honeycomb structure as shown in FIG.

本発明に用いるガラス基板1は、透明性、強度、耐熱性、耐薬品性、加工性等の面で優れたものであれば特に限定するものではない。   The glass substrate 1 used for this invention will not be specifically limited if it is excellent in terms of transparency, strength, heat resistance, chemical resistance, workability and the like.

本発明に係る光散乱層2は、屈折率1.6〜2.0の範囲の高屈折率樹脂からなり、かつ、ピッチ20〜200μm、膜厚0.5〜3.0μm、断面角度10〜80度の碁盤目構造、ハニカム構造、円形構造のいずれか一つの形状からなり、前記有機発光層から出た光の全反射の割合を低減し、正面方向への光の取り出し効率を増大する作用効果がある。   The light scattering layer 2 according to the present invention is made of a high refractive index resin having a refractive index in the range of 1.6 to 2.0, and has a pitch of 20 to 200 μm, a film thickness of 0.5 to 3.0 μm, and a cross-sectional angle of 10 to 10. It has one of 80-degree grid structure, honeycomb structure, and circular structure, and reduces the ratio of total reflection of light emitted from the organic light emitting layer, thereby increasing the light extraction efficiency in the front direction. effective.

具体的には、本発明に係る光散乱層2は、ガラス基板1の屈折率(1.4〜1.5程度)とITO透明電極3の屈折率(2.1〜2.2程度)との中間になる、屈折率1.6〜2.0の範囲の前記高屈折率樹脂からなることで、屈折率が段階的に変化することになり、全反射する光の割合を低減し、正面方向への光の取り出し効率を増大することができる。従って、光散乱層2を形成する前記高屈折率樹脂の屈折率が上記範囲を外れると、ITO透明電極3とガラス基板1との間の屈折率を段階的に変化させることができず、正面方向への光の取り出し効率を増大することができない。   Specifically, the light scattering layer 2 according to the present invention includes a refractive index (about 1.4 to 1.5) of the glass substrate 1 and a refractive index (about 2.1 to 2.2) of the ITO transparent electrode 3. The refractive index is changed stepwise by being made of the high refractive index resin having a refractive index in the range of 1.6 to 2.0, which reduces the ratio of light that is totally reflected. The light extraction efficiency in the direction can be increased. Therefore, if the refractive index of the high refractive index resin forming the light scattering layer 2 is out of the above range, the refractive index between the ITO transparent electrode 3 and the glass substrate 1 cannot be changed step by step. The light extraction efficiency in the direction cannot be increased.

また、前記光散乱層2の形状を、ピッチ20〜200μm、膜厚0.5〜3.0μm、ガラス基板と光散乱層の側面との断面角度10〜80度の碁盤目構造、ハニカム構造、円形構造のいずれかにすることにより、図1(c)に示すように、正面方向から外れた発光層の光を散乱させることで、再度、正面方向に向かわせる効果があり、ガラス基板の横方向への光の漏れを抑制することができる。前記光散乱層2の形状となる碁盤目構造、ハニカム構造、円形構造が、ピッチ20μm未満、ガラス基板と光散乱層の側面との断面角度が10度未満であると、連続した平坦な膜となり効果的な散乱効果が得られず、正面方向への光の取り出し効率を上げることができない。また、ピッチ200μmを超えると、ピッチ間隙が広がり過ぎて光散乱層2の効果がなくなる。また、膜厚が0.5μm未満であると、光散乱層2が薄膜過ぎて形状による効果がなくなる。   The shape of the light scattering layer 2 is a grid structure having a pitch of 20 to 200 μm, a film thickness of 0.5 to 3.0 μm, a cross-sectional angle of 10 to 80 degrees between the glass substrate and the side surface of the light scattering layer, a honeycomb structure, By making one of the circular structures, as shown in FIG. 1 (c), the light emitted from the light emitting layer deviating from the front direction is scattered, which has the effect of directing again toward the front direction. Light leakage in the direction can be suppressed. When the grid structure, honeycomb structure, or circular structure that forms the light scattering layer 2 has a pitch of less than 20 μm and the cross-sectional angle between the glass substrate and the side surface of the light scattering layer is less than 10 degrees, a continuous flat film is obtained. An effective scattering effect cannot be obtained, and the light extraction efficiency in the front direction cannot be increased. On the other hand, if the pitch exceeds 200 μm, the pitch gap becomes too wide and the effect of the light scattering layer 2 is lost. On the other hand, if the film thickness is less than 0.5 μm, the light scattering layer 2 is too thin and the effect of the shape is lost.

屈折率1.6〜2.0の範囲の前記高屈折率樹脂としては、チオウレタン系樹脂、エピスルフィド系樹脂、アクリル系樹脂、ポリイミド系樹脂、トリアジン系樹脂、シルセスキオ系樹脂などが挙げられる。   Examples of the high refractive index resin having a refractive index of 1.6 to 2.0 include thiourethane resins, episulfide resins, acrylic resins, polyimide resins, triazine resins, and silsesquio resins.

また、光散乱層は屈折率1.6〜2.0の範囲の前記高屈折率樹脂中に、屈折率1.5〜1.6、粒径0.7〜1.5μmの微粒子を分散することで、より効率的に散乱させることができる。このような微粒子としては、シリカ微粒子が望ましい。上記の屈折率及び粒径の範囲を外れると散乱の効率が悪くなるか、または散乱が起こらなくなる。   The light scattering layer disperses fine particles having a refractive index of 1.5 to 1.6 and a particle size of 0.7 to 1.5 μm in the high refractive index resin having a refractive index of 1.6 to 2.0. Therefore, it can scatter more efficiently. As such fine particles, silica fine particles are desirable. When the refractive index and particle size are out of the above ranges, the efficiency of scattering deteriorates or scattering does not occur.

前記高屈折率樹脂及び微粒子を用いて、ピッチ20〜200μm、膜厚0.5〜3.0μm、断面角度10〜80度の碁盤目構造、ハニカム構造、円形構造のいずれかに形成する方法について、以下、図1(b)に示すハニカム構造の光散乱層2を一実施形態として説明する。   Using the high refractive index resin and fine particles, a method of forming a grid structure, honeycomb structure, or circular structure with a pitch of 20 to 200 μm, a film thickness of 0.5 to 3.0 μm, and a cross-sectional angle of 10 to 80 degrees. Hereinafter, the light scattering layer 2 having a honeycomb structure shown in FIG. 1B will be described as an embodiment.

例えば、別途、表面が平滑な金属板(例えば銅板)に、ピッチ20〜200μm、膜厚
0.5〜3.0μm、ガラス基板と光散乱層の側面との断面角度10〜80度のハニカム構造を直接彫刻して光拡散層2の母型を作製する。次に、前記母型の凹凸形状に、屈折率1.6〜2.0の範囲の前記高屈折率樹脂からなる紫外線硬化型組成物を用いて、その凹凸形状に十分充填するように、且つ最表面が均一なるように塗布する。次にその上に極力空気層ができないようにガラス基板1を重ねて、その状態でガラス基板側から紫外線を照射して硬化を完了し、母型を剥離して光拡散層2を形成することができる。
For example, separately, a honeycomb structure having a smooth surface with a metal plate (for example, a copper plate) having a pitch of 20 to 200 μm, a film thickness of 0.5 to 3.0 μm, and a cross-sectional angle of 10 to 80 degrees between the glass substrate and the side surface of the light scattering layer. Is directly engraved to produce a matrix of the light diffusion layer 2. Next, using the ultraviolet curable composition made of the high refractive index resin having a refractive index of 1.6 to 2.0, the uneven shape of the matrix is sufficiently filled with the uneven shape, and Apply so that the outermost surface is uniform. Next, the glass substrate 1 is stacked on the glass substrate 1 so that an air layer is not formed as much as possible. In this state, the ultraviolet light is irradiated from the glass substrate side to complete the curing, and the mother mold is peeled to form the light diffusion layer 2. Can do.

前記紫外線硬化型組成物には、前記高屈折率樹脂と光重合開始剤が含まれ、前記組成物の粘度調整用として溶剤を用いることもできる。溶剤を用いた場合にはガラス基板1を重ねる前に塗布膜を乾燥させる必要がある。なお、光重合剤や溶剤は特に限定されるのもではない。また、母型とガラス基板との剥離を容易にするために、予め母型に剥離剤などを用いてもよい。   The ultraviolet curable composition contains the high refractive index resin and a photopolymerization initiator, and a solvent may be used for adjusting the viscosity of the composition. When a solvent is used, it is necessary to dry the coating film before stacking the glass substrate 1. Note that the photopolymerization agent and the solvent are not particularly limited. Further, a release agent or the like may be used in advance on the mother die in order to facilitate the separation between the mother die and the glass substrate.

また、光散乱層2の別な形成方法としては、例えば、ポリエチレンテレフタレート(PET)などの透明なフィルム基材に、前記高屈折率樹脂からなる電子線硬化型樹脂組成物を均一に塗布して、その上にガラス基板を密着させて、電子線描画装置により直接微細パターンを描画(露光、硬化)して、その後、剥離、現像して得ることもできる。   As another method for forming the light scattering layer 2, for example, an electron beam curable resin composition made of the high refractive index resin is uniformly applied to a transparent film substrate such as polyethylene terephthalate (PET). It is also possible to obtain a fine pattern directly by drawing (exposure and curing) with an electron beam drawing apparatus after adhering a glass substrate thereon, and then peeling and developing.

本発明に係る陽極層(ITO透明電極)3は、スパッタリング法により0.1〜0.2μmの厚さで設けることが好ましい。また、陽極層3としてITO以外にも、IZO(インジウム・亜鉛複合酸化物)、酸化錫、酸化亜鉛、酸化インジウム、酸化アルミニウム複合酸化物等の透明電極材料を使用することができるが、低抵抗であること、耐溶剤性があること、高い透明性があることなどから、ITOが好ましい。   The anode layer (ITO transparent electrode) 3 according to the present invention is preferably provided with a thickness of 0.1 to 0.2 μm by a sputtering method. In addition to ITO, a transparent electrode material such as IZO (indium / zinc composite oxide), tin oxide, zinc oxide, indium oxide, and aluminum oxide composite oxide can be used as the anode layer 3. ITO is preferable because it is resistant to solvents, has high solvent resistance, and has high transparency.

本発明に係る有機発光層4は、照明用に用いられている正孔輸送層、発光層、電子輸送層が順次積層された、公知のものを使用することができる。またその形成方法としては、特に限定するものではなく、公知の印刷法等を用いることができる。   As the organic light emitting layer 4 according to the present invention, a known layer in which a hole transport layer, a light emitting layer, and an electron transport layer used for illumination are sequentially laminated can be used. The forming method is not particularly limited, and a known printing method or the like can be used.

正孔輸送層はITO透明電極2から発光層へ正孔が注入され易くなるように、注入障壁を下げるためのものである。低分子系の正孔輸送材料としては、トリフェニルアミン2量体(TPD)や、これらをスターバースト状に結合したスターバーストアミンが挙げられる。いずれもアモルファス状態を呈し、結晶化しないように高いガラス転移温度を示すのが好ましい。また、高分子系の正孔輸送材料としては、ポリアニリン誘導体、ポリチオフェン誘導体、ポリビニルカルバゾール誘導体などを用いることができる。   The hole transport layer is for lowering the injection barrier so that holes are easily injected from the ITO transparent electrode 2 to the light emitting layer. Examples of the low molecular weight hole transport material include triphenylamine dimer (TPD) and starburst amine obtained by binding these in a starburst form. All of them are in an amorphous state and preferably have a high glass transition temperature so as not to crystallize. As the polymer hole transport material, polyaniline derivatives, polythiophene derivatives, polyvinylcarbazole derivatives, and the like can be used.

また、発光層は低分子系として、アルミキノリン、ベンゾオキサゾールZn錯体、ベンゾキノリノールBe錯体のような電子輸送性の金属錯体と、これらにドーピングして発光色の調整に用いる色素系材料がある。色素系にはジスチリルアリーレン誘導体、ピラゾキノリン誘導体、オキサジアゾール誘導体などが挙げられる。   The light emitting layer includes low molecular weight materials such as an aluminum quinoline, a benzoxazole Zn complex, and an electron transporting metal complex such as a benzoquinolinol Be complex, and a dye material used for adjusting the emission color by doping them. Examples of the dye system include distyrylarylene derivatives, pyrazoquinoline derivatives, oxadiazole derivatives, and the like.

また、有機発光材料を高分子材料に分散させたものが使用できる。例えば、クマリン系、ペリレン系、ピラン系、アンスロン系、ポルフィレン系、キナクリドン系、N,N´−ジアルキル置換キナクリドン系、ナフタルイミド系、N,N´−ジアリール置換ピロロピロール系、イリジウム錯体などの有機発光材料を、ポリスチレン、ポリメチルメタクリレート、ポリビニルカルバゾールなどの高分子材料に分散させたものが挙げられる。   Also, an organic light emitting material dispersed in a polymer material can be used. For example, organics such as coumarin, perylene, pyran, anthrone, porphyrene, quinacridone, N, N'-dialkyl substituted quinacridone, naphthalimide, N, N'-diaryl substituted pyrrolopyrrole, iridium complex Examples thereof include a material in which a light emitting material is dispersed in a polymer material such as polystyrene, polymethyl methacrylate, and polyvinyl carbazole.

上記のような有機発光材料と高分子材料に適正な溶剤を加え、安定して分散させた有機発光インキを調整して、各種印刷方法や塗布方法により発光層を形成する。また、有機発光インキの調整には、必要に応じて、界面活性剤、酸化防止剤、粘度調整剤、紫外線吸収剤などを添加してもよい。   An appropriate solvent is added to the organic light-emitting material and the polymer material as described above, and a stably dispersed organic light-emitting ink is prepared, and a light-emitting layer is formed by various printing methods and coating methods. In addition, a surfactant, an antioxidant, a viscosity modifier, an ultraviolet absorber, and the like may be added as necessary to adjust the organic light emitting ink.

電子輸送層は、陰極から注入される電子を発光層に輸送するためのものである。前記電子輸送層を形成するための材料としては、例えば、キノリン、ペリレン、トリアゾール、オキサゾール、オキサジアゾール、またはこれらの誘導体や金属錯体が挙げられる。   The electron transport layer is for transporting electrons injected from the cathode to the light emitting layer. Examples of the material for forming the electron transport layer include quinoline, perylene, triazole, oxazole, oxadiazole, and derivatives and metal complexes thereof.

本発明に係る有機発光層4は、上記で説明した正孔輸送層、発光層、電子輸送層が順次積層して構成されるものであるが、これらを構成する各種材料やそれぞれの層の形成方法については特に限定されるものではない。   The organic light-emitting layer 4 according to the present invention is formed by sequentially laminating the hole transport layer, the light-emitting layer, and the electron transport layer described above, and various materials constituting these and formation of each layer The method is not particularly limited.

本発明に係る陰極層5に使用できる材料としては、例えば、リチウム、マグネシウム、カルシウム、イッテルビウム、アルミニウムなどの金属単体や、これらと金、銀などの安定した金属との合金などが挙げられる。また、インジウム、亜鉛、錫などの導電性酸化物を用いることもできる。これらの電極用材料は前記有機発光層4の発光特性に応じて選ぶことができる。また、陰極層5の形状は、ストライプ形状でもベタ形状でもよい。   Examples of materials that can be used for the cathode layer 5 according to the present invention include simple metals such as lithium, magnesium, calcium, ytterbium, and aluminum, and alloys of these with stable metals such as gold and silver. Alternatively, a conductive oxide such as indium, zinc, or tin can be used. These electrode materials can be selected according to the light emission characteristics of the organic light emitting layer 4. The shape of the cathode layer 5 may be a stripe shape or a solid shape.

上記で説明したように、本発明の有機EL素子は、ガラス基板とITO透明電極との間に、それぞれの屈折率の中間となる屈折率を有する光散乱層を設けているため、光散乱層の屈折率と形状との効果により、発光層から出た光の正面方向への取り出し効率を向上することができる。   As described above, the organic EL element of the present invention is provided with a light scattering layer having a refractive index that is intermediate between the refractive indexes between the glass substrate and the ITO transparent electrode. Due to the effects of the refractive index and the shape, the light extraction efficiency in the front direction of the light emitted from the light emitting layer can be improved.

本発明の有機EL素子は、液晶用バックライト、照明用光源、電飾、サイン用光源などに利用することが可能である。   The organic EL device of the present invention can be used for a backlight for liquid crystal, a light source for illumination, electrical decoration, a light source for signage, and the like.

1 ガラス基板
2 光散乱層
3 陽極(ITO透明電極)
4 有機発光層
5 陰極
6 発光層から出た光の進路
10 有機EL素子
1 Glass substrate 2 Light scattering layer 3 Anode (ITO transparent electrode)
4 Organic light emitting layer 5 Cathode 6 Path of light emitted from the light emitting layer 10 Organic EL element

Claims (3)

ガラス基板上に、少なくとも光散乱層、陽極層(ITO透明電極)、有機発光層、陰極層を順次積層して成る有機エレクトロルミネッセンス素子であって、
前記光散乱層が、碁盤目構造、ハニカム構造、円形構造のいずれか一つからなる、ピッチ20〜200μm、膜厚0.5〜3.0μm、断面角度10〜80度であることを特徴とする有機エレクトロルミネッセンス素子。
An organic electroluminescent device comprising a glass substrate and at least a light scattering layer, an anode layer (ITO transparent electrode), an organic light emitting layer, and a cathode layer sequentially laminated,
The light scattering layer is formed of any one of a grid structure, a honeycomb structure, and a circular structure, and has a pitch of 20 to 200 μm, a film thickness of 0.5 to 3.0 μm, and a cross-sectional angle of 10 to 80 degrees. Organic electroluminescence device.
前記光散乱層が屈折率1.6〜2.0の範囲の高屈折率樹脂からなることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。   2. The organic electroluminescence device according to claim 1, wherein the light scattering layer is made of a high refractive index resin having a refractive index of 1.6 to 2.0. 前記光散乱層が、屈折率1.5〜1.6、粒径0.7〜1.5μmの微粒子を含むことを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。   The organic light-emitting device according to claim 1, wherein the light scattering layer contains fine particles having a refractive index of 1.5 to 1.6 and a particle size of 0.7 to 1.5 μm.
JP2013250940A 2013-12-04 2013-12-04 Organic electroluminescent device Pending JP2015109178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013250940A JP2015109178A (en) 2013-12-04 2013-12-04 Organic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013250940A JP2015109178A (en) 2013-12-04 2013-12-04 Organic electroluminescent device

Publications (1)

Publication Number Publication Date
JP2015109178A true JP2015109178A (en) 2015-06-11

Family

ID=53439403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013250940A Pending JP2015109178A (en) 2013-12-04 2013-12-04 Organic electroluminescent device

Country Status (1)

Country Link
JP (1) JP2015109178A (en)

Similar Documents

Publication Publication Date Title
CN106299143B (en) A kind of collimated light source, its production method and display device
US8841656B2 (en) Organic electroluminescent element, lighting apparatus, and method for manufacturing organic electroluminescent element
JP6721425B2 (en) OLED device with improved efficiency
KR102012046B1 (en) Organic light emitting display device and manufacturing method thereof
TWI292678B (en) Top-emittierendes, elektrolumineszierendes bauelement mit zumindest einer organischen schicht
CN102823018B (en) Luminescent device and article
JP5830194B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT AND LIGHTING DEVICE USING THE SAME
WO2012127746A1 (en) Organic electroluminescence device
US20130228801A1 (en) Organic Light Emitting Diode Display and Method for Manufacturing the Same
JP4947095B2 (en) Light extraction structure
KR20130054273A (en) Oled light extraction films having internal nanostructures and external microstructures
JP2011048937A (en) Organic el light-emitting element
Suh et al. Preparation of randomly distributed micro-lens arrays fabricated from porous polymer film and their application as a light extraction component
JP2008083148A (en) Optical film and optical transfer sheet using the same
TWI501689B (en) El panel, illuminator and display device using the el panel
JP2017027728A (en) Organic el element, organic el lighting, organic el light source, and organic el display device
JP2016170271A (en) Optical sheet and display device
JP2012178279A (en) Organic electroluminescent element
JP2016009571A (en) Organic electroluminescence element
JP2012009336A (en) Organic electroluminescent element
JP2015109178A (en) Organic electroluminescent device
JP5216112B2 (en) Planar light emitter
JP2014191980A (en) Organic electroluminescent element
JP5263061B2 (en) Light emitting device
WO2017213262A1 (en) Organic el element, illumination device using organic el element, planar light source and display device