JP2015108505A - Hybrid metal melting furnace - Google Patents

Hybrid metal melting furnace Download PDF

Info

Publication number
JP2015108505A
JP2015108505A JP2015018933A JP2015018933A JP2015108505A JP 2015108505 A JP2015108505 A JP 2015108505A JP 2015018933 A JP2015018933 A JP 2015018933A JP 2015018933 A JP2015018933 A JP 2015018933A JP 2015108505 A JP2015108505 A JP 2015108505A
Authority
JP
Japan
Prior art keywords
crucible
furnace
burner
half region
metal melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015018933A
Other languages
Japanese (ja)
Other versions
JP5905133B2 (en
Inventor
一文 丹羽
Kazufumi Niwa
一文 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2015018933A priority Critical patent/JP5905133B2/en
Publication of JP2015108505A publication Critical patent/JP2015108505A/en
Application granted granted Critical
Publication of JP5905133B2 publication Critical patent/JP5905133B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hybrid metal melting furnace high in metal melting efficiency, low in NOx emission, capable of removing impurity elements even without special auxiliary installation, and ensuring excellent durability.SOLUTION: A metal melting furnace includes: a crucible 11; a furnace main body 10 supporting the crucible 11; a furnace cover 20; a burner 23 that can inject a flame into the crucible 11; and induction heating means. The burner 23 is an oxygen burner using fuel gas and supporting gas having an oxygen concentration of not less than 21 mass% and not more than 100 mass%. An induction coil 14 serving as the induction heating means is provided at a position corresponding to a lower half region 11A of the crucible 11 so as to surround the crucible 11. A cooling pipe 15 is provided at a position corresponding to at least an upper half region 11B of the crucible 11 so as to surround the crucible 11. Furthermore, a cooling pipe 25 is provided in the furnace cover 20.

Description

本発明は、金属溶解炉に関し、特にバーナーと電気的又は電磁的な加熱手段とを併用したハイブリッド型金属溶解炉に関するものである。   The present invention relates to a metal melting furnace, and more particularly to a hybrid type metal melting furnace in which a burner and an electric or electromagnetic heating means are used in combination.

昨今、金属溶解の分野でも、地球環境保護の観点から二酸化炭素の排出量を低減することが求められている。また、電力による鋳鉄の溶解工程で電力使用量を抑制又は低減する新工法の開発が求められている。このような背景から、金属材料にバーナー火炎を直接噴射する連続溶解システムも提案されている。しかし、このシステムは同一の溶湯を大量使用する大規模工場への設置を想定したものであり、多材質少量で操業する中小規模の鋳物工場への導入には難がある。他方で、「少量多材質」の操業形態に対応すべく、高周波/中周波/低周波の誘導電流を利用したバッチ方式の金属溶解炉を導入する動きもあるが、世界情勢その他の不安定化により今後電力価格が上昇又は高止まりするとの観測もあり、100%電力に依存しない高効率の溶解技術も求められている。   Recently, in the field of metal dissolution, it is required to reduce carbon dioxide emissions from the viewpoint of protecting the global environment. Moreover, development of the new construction method which suppresses or reduces electric power consumption in the melting process of cast iron by electric power is calculated | required. Against this background, a continuous melting system that directly injects a burner flame onto a metal material has also been proposed. However, this system is assumed to be installed in a large-scale factory that uses a large amount of the same molten metal, and it is difficult to introduce it into a small-scale casting factory that operates with a small amount of many materials. On the other hand, there is a movement to introduce a batch-type metal melting furnace using induction current of high frequency / medium frequency / low frequency in order to cope with the operation mode of “small amount of many materials”, but the world situation and other instability As a result, there are observations that electricity prices will rise or remain high in the future, and high-efficiency melting technology that does not depend on 100% electricity is also required.

また昨今、自動車その他に使用される鋼材のハイテン化(高張力鋼化、つまり高マンガン含有率傾向)が進展し、鋳鉄の材料として再利用されるスクラップ材がマンガンその他の不純物元素で汚染されているという問題が持ち上がっている(鋳鉄業界ではこの状況を「スクラップ・ハイテン化による汚染」と呼ぶ)。このスクラップ・ハイテン化汚染のために、多くの鋳物工場では、従来通りのやり方でスクラップ材を用いたときに一般的な鋳鉄材質(例えばFCD450等)を規格通りに製造することが難しくなりつつある。   In recent years, steel materials used in automobiles and others have become increasingly high-tensile (high-tensile steel, that is, a high manganese content trend), and scrap materials that are reused as cast iron materials are contaminated with manganese and other impurity elements. (In the cast iron industry, this situation is called “contamination due to scrap / high tensile”). Due to this scrap high-contamination contamination, in many foundries, it is becoming difficult to produce a general cast iron material (for example, FCD450) according to the standard when scrap material is used in a conventional manner. .

このような二酸化炭素排出抑制、低電力、少量多材質への対応、高効率、不純物除去可能を指向する時流にあって、これらの要求に柔軟に対応できる可能性を秘めたハイブリッド型金属溶解炉が注目されつつある。かかるハイブリッド型金属溶解炉の例としては、特許文献1(特開2011−117640号)の金属溶解炉があげられる。   A hybrid metal melting furnace that has the potential to flexibly meet these demands, with the current trend toward carbon dioxide emission suppression, low power, support for small quantities of many materials, high efficiency, and the ability to remove impurities. Is getting attention. An example of such a hybrid metal melting furnace is the metal melting furnace disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-117640).

特許文献1は、バーナーと電気ヒーターとを併用した金属溶解炉を開示する。より具体的には、この金属溶解炉は、筐体130内に収納された坩堝110と、坩堝内部の溶湯(アルミ溶湯)を保温するための電気ヒーター180と、坩堝に投入された被溶解金属(アルミ)を直火で溶解するためのバーナー220と、溶湯(アルミ溶湯)の不純物除去のための回転脱ガス装置300とを備えている。   Patent document 1 discloses the metal melting furnace which used the burner and the electric heater together. More specifically, the metal melting furnace includes a crucible 110 housed in a casing 130, an electric heater 180 for keeping the molten metal (aluminum molten metal) inside the crucible, and a metal to be melted charged in the crucible. A burner 220 for melting (aluminum) by direct fire and a rotary degassing apparatus 300 for removing impurities from the molten metal (aluminum molten metal) are provided.

しかしながら、文献1の金属溶解炉にも種々の難点がある。例えば、そこで採用するバーナー220は、燃料ガスとして液化プロパンガス(LPG)を、支燃ガス(助燃ガス)として空気を使用するものである。空気を使用するため火炎温度はあまり高くならず、空気中の窒素によって排気ガス体積が大きくなるため溶解効率もよくない。また、窒素酸化物が大量に排出されるという問題もある。更には、イ)不純物除去目的の回転脱ガス装置300のような鋳鉄の溶解には不必要な機構を有する、ロ)電気ヒーターでは間接加熱になるため保温効率が良くない、ハ)保温炉自体に冷却機構が無く耐久性に難がある、ニ)被溶解材料がインゴッドに限定される、といった欠点もある。   However, the metal melting furnace of Document 1 also has various difficulties. For example, the burner 220 employed therein uses liquefied propane gas (LPG) as the fuel gas and air as the supporting gas (supporting gas). Since air is used, the flame temperature is not so high, and since the exhaust gas volume is increased by nitrogen in the air, the melting efficiency is not good. There is also a problem that a large amount of nitrogen oxide is discharged. In addition, a) a mechanism that is unnecessary for melting cast iron, such as the rotary degassing apparatus 300 for removing impurities, b) indirect heating with an electric heater, so heat insulation efficiency is not good, and c) the heat insulation furnace itself. There is also a drawback that there is no cooling mechanism and durability is difficult, and d) the material to be dissolved is limited to ingots.

特開2011−117640号公報JP 2011-117640 A

本発明の目的は、金属の溶解効率が高く、窒素酸化物の排出が少なく、特別な付帯設備無しでも不純物元素を極力除去可能であり、耐久性にも優れたハイブリッド型金属溶解炉を提供することにある。   An object of the present invention is to provide a hybrid type metal melting furnace that has high metal melting efficiency, low nitrogen oxide emission, can remove impurity elements as much as possible without special incidental equipment, and has excellent durability. There is.

本発明は、被溶解金属を収容すると共に上方に開口した坩堝と、前記坩堝を支持する支持筐体を構成する炉本体と、前記炉本体の上に設けられた炉蓋と、前記坩堝の上方に位置して坩堝内に火炎を噴射可能なバーナーと、坩堝内の金属に誘導電流を生じさせて誘導加熱するための誘導加熱手段と、を備えたハイブリッド型金属溶解炉において、
前記バーナーは、燃料ガスと、酸素濃度が21mass%以上100mass%以下である支燃ガスとを使用する酸素バーナーであり、
前記坩堝は、その深さ方向に沿って上下に並ぶ下半部領域と上半部領域とを有し、
前記坩堝の下半部領域に対応する位置には、前記誘導加熱手段としての誘導コイルが当該坩堝を包囲するように設けられ、
前記坩堝の少なくとも上半部領域に対応する位置には、当該坩堝の外側においてその全周を包囲するようにコイル状の冷却配管が設けられており、
前記炉蓋の内部には、冷却配管が設けられている、ことを特徴とするハイブリッド型金属溶解炉である。
なお、好ましくは、前記炉蓋の内部に設けられた冷却配管は、前記炉蓋の中央に垂直に立設されたバーナーの火炎噴射口を取り囲むように設けられている。
The present invention includes a crucible containing a metal to be melted and opened upward, a furnace body constituting a support housing for supporting the crucible, a furnace lid provided on the furnace body, and an upper part of the crucible In a hybrid type metal melting furnace provided with a burner that is located at a position that can inject a flame into a crucible, and induction heating means for induction heating by generating an induction current in the metal in the crucible,
The burner is an oxygen burner that uses a fuel gas and a combustion-supporting gas having an oxygen concentration of 21 mass% to 100 mass%,
The crucible has a lower half region and an upper half region arranged vertically along the depth direction thereof,
In the position corresponding to the lower half region of the crucible, an induction coil as the induction heating means is provided so as to surround the crucible,
In a position corresponding to at least the upper half region of the crucible, a coiled cooling pipe is provided so as to surround the entire circumference of the crucible outside,
The hybrid metal melting furnace is characterized in that a cooling pipe is provided inside the furnace lid.
Preferably, the cooling pipe provided in the inside of the furnace lid is provided so as to surround a flame injection port of a burner which is erected vertically at the center of the furnace lid.

本発明のハイブリッド型金属溶解炉によれば、材料として溶解炉内に装入された被溶解金属の溶解には酸素バーナーの高温火炎を利用し、得られた金属溶湯の保温および昇温には誘導コイルによる誘導加熱を利用するという加熱源の使い分けが可能となる。それ故、少量多材質の取扱いにも柔軟に対応しつつ、金属溶湯の生産から出湯に到るまでの一連の操作を従来よりも効率化することができる。   According to the hybrid-type metal melting furnace of the present invention, a high-temperature flame of an oxygen burner is used for melting the metal to be melted that is charged into the melting furnace as a material, and the obtained molten metal is kept warm and heated. It is possible to selectively use a heating source that uses induction heating by an induction coil. Therefore, a series of operations from the production of the molten metal to the hot water can be made more efficient than before, while flexibly handling a small amount of many materials.

特に本発明によれば、以下に列挙するような効果を得ることができる。
・酸素バーナーの使用による溶解効率の向上、
・酸素バーナーの使用による窒素酸化物の排出量の削減ないし低減、
・酸素バーナーの使用により、特別な付帯設備無しでも不純物元素をスラグとして極力除去可能であること、
・誘導コイルによる誘導加熱による、金属溶湯の保温および昇温の効率改善、
・坩堝の少なくとも上半部領域に対応する位置において当該坩堝を包囲する冷却配管を設けたことにより、酸素バーナーの採用にもかかわらず、耐久性を向上できること。
In particular, according to the present invention, the effects listed below can be obtained.
・ Improvement of dissolution efficiency by using oxygen burner,
・ Reduce or reduce nitrogen oxide emissions by using oxygen burners,
・ The use of an oxygen burner enables the removal of impurity elements as slag as much as possible without special incidental equipment.
・ Improved efficiency of heat retention and temperature rise of molten metal by induction heating with induction coil,
-Durability can be improved despite the adoption of an oxygen burner by providing a cooling pipe that surrounds the crucible at a position corresponding to at least the upper half region of the crucible.

ハイブリッド金属溶解炉の概要を示し、(a)は平面図、(b)は(a)のA−A線での縦断面図。The outline | summary of a hybrid metal melting furnace is shown, (a) is a top view, (b) is a longitudinal cross-sectional view in the AA line of (a). 図1の金属溶解炉において炉蓋が開いた状態を示す平面図。The top view which shows the state which the furnace cover opened in the metal melting furnace of FIG. 図1の金属溶解炉の使用時(溶解処理時)を示し、(a)は平面図、(b)は(a)のB−B線での縦断面図。The time of use (at the time of a melting process) of the metal melting furnace of FIG. 1 is shown, (a) is a top view, (b) is a longitudinal cross-sectional view in the BB line of (a). ハイブリッド金属溶解炉の別例を示す平面図。The top view which shows another example of a hybrid metal melting furnace.

以下、本発明の実施形態について図面を参照しつつ説明する。
図1及び図2に示すように、一実施形態に係るハイブリッド型金属溶解炉は、略直方体形状の炉本体10と、その炉本体10の上に設けられた炉蓋20とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, a hybrid metal melting furnace according to an embodiment includes a furnace body 10 having a substantially rectangular parallelepiped shape and a furnace lid 20 provided on the furnace body 10.

炉本体10内には、被溶解金属および溶湯を収容するための坩堝11が設けられており、炉本体10は坩堝11を支持する支持筐体を構成する。坩堝11は、例えばアルミナ、シリカ、マグネシア等の耐火材で形成されている。なお、図1(a)及び(b)に示すように、炉本体10の上部前寄り位置には左右一対の水平支軸12が設けられ、これら水平支軸12は駆動手段Mと作動連結されている。駆動手段Mは、油圧駆動式、空圧駆動式又は電動式(例えば電動モータ)のいずれでもよく、駆動手段Mからの動力供給に基づいて、炉本体10は水平支軸12を回動中心軸として前後に傾動することができる。こうして、一対の水平支軸12及び駆動手段Mは、坩堝11を含む炉本体10を傾動させる傾動機構を構成する。   In the furnace body 10, a crucible 11 for housing the metal to be melted and the molten metal is provided, and the furnace body 10 constitutes a support housing that supports the crucible 11. The crucible 11 is made of a refractory material such as alumina, silica, or magnesia. As shown in FIGS. 1A and 1B, a pair of left and right horizontal support shafts 12 are provided at the upper front position of the furnace body 10, and these horizontal support shafts 12 are operatively connected to the driving means M. ing. The driving means M may be any of a hydraulic driving type, a pneumatic driving type, and an electric type (for example, an electric motor). Based on the power supply from the driving means M, the furnace body 10 rotates the horizontal support shaft 12 around the rotation center axis. Can be tilted back and forth. Thus, the pair of horizontal support shafts 12 and the driving means M constitute a tilting mechanism that tilts the furnace body 10 including the crucible 11.

炉本体10内に支持された坩堝11は、上方に開口したカップ形状をなすと共に、当該カップ形状の上端部から炉本体10の前方壁に向かって延びる注ぎ口(出湯口13)を有している。また、坩堝11はその内部を、深さ方向に沿って上下に並ぶ下半部領域11Aと上半部領域11Bとに二分することができる。本例では、下半部領域11Aと上半部領域11Bとの境界としては、坩堝内で被溶解金属を溶解したときにできる溶湯の液面Lの位置(図3(b)参照)を想定している。具体的には図1(b)に示すように、溶湯の液面の位置(坩堝の底面からの高さh)が、坩堝の深さdの50%〜70%の高さになることを想定している。つまり、坩堝の下半部領域11Aは坩堝の深さdの50%〜70%の範囲を占め、坩堝の上半部領域11Bは残りの範囲(即ち坩堝の深さdの50%〜30%の範囲)を占める。なお、下半部領域11Aは「溶解領域」又は「溶湯の保持領域」と重なる。   The crucible 11 supported in the furnace body 10 has a cup shape opened upward, and has a pouring spout (tapping port 13) extending from the upper end of the cup shape toward the front wall of the furnace body 10. Yes. In addition, the crucible 11 can be divided into two parts, a lower half region 11A and an upper half region 11B, which are arranged vertically along the depth direction. In this example, as the boundary between the lower half region 11A and the upper half region 11B, the position of the liquid level L of the molten metal formed when the metal to be melted is melted in the crucible (see FIG. 3B) is assumed. doing. Specifically, as shown in FIG. 1B, the position of the liquid level of the molten metal (height h from the bottom of the crucible) is 50% to 70% of the crucible depth d. Assumed. That is, the lower half region 11A of the crucible occupies a range of 50% to 70% of the crucible depth d, and the upper half region 11B of the crucible is the remaining range (that is, 50% to 30% of the crucible depth d). ). The lower half region 11A overlaps with the “melting region” or the “molten holding region”.

炉本体10内には、坩堝11のほかに誘導コイル14とコイル状の冷却配管15とが設けられている。より具体的には、坩堝の下半部領域11Aに対応する高さ位置において、当該坩堝11を包囲するように誘導コイル14が設けられている。誘導コイル14は図示しない交流電源と接続されており、その交流電源から供給される交流電流が誘導コイル14を流れることで、誘導コイル14の内部領域に高周波、中周波または低周波で連続的に変化する磁界が発生する。その結果、この連続変化する磁界の中に置かれた金属には誘導電流(例えば渦電流)が発生し、電気抵抗に基づくジュール熱が発生する。つまり誘導コイル14は、坩堝内の金属に誘導電流を生じさせて当該金属を誘導加熱するための誘導加熱手段を構成する。   In addition to the crucible 11, an induction coil 14 and a coiled cooling pipe 15 are provided in the furnace body 10. More specifically, the induction coil 14 is provided so as to surround the crucible 11 at a height position corresponding to the lower half region 11A of the crucible. The induction coil 14 is connected to an AC power source (not shown), and an AC current supplied from the AC power source flows through the induction coil 14, so that the induction coil 14 continuously has a high frequency, a medium frequency, or a low frequency in the internal region. A changing magnetic field is generated. As a result, an induced current (for example, eddy current) is generated in the metal placed in the continuously changing magnetic field, and Joule heat based on electric resistance is generated. That is, the induction coil 14 constitutes induction heating means for generating an induction current in the metal in the crucible and induction heating the metal.

坩堝の上半部領域11Bに対応する高さ位置において、当該坩堝11を包囲するように冷却配管15が設けられている。この冷却配管15には、図示しない圧送ポンプによって冷却媒体(例えば冷却水や冷媒ガス)が流通ないし循環され、これによって坩堝の少なくとも上半部領域11Bの壁部が強制冷却される。なお、図1の金属溶解炉では、坩堝の上半部領域11Bに対応する高さ位置のみにコイル状の冷却配管15を設けたが、坩堝の下半部領域11Aに対応する高さ位置にも同様にコイル状の冷却配管を設けてもよい。その場合には、坩堝の下半部領域11Aに対応する高さ位置に、誘導コイルと冷却配管とが併設されることになる。   A cooling pipe 15 is provided so as to surround the crucible 11 at a height position corresponding to the upper half region 11B of the crucible. A cooling medium (for example, cooling water or refrigerant gas) is circulated or circulated through the cooling pipe 15 by a pressure pump (not shown), whereby the wall of at least the upper half region 11B of the crucible is forcibly cooled. In the metal melting furnace of FIG. 1, the coiled cooling pipe 15 is provided only at the height position corresponding to the upper half region 11B of the crucible, but at the height position corresponding to the lower half region 11A of the crucible. Similarly, a coiled cooling pipe may be provided. In that case, an induction coil and a cooling pipe are provided side by side at a height position corresponding to the lower half region 11A of the crucible.

図1(a)及び(b)に示すように、炉本体10の後端部左寄り位置には垂直支軸16が設けられ、その垂直支軸16に取り付けられたアーム17を介して炉蓋20が垂直支軸16に連結されている。その結果、炉蓋20は、垂直支軸16を中心として炉本体10に対し水平面内で回動可能となっている。図1(a)は、炉蓋20が坩堝11の上部開口を閉じる閉塞位置に配置されたときを示し、図2は、炉蓋20が水平回動されて坩堝11の上部開口が開け放たれる開放位置に配置されたときを示す。   As shown in FIGS. 1 (a) and 1 (b), a vertical support shaft 16 is provided at a position to the left of the rear end of the furnace body 10, and a furnace lid 20 is provided via an arm 17 attached to the vertical support shaft 16. Is connected to the vertical spindle 16. As a result, the furnace lid 20 is rotatable in a horizontal plane with respect to the furnace body 10 about the vertical support shaft 16. FIG. 1A shows a case where the furnace lid 20 is disposed at a closed position where the upper opening of the crucible 11 is closed, and FIG. 2 shows an open state where the upper opening of the crucible 11 is opened by the horizontal rotation of the furnace lid 20. Indicates when placed in position.

図1及び図2に示すように、炉蓋20は、平面視円形状の蓋本体部21と、炉蓋が閉塞位置に配置されるときに坩堝の出湯口13の上方を覆う出湯口カバー部22とを有している。炉蓋20が閉塞位置に配置されるとき、炉内から外部への熱放出を抑制するため、炉蓋20が坩堝11の上端縁と密着することが好ましい。   As shown in FIGS. 1 and 2, the furnace lid 20 includes a lid main body 21 having a circular shape in plan view, and a tap cover portion that covers the top of the crucible tap 13 when the furnace lid is disposed at the closed position. 22. When the furnace lid 20 is disposed at the closed position, the furnace lid 20 is preferably in close contact with the upper edge of the crucible 11 in order to suppress heat release from the inside of the furnace to the outside.

炉蓋の蓋本体部21の中央には酸素バーナー23が垂直に立設されている。この酸素バーナー23は、第1のガスボンベ(図示略)から燃料ガスの供給を受けると共に、第2のガスボンベ(図示略)から支燃ガスの供給を受けて火炎を発生する。燃料ガスとしては、例えばLPG、LNGがあげられる。支燃ガスとしては、例えば酸素濃度が21mass%以上100mass%以下(より好ましくは酸素濃度が80mass%以上100mass%以下)の高酸素濃度の酸素窒素混合ガスがあげられる。炉蓋20が閉塞位置に配置されるとき、酸素バーナー23はその火炎を坩堝内に向けて垂直に噴射し、坩堝内の金属を溶解する。その際、バーナーの火炎長は坩堝の底まで届く程度に長いことが好ましい。   An oxygen burner 23 is erected vertically at the center of the lid body 21 of the furnace lid. The oxygen burner 23 receives a supply of fuel gas from a first gas cylinder (not shown) and generates a flame by receiving supply of combustion-supporting gas from a second gas cylinder (not shown). Examples of the fuel gas include LPG and LNG. As the combustion support gas, for example, an oxygen-nitrogen mixed gas having a high oxygen concentration with an oxygen concentration of 21 mass% or more and 100 mass% or less (more preferably an oxygen concentration of 80 mass% or more and 100 mass% or less) can be mentioned. When the furnace lid 20 is placed at the closed position, the oxygen burner 23 injects the flame vertically into the crucible and melts the metal in the crucible. At that time, the flame length of the burner is preferably long enough to reach the bottom of the crucible.

図1(a)及び(b)に示すように、炉蓋の蓋本体部21内には、酸素バーナー23の火炎噴射口を取り囲むように冷却配管25が設けられている。この冷却配管25には、前記冷却配管15と同様、冷却媒体が流通ないし循環される。このため、酸素バーナー23から噴射される火炎がはね返って炉蓋20の下面にあたった場合でも、炉蓋20の溶損を極力回避することができる。   As shown in FIGS. 1A and 1B, a cooling pipe 25 is provided in the lid body 21 of the furnace lid so as to surround the flame injection port of the oxygen burner 23. As with the cooling pipe 15, a cooling medium is circulated or circulated through the cooling pipe 25. For this reason, even when the flame injected from the oxygen burner 23 rebounds and hits the lower surface of the furnace lid 20, it is possible to avoid melting of the furnace lid 20 as much as possible.

また図1(b)に示すように、炉蓋20には、蓋本体部21を垂直に貫通する排気通路26が設けられている。この排気通路26は、炉内の排気ガス、ヒューム(煙)及び/又は粉塵を炉外に排出するための通路である。ただし、排気通路26の途中には炉体の外において自動開閉弁27が設けられ、この自動開閉弁27は炉内(坩堝内)の内圧変化の状況に応じて排気通路26を自動的に開閉する。   Further, as shown in FIG. 1B, the furnace lid 20 is provided with an exhaust passage 26 that vertically penetrates the lid main body 21. The exhaust passage 26 is a passage for discharging exhaust gas, fumes (smoke) and / or dust inside the furnace to the outside of the furnace. However, an automatic opening / closing valve 27 is provided outside the furnace body in the middle of the exhaust passage 26, and the automatic opening / closing valve 27 automatically opens and closes the exhaust passage 26 in accordance with the change in internal pressure in the furnace (inside the crucible). To do.

次に、本実施形態のハイブリッド型金属溶解炉の使用又は操作方法を説明する。
金属溶解に際しては先ず、溶解炉の坩堝11内に、主材料としての鋼屑、銑鉄(例えば、鋳鉄、鋳鋼、ステンレス鋼、合金鋼など)、合金(Fe−Si,Fe−Mn,Fe−Sなど)、並びに加炭材を投入する(図3(a)参照)。材料投入後、炉蓋20を炉本体10上の閉塞位置に配置すると共に、酸素バーナー23に着火し、バーナー火炎にて主材料を直接溶解する(図3(b)参照)。炉内に投入した主材料の溶解がほぼ完了したら、炉蓋20を開けて追加の材料を投入し、炉蓋20を閉めて再びバーナー火炎にて主材料を直接溶解する。この材料の投入およびバーナー火炎による溶解の操作を、坩堝11内の溶湯量が目標レベル(例えば図3(b)の溶湯液面Lのレベル)に達するまで繰り返す。尚、バーナー火炎での溶解中は、誘導コイル14への通電は最小または無しの状態を保持する。また、バーナー溶解時に発生して溶湯表面付近を浮遊するスラグS(いわゆる「鉱滓」、一般に不純物元素を含む)については、炉蓋20の開放時に工具を用いて除去するか、炉本体10を適宜傾動させて出湯口13から炉外へ流出することが望ましい。
Next, the use or operation method of the hybrid type metal melting furnace of this embodiment will be described.
When melting metal, first, steel scrap, pig iron (for example, cast iron, cast steel, stainless steel, alloy steel, etc.), alloy (Fe—Si, Fe—Mn, Fe—S) as main materials are placed in the crucible 11 of the melting furnace. Etc.), as well as a carburized material (see FIG. 3A). After the material is charged, the furnace lid 20 is placed at a closed position on the furnace body 10, and the oxygen burner 23 is ignited, and the main material is directly melted by the burner flame (see FIG. 3B). When the melting of the main material charged into the furnace is almost completed, the furnace lid 20 is opened, additional material is charged, the furnace lid 20 is closed, and the main material is directly melted again with a burner flame. The operation of charging the material and melting with the burner flame is repeated until the amount of the molten metal in the crucible 11 reaches a target level (for example, the level of the molten metal level L in FIG. 3B). During melting in the burner flame, the current supplied to the induction coil 14 is kept at a minimum or no state. Further, the slag S generated during the melting of the burner and floating near the surface of the molten metal (so-called “mineral”, generally including an impurity element) is removed by using a tool when the furnace lid 20 is opened, or the furnace body 10 is appropriately removed. It is desirable to incline and to flow out of the furnace from the tap 13.

目標量の溶湯を得たら、酸素バーナー23からの火炎噴射を停止すると共に、誘導コイル14への通電を開始し、溶湯成分の最終調整および出湯温度への昇温を行う。出湯温度への昇温が完了したら、炉蓋を開放すると共に炉本体10を傾動させ、坩堝11内の溶湯を出湯口13を介して炉外へ出湯する。   When the target amount of molten metal is obtained, flame injection from the oxygen burner 23 is stopped, and energization of the induction coil 14 is started, and final adjustment of the molten metal components and temperature rise to the hot water temperature are performed. When the temperature rise to the tapping temperature is completed, the furnace lid is opened and the furnace body 10 is tilted, and the molten metal in the crucible 11 is tapped out of the furnace through the tapping port 13.

金属溶解炉の不使用時(溶解処理を行わないとき)には、坩堝11内を空にした状態で、又は、空の坩堝11内に鉄製のパイプもしくは被溶解金属を敢えて装入した状態で、溶解炉を自然冷却する。なお、急激な冷却は、坩堝11を形成する耐火材にクラックが入る原因となるので、避けるべきである。   When the metal melting furnace is not used (when the melting process is not performed), the crucible 11 is emptied, or the steel crucible 11 is filled with an iron pipe or a metal to be melted. Cool the melting furnace naturally. Note that rapid cooling should be avoided because it causes cracks in the refractory material forming the crucible 11.

[実施形態の効果]
(イ) 本実施形態の金属溶解炉で用いられるバーナーは、高酸素濃度の支燃ガスを使用する酸素バーナー23であるため、火炎温度が高い。また、排気ガスの体積が、空気を支燃ガスとする場合に比べて大幅に低減される(例えば支燃ガスが純酸素の場合、1/5程度に低減可能)。更に、空気を支燃ガスとする場合に比べて、窒素酸化物の排出を大幅に低減することができる。
(ロ) 本実施形態によれば、不純物元素除去のための特別な付帯設備(例えば脱ガス装置)を設ける必要が無く、酸素バーナー23を使用するだけで不純物元素を効率的に除去することができる。なぜなら、酸素バーナー23の火炎による金属材料の直接瞬間溶解によって溶湯の中に比較的高温の部分と比較的低温の部分とが共存することとなり、Mn,Ti,Cr等の不純物元素の酸化物がスラグSとなって溶湯の液面付近に浮き上がるからである。この浮遊スラグSは、前述のような簡単な手法で容易に取り除くことができる。また、バーナー火炎の強度および炉内の雰囲気温度を調整することで、不純物元素の除去効率を適宜変更することも可能である。
(ハ) バーナー火炎による溶解後の溶湯の保温手段として、誘導コイル14による誘導加熱を採用したので、溶湯の保温および加熱昇温の効率を高めることができる。
(ニ) 本実施形態の金属溶解炉は冷却配管15を備えているので、坩堝11を形成する耐火材や炉体の耐久性ないし寿命を更に向上させることができる。特に本実施形態の金属溶解炉では、坩堝の上半部領域11Bにコイル状の冷却配管15を配設したので、酸素バーナー23の採用による火炎温度の高温化にもかかわらず、坩堝11ひいては炉体を高温火炎から効果的に保護することができる。
[Effect of the embodiment]
(A) Since the burner used in the metal melting furnace of the present embodiment is the oxygen burner 23 that uses a combustion gas having a high oxygen concentration, the flame temperature is high. Further, the volume of the exhaust gas is greatly reduced as compared with the case where air is used as the combustion supporting gas (for example, when the combustion supporting gas is pure oxygen, it can be reduced to about 1/5). Furthermore, compared with the case where air is used as the combustion supporting gas, the emission of nitrogen oxides can be greatly reduced.
(B) According to the present embodiment, it is not necessary to provide a special incidental equipment (for example, a degassing device) for removing the impurity element, and the impurity element can be efficiently removed only by using the oxygen burner 23. it can. This is because a relatively high-temperature portion and a relatively low-temperature portion coexist in the molten metal due to the instantaneous instantaneous melting of the metal material by the flame of the oxygen burner 23, and oxides of impurity elements such as Mn, Ti, and Cr are present. It is because it becomes the slag S and floats near the liquid surface of the molten metal. The floating slag S can be easily removed by the simple method as described above. It is also possible to appropriately change the removal efficiency of the impurity elements by adjusting the intensity of the burner flame and the atmospheric temperature in the furnace.
(C) Since induction heating by the induction coil 14 is employed as a means for keeping the molten metal melted by the burner flame, the efficiency of the molten metal can be increased and the heating temperature can be increased.
(D) Since the metal melting furnace of the present embodiment includes the cooling pipe 15, the durability or life of the refractory material and the furnace body forming the crucible 11 can be further improved. In particular, in the metal melting furnace of the present embodiment, since the coiled cooling pipe 15 is disposed in the upper half region 11B of the crucible, the crucible 11 and thus the furnace are heated despite the increase in the flame temperature due to the use of the oxygen burner 23. The body can be effectively protected from high temperature flames.

[変更例]
図4に示すように、炉蓋の蓋本体部21に材料投入口28を設けてもよい。このような材料投入口28を設けることで、金属材料の溶解時に一々炉蓋20を開放せずとも、炉蓋20を閉塞位置に保ったまま、材料投入口28を介して追加の材料を炉内に装入することができる。
図1〜図4の例では、酸素バーナーを1基だけとしたが、バーナーの設置数は2基以上の複数基であってもよい。また、図1〜図4の例では、炉蓋20を水平方向への可動式としたが、これに代えて着脱式の炉蓋を採用してもよい。
酸素バーナー23が火炎及び高温雰囲気に十分耐え得る構造を持つことは好ましい。例えば、酸素バーナー23の噴射ノズルの周囲又は内部に、冷却水や冷却ガスを流通ないし循環させる冷却機構を設けてもよい。
図1〜図4の例では、水平支軸12を左右一対としたが、両者を連設(一体化)した1本の水平支軸を採用してもよい。
[Example of change]
As shown in FIG. 4, a material charging port 28 may be provided in the lid body 21 of the furnace lid. By providing such a material input port 28, additional materials can be supplied to the furnace through the material input port 28 while keeping the furnace cover 20 in the closed position without opening the furnace cover 20 once when the metal material is melted. Can be loaded inside.
In the example of FIGS. 1 to 4, only one oxygen burner is used, but the number of burners installed may be two or more. 1 to 4, the furnace cover 20 is movable in the horizontal direction, but a detachable furnace cover may be employed instead.
It is preferable that the oxygen burner 23 has a structure that can sufficiently withstand a flame and a high temperature atmosphere. For example, a cooling mechanism for circulating or circulating cooling water or a cooling gas may be provided around or inside the injection nozzle of the oxygen burner 23.
In the example of FIGS. 1 to 4, the horizontal support shaft 12 is a pair of left and right, but a single horizontal support shaft in which both are connected (integrated) may be employed.

10…炉本体、11…坩堝、11A…下半部領域、11B…上半部領域、14…誘導コイル、15…コイル状の冷却配管、20…炉蓋、21…蓋本体部、23…酸素バーナー、25…炉蓋内の冷却配管、L…溶湯の液面、S…スラグ。   DESCRIPTION OF SYMBOLS 10 ... Furnace main body, 11 ... Crucible, 11A ... Lower half area, 11B ... Upper half area, 14 ... Induction coil, 15 ... Coiled cooling pipe, 20 ... Furnace lid, 21 ... Lid main body part, 23 ... Oxygen Burner, 25 ... cooling pipe in the furnace lid, L ... level of molten metal, S ... slag.

Claims (2)

被溶解金属を収容すると共に上方に開口した坩堝と、
前記坩堝を支持する支持筐体を構成する炉本体と、
前記炉本体の上に設けられた炉蓋と、
前記坩堝の上方に位置して坩堝内に火炎を噴射可能なバーナーと、
坩堝内の金属に誘導電流を生じさせて誘導加熱するための誘導加熱手段と、
を備えたハイブリッド型金属溶解炉において、
前記バーナーは、燃料ガスと、酸素濃度が21mass%以上100mass%以下である支燃ガスとを使用する酸素バーナーであり、
前記坩堝は、その深さ方向に沿って上下に並ぶ下半部領域と上半部領域とを有し、
前記坩堝の下半部領域に対応する位置には、前記誘導加熱手段としての誘導コイルが当該坩堝を包囲するように設けられ、
前記坩堝の少なくとも上半部領域に対応する位置には、当該坩堝の外側においてその全周を包囲するようにコイル状の冷却配管が設けられており、
前記炉蓋の内部には、冷却配管が設けられている、ことを特徴とするハイブリッド型金属溶解炉。
A crucible containing the metal to be melted and opening upward;
A furnace body constituting a support housing for supporting the crucible;
A furnace lid provided on the furnace body;
A burner located above the crucible and capable of injecting flame into the crucible;
Induction heating means for generating induction current in the metal in the crucible and induction heating;
In a hybrid type metal melting furnace equipped with
The burner is an oxygen burner that uses a fuel gas and a combustion-supporting gas having an oxygen concentration of 21 mass% to 100 mass%,
The crucible has a lower half region and an upper half region arranged vertically along the depth direction thereof,
In the position corresponding to the lower half region of the crucible, an induction coil as the induction heating means is provided so as to surround the crucible,
In a position corresponding to at least the upper half region of the crucible, a coiled cooling pipe is provided so as to surround the entire circumference of the crucible outside,
A hybrid type metal melting furnace characterized in that a cooling pipe is provided inside the furnace lid.
前記炉蓋の内部に設けられた冷却配管は、前記炉蓋の中央に垂直に立設されたバーナーの火炎噴射口を取り囲むように設けられている、ことを特徴とする請求項1に記載のハイブリッド型金属溶解炉。   The cooling pipe provided in the inside of the furnace lid is provided so as to surround a flame injection port of a burner that is erected vertically in the center of the furnace lid. Hybrid type metal melting furnace.
JP2015018933A 2015-02-03 2015-02-03 Hybrid type metal melting furnace Active JP5905133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015018933A JP5905133B2 (en) 2015-02-03 2015-02-03 Hybrid type metal melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015018933A JP5905133B2 (en) 2015-02-03 2015-02-03 Hybrid type metal melting furnace

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012049033A Division JP2013185719A (en) 2012-03-06 2012-03-06 Hybrid type metal melting furnace

Publications (2)

Publication Number Publication Date
JP2015108505A true JP2015108505A (en) 2015-06-11
JP5905133B2 JP5905133B2 (en) 2016-04-20

Family

ID=53438967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018933A Active JP5905133B2 (en) 2015-02-03 2015-02-03 Hybrid type metal melting furnace

Country Status (1)

Country Link
JP (1) JP5905133B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990717A (en) * 2017-11-03 2018-05-04 广东工业大学 Opposite-flushing type aluminium melting furnace air distribution combustion system
CN109182803A (en) * 2018-11-22 2019-01-11 周翠华 A kind of aluminium alloy smelting system
CN109648060A (en) * 2019-01-26 2019-04-19 佛山市南海镕信金属制品有限公司 A kind of automatic constant-temperature feed holding furnace of cold room die casting machine for aluminum alloy
CN110319690A (en) * 2019-07-03 2019-10-11 宁夏秦氏新材料有限公司 Gas heating metal nitride synthesis device
CN112325639A (en) * 2020-11-04 2021-02-05 湖南中联志远车轮有限公司 Metal casting furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128600B1 (en) * 2022-01-27 2022-08-31 山田 榮子 Scrap metal mass melting equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111325B1 (en) * 1970-08-24 1976-04-10
JPH06159943A (en) * 1992-11-20 1994-06-07 Nippon Sanso Kk Metal melting method
JPH0771878A (en) * 1993-08-31 1995-03-17 Nisshin Steel Co Ltd Water cooling structure of metal smelting furnace
JP2001059685A (en) * 1999-08-20 2001-03-06 Sumitomo Metal Ind Ltd Ceiling cover for ladle preheater
JP2003222312A (en) * 2002-01-30 2003-08-08 Daido Steel Co Ltd Melting processing method for waste powder and melting equipment used for it
JP2005188778A (en) * 2003-12-24 2005-07-14 Eiichi Uratani Glass melting furnace and heat-proof repairing method for glass melting furnace
JP2011117640A (en) * 2009-12-01 2011-06-16 Fine Forming:Kk Metal melting furnace and method for generating molten metal in the metal melting furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111325B1 (en) * 1970-08-24 1976-04-10
JPH06159943A (en) * 1992-11-20 1994-06-07 Nippon Sanso Kk Metal melting method
JPH0771878A (en) * 1993-08-31 1995-03-17 Nisshin Steel Co Ltd Water cooling structure of metal smelting furnace
JP2001059685A (en) * 1999-08-20 2001-03-06 Sumitomo Metal Ind Ltd Ceiling cover for ladle preheater
JP2003222312A (en) * 2002-01-30 2003-08-08 Daido Steel Co Ltd Melting processing method for waste powder and melting equipment used for it
JP2005188778A (en) * 2003-12-24 2005-07-14 Eiichi Uratani Glass melting furnace and heat-proof repairing method for glass melting furnace
JP2011117640A (en) * 2009-12-01 2011-06-16 Fine Forming:Kk Metal melting furnace and method for generating molten metal in the metal melting furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990717A (en) * 2017-11-03 2018-05-04 广东工业大学 Opposite-flushing type aluminium melting furnace air distribution combustion system
CN107990717B (en) * 2017-11-03 2024-04-02 广东工业大学 Air distribution combustion system of opposite-impact aluminum melting furnace
CN109182803A (en) * 2018-11-22 2019-01-11 周翠华 A kind of aluminium alloy smelting system
CN109648060A (en) * 2019-01-26 2019-04-19 佛山市南海镕信金属制品有限公司 A kind of automatic constant-temperature feed holding furnace of cold room die casting machine for aluminum alloy
CN110319690A (en) * 2019-07-03 2019-10-11 宁夏秦氏新材料有限公司 Gas heating metal nitride synthesis device
CN112325639A (en) * 2020-11-04 2021-02-05 湖南中联志远车轮有限公司 Metal casting furnace

Also Published As

Publication number Publication date
JP5905133B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5905133B2 (en) Hybrid type metal melting furnace
JP2013185719A (en) Hybrid type metal melting furnace
EP1884731B1 (en) Methods of implementing a water-cooling system into a burner panel and related apparatuses
US7951325B2 (en) Methods of implementing a water-cooling system into a burner panel and related apparatuses
JP5551086B2 (en) Combined burner and lance for electric arc furnace
JP6148790B2 (en) Manganese-containing molten steel production method, heat-retaining furnace, and manganese-containing molten steel production facility using a heat-retaining furnace
US6749661B2 (en) Method for melting and decarburization of iron carbon melts
WO2013099807A1 (en) Arc furnace
JP6629477B1 (en) melting furnace
WO2009145084A1 (en) Gas cupola for melting metal
CN204718377U (en) A kind of induction furnace with atmosphere protection cover
JPH11223464A (en) Electric furnace
KR101530700B1 (en) Alruminium melting furnace
JP6305788B2 (en) Hybrid type metal melting furnace
JP2016521317A (en) Method for melting metal material in melting plant and melting plant
JPS6047513B2 (en) Water cooling structure of furnace wall
JP3111330U (en) Molten metal holding furnace
JP6393291B2 (en) Melting / smelting furnace operation method and melting / smelting furnace
Tolazzi et al. New Developments and operational results in the use of fixed side-wall injectors in the electric arc furnaces
JP3941526B2 (en) Waste powder melting method and melting equipment used therefor
JP2013533950A (en) Method and system for removing deposits formed in a furnace
JPS6312923B2 (en)
KR101153797B1 (en) Degassing equipment
JPS6129720Y2 (en)
WO2020104903A1 (en) Gas or mist cooled system for slag door

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160315

R150 Certificate of patent or registration of utility model

Ref document number: 5905133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250