JP2015108462A - Combustion method for burner for forming tubular flame, and burner for forming tubular flame - Google Patents

Combustion method for burner for forming tubular flame, and burner for forming tubular flame Download PDF

Info

Publication number
JP2015108462A
JP2015108462A JP2013250217A JP2013250217A JP2015108462A JP 2015108462 A JP2015108462 A JP 2015108462A JP 2013250217 A JP2013250217 A JP 2013250217A JP 2013250217 A JP2013250217 A JP 2013250217A JP 2015108462 A JP2015108462 A JP 2015108462A
Authority
JP
Japan
Prior art keywords
oxygen
combustion chamber
downstream
gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013250217A
Other languages
Japanese (ja)
Other versions
JP6253377B2 (en
Inventor
洋輔 白神
Yosuke Shiragami
洋輔 白神
明志 毛笠
Akishi Kegasa
明志 毛笠
司 堀
Tsukasa Hori
司 堀
喜徳 久角
Yoshinori Hisakado
喜徳 久角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Osaka University NUC
Original Assignee
Osaka Gas Co Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Osaka University NUC filed Critical Osaka Gas Co Ltd
Priority to JP2013250217A priority Critical patent/JP6253377B2/en
Publication of JP2015108462A publication Critical patent/JP2015108462A/en
Application granted granted Critical
Publication of JP6253377B2 publication Critical patent/JP6253377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a combustion method for forming a tubular flame, which can form such a tubular flame properly as floats from the inner face of a combustion chamber.SOLUTION: A side part introduction gas is introduced in a tangential direction of an inner surface of a combustion chamber N1 into the inside of a cylindrical combustion chamber N1 having one end closed, from an introduction port 7 opened in the side surface part of the cylindrical combustion chamber N1, and an end part introduction gas is introduced from the end part of the closed side of the combustion chamber N1 along the cylindrical shaft center direction of the combustion chamber N1 into the cylinder shaft part of the combustion chamber N1. The oxygen ratio indicating the ratio of the actual oxygen amount contained in the side part introduction gas to the stoichiometric oxygen amount of the fuel contained in the side introduction gas is set at a combustion restricting oxygen ratio lower than the lower limit, at which the fuel can burn. At the same time, the introduction amount of the end part introduction gas is determined so that the oxygen ratio indicating the ratio of the actual oxygen amount, which is obtained by adding each oxygen amount contained in the side part introduction gas and the end part introduction gas, may be a burning oxygen ratio higher than the combustion limiting oxygen ratio with respect to the stoichiometric oxygen amount of the fuel contained in the side introduction gas.

Description

本発明は、一端が閉塞されかつ他端が開口された円筒状の燃焼室の側面部に当該燃焼室の筒軸心方向に長いスリット状に開口する導入口から燃焼室内面の接線方向に向けて、酸素及び燃料、又は、それらと希釈剤とを側部導入気体として前記燃焼室の内部に導入し、且つ、前記燃焼室の閉塞側の端部から前記燃焼室の筒軸心方向に沿って、酸素、又は、酸素と希釈剤とを端部導入気体として前記燃焼室の筒軸心部に導入して管状の火炎を形成するバーナの燃焼方法、及び、その燃焼方法を実施して管状の火炎を形成するバーナに関する。   The present invention is directed to a side surface portion of a cylindrical combustion chamber having one end closed and the other end opened from an inlet opening in a slit shape long in the cylinder axis direction of the combustion chamber toward a tangential direction of the combustion chamber inner surface. Then, oxygen and fuel, or these and a diluent are introduced into the combustion chamber as a side introduction gas, and along the cylinder axis direction of the combustion chamber from the closed end of the combustion chamber A burner combustion method for forming a tubular flame by introducing oxygen or oxygen and a diluent into the cylindrical axial center of the combustion chamber as an end-introducing gas, and a tubular method for carrying out the combustion method It relates to a burner that forms a flame.

かかる管状の火炎を形成するバーナの燃焼方法は、燃焼室の側面部に開口する導入口から燃焼室内面の接線方向に向けて、側部導入気体を燃焼室の内部に導入することによって、燃焼室の内面部に沿って未燃焼ガスが流動する未燃ガス層を形成しながら、その未燃ガス層の内方側(筒軸心部側)に、側部導入気体に含まれる酸素や燃焼室の閉塞側の端部から導入される端部導入気体に含まれる酸素を用いて燃焼する火炎を形成するものであり、その火炎の火炎帯が、燃焼室の内面から浮上した管状の火炎となるものである。   A combustion method of a burner that forms such a tubular flame is a method in which a side introduced gas is introduced into the combustion chamber from the inlet opening in the side portion of the combustion chamber toward the tangential direction of the combustion chamber surface, thereby combusting. While forming an unburned gas layer in which the unburned gas flows along the inner surface of the chamber, oxygen and combustion contained in the side portion introduced gas are formed on the inner side of the unburned gas layer (on the cylindrical axis side). It forms a flame that burns using oxygen contained in the end introduction gas introduced from the end on the closed side of the chamber, and the flame zone of the flame is a tubular flame that floats from the inner surface of the combustion chamber It will be.

側部導入気体として、酸素と燃料とを燃焼室に導入する形態としては、一般には、酸素と燃料とを各別に導入して、燃焼室内にて混合させる形態を採用するが、酸素と燃料とを予め混合させた状態で導入する形態を採用することができ、また、側部導入気体として、酸素及び燃料と希釈剤とを導入する形態としては、一般には、酸素と燃料とを各別に導入しかつそれらの少なくとも一方に希釈剤を混合する形態を採用するが、酸素、燃料、希釈剤を予め混合させた状態で導入する形態を採用することもできる。   As a mode for introducing oxygen and fuel into the combustion chamber as the side introduction gas, generally, a mode in which oxygen and fuel are separately introduced and mixed in the combustion chamber is adopted. In general, oxygen and fuel and diluent can be introduced as side-introducing gas. In general, oxygen and fuel are introduced separately from each other. In addition, a form in which a diluent is mixed in at least one of them is employed, but a form in which oxygen, fuel, and a diluent are introduced in a premixed state may be employed.

管状の火炎を形成するバーナの燃焼方法に類似する燃焼方法の例として、燃料として天然ガスを用いて、側部導入気体に含まれる燃料量を、側部導入気体に含まれる酸素量に対して、量論比と過濃燃焼限界の算術平均濃度よりも濃くなる量に設定し、側部導入気体と端部導入気体との夫々に含まれる酸素量を合わせた総括酸素量が、側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量の0.95〜1.05倍になるように、端部導入気体の導入量を定めるようにしたものがある(例えば、特許文献1参照)。   As an example of a combustion method similar to the combustion method of a burner that forms a tubular flame, the amount of fuel contained in the side introduction gas is changed with respect to the amount of oxygen contained in the side introduction gas using natural gas as the fuel. The total oxygen amount is set to an amount that is higher than the arithmetic average concentration of the stoichiometric ratio and the over-rich combustion limit, and the combined oxygen amount contained in each of the side introduction gas and the end introduction gas is the side introduction. There is one in which the introduction amount of the end portion introduction gas is determined so as to be 0.95 to 1.05 times the theoretical oxygen amount necessary for burning the fuel contained in the gas (for example, Patent Documents). 1).

尚、側部導入気体に含まれる燃料量を、側部導入気体に含まれる酸素量に対して、量論比と過濃燃焼限界の算術平均濃度よりも濃くなる量に設定するとは、換言すれば、側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して側部導入気体に含まれる酸素量の割合を示す酸素比を、理論酸素量に対応する量論比(1.0)と燃料が燃焼可能な下限(例えば、0.3)との平均値よりも下限側に寄った値(例えば、0.6)に設定することを意味することになる。
つまり、特許文献1の燃焼方法は、未燃ガス層の未燃焼ガスが、側部導入気体に含まれる酸素によって燃焼可能な状態であり、端部導入気体に含まれる酸素が、未燃焼ガスの燃焼が完結するのを助ける酸素として用いられる、いわゆる予混合燃焼であるため、管状火炎を形成するバーナの燃焼方法である。
In other words, the amount of fuel contained in the side introduction gas is set to an amount that is higher than the stoichiometric ratio and the arithmetic mean concentration of the over-rich combustion limit with respect to the oxygen amount contained in the side introduction gas. For example, the oxygen ratio indicating the ratio of the oxygen amount contained in the side introduced gas to the theoretical oxygen amount required for burning the fuel contained in the side introduced gas is a stoichiometric ratio corresponding to the theoretical oxygen amount. (1.0) and the lower limit (for example, 0.3) at which the fuel can combust are set to a value (for example, 0.6) that is closer to the lower limit than the average value.
That is, the combustion method of Patent Document 1 is a state in which the unburned gas in the unburned gas layer can be burned by oxygen contained in the side introduction gas, and the oxygen contained in the end portion introduction gas is the unburned gas. Since it is so-called premixed combustion used as oxygen to help complete the combustion, it is a burner combustion method that forms a tubular flame.

ちなみに、特許文献1に開示された管状火炎を形成するバーナにおいては、被加熱用の粉粒体としてのガラス原料粉末を供給するガラス原料供給部が、端部導入気体に伴ってガラス原料粉末を燃焼室に供給するように設けられて、ガラス原料粉末を燃焼室内にて加熱して溶解するように構成されている。   Incidentally, in the burner that forms the tubular flame disclosed in Patent Document 1, the glass raw material supply unit that supplies the glass raw material powder as the heated granular material is used to convert the glass raw material powder along with the edge introduction gas. It is provided so that it may be supplied to a combustion chamber, and it is comprised so that glass raw material powder may be heated and melt | dissolved in a combustion chamber.

特開2012−193878号公報JP 2012-193878 A

特許文献1の管状火炎を形成するバーナの燃焼方法においては、燃焼室の内面から浮上した管状火炎を的確に形成できない虞があった。   In the burner combustion method for forming the tubular flame of Patent Document 1, there is a possibility that the tubular flame that has floated from the inner surface of the combustion chamber cannot be accurately formed.

すなわち、特許文献1の管状火炎を形成するバーナの燃焼方法においては、側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して側部導入気体に含まれる酸素量の割合を示す酸素比を、理論酸素量に対応する量論比と燃料が燃焼可能な下限との平均値よりも下限側に寄った燃料が燃焼可能な値に設定するものであるから、側部導入気体の酸素比は、理論酸素量に対応する量論比よりも低いものの、燃料が燃焼し得る値であるため、燃焼室に導入された側部導入気体が、燃焼室の内面部に沿った未燃ガス層を形成することなく、導入口に付着する付着火炎を形成する状態で燃焼する虞があり、その結果、燃焼室の内面から浮上した管状火炎を的確に形成できない虞があった。   That is, in the burner combustion method for forming the tubular flame of Patent Document 1, the amount of oxygen contained in the side introduced gas is less than the theoretical amount of oxygen required to burn the fuel contained in the side introduced gas. The oxygen ratio indicating the ratio is set to a value at which the fuel closer to the lower limit side than the average value of the stoichiometric ratio corresponding to the theoretical oxygen amount and the lower limit at which the fuel can burn is combustible. Although the oxygen ratio of the introduced gas is lower than the stoichiometric ratio corresponding to the theoretical oxygen amount, it is a value at which the fuel can combust. Therefore, the side introduced gas introduced into the combustion chamber extends along the inner surface of the combustion chamber. In addition, there is a risk of burning without forming an unburned gas layer in a state of forming an attached flame that adheres to the inlet, and as a result, there is a risk that the tubular flame that has emerged from the inner surface of the combustion chamber cannot be accurately formed. .

つまり、燃料を燃焼させるための酸化剤として酸素を用いる場合には、酸化剤として空気を用いる場合に較べて、燃焼速度が上昇し、可燃範囲が拡大し、しかも、窒素が含まれないだけ導入口から燃焼室に吹き出される側部導入気体の吹き出し流速が減少するため、従来の管状火炎を形成するバーナの燃焼方法においては、燃焼室の内面から浮上した管状火炎が形成されることなく、導入口に付着した付着火炎が形成される虞があった。   In other words, when oxygen is used as the oxidant for burning the fuel, the combustion rate is increased, the flammable range is expanded, and nitrogen is not included as compared with the case where air is used as the oxidant. Since the blowout flow velocity of the side introduction gas blown out from the mouth to the combustion chamber is reduced, in the conventional burner combustion method for forming a tubular flame, without forming a tubular flame floating from the inner surface of the combustion chamber, There was a risk that an attached flame attached to the inlet would be formed.

ちなみに、特許文献1に開示された管状火炎を形成するバーナにおいては、被加熱用の粉粒体としてのガラス原料粉末を燃焼室に供給して、ガラス原料粉末を燃焼室内にて加熱して溶解するように構成されているが、この場合には、ガラス原料粉末を導入するために燃焼室の径が大きくなることになり、このように燃焼室の径が大きくなると、燃焼室内を流動する燃料や酸素の旋回速度が低下し易い(スワール数が小さくなる)ことに起因して、未燃ガス層が形成されるよりも早く拡散燃焼が始まって、燃焼室の内面部に沿った未燃ガス層が形成され難くなるため、この点からも、燃焼室の内面から浮上した管状火炎が形成されることなく、導入口に付着した付着火炎が形成され易い傾向となる。   By the way, in the burner forming the tubular flame disclosed in Patent Document 1, glass raw material powder as a heated granular material is supplied to the combustion chamber, and the glass raw material powder is heated and melted in the combustion chamber. However, in this case, the diameter of the combustion chamber is increased in order to introduce the glass raw material powder. When the diameter of the combustion chamber is increased in this way, the fuel flowing in the combustion chamber And the swirling speed of oxygen tends to decrease (the swirl number becomes small), and diffusion combustion starts earlier than the formation of the unburned gas layer, and unburned gas along the inner surface of the combustion chamber Since it is difficult to form a layer, an adhering flame adhering to the inlet tends to be formed without forming a tubular flame floating from the inner surface of the combustion chamber.

そして、導入口に付着した付着火炎が形成されると、付着火炎によって燃焼室が高温に加熱されることになるため、燃焼室の内面に対する断熱材(バーナタイル)の設置や、燃焼室を冷却する水冷装置を装備することになるが、この場合、燃焼室の内面に断熱材(バーナタイル)を設置することにより、コスト上昇及び寸法精度の低下を招き、また、水冷装置を装備することにより、コスト上昇及び熱損失を招くものとなる。   When the attached flame that adheres to the inlet is formed, the combustion chamber is heated to a high temperature by the attached flame. Therefore, heat insulation (burner tile) is installed on the inner surface of the combustion chamber and the combustion chamber is cooled. In this case, installing a heat insulating material (burner tile) on the inner surface of the combustion chamber leads to an increase in cost and a decrease in dimensional accuracy, and by installing a water cooling device. This increases the cost and heat loss.

したがって、燃焼室の内面に断熱材(バーナタイル)を設置することによるコスト上昇や寸法精度の低下を抑制し、また、水冷装置を装備することによるコスト上昇や熱損失を抑制するために、燃焼室の内面から浮上した状態の管状の火炎を的確に形成することによって、燃焼室が高温に加熱されることを回避する管状の火炎を形成するバーナの燃焼方法、及び、その燃焼方法を実施する管状の火炎を形成するバーナが望まれるものとなる。   Therefore, in order to suppress the increase in cost and deterioration in dimensional accuracy due to the installation of heat insulating material (burner tile) on the inner surface of the combustion chamber, and to suppress the increase in cost and heat loss due to the installation of a water cooling device A combustion method of a burner that forms a tubular flame that avoids the combustion chamber from being heated to a high temperature by accurately forming a tubular flame that is lifted from the inner surface of the chamber, and the combustion method thereof A burner that forms a tubular flame would be desirable.

本発明は、上記実状に鑑みて為されたものであって、その目的は、燃焼室の内面から浮上した管状の火炎を的確に形成することができる管状の火炎を形成するバーナの燃焼方法を提供する点にある。
また、本発明の別の目的は、燃焼室の内面から浮上した管状の火炎を的確に形成することができる管状の火炎を形成するバーナを提供する点にある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a burner combustion method for forming a tubular flame that can accurately form a tubular flame levitated from the inner surface of the combustion chamber. The point is to provide.
Another object of the present invention is to provide a burner that forms a tubular flame that can accurately form a tubular flame that has floated from the inner surface of the combustion chamber.

本発明の管状の火炎を形成するバーナの燃焼方法は、一端が閉塞されかつ他端が開口された円筒状の燃焼室の側面部に当該燃焼室の筒軸心方向に長いスリット状に開口する導入口から燃焼室内面の接線方向に向けて、酸素及び燃料、又は、それらと希釈剤とを側部導入気体として前記燃焼室の内部に導入し、且つ、前記燃焼室の閉塞側の端部から前記燃焼室の筒軸心方向に沿って、酸素、又は、酸素と希釈剤とを端部導入気体として前記燃焼室の筒軸心部に導入して燃焼させる方法であって、その第1特徴構成は、
前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記側部導入気体に含まれる酸素量の割合を示す酸素比を、燃料が燃焼可能な下限よりも低い、前記下限に相当する、又は、前記下限よりも設定小量だけ高い燃焼制限用酸素比に設定し、且つ、
前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記側部導入気体と前記端部導入気体との夫々に含まれる酸素量を合わせた総括酸素量の割合を示す酸素比が前記燃焼制限用酸素比よりも高い燃焼用酸素比となるように、前記端部導入気体の導入量を定めることを特徴とする。
The burner combustion method for forming a tubular flame according to the present invention opens in the shape of a slit that is long in the cylinder axis direction of the combustion chamber at the side surface of a cylindrical combustion chamber that is closed at one end and opened at the other end. Oxygen and fuel, or these and a diluent are introduced into the combustion chamber as a side introduction gas from the introduction port toward the tangential direction of the combustion chamber inner surface, and the closed end of the combustion chamber In the direction of the cylinder axis of the combustion chamber, oxygen or oxygen and diluent are introduced into the cylinder axis of the combustion chamber as an end-introducing gas and burned. The feature configuration is
The oxygen ratio indicating the ratio of the amount of oxygen contained in the side introduction gas to the theoretical amount of oxygen required to burn the fuel contained in the side introduction gas is lower than the lower limit at which the fuel can burn , Set to a combustion limiting oxygen ratio corresponding to the lower limit, or higher by a set small amount than the lower limit, and
The ratio of the total oxygen amount in which the oxygen amount contained in each of the side portion introduction gas and the end portion introduction gas is combined with the theoretical oxygen amount necessary for burning the fuel contained in the side portion introduction gas. The introduction amount of the end portion introduction gas is determined so that the oxygen ratio indicating a higher combustion oxygen ratio than the combustion limiting oxygen ratio.

尚、「燃料」とは、燃焼室に供給可能な燃料を意味し、いわゆる気体状の燃料ガスの他、液体燃料(燃焼室への導入前に予蒸発させて燃料ガスとして燃焼室に導入するもの、及び、液体のまま燃焼室に噴霧した後蒸発して燃料ガスとなるもの)を含む。   “Fuel” means a fuel that can be supplied to the combustion chamber. In addition to a so-called gaseous fuel gas, liquid fuel (pre-evaporated before introduction into the combustion chamber and introduced into the combustion chamber as a fuel gas) And a fuel gas which is evaporated after being sprayed into the combustion chamber in a liquid state).

すなわち、導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して側部導入気体に含まれる酸素量の割合を示す酸素比を、燃料が燃焼可能な下限よりも低い、下限に相当する、又は、下限よりも設定小量だけ高い燃焼制限用酸素比に設定して、側部導入気体を、外部から酸素が補充されない状態では、燃焼しない又は安定して燃焼が継続しないようにするから、燃焼室の側面部に開口する導入口から燃焼室内面の接線方向に向けて、側部導入気体を燃焼室の内部に導入することによっては着火せず、燃焼室の内面部に沿って未燃焼ガスが流動する未燃ガス層を的確に形成できることになる。   That is, the oxygen ratio indicating the ratio of the amount of oxygen contained in the side introduced gas to the theoretical amount of oxygen necessary for burning the fuel contained in the introduced gas is lower than the lower limit at which the fuel can be combusted. If the side-introduced gas is not replenished with oxygen from the outside so that it does not burn or does not continue to burn stably, Therefore, by introducing the side portion introduction gas into the combustion chamber from the inlet opening in the side surface portion of the combustion chamber toward the tangential direction of the combustion chamber surface, ignition does not occur and the combustion chamber inner surface portion is not ignited. Thus, an unburned gas layer in which unburned gas flows can be accurately formed.

そして、燃焼室の閉塞側の端部から燃焼室の筒軸心方向に沿って、端部導入気体を燃焼室の筒軸心部に導入することによって、側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して側部導入気体と端部導入気体との夫々に含まれる酸素量を合わせた総括酸素量の割合を示す酸素比が燃焼制限用酸素比よりも高い燃焼用酸素比となるから、燃焼室の内面部に沿って形成された未燃ガス層の内方側(筒軸心部側)に、側部導入気体に含まれる酸素及び燃焼室の閉塞側の端部から導入される端部導入気体に含まれる酸素を用いて燃焼する火炎が形成されることになり、この火炎は、側部導入気体のみでは燃焼できない、即ち火炎伝播性がないので、未燃混合気層内に燃え広がることができず、燃焼室の内面から浮上した管状の火炎が的確に形成されることになる。   Then, the fuel contained in the side introduction gas is combusted by introducing the end introduction gas from the end on the closed side of the combustion chamber along the cylinder axis direction of the combustion chamber into the cylinder axis portion of the combustion chamber. The oxygen ratio indicating the ratio of the total oxygen amount, which is the sum of the oxygen amounts contained in the side introduced gas and the end introduced gas, with respect to the theoretical oxygen amount required to be made higher than the combustion limiting oxygen ratio Oxygen contained in the side introduced gas and the closed side of the combustion chamber on the inner side (cylinder shaft center side) of the unburned gas layer formed along the inner surface of the combustion chamber A flame that burns using oxygen contained in the end-introducing gas introduced from the end of the gas is formed, and this flame cannot be burned only by the side-introducing gas, that is, there is no flame propagation property, Tubing that could not spread in the unburned mixture and floated from the inner surface of the combustion chamber So that the flame is formed accurately.

つまり、本発明の発明者は、鋭意研究によって、端部導入気体の酸素比を燃料が燃焼可能な下限の近傍又は燃料が燃焼可能な下限よりも低い値にすれば、端部導入気体は安定して燃焼が継続しない状態(燃焼し難い状態)又は消炎する状態(燃焼しない状態)であるから、燃焼室の内面部に沿った未燃ガス層を的確に形成することができ、そして、未燃ガス層が安定して燃焼が継続しない状態(燃焼し難い状態)又は消炎する状態(燃焼しない状態)であっても、端部導入気体を、燃焼室の閉塞側の端部から燃焼室の筒軸心方向に沿って、燃焼室の筒軸心部に導入することにより、端部導入気体に含まれる酸素を未燃ガス層の未燃焼ガスと反応させながら、燃焼室の内面部に沿って形成された未燃ガス層の内方側(筒軸心部側)に、端部導入気体に含まれる酸素や側部導入気体に含まれる酸素によって単に燃焼するにとどまらず、その火炎形状が管状となり、燃焼室の内面から的確に浮上して形成されることを見出したのである。   That is, the inventor of the present invention has made the end-introduced gas stable if the oxygen ratio of the end-introduced gas is set to a value near the lower limit where the fuel can be combusted or lower than the lower limit where the fuel can be combusted. Thus, since combustion is not continued (difficult to burn) or extinguished (not burned), an unburned gas layer along the inner surface of the combustion chamber can be accurately formed, and unburned Even when the combustion gas layer is stable and combustion does not continue (difficult to burn) or extinguishes (not combusted), the end-introducing gas is passed from the closed end of the combustion chamber to the combustion chamber. Along the inner surface of the combustion chamber, oxygen introduced into the end portion introduction gas reacts with the unburned gas in the unburned gas layer by introducing it into the cylindrical shaft center of the combustion chamber along the cylinder axis direction. Introduce the end on the inner side (cylinder shaft center side) of the unburned gas layer formed Not only simply burned by oxygen contained in the oxygen and the side introduction gas contained in the body, the flame shape is tubular, it was found to be formed by appropriately floated from the inner surface of combustion chamber.

ちなみに、従来の特許文献1の管状火炎を形成するバーナの燃焼方法は、未燃ガス層の未燃焼ガスが、側部導入気体に含まれる酸素によって燃焼可能な状態であり、側部導入気体に含まれる酸素が、未燃焼ガスの燃焼を完結する酸素として用いられる、いわゆる(部分)予混合燃焼であるのに対して、本第1特徴構成の管状の火炎を形成するバーナの燃焼方法は、未燃ガス層の未燃焼ガスが、端部導入気体に含まれる酸素を、燃焼のために必須となる酸素として用いて、混合が部分的にでも燃焼に適する濃度になると同時に燃焼する、いわゆる拡散燃焼であり、両者は火炎構造が異なるものであるが、本第1特徴構成の管状の火炎を形成するバーナの燃焼方法にて形成される管状の火炎は、特許文献1の管状火炎を形成するバーナの燃焼方法にて形成される管状火炎と似た形状を呈するため、同様の火炎として用いることができるものである。   Incidentally, the burner combustion method for forming the tubular flame of the conventional patent document 1 is in a state where the unburned gas in the unburned gas layer can be burned by oxygen contained in the side introduced gas, and the side introduced gas Whereas the contained oxygen is so-called (partial) premixed combustion used as oxygen to complete the combustion of the unburned gas, the burner combustion method for forming the tubular flame of the first characteristic configuration is: So-called diffusion in which the unburned gas in the unburned gas layer burns at the same time that the mixing is at a concentration suitable for combustion even if the mixing is partially used, using the oxygen contained in the end-introduced gas as the essential oxygen for combustion. Although the two are different in flame structure, the tubular flame formed by the burner combustion method for forming the tubular flame of the first characteristic configuration forms the tubular flame of Patent Document 1. Burner burning method For exhibiting a tubular flame and similar shape formed Te, in which can be used as the same flame.

要するに、本発明の管状の火炎を形成するバーナの燃焼方法の第1特徴構成によれば、燃焼室の内面から浮上した管状の火炎を的確に形成することができる管状の火炎を形成するバーナの燃焼方法を提供できる。   In short, according to the first characteristic configuration of the burner combustion method for forming a tubular flame according to the present invention, the burner for forming a tubular flame capable of accurately forming a tubular flame levitated from the inner surface of the combustion chamber. A combustion method can be provided.

本発明の管状の火炎を形成するバーナの燃焼方法の第2特徴構成は、上記第1特徴構成に加えて、
両端が開口しかつ前記燃焼室の径と同じ径又はその径よりも大きな径となるように形成された下流側燃焼室が、前記燃焼室の開口側の端部に連通接続される形態で設けられ、
前記下流側燃焼室の側面部に当該下流側燃焼室の筒軸心方向に長いスリット状に開口する下流側導入口から下流側燃焼室内面の接線方向に向けて、前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量から前記側部導入気体に含まれる酸素量を減算した不足酸素量又はその不足酸素量に設定余剰量を加えた設定酸素量に相当する酸素又はその酸素と希釈剤とを下流部導入酸素として前記下流側燃焼室の内部に導入する点を特徴とする。
In addition to the first characteristic configuration described above, the second characteristic configuration of the burner combustion method for forming a tubular flame according to the present invention includes:
A downstream combustion chamber that is open at both ends and formed to have the same diameter as or larger than the diameter of the combustion chamber is provided in a form that is connected to the end of the combustion chamber on the opening side. And
Included in the side introduction gas from the downstream inlet opening in the side of the downstream combustion chamber in a slit shape that is long in the cylinder axis direction of the downstream combustion chamber toward the tangential direction of the downstream combustion chamber surface Oxygen corresponding to a set oxygen amount obtained by adding a set surplus amount to the deficient oxygen amount or the deficient oxygen amount obtained by subtracting the oxygen amount contained in the side introduction gas from the theoretical oxygen amount required for burning the fuel The oxygen and diluent are introduced into the downstream combustion chamber as downstream portion introduction oxygen.

すなわち、燃焼室の開口側の端部に連通接続される下流側燃焼室を設けて、その下流側燃焼室の側面部に開口した下流側導入口から下流側燃焼室内面の接線方向に向けて、下流部導入酸素を下流側燃焼室の内部に導入するから、上流側の燃焼室にて未燃焼ガスが発生しても、その未燃焼ガスを下流側燃焼室にて適切に燃焼させることができる。   That is, a downstream combustion chamber connected to the end of the combustion chamber on the opening side is provided, and a downstream inlet opening at a side surface of the downstream combustion chamber is directed in a tangential direction of the downstream combustion chamber surface. Since the downstream portion introduced oxygen is introduced into the downstream combustion chamber, even if unburned gas is generated in the upstream combustion chamber, the unburned gas can be appropriately burned in the downstream combustion chamber. it can.

そして、下流部導入酸素として、側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量から側部導入気体に含まれる酸素量を減算した不足酸素量又はその不足酸素量に設定余剰量を加えた設定酸素量に相当する酸素が導入されるものとなるから、燃焼室にて発生した未燃焼ガスを、下流側燃焼室にて酸素過剰状態の希薄燃焼状態で燃焼させることになる。上流側の燃焼室及び下流側燃焼室での燃焼形態がいずれも拡散燃焼になるため、予混合燃焼に比べて、振動燃焼の発生を抑制できるものとなる。   Then, as the oxygen introduced into the downstream portion, the oxygen shortage amount obtained by subtracting the oxygen amount contained in the side portion introduction gas from the theoretical oxygen amount necessary for burning the fuel contained in the side portion introduction gas or the deficient oxygen amount is set. Since oxygen corresponding to the set oxygen amount with an excess amount added is introduced, unburned gas generated in the combustion chamber is burned in a lean combustion state in which oxygen is excessive in the downstream combustion chamber. Become. Since both of the combustion forms in the upstream combustion chamber and the downstream combustion chamber are diffusion combustion, generation of vibration combustion can be suppressed as compared with premixed combustion.

尚、下流部導入酸素を導入するにあたり、二酸化炭素等の希釈剤を酸素に混合して導入してもよく、この場合にも、燃焼強度が抑えられて振動燃焼の発生を抑制できる。   In introducing the downstream portion introduced oxygen, a diluent such as carbon dioxide may be mixed with oxygen and introduced, and in this case as well, the combustion intensity is suppressed and the occurrence of vibration combustion can be suppressed.

ちなみに、燃焼室の閉塞側の端部から導入する端部導入気体の導入量を、燃焼用酸素比が量論比(1.0)よりも十分に低い値(例えば、0.5〜0.7)となる量に設定しておけば、燃焼室における燃焼状態を、燃料が過濃な濃燃焼状態とすることができ、この場合にも、量論付近での高い燃焼強度が抑えられることにより、燃焼室での振動燃焼の発生を抑制できるものとなる。   Incidentally, the introduction amount of the end portion introduction gas introduced from the end portion on the closed side of the combustion chamber is a value (for example, 0.5 to 0.00) that the combustion oxygen ratio is sufficiently lower than the stoichiometric ratio (1.0). If the amount is set to 7), the combustion state in the combustion chamber can be changed to a rich combustion state where the fuel is excessively rich, and in this case as well, high combustion intensity near the stoichiometry can be suppressed. Thus, the occurrence of vibration combustion in the combustion chamber can be suppressed.

尚、下流側燃焼室が、上流側の燃焼室の径と同じ径又はそれよりも大きな径となるように形成されているから、燃焼室からの燃焼ガスが下流側燃焼室に流入しても、筒軸心方向に流動する燃焼ガスの速度が速くなり過ぎるのを抑制でき、また、加熱処理する粉粒体を燃焼室に導入したときに、燃焼室から下流側燃焼室に流動する粉粒体が燃焼室と下流側燃焼室との接続部等に付着する等の不都合を発生するのを回避し易いものとなる。また、二段に構成することで、バーナ全体の軸方向長さを長くすることができ、粉粒体の加熱に要する時間を長くとることにも寄与する。   Since the downstream combustion chamber is formed to have the same diameter as the upstream combustion chamber or a larger diameter, the combustion gas from the combustion chamber may flow into the downstream combustion chamber. It is possible to suppress the speed of the combustion gas flowing in the axial direction of the cylinder from becoming too fast, and when the granular material to be heat-treated is introduced into the combustion chamber, the granular material that flows from the combustion chamber to the downstream combustion chamber It becomes easy to avoid the occurrence of inconvenience such as the body adhering to the connecting portion between the combustion chamber and the downstream combustion chamber. Moreover, by comprising in two steps | paragraphs, the axial direction length of the whole burner can be lengthened, and it contributes also to taking time required for the heating of a granular material.

要するに、本発明の管状の火炎を形成するバーナの燃焼方法の第2特徴構成は、上記第1特徴構成による作用効果に加えて、振動燃焼の発生を抑制した状態で適切に燃焼させることができる管状の火炎を形成するバーナの燃焼方法を提供できる。   In short, the second characteristic configuration of the burner combustion method for forming a tubular flame according to the present invention can be appropriately burned in a state in which the occurrence of vibration combustion is suppressed in addition to the operational effects of the first characteristic configuration. A method for burning a burner that forms a tubular flame can be provided.

本発明の管状の火炎を形成するバーナの燃焼方法の第3特徴構成は、上記第1特徴構成に加えて、
両端が開口しかつ前記燃焼室の径と同じ径又はその径よりも大きな径となるように形成された下流側燃焼室が、前記燃焼室の開口側の端部に連通接続される形態で設けられ、
前記下流側燃焼室の側面部に当該下流側燃焼室の筒軸心方向に長いスリット状に開口する下流側導入口から下流側燃焼室内面の接線方向に向けて、酸素及び燃料、又は、それらと希釈剤とを下流部導入気体として前記下流側燃焼室の内部に導入し、
前記側部導入気体と前記下流部導入気体とを合わせた全導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記全導入気体に含まれる酸素量の割合を示す酸素比が量論比又はその量論比よりも高い全導入気体用酸素比となるように、前記下流部導入気体に含まれる酸素量を定めることを特徴とする。
In addition to the first feature configuration, the third feature configuration of the burner combustion method for forming a tubular flame of the present invention,
A downstream combustion chamber that is open at both ends and formed to have the same diameter as or larger than the diameter of the combustion chamber is provided in a form that is connected to the end of the combustion chamber on the opening side. And
Oxygen and fuel, or these, from the downstream side inlet opening in the side of the downstream side combustion chamber in the shape of a slit long in the cylinder axis direction of the downstream side combustion chamber toward the tangential direction of the downstream side combustion chamber surface And a diluent as a downstream portion introduction gas introduced into the downstream combustion chamber,
Oxygen indicating the ratio of the amount of oxygen contained in the total introduced gas to the theoretical amount of oxygen required to burn the fuel contained in the total introduced gas including the side portion introduced gas and the downstream portion introduced gas The amount of oxygen contained in the downstream portion introduction gas is determined so that the ratio becomes a stoichiometric ratio or an oxygen ratio for all introduced gases higher than the stoichiometric ratio.

すなわち、燃焼室の開口側の端部に連通接続される下流側燃焼室を設けて、その下流側燃焼室の側面部に開口した下流側導入口から下流側燃焼室内面の接線方向に向けて、酸素及び燃料、又は、それらと希釈剤とを下流部導入気体として下流側燃焼室の内部に導入するから、上述と同様の理由で振動燃焼の発生を抑制することができ、また、燃焼室にて未燃焼ガスが発生しても、その未燃焼ガスを下流側燃焼室にて振動燃焼の発生を抑制しながら適切に燃焼させることができる。それに加えて、燃焼室寸法を変えることで、燃焼振動の周波数を違えることができ、これによっても燃焼振動の抑制が期待できる。   That is, a downstream combustion chamber connected to the end of the combustion chamber on the opening side is provided, and a downstream inlet opening at a side surface of the downstream combustion chamber is directed in a tangential direction of the downstream combustion chamber surface. Oxygen and fuel, or these and a diluent are introduced into the downstream combustion chamber as a downstream introduction gas, so that the occurrence of vibration combustion can be suppressed for the same reason as described above, and the combustion chamber Even if unburned gas is generated at, the unburned gas can be appropriately burned while suppressing the occurrence of vibration combustion in the downstream combustion chamber. In addition, the frequency of combustion vibration can be changed by changing the size of the combustion chamber, which can be expected to suppress combustion vibration.

つまり、側部導入気体の酸素比が、燃料が燃焼可能な下限よりも低い、下限に相当する、又は、下限よりも設定小量だけ高い燃焼制限用酸素でありながらも、下流部導入気体に含まれる酸素量が、側部導入気体と下流部導入気体とを合わせた全導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して全導入気体に含まれる酸素量の割合を示す酸素比が量論比又はその量論比よりも高い全導入気体用酸素比となるように定められるから、下流部導入気体に含まれる酸素量は、下流部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量よりも十分に過剰なものとなる。   In other words, the oxygen ratio of the side introduction gas is lower than the lower limit at which the fuel can be combusted, corresponds to the lower limit, or is a combustion limiting oxygen that is higher than the lower limit by a set small amount, but the downstream introduction gas The amount of oxygen contained in the total introduced gas relative to the theoretical oxygen amount required to burn the fuel contained in the total introduced gas including the side introduced gas and the downstream introduced gas. Is determined so that the oxygen ratio for the total introduced gas is higher than the stoichiometric ratio or the stoichiometric ratio. Therefore, the amount of oxygen contained in the downstream introduction gas is determined by the amount of fuel contained in the downstream introduction gas. The amount of oxygen is sufficiently larger than the theoretical oxygen amount required for combustion.

したがって、下流部導入気体に含まれる燃料を、下流側燃焼室にて酸素過剰状態の希薄燃焼状態で燃焼させることにより、量論近傍で起こりやすい振動燃焼の発生を抑制できるものとなり、同様に、燃焼室にて発生した未燃焼ガスを、下流側燃焼室にて酸素過剰状態の希薄燃焼状態で燃焼させて、不完全燃焼の発生を抑制できるものとなる。   Therefore, by burning the fuel contained in the downstream portion introduction gas in the lean combustion state with excess oxygen in the downstream combustion chamber, it is possible to suppress the occurrence of vibration combustion that tends to occur near the stoichiometry, The unburned gas generated in the combustion chamber can be burned in the lean combustion state in which the oxygen is excessive in the downstream combustion chamber, thereby suppressing the occurrence of incomplete combustion.

ちなみに、燃焼室の閉塞側の端部から導入する端部導入気体の導入量を、燃焼用酸素比が量論比(1.0)よりも十分に低い値(例えば、0.5〜0.7)となる量に設定しておけば、燃焼室における燃焼状態を、燃料が過濃な濃燃焼状態とすることができ、この場合には燃焼室での振動燃焼の発生を抑制できるものとなる。   Incidentally, the introduction amount of the end portion introduction gas introduced from the end portion on the closed side of the combustion chamber is a value (for example, 0.5 to 0.00) that the combustion oxygen ratio is sufficiently lower than the stoichiometric ratio (1.0). 7), the combustion state in the combustion chamber can be changed to a rich combustion state in which the fuel is excessive, and in this case, the occurrence of vibration combustion in the combustion chamber can be suppressed. Become.

尚、下流側燃焼室が、上流側の燃焼室の径と同じ径又はそれよりも大きな径となるように形成されているから、燃焼室からの燃焼ガスが下流側燃焼室に流入しても、筒軸心方向に流動する燃焼ガスの速度が速くなり過ぎるのを抑制でき、また、加熱処理する粉粒体を燃焼室に導入したときに、燃焼室から下流側燃焼室に流動する粉粒体が燃焼室と下流側燃焼室との接続部等に付着する等の不都合を発生するのを回避し易いものとなる。   Since the downstream combustion chamber is formed to have the same diameter as the upstream combustion chamber or a larger diameter, the combustion gas from the combustion chamber may flow into the downstream combustion chamber. It is possible to suppress the speed of the combustion gas flowing in the axial direction of the cylinder from becoming too fast, and when the granular material to be heat-treated is introduced into the combustion chamber, the granular material that flows from the combustion chamber to the downstream combustion chamber It becomes easy to avoid the occurrence of inconvenience such as the body adhering to the connecting portion between the combustion chamber and the downstream combustion chamber.

要するに、本発明の管状の火炎を形成するバーナの燃焼方法の第3特徴構成によれば、上記第1特徴構成による作用効果に加えて、振動燃焼の発生を抑制した状態で適切に燃焼させることができる管状の火炎を形成するバーナの燃焼方法を提供できる。   In short, according to the third feature configuration of the burner combustion method for forming a tubular flame of the present invention, in addition to the operational effects of the first feature configuration, the combustion is appropriately performed in a state in which the occurrence of vibration combustion is suppressed. It is possible to provide a method for burning a burner that forms a tubular flame capable of forming a flame.

本発明の管状の火炎を形成するバーナの燃焼方法の第4特徴構成は、上記第1〜第3特徴構成のいずれかに加えて、
被加熱用の粉粒体を、前記端部導入気体に伴って前記燃焼室に供給する点を特徴とする。
In addition to any of the first to third feature configurations described above, the fourth feature configuration of the burner combustion method for forming a tubular flame of the present invention is as follows.
It is characterized in that the granular material for heating is supplied to the combustion chamber along with the end portion introduction gas.

すなわち、被加熱用の粉粒体を、燃焼室に供給して、加熱処理することができる。
例えば、被加熱用の粉粒体が、溶解対象のガラス原料粉末や溶解対象の金属粉末である場合には、そのガラス原料粉末や金属粉末を加熱して溶解させることができ、また、被加熱用の粉粒体が、球状化処理するセラミックやガラスを砕いた不定形の粉末である場合には、その不定形の粉末を加熱(溶融)して、球状にすることができる等、被加熱用の粉粒体を加熱処理することができる。さらには、粉粒体や添加剤の物質や形状を選ぶことで、高温での化学反応(いわゆる燃焼合成)を行わせることも可能である。
That is, the heated granular material can be supplied to the combustion chamber and subjected to heat treatment.
For example, when the powder to be heated is a glass raw material powder to be melted or a metal powder to be melted, the glass raw material powder or the metal powder can be heated and melted. When the granular material for use is an amorphous powder obtained by pulverizing ceramic or glass to be spheroidized, the amorphous powder can be heated (melted) to be spherical, etc. The powder for heating can be heat-treated. Furthermore, it is possible to perform a chemical reaction (so-called combustion synthesis) at a high temperature by selecting the substance and shape of the powder and additive.

尚、端部導入気体が、酸素である場合、換言すれば、端部導入気体に、希釈剤として不活性ガスであるアルゴンや二酸化炭素が含まれていない場合には、端部導入気体としての酸素が燃焼反応に使用されるため、端部導入気体に希釈剤が含まれている場合よりも、火炎温度の低下を回避できるため、加熱において有利である。   When the end introduction gas is oxygen, in other words, when the end introduction gas does not contain argon or carbon dioxide, which is an inert gas as a diluent, Since oxygen is used in the combustion reaction, the flame temperature can be prevented from lowering than when the end-introducing gas contains a diluent, which is advantageous in heating.

そして、被加熱用の粉粒体を、端部導入気体に伴って、燃焼室に供給するものであるから、端部導入気体を、被加熱用の粉粒体を燃焼室内に搬送する搬送用気体として利用しながら、被加熱用の粉粒体を燃焼室に供給できるため、被加熱用の粉粒体を燃焼室に供給するための構成の簡素化を図ることができる。   And since the granular material for a heating is supplied to a combustion chamber with an edge part introduction gas, it is for conveyance which conveys the granular material for a heating part into a combustion chamber. Since the heated granular material can be supplied to the combustion chamber while being used as a gas, the configuration for supplying the heated granular material to the combustion chamber can be simplified.

要するに、本発明の管状の火炎を形成するバーナの燃焼方法の第4特徴構成によれば、上記第1〜第3特徴構成のいずれかによる作用効果に加えて、被加熱用の粉粒体を燃焼室に供給するための構成の簡素化を図りながら、被加熱用の粉粒体を加熱処理することができる管状の火炎を形成するバーナの燃焼方法を提供できる。   In short, according to the fourth feature configuration of the burner combustion method for forming a tubular flame of the present invention, in addition to the operational effects of any of the first to third feature configurations, the heated granular material is It is possible to provide a burner combustion method for forming a tubular flame capable of heat-treating a granular material to be heated while simplifying a configuration for supplying the combustion chamber.

本発明の管状の火炎を形成するバーナは、一端が閉塞されかつ他端が開口された円筒状の燃焼室の側面部に当該燃焼室の筒軸心方向に長いスリット状に開口する導入口から燃焼室面の接線方向に向けて、酸素及び燃料、又は、それらと希釈剤とを側部導入気体として前記燃焼室の内部に導入し、且つ、前記燃焼室の閉塞側の端部から前記燃焼室の筒軸心方向に沿って、酸素、又は、酸素と希釈剤とを端部導入気体として前記燃焼室の筒軸心部に導入して管状の火炎を形成するバーナであって、その第1特徴構成は、
前記側部導入気体を供給する側部供給手段が、前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記側部導入気体に含まれる酸素量の割合を示す酸素比を、燃料が燃焼可能な下限よりも低い、前記下限に相当する、又は、前記下限よりも少し高い燃焼制限用酸素比に設定するように構成され、
前記端部導入気体を供給する端部供給手段が、前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記側部導入気体と前記端部導入気体との夫々に含まれる酸素量を合わせた総括酸素量の割合を示す酸素比が前記燃焼制限用酸素比よりも高い燃焼用酸素比となるように、前記端部導入気体の導入量を定めるように構成されていることを特徴とする。
The burner that forms the tubular flame of the present invention has an opening that opens in the form of a slit that is long in the cylinder axis direction of the combustion chamber at the side surface of the cylindrical combustion chamber that is closed at one end and opened at the other end. Oxygen and fuel, or a diluent and a diluent are introduced into the combustion chamber as a side introduction gas toward the tangential direction of the combustion chamber surface, and the combustion is performed from the closed end of the combustion chamber. A burner that forms a tubular flame by introducing oxygen or oxygen and a diluent into the cylindrical axial center of the combustion chamber as an end-introducing gas along the cylindrical axial direction of the chamber. One feature configuration is
The ratio of the amount of oxygen contained in the side introduction gas with respect to the theoretical amount of oxygen required for burning the fuel contained in the side introduction gas by the side supply means for supplying the side introduction gas. The oxygen ratio shown is configured to be set to a combustion limiting oxygen ratio that is lower than the lower limit at which fuel can burn, corresponds to the lower limit, or slightly higher than the lower limit,
The end supply means for supplying the end-introducing gas has a relationship between the side-introducing gas and the end-introducing gas with respect to the theoretical oxygen amount required to burn the fuel contained in the side-introducing gas. The amount of introduction of the end portion introduction gas is determined so that the oxygen ratio indicating the ratio of the total oxygen amount combined with the oxygen amount contained in each is a combustion oxygen ratio higher than the combustion limiting oxygen ratio. It is characterized by being.

すなわち、本発明の管状の火炎を形成するバーナの第1特徴構成は、上述した管状の火炎を形成するバーナの燃焼方法の第1特徴構成を実施するための構成を備えるものであるから、上述した管状の火炎を形成するバーナの燃焼方法の第1特徴構成の欄で記載の作用効果と同様な作用効果を奏することになる。   That is, the first characteristic configuration of the burner that forms the tubular flame of the present invention includes the configuration for implementing the first characteristic configuration of the burning method of the burner that forms the tubular flame described above. The same effect as the effect described in the column of the first characteristic configuration of the burner combustion method for forming the tubular flame is obtained.

つまり、側部供給手段により、燃焼室の側面部に開口する導入口から燃焼室内面の接線方向に向けて、酸素比を燃焼制限用酸素比に設定した側部導入気体を燃焼室の内部に導入することによって、燃焼室の内面部に沿って未燃焼ガスが流動する未燃ガス層を的確に形成しながら、端部供給手段により、総括酸素量の割合を示す酸素比が燃焼制限用酸素比よりも高い燃焼用酸素比となるように、燃焼室の閉塞側の端部から燃焼室の筒軸心方向に沿って、端部導入気体を燃焼室の筒軸心部に導入することによって、燃焼室の内面部に沿って形成された未燃ガス層の内方側(筒軸心部側)に、側部導入気体に含まれる酸素及び燃焼室の閉塞側の端部から導入される端部導入気体に含まれる酸素を用いて燃焼する火炎を形成して、燃焼室の内面から的確に浮上した管状の火炎を形成するのである。   That is, by the side supply means, the side introduction gas with the oxygen ratio set to the combustion limiting oxygen ratio is introduced into the combustion chamber from the inlet opening in the side surface of the combustion chamber toward the tangential direction of the combustion chamber surface. By introducing the gas, the oxygen ratio indicating the ratio of the total oxygen amount is reduced by the end supply means while accurately forming an unburned gas layer in which the unburned gas flows along the inner surface of the combustion chamber. By introducing an end-introducing gas from the end on the closed side of the combustion chamber along the cylinder axis direction of the combustion chamber to the cylinder axis portion of the combustion chamber so that the combustion oxygen ratio is higher than the ratio The oxygen contained in the side portion introduction gas and the end portion on the closed side of the combustion chamber are introduced into the inner side (cylinder shaft center side) of the unburned gas layer formed along the inner surface portion of the combustion chamber. A flame that burns using oxygen contained in the end-introducing gas is formed, and the target is exposed from the inner surface of the combustion chamber. Than is to form a floated tubular flame.

要するに、本発明の管状の火炎を形成するバーナの第1特徴構成によれば、燃焼室の内面から浮上した管状の火炎を的確に形成することができる管状の火炎を形成するバーナを提供できる。   In short, according to the first characteristic configuration of the burner that forms the tubular flame of the present invention, it is possible to provide a burner that forms a tubular flame that can accurately form the tubular flame that has floated from the inner surface of the combustion chamber.

本発明の管状の火炎を形成するバーナの第2特徴構成は、上記管状の火炎を形成するバーナの第1特徴構成に加えて、
両端が開口しかつ前記燃焼室の径と同じ径又はその径よりも大きな径となるように形成された下流側燃焼室が、前記燃焼室の開口側の端部に連通接続される形態で設けられ、
前記下流側燃焼室の側面部に当該下流側燃焼室の筒軸心方向に長いスリット状に開口する下流側導入口から下流側燃焼室内面の接線方向に向けて下流部導入酸素として前記下流側燃焼室の内部に導入する下流部酸素導入手段が、前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量から前記側部導入気体に含まれる酸素量を減算した不足酸素量又はその不足酸素量に設定余剰量を加えた設定酸素量に相当する酸素又はその酸素と希釈剤とを前記下流部導入酸素として導入するように構成されている点を特徴とする。
In addition to the first characteristic configuration of the burner that forms the tubular flame, the second characteristic configuration of the burner that forms the tubular flame of the present invention includes:
A downstream combustion chamber that is open at both ends and formed to have the same diameter as or larger than the diameter of the combustion chamber is provided in a form that is connected to the end of the combustion chamber on the opening side. And
The downstream side oxygen as the downstream introduced oxygen from the downstream side inlet port that opens in the shape of a slit long in the cylinder axis direction of the downstream side combustion chamber to the tangential direction of the downstream side combustion chamber surface on the side surface portion of the downstream side combustion chamber Insufficient oxygen obtained by subtracting the amount of oxygen contained in the side portion introduction gas from the theoretical amount of oxygen required for the downstream portion oxygen introduction means introduced into the combustion chamber to burn the fuel contained in the side portion introduction gas. A feature is that oxygen corresponding to a set oxygen amount obtained by adding a set surplus amount to the amount or the deficient oxygen amount or oxygen and a diluent thereof are introduced as the downstream portion introduced oxygen.

すなわち、本発明の管状の火炎を形成するバーナの第2特徴構成は、上述した管状の火炎を形成するバーナの燃焼方法の第2特徴構成を実施するための構成を備えるものであるから、上述した管状の火炎を形成するバーナの燃焼方法の第2特徴構成の欄で記載の作用効果と同様な作用効果を奏することになる。   That is, since the 2nd characteristic structure of the burner which forms the tubular flame of this invention is equipped with the structure for implementing the 2nd characteristic structure of the combustion method of the burner which forms the above-mentioned tubular flame, it is the above-mentioned. The same effect as the effect described in the column of the second characteristic configuration of the burning method of the burner for forming the tubular flame is obtained.

つまり、下流部酸素導入手段によって、燃焼室の開口側の端部に連通接続された下流側燃焼室の側面部に開口する下流側導入口から下流側燃焼室内面の接線方向に向けて、下流部導入酸素を下流側燃焼室の内部に導入することにより、燃焼室にて未燃焼ガスが発生しても、その未燃焼ガスを、下流側燃焼室にて酸素過剰状態の希薄燃焼状態で燃焼させることにより、上流側及び下流側の燃焼室での燃焼形態がいずれも拡散燃焼になるため、振動燃焼の発生を抑制しながら適切に燃焼させることができるのである。   That is, the downstream oxygen introducing means downstream from the downstream inlet opening at the side surface portion of the downstream combustion chamber connected to the end portion on the opening side of the combustion chamber toward the tangential direction of the downstream combustion chamber surface. Even if unburned gas is generated in the combustion chamber by introducing the oxygen introduced into the downstream combustion chamber, the unburned gas is burned in the lean combustion state in which oxygen is excessive in the downstream combustion chamber. As a result, the combustion forms in the combustion chambers on the upstream side and the downstream side are both diffusion combustion, so that the combustion can be appropriately performed while suppressing the occurrence of vibration combustion.

要するに、本発明の管状の火炎を形成するバーナの第2特徴構成によれば、上記管状の火炎を形成するバーナの第1特徴構成による作用効果に加えて、振動燃焼の発生を抑制しながら適切に燃焼させることができる管状の火炎を形成するバーナを提供できる。   In short, according to the second characteristic configuration of the burner that forms the tubular flame of the present invention, in addition to the operational effects of the first characteristic configuration of the burner that forms the tubular flame, it is appropriate while suppressing the occurrence of vibration combustion. It is possible to provide a burner that forms a tubular flame that can be combusted into the flame.

本発明の管状の火炎を形成するバーナの第3特徴構成は、上記管状の火炎を形成するバーナの第1特徴構成に加えて、
両端が開口しかつ前記燃焼室の径と同じ径又はその径よりも大きな径となるように形成された下流側燃焼室が、前記燃焼室の開口側の端部に連通接続される形態で設けられ、
前記下流側燃焼室の側面部に当該下流側燃焼室の筒軸心方向に長いスリット状に開口する下流側導入口から下流側燃焼室内面の接線方向に向けて、酸素及び燃料、又は、それらと希釈剤とを下流部導入気体として前記下流部燃焼室の内部に導入する下流部供給手段が、前記側部導入気体と前記下流部導入気体とを合わせた全導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記全導入気体に含まれる酸素量の割合を示す酸素比が量論比又はその量論比よりも高い全導入気体用酸素比となるように、前記下流部導入気体に含まれる酸素量を定めるように構成されている点を特徴とする。
In addition to the first characteristic configuration of the burner that forms the tubular flame, the third characteristic configuration of the burner that forms the tubular flame of the present invention includes:
A downstream combustion chamber that is open at both ends and formed to have the same diameter as or larger than the diameter of the combustion chamber is provided in a form that is connected to the end of the combustion chamber on the opening side. And
Oxygen and fuel, or these, from the downstream side inlet opening in the side of the downstream side combustion chamber in the shape of a slit long in the cylinder axis direction of the downstream side combustion chamber toward the tangential direction of the downstream side combustion chamber surface And a diluent are introduced into the downstream combustion chamber as a downstream part introduction gas, and the fuel contained in the total introduction gas including the side part introduction gas and the downstream part introduction gas is combusted. So that the oxygen ratio indicating the ratio of the oxygen amount contained in the total introduced gas to the theoretical oxygen amount required for the total introduced gas becomes a stoichiometric ratio or an oxygen ratio for the total introduced gas higher than the stoichiometric ratio, The present invention is characterized in that it is configured to determine the amount of oxygen contained in the downstream portion introduction gas.

すなわち、本発明の管状の火炎を形成するバーナの第3特徴構成は、上述した管状の火炎を形成するバーナの燃焼方法の第3特徴構成を実施するための構成を備えるものであるから、上述した管状の火炎を形成するバーナの燃焼方法の第3特徴構成の欄で記載の作用効果と同様な作用効果を奏することになる。   That is, the third characteristic configuration of the burner that forms the tubular flame of the present invention includes the configuration for implementing the third characteristic configuration of the combustion method of the burner that forms the tubular flame described above. The same effect as the effect described in the column of the third characteristic configuration of the burner combustion method for forming the tubular flame is obtained.

つまり、下流部供給手段によって、燃焼室の開口側の端部に連通接続された下流側燃焼室の側面部に開口する下流側導入口から下流側燃焼室内面の接線方向に向けて、下流部導入気体を下流側燃焼室の内部に導入することにより、燃焼室にて燃料を燃焼させることに加えて、下流側燃焼室にても燃料を燃焼させ、また、燃焼室にて未燃焼ガスを下流側燃焼室にて適切に燃焼させるである。
そして、下流部導入気体に含まれる燃料を、下流側燃焼室にて酸素過剰状態の希薄燃焼状態で燃焼させることにより、上流側及び下流側の燃焼室での燃焼形態がいずれも拡散燃焼になるため、振動燃焼の発生を抑制できるである。
That is, the downstream portion is directed from the downstream introduction port that opens to the side surface portion of the downstream combustion chamber that is connected to the end portion on the opening side of the combustion chamber by the downstream portion supply means toward the tangential direction of the downstream combustion chamber surface. By introducing the introduced gas into the downstream combustion chamber, in addition to burning the fuel in the combustion chamber, the fuel is also burned in the downstream combustion chamber, and unburned gas is removed in the combustion chamber. It is combusted appropriately in the downstream combustion chamber.
Then, the fuel contained in the downstream portion introduction gas is burned in the lean combustion state in which the oxygen is excessive in the downstream combustion chamber, so that the combustion forms in the upstream and downstream combustion chambers are both diffusion combustion. Therefore, the occurrence of vibration combustion can be suppressed.

要するに、本発明の管状の火炎を形成するバーナの第3構成によれば、上述した管状の火炎を形成するバーナの第1特徴構成による作用効果に加えて、振動燃焼の発生を抑制した状態で燃焼させることができる管状の火炎を形成するバーナを提供できる。   In short, according to the third configuration of the burner that forms the tubular flame of the present invention, in addition to the operational effects of the first characteristic configuration of the burner that forms the tubular flame described above, the occurrence of vibration combustion is suppressed. A burner that forms a tubular flame that can be burned can be provided.

本発明の管状の火炎を形成するバーナの第4特徴構成は、上記管状の火炎を形成するバーナの第1〜第3特徴構成のいずれかに加えて、
被加熱用の粉粒体を供給する粉粒体供給手段が、前記端部導入気体に伴って前記粉粒体を前記燃焼室に供給するように構成されている点を特徴とする。
In addition to any of the first to third characteristic configurations of the burner that forms the tubular flame, the fourth characteristic configuration of the burner that forms the tubular flame of the present invention,
The granular material supply means for supplying the granular material for heating is configured to supply the granular material to the combustion chamber along with the end portion introduction gas.

すなわち、本発明の管状の火炎を形成するバーナの第4特徴構成は、上述した管状の火炎を形成するバーナの燃焼方法の第4特徴構成を実施するための構成を備えるものであるから、上述した管状の火炎を形成するバーナの燃焼方法の第4特徴構成の欄で記載の作用効果と同様な作用効果を奏することになる。   That is, since the 4th characteristic structure of the burner which forms the tubular flame of this invention is equipped with the structure for implementing the 4th characteristic structure of the combustion method of the burner which forms the above-mentioned tubular flame, it is the above-mentioned. The same effect as the effect described in the column of the fourth characteristic configuration of the burning method of the burner that forms the tubular flame is obtained.

つまり、粉粒体供給手段が、端部導入気体を、被加熱用の粉粒体を燃焼室内に搬送する搬送用気体として利用しながら、被加熱用の粉粒体を燃焼室に供給するため、被加熱用の粉粒体を燃焼室に供給するための構成の簡素化を図ることができる。   That is, the granular material supply means supplies the heated granular material to the combustion chamber while using the end introduction gas as a conveying gas for conveying the heated granular material into the combustion chamber. Further, it is possible to simplify the configuration for supplying the heated granular material to the combustion chamber.

要するに、本発明の管状の火炎を形成するバーナの第4特徴構成によれば、上記管状の火炎を形成するバーナの第1〜第3特徴構成のいずれかによる作用効果に加えて、被加熱用の粉粒体を燃焼室に供給するための構成の簡素化を図りながら、被加熱用の粉粒体を加熱処理することができる管状の火炎を形成するバーナを提供できる。   In short, according to the fourth characteristic configuration of the burner that forms the tubular flame of the present invention, in addition to the operational effects of any of the first to third characteristic configurations of the burner that forms the tubular flame, The burner which forms the tubular flame which can heat-process the granular material for to-be-heated can be provided, aiming at the simplification of the structure for supplying this granular material to a combustion chamber.

管状の火炎を形成するバーナの模式図Schematic diagram of a burner forming a tubular flame 図1のII−II線断面図II-II sectional view of FIG. 図1のIII−III線断面図III-III sectional view of FIG. 管状の火炎を形成するバーナの各部の寸法を示す表Table showing the dimensions of each part of the burner that forms the tubular flame 燃焼室に管状の火炎が形成された状態を示す断面図Sectional view showing a state in which a tubular flame is formed in the combustion chamber 燃焼室に付着火炎が形成された状態を示す断面図Sectional view showing a state where an adhesion flame is formed in the combustion chamber 第1燃焼方法を実施した場合の撮像画像を示す図The figure which shows the captured image at the time of implementing a 1st combustion method 第2燃焼室を実施した場合の撮像画像を示す図The figure which shows the captured image at the time of implementing a 2nd combustion chamber ガラス原料粉末を加熱処理する管状の火炎を形成するバーナの模式図Schematic diagram of a burner that forms a tubular flame that heats glass raw material powder

以下、本発明の管状の火炎を形成するバーナの燃焼方法を実施する管状の火炎を形成するバーナの実施形態を図面に基づいて説明する。
(管状の火炎を形成するバーナの全体構成)
図1〜図3に示すように、例示する管状の火炎を形成するバーナは、一段目バーナB1と二段目バーナB2とを装備する形態に構成されている。
一段目バーナB1が、一端が閉塞されかつ他端が開口された円筒状の燃焼室N1を形成する燃焼室形成部材1を備え、二段目バーナB2が、両端が開口しかつ燃焼室N1の径よりも大きな径となる下流側燃焼室N2を形成する下流側燃焼室形成部材2を備え、二段目バーナB2の下流側燃焼室形成部材2には、両端が開口しかつ下流側燃焼室N2の径と同じ径となるように形成された燃焼筒3が接続されている。
Hereinafter, an embodiment of a burner for forming a tubular flame for carrying out the method for burning a burner for forming a tubular flame of the present invention will be described with reference to the drawings.
(Overall structure of burner forming tubular flame)
As shown in FIGS. 1-3, the burner which forms the illustrated tubular flame is comprised in the form equipped with 1st stage burner B1 and 2nd stage burner B2.
The first-stage burner B1 includes a combustion chamber forming member 1 that forms a cylindrical combustion chamber N1 that is closed at one end and opened at the other end, and the second-stage burner B2 is open at both ends and is formed in the combustion chamber N1. The downstream combustion chamber forming member 2 that forms the downstream combustion chamber N2 having a diameter larger than the diameter is provided. The downstream combustion chamber forming member 2 of the second burner B2 is open at both ends and has a downstream combustion chamber. A combustion cylinder 3 formed so as to have the same diameter as N2 is connected.

すなわち、下流側燃焼室形成部材2が、燃焼室形成部材1の開口側端部に接続されて、下流側燃焼室N2が燃焼室N1の開口側の端部に連通接続されるように構成され、燃焼筒3が、下流側燃焼室形成部材2の燃焼室形成部材1が接続される側とは反対側の端部に接続されて、燃焼筒3の内部空間が下流側燃焼室N2に連通接続されるように構成されている。   That is, the downstream combustion chamber forming member 2 is connected to the opening end of the combustion chamber forming member 1, and the downstream combustion chamber N2 is connected to the opening end of the combustion chamber N1. The combustion cylinder 3 is connected to the end of the downstream combustion chamber forming member 2 opposite to the side to which the combustion chamber forming member 1 is connected, and the internal space of the combustion cylinder 3 communicates with the downstream combustion chamber N2. Configured to be connected.

本実施形態の管状の火炎を形成するバーナは、酸素ボンベ4から供給される酸素(O2)、燃料ボンベ5から供給される燃料としての圧縮天然ガス(CNG)、希釈剤ボンベ6から供給される希釈剤としての二酸化炭素(CO2)を用いて燃焼させるものであって、後述する管状の火炎を形成するバーナの燃焼方法を実施することにより、燃焼室N1の内部に、燃焼室N1の内面から浮き上がる管状の火炎Fu(図5参照)を形成する状態で燃焼させることができる。   The burner forming the tubular flame of the present embodiment is supplied from oxygen (O 2) supplied from the oxygen cylinder 4, compressed natural gas (CNG) as fuel supplied from the fuel cylinder 5, and the diluent cylinder 6. Combustion is performed using carbon dioxide (CO2) as a diluent, and by performing a combustion method of a burner that forms a tubular flame, which will be described later, from the inner surface of the combustion chamber N1 to the inside of the combustion chamber N1 It can be burned in a state of forming a floating tubular flame Fu (see FIG. 5).

ちなみに、燃焼室N1の内面から浮き上がる管状の火炎Fuを的確に形成するための管状の火炎を形成するバーナの燃焼方法として、本実施形態においては、一段目バーナB1にのみに圧縮天然ガス(CNG)を供給して燃焼させる第1燃焼方法と、一段目バーナB1及び二段目バーナB2の夫々に圧縮天然ガス(CNG)を供給して燃焼させる第2燃焼方法とがある。
そして、これらの燃焼方法を適正通り実施しない場合には、燃焼室N1の内面に付着する付着火炎Ft(図6参照)が形成されることになるが、その詳細は後述する。
Incidentally, as a combustion method of a burner for forming a tubular flame for accurately forming a tubular flame Fu rising from the inner surface of the combustion chamber N1, in this embodiment, a compressed natural gas (CNG) is applied only to the first-stage burner B1. ) And a second combustion method in which compressed natural gas (CNG) is supplied to each of the first stage burner B1 and the second stage burner B2 and burned.
If these combustion methods are not carried out properly, an adhesion flame Ft (see FIG. 6) that adheres to the inner surface of the combustion chamber N1 will be formed, details of which will be described later.

尚、本実施形態の圧縮天然ガス(CNG)は、都市ガス13Aに対応するものであり、その代表組成は、メタンが88.9%、エタンが6.8%、プロパンが3.1%、ブタンが1.2%である。   The compressed natural gas (CNG) of the present embodiment corresponds to the city gas 13A, and its representative composition is 88.9% for methane, 6.8% for ethane, 3.1% for propane, Butane is 1.2%.

(一段目バーナの構成)
一段目バーナB1は、図2に示すように、燃焼室N1の側面部に当該燃焼室の筒軸心方向に長いスリット状に開口する導入口7から燃焼室内面の接線方向に向けて、酸素、圧縮天然ガス及び二酸化炭素を側部導入気体として燃焼室N1の内部に導入し、かつ、燃焼室N1の閉塞側の端部に開口する噴出口8から燃焼室N1の筒軸心方向に沿って、酸素を端部導入気体として燃焼室N1の筒軸心部(中心部)に導入するように構成されている。
(Configuration of the first stage burner)
As shown in FIG. 2, the first-stage burner B1 has an oxygen gas flow from an inlet 7 that opens in a slit shape in the side surface of the combustion chamber N1 in the cylinder axis direction of the combustion chamber toward the tangential direction of the combustion chamber surface. Compressed natural gas and carbon dioxide are introduced into the combustion chamber N1 as side-introducing gas, and along the cylinder axis direction of the combustion chamber N1 from the outlet 8 that opens at the closed end of the combustion chamber N1. Thus, oxygen is introduced into the cylindrical shaft center portion (center portion) of the combustion chamber N1 as an end portion introduction gas.

すなわち、燃焼室N1に、導入口7として、筒軸心方向に長い矩形のスリット状に形成される酸素用スリット7s、及び、筒軸心方向に長い矩形のスリット状に形成される燃料用スリット7nが、それぞれ一対ずつ設けられている。
詳しくは、酸素用スリット7sと燃料用スリット7nとが、燃焼室N1の周方向に沿って交互に位置する状態で、90度ずつ位相を異ならせる状態で設けられている。
That is, as the inlet 7 in the combustion chamber N1, an oxygen slit 7s formed in a rectangular slit shape long in the cylinder axis direction and a fuel slit formed in a rectangular slit shape long in the cylinder axis direction 7n is provided for each pair.
Specifically, the oxygen slits 7s and the fuel slits 7n are provided alternately in the circumferential direction of the combustion chamber N1 in a state where the phases are different by 90 degrees.

そして、酸素を酸素用スリット7sから導入し、かつ、圧縮天然ガスを燃料用スリット7nに導入する形態で、酸素と圧縮天然ガスとを各別に燃焼室N1に導入するように構成されることになり、また、本実施形態においては、二酸化炭素を圧縮天然ガスに混合した状態で燃焼室N1に導入するように構成されている。   Then, oxygen and compressed natural gas are separately introduced into the combustion chamber N1 in such a form that oxygen is introduced from the oxygen slit 7s and compressed natural gas is introduced into the fuel slit 7n. In the present embodiment, carbon dioxide is mixed with compressed natural gas and introduced into the combustion chamber N1.

つまり、図1及び図2に示すように、酸素ボンベ4から供給される酸素を筒軸心方向に広がる帯状形態で流動させる酸素供給体9が、酸素用スリット7sに接続され、燃料ボンベ5から供給される圧縮天然ガスと希釈剤ボンベ6から供給される二酸化炭素とを合流させて混合した混合ガスを筒軸心方向に広がる帯状形態で流動させる燃料供給体10が、燃料用スリット7nに接続されている。   That is, as shown in FIG. 1 and FIG. 2, an oxygen supply body 9 that allows oxygen supplied from the oxygen cylinder 4 to flow in a strip-like form spreading in the axial direction of the cylinder is connected to the oxygen slit 7 s and is supplied from the fuel cylinder 5. A fuel supply body 10 is connected to the fuel slit 7n to flow a mixed gas obtained by combining the supplied compressed natural gas and the carbon dioxide supplied from the diluent cylinder 6 in a strip shape extending in the axial direction of the cylinder. Has been.

図1に示すように、燃焼室N1の閉塞側の端部には、燃焼室N1の筒軸心部に対応する位置から筒軸心方向に沿って伸びる筒体11が、上述の噴出口8に接続される状態で設けられ、酸素ボンベ4から供給される酸素を案内する酸素案内管12が、燃焼室N1の筒軸心に対して傾斜する姿勢で筒体11に接続されている。
したがって、端部導入気体としての酸素が、酸素案内管12及び筒体11を通して噴出口8に案内されて、噴出口8から燃焼室N1の筒軸心部に導入されるように構成されている。
As shown in FIG. 1, a cylindrical body 11 extending along a cylinder axis direction from a position corresponding to the cylinder axis portion of the combustion chamber N1 is provided at the closed end of the combustion chamber N1. An oxygen guide pipe 12 that is provided in a state of being connected to the gas cylinder and guides oxygen supplied from the oxygen cylinder 4 is connected to the cylinder 11 in a posture inclined with respect to the cylinder axis of the combustion chamber N1.
Therefore, oxygen as the end portion introduction gas is guided to the jet port 8 through the oxygen guide tube 12 and the cylinder body 11 and is introduced from the jet port 8 to the cylindrical axis portion of the combustion chamber N1. .

尚、筒体11は、燃焼室N1の内部を観察するサイトホール等の目的で使用されるものであって、通常は、筒体11の先端部は、蓋体等にて閉じられることになる。また、筒体11は、火炎センサー(紫外線光電管)を取付けるのに用いられることもある。
ちなみに、一段目バーナB1の各部の寸法は、図4に示す表に記載の通りである。
The cylindrical body 11 is used for the purpose of a site hole or the like for observing the inside of the combustion chamber N1, and normally the tip of the cylindrical body 11 is closed with a lid or the like. . Moreover, the cylinder 11 may be used for attaching a flame sensor (ultraviolet photoelectric tube).
Incidentally, the dimension of each part of the first stage burner B1 is as described in the table shown in FIG.

(二段目バーナの構成)
二段目バーナB2は、下流側燃焼室N2の側面部に当該下流側燃焼室の筒軸心方向に長いスリット状に開口する下流側導入口15(図3参照)から下流側燃焼室内面の接線方向に向けて、酸素を下流部導入酸素として下流側燃焼室N2の内部に導入する状態と、下流側導入口15から下流側燃焼室内面の接線方向に向けて、酸素、圧縮天然ガス及び二酸化炭素を下流部導入気体として下流側燃焼室N2の内部に導入する状態とに切換えられるように構成されている。
(Configuration of second stage burner)
The second-stage burner B2 is provided on the side surface of the downstream combustion chamber N2 from the downstream inlet 15 (see FIG. 3) that opens in a slit shape that is long in the cylinder axis direction of the downstream combustion chamber. A state in which oxygen is introduced into the downstream combustion chamber N2 as downstream introduced oxygen toward the tangential direction, and oxygen, compressed natural gas, and the like from the downstream inlet 15 toward the tangential direction of the downstream combustion chamber surface. It is configured to be switched to a state in which carbon dioxide is introduced into the downstream combustion chamber N2 as a downstream portion introduction gas.

つまり、上述の第1燃焼方法を実施する場合には、酸素が下流部導入酸素として下流側導入口15から下流側燃焼室N2の内部に導入され、上述の第2燃焼方法を実施する場合には、酸素、圧縮天然ガス及び二酸化炭素が、下流部導入気体として下流側燃焼室N2の内部に導入されることになる。   That is, when the first combustion method described above is performed, oxygen is introduced into the downstream combustion chamber N2 from the downstream inlet 15 as the downstream portion introduction oxygen, and the second combustion method described above is performed. In this case, oxygen, compressed natural gas, and carbon dioxide are introduced into the downstream combustion chamber N2 as a downstream portion introduction gas.

すなわち、図3に示すように、下流側燃焼室N2に、下流側導入口15として、筒軸心方向に長い矩形のスリット状に形成される下流側酸素用スリット15s、及び、筒軸心方向に長い矩形のスリット状に形成される下流側燃料用スリット15nが、それぞれ一対ずつ設けられている。
詳しくは、下流側酸素用スリット15sと下流側燃料用スリット15nとが、下流側燃焼室N2の周方向に沿って交互に位置する状態で、90度ずつ位相を異ならせる状態で設けられている。
That is, as shown in FIG. 3, the downstream oxygen chamber 15 is formed in the downstream combustion chamber N2 as a downstream inlet 15 in the form of a rectangular slit that is long in the cylinder axis direction, and the cylinder axis direction. A pair of downstream fuel slits 15n each formed in a long rectangular slit shape is provided.
Specifically, the downstream oxygen slits 15s and the downstream fuel slits 15n are provided alternately in the circumferential direction of the downstream combustion chamber N2, with the phases being different by 90 degrees. .

そして、第1燃焼方法を実施方法を実施する場合には、下流側酸素供給体16を通して供給される酸素を下流側酸素用スリット15sから下流側燃焼室N2に導入するように構成されることになり、かつ、圧縮天然ガスや希釈剤の下流側燃焼室N2への導入は停止される。   And when implementing a 1st combustion method, it is comprised so that the oxygen supplied through the downstream oxygen supply body 16 may be introduce | transduced into the downstream combustion chamber N2 from the downstream oxygen slit 15s. And the introduction of compressed natural gas and diluent into the downstream combustion chamber N2 is stopped.

また、第2燃焼方法を実施する場合には、酸素を下流側酸素用スリット15sから導入し、かつ、圧縮天然ガスを下流側燃料用スリット15nに導入する形態で、酸素と圧縮天然ガスとを各別に下流側燃焼室N2に導入するように構成され、また、本実施形態においては、二酸化炭素を圧縮天然ガスに混合した状態で下流側燃焼室N2に導入するように構成されている。   When the second combustion method is performed, oxygen and compressed natural gas are introduced in a form in which oxygen is introduced from the downstream oxygen slit 15s and compressed natural gas is introduced into the downstream fuel slit 15n. Each is configured to be introduced into the downstream combustion chamber N2, and in the present embodiment, is configured to be introduced into the downstream combustion chamber N2 in a state where carbon dioxide is mixed with the compressed natural gas.

つまり、図1及び図3に示すように、酸素ボンベ4から供給される酸素を筒軸心方向に広がる帯状形態で流動させる下流側酸素供給体16が、下流側酸素用スリット15sに接続され、燃料ボンベ5から供給される圧縮天然ガスと希釈剤ボンベ6から供給される二酸化炭素とを合流させて混合した混合ガスを筒軸心方向に広がる帯状形態で流動させる下流側燃料供給体17が、下流側燃料用スリット15nに接続されている。   That is, as shown in FIGS. 1 and 3, the downstream oxygen supplier 16 that causes the oxygen supplied from the oxygen cylinder 4 to flow in a strip shape that extends in the axial direction of the cylinder is connected to the downstream oxygen slit 15 s, A downstream side fuel supply body 17 for flowing a mixed gas obtained by joining and mixing the compressed natural gas supplied from the fuel cylinder 5 and the carbon dioxide supplied from the diluent cylinder 6 in a strip shape extending in the axial direction of the cylinder, It is connected to the downstream fuel slit 15n.

ちなみに、二段目バーナB2の各部の寸法、及び、二段目バーナB2に接続される燃焼筒3の寸法は、図4に示す表に記載の通りである。   Incidentally, the dimensions of each part of the second stage burner B2 and the dimensions of the combustion cylinder 3 connected to the second stage burner B2 are as shown in the table shown in FIG.

(燃焼制御構成)
図1に示すように、酸素ボンベ4には、一段目バーナB1の酸素供給体9に対して酸素を供給する第1酸素供給路4A、二段目バーナB2の下流側酸素供給体16に対して酸素を供給する第2酸素供給路4B、及び、一段目バーナB1の酸素案内管12に酸素を供給する第3酸素供給路4Cが接続されている。
(Combustion control configuration)
As shown in FIG. 1, the oxygen cylinder 4 has a first oxygen supply passage 4A for supplying oxygen to the oxygen supply body 9 of the first stage burner B1, and a downstream oxygen supply body 16 of the second stage burner B2. The second oxygen supply path 4B for supplying oxygen and the third oxygen supply path 4C for supplying oxygen to the oxygen guide pipe 12 of the first burner B1 are connected.

第1酸素供給路4Aには、酸素の供給量を調節する第1酸素調節弁20A及び酸素の供給量を測定する第1酸素供給センサ21Aが設けられ、同様に、第2酸素供給路4Bには、酸素の供給量を調節する第2酸素調節弁20B及び酸素の供給量を測定する第2酸素供給センサ21Bが設けられ、また、第3酸素供給路4Cには、酸素の供給量を調節する第3酸素調節弁20C及び酸素の供給量を測定する第3酸素供給センサ21Cが設けられている。   The first oxygen supply path 4A is provided with a first oxygen control valve 20A for adjusting the supply amount of oxygen and a first oxygen supply sensor 21A for measuring the supply amount of oxygen. Similarly, the first oxygen supply path 4A includes a second oxygen supply path 4B. Is provided with a second oxygen control valve 20B for adjusting the oxygen supply amount and a second oxygen supply sensor 21B for measuring the oxygen supply amount, and the third oxygen supply path 4C adjusts the oxygen supply amount. A third oxygen control valve 20C that performs the operation and a third oxygen supply sensor 21C that measures the amount of oxygen supply are provided.

また、燃料ボンベ5には、一段目バーナB1の燃料供給体10に対して圧縮天然ガスを供給する第1燃料供給路5A、及び、二段目バーナB2の下流側燃料供給体17に対して圧縮天然ガスを供給する第2燃料供給路5Bが接続されている。
第1燃料供給路5Aには、圧縮天然ガスの供給量を調節する第1燃料調節弁22A及び圧縮天然ガスの供給量を測定する第1燃料供給センサ23Aが設けられ、同様に、第2燃料供給路5Bには、圧縮天然ガスの供給量を調節する第2燃料調節弁22B及び圧縮天然ガスの供給量を測定する第2燃料供給センサ23Bが設けられている。
Further, the fuel cylinder 5 has a first fuel supply path 5A for supplying compressed natural gas to the fuel supply body 10 of the first stage burner B1, and a downstream fuel supply body 17 for the second stage burner B2. A second fuel supply path 5B for supplying compressed natural gas is connected.
The first fuel supply path 5A is provided with a first fuel adjustment valve 22A for adjusting the supply amount of compressed natural gas and a first fuel supply sensor 23A for measuring the supply amount of compressed natural gas. The supply path 5B is provided with a second fuel adjustment valve 22B that adjusts the supply amount of compressed natural gas and a second fuel supply sensor 23B that measures the supply amount of compressed natural gas.

また、希釈剤ボンベ6には、第1燃料供給路5Aに合流する状態に接続される第1希釈剤供給路6A、及び、第2燃料供給路5Bに合流する状態に接続される第2希釈剤供給路6Bが接続されている。
第1希釈剤供給路6Aには、二酸化炭素の供給量を調節する第1希釈剤調節弁24A及び二酸化炭素の供給量を測定する第1希釈剤供給センサ25Aが設けられ、同様に、第2希釈剤供給路6Bには、二酸化炭素の供給量を調節する第2希釈剤調節弁24B及び二酸化炭素の供給量を測定する第2希釈剤供給センサ25Bが設けられている。
Further, the diluent cylinder 6 is connected to the first diluent supply path 6A connected to the first fuel supply path 5A and the second dilution connected to the second fuel supply path 5B. The agent supply path 6B is connected.
The first diluent supply path 6A is provided with a first diluent adjustment valve 24A that adjusts the supply amount of carbon dioxide and a first diluent supply sensor 25A that measures the supply amount of carbon dioxide. The diluent supply path 6B is provided with a second diluent adjustment valve 24B that adjusts the supply amount of carbon dioxide and a second diluent supply sensor 25B that measures the supply amount of carbon dioxide.

図1に示すように、管状の火炎を形成するバーナの燃焼を制御する制御部Hが、操作指令部Mの指令情報、及び、第1酸素供給センサ21Aにて検出される酸素供給量等の供給量情報に基づいて、第1酸素調節弁20A等の弁類を制御して、管状の火炎を形成するバーナの燃焼を制御するように構成されている。   As shown in FIG. 1, the control unit H that controls the combustion of the burner that forms the tubular flame includes the command information of the operation command unit M, the oxygen supply amount detected by the first oxygen supply sensor 21 </ b> A, and the like. Based on the supply amount information, the valves such as the first oxygen control valve 20A are controlled to control the combustion of the burner forming the tubular flame.

すなわち、操作指令部Mが、燃焼開始の指令情報、燃焼停止の指令情報、上述の第1燃焼方法の燃焼指令情報、上述の第2燃焼方法の燃焼指令情報、及び、第1燃焼方法や第2燃焼方法における燃料供給量、酸素供給量、希釈剤供給量等の各種指令情報を指令するように構成されている。
そして、制御部Hが、操作指令部Mからの指令情報、及び、測定される酸素供給量、測定される燃料供給量、測定される希釈剤供給量等の測定情報に基づいて、一段目バーナB1及び二段目バーナB2についての燃料供給量、酸素供給量、希釈剤供給量を制御すべく、第1酸素調節弁20A等の弁類を制御するように構成されている。
That is, the operation command unit M includes the command information for starting combustion, the command information for stopping combustion, the combustion command information for the first combustion method, the combustion command information for the second combustion method, and the first combustion method and the first Various command information such as a fuel supply amount, an oxygen supply amount, and a diluent supply amount in the two combustion methods is commanded.
Based on the command information from the operation command unit M and the measurement information such as the measured oxygen supply amount, the measured fuel supply amount, the measured diluent supply amount, etc., the control unit H In order to control the fuel supply amount, the oxygen supply amount, and the diluent supply amount for B1 and the second stage burner B2, the valves such as the first oxygen control valve 20A are controlled.

尚、一段目バーナB1及び二段目バーナB2に対応して、点火プラグ等の点火栓やフレームロッド等の火炎検知器が装備されて、制御部Hは、燃焼を開始する際には点火栓を作動させ、かつ、火炎検知器の検出情報に基づいて着火を検出する等、点火栓や火炎検知器を用いて燃焼開始処理を実行することになるが、その制御内容は周知であるので、本実施形態ではその詳細な説明は省略する。   The first stage burner B1 and the second stage burner B2 are equipped with ignition plugs such as spark plugs and flame detectors such as frame rods, and the control unit H starts the ignition plug when starting combustion. And starting the combustion using the spark plug and the flame detector, such as detecting ignition based on the detection information of the flame detector, the control content is well known, In the present embodiment, detailed description thereof is omitted.

ちなみに、本実施形態においては、酸素、圧縮天然ガス及び二酸化炭素を側部導入気体として燃焼室N1供給する側部供給手段D1が、酸素ボンベ4、燃料ボンベ5、希釈剤ボンベ6、第1酸素調節弁20A、第1燃料調節弁22A、第1希釈剤調節弁24A及び制御部Hを主要部として構成され、酸素を端部導入気体として燃焼室N1供給する端部供給手段D2が、酸素ボンベ4、第3酸素調節弁20C及び制御部Hを主要部として構成されることになる。   Incidentally, in the present embodiment, the side supply means D1 for supplying the combustion chamber N1 with oxygen, compressed natural gas and carbon dioxide as the side introduction gas is the oxygen cylinder 4, the fuel cylinder 5, the diluent cylinder 6, the first oxygen. The control valve 20A, the first fuel control valve 22A, the first diluent control valve 24A and the control unit H are configured as main parts, and an end supply means D2 for supplying oxygen to the combustion chamber N1 as an end-introducing gas is an oxygen cylinder. 4. The third oxygen regulating valve 20C and the control unit H are configured as main parts.

また、本実施形態においては、酸素を下流部導入酸素として下流側燃焼室N2の内部に導入する下流部酸素導入手段E1が、酸素ボンベ4、第2酸素調節弁20B及び制御部Hを主要部として構成され、酸素、圧縮天然ガス及び二酸化炭素を下流部導入気体として下流側燃焼室N2の内部に導入する下流部供給手段E2が、酸素ボンベ4、燃料ボンベ5、希釈剤ボンベ6、第2酸素調節弁20B、第2燃料調節弁22B、第2希釈剤調節弁24B及び制御部Hを主要部として構成されることになる。   Further, in the present embodiment, the downstream oxygen introducing means E1 for introducing oxygen into the downstream combustion chamber N2 as downstream introduced oxygen is mainly composed of the oxygen cylinder 4, the second oxygen regulating valve 20B, and the control unit H. The downstream portion supply means E2 for introducing oxygen, compressed natural gas and carbon dioxide into the downstream combustion chamber N2 as the downstream portion introduction gas includes an oxygen cylinder 4, a fuel cylinder 5, a diluent cylinder 6, a second The oxygen control valve 20B, the second fuel control valve 22B, the second diluent control valve 24B, and the control unit H are configured as main parts.

(第1燃焼方法)
次に、一段目バーナB1のみに燃料としての圧縮天然ガス(CNG)を供給して燃焼させる第1燃焼方法について説明する。
この第1燃焼方法においては、側部導入気体を供給する側部供給手段D1が、側部導入気体に含まれる燃料(圧縮天然ガス)を燃焼させるのに必要とする理論酸素量に対して側部導入気体に含まれる酸素量の割合を示す酸素比を、燃料が燃焼可能な下限よりも低い、下限に相当する、又は、下限よりも設定小量だけ高い燃焼制限用酸素比に設定するように構成されている。
(First combustion method)
Next, a first combustion method in which compressed natural gas (CNG) as fuel is supplied only to the first stage burner B1 and burned will be described.
In this first combustion method, the side supply means D1 for supplying the side introduction gas is on the side of the theoretical oxygen amount necessary for burning the fuel (compressed natural gas) contained in the side introduction gas. The oxygen ratio indicating the ratio of the amount of oxygen contained in the part introduction gas is set to a combustion limiting oxygen ratio that is lower than the lower limit at which the fuel can burn, corresponds to the lower limit, or is higher than the lower limit by a set small amount. It is configured.

本実施形態では、燃焼制限用酸素比を、0.2〜0.4の間に設定するように構成されている。
ちなみに、燃料が燃焼可能な下限は、0.3程度であり、燃焼制限用酸素比を、0.4に設定する場合とは、下限よりも設定小量だけ高い比に設定する場合に相当するものであり、設定小量だけ高いとは、0.1程度高いことを意味することになる。
In the present embodiment, the combustion limiting oxygen ratio is set between 0.2 and 0.4.
Incidentally, the lower limit at which the fuel can be combusted is about 0.3, and the case where the combustion limiting oxygen ratio is set to 0.4 corresponds to the case where the lower limit is set to a ratio higher than the lower limit by a set small amount. Therefore, being high by a set small amount means being about 0.1 higher.

また、側部供給手段D1が、燃焼速度あるいは噴出速度を適正状態に調整するために、設定量の二酸化炭素を圧縮天然ガス(CNG)に混合させることになる。
すなわち、側部導入気体に含まれる酸素量と側部導入気体に含まれる二酸化炭素の量である二酸化炭素量とを加えた合計量に対して酸素量が含まれる濃度を示す酸素濃度が20〜40%となるように、二酸化炭素を圧縮天然ガス(CNG)に混合させることになり、本実施形態では、例えば、酸素濃度が30%になるように、二酸化炭素を圧縮天然ガス(CNG)に混合させるように構成されている。
Further, the side supply means D1 mixes a set amount of carbon dioxide with compressed natural gas (CNG) in order to adjust the combustion speed or the ejection speed to an appropriate state.
That is, the oxygen concentration indicating the concentration of the oxygen amount is 20 to the total amount obtained by adding the amount of oxygen contained in the side portion introduction gas and the amount of carbon dioxide that is the amount of carbon dioxide contained in the side portion introduction gas. Carbon dioxide is mixed with compressed natural gas (CNG) so as to be 40%. In this embodiment, for example, carbon dioxide is compressed into compressed natural gas (CNG) so that the oxygen concentration is 30%. It is comprised so that it may mix.

また、この第1燃焼方法においては、端部導入気体を供給する端部供給手段D2が、側部導入気体に含まれる燃料(圧縮天然ガス)を燃焼させるのに必要とする理論酸素量に対して側部導入気体と端部導入気体との夫々に含まれる酸素量を合わせた総括酸素量の割合を示す酸素比が燃焼制限用酸素比よりも高い燃焼用酸素比となるように、端部導入気体の導入量を定めるように構成されている。   Further, in this first combustion method, the end supply means D2 for supplying the end introduction gas has a theoretical oxygen amount required for burning the fuel (compressed natural gas) contained in the side introduction gas. The end portion is set so that the oxygen ratio indicating the ratio of the total oxygen amount including the oxygen amounts contained in the side portion introduction gas and the end portion introduction gas is higher than the combustion limiting oxygen ratio. It is comprised so that the introduction amount of introduction gas may be defined.

本実施形態では、側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して端部導入気体に含まれる酸素量の割合を示す酸素比が0.33になるように、端部導入気体(酸素)の導入量を定めるように構成されている。したがって、本実施形態においては、燃焼用酸素比は、0.53〜0.73の範囲となる。   In this embodiment, the oxygen ratio indicating the ratio of the amount of oxygen contained in the end portion introduction gas to the theoretical amount of oxygen necessary for burning the fuel contained in the side portion introduction gas is 0.33. The end portion introduction gas (oxygen) is introduced in a predetermined amount. Therefore, in this embodiment, the combustion oxygen ratio is in the range of 0.53 to 0.73.

加えて、この第1燃焼方法においては、下流部酸素導入手段E1が、側部導入気体に含まれる燃料(圧縮天然ガス)を燃焼させるのに必要とする理論酸素量から側部導入気体に含まれる酸素量を減算した不足酸素量又はその不足酸素量に設定余剰量を加えた設定酸素量に相当する酸素を下流部導入酸素として、下流側酸素用スリット15sから下流側燃焼室N2の内部に導入するように構成されている。   In addition, in this first combustion method, the downstream oxygen introducing means E1 is included in the side introduced gas from the theoretical oxygen amount necessary for burning the fuel (compressed natural gas) contained in the side introduced gas. The oxygen corresponding to the deficient oxygen amount obtained by subtracting the amount of oxygen generated or the set oxygen amount obtained by adding the set surplus amount to the deficient oxygen amount is used as the downstream portion introduction oxygen, and is introduced from the downstream oxygen slit 15s into the downstream combustion chamber N2. It is configured to be introduced.

本実施形態においては、側部導入気体に含まれる酸素量と下流部導入酸素に含まれる酸素量を加えた合計酸素量が、側部導入気体に含まれる燃料(圧縮天然ガス)を燃焼させるのに必要とする理論酸素量の1.1倍となるように、換言すれば、理論酸素量に対して合計酸素量の割合を示す総括酸素比が1.1となるように、下流部導入酸素として酸素を導入するように構成されている。   In the present embodiment, the total oxygen amount obtained by adding the oxygen amount contained in the side portion introduction gas and the oxygen amount contained in the downstream portion introduction oxygen burns the fuel (compressed natural gas) contained in the side portion introduction gas. In other words, the oxygen introduced into the downstream portion is 1.1 so that the overall oxygen ratio indicating the ratio of the total oxygen amount to the theoretical oxygen amount is 1.1. As shown, oxygen is introduced.

すなわち、この第1燃焼法においては、燃焼制限用酸素比を、0.2〜0.4の間に設定し、且つ、酸素濃度を30%に設定する状態で、側部導入気体を燃焼室N1に供給するように構成され、また、燃焼用酸素比を、0.53〜0.73の間に設定する状態で、端部導入気体を燃焼室N1に供給するように構成されている。
加えて、総括酸素比が1.1となるように、下流部導入酸素を下流側燃焼室N2に導入するように構成されている。
That is, in this first combustion method, the side introduced gas is introduced into the combustion chamber in a state where the combustion limiting oxygen ratio is set between 0.2 and 0.4 and the oxygen concentration is set to 30%. The end portion introduction gas is configured to be supplied to the combustion chamber N1 in a state where the combustion oxygen ratio is set between 0.53 and 0.73.
In addition, the downstream oxygen introduction is introduced into the downstream combustion chamber N2 so that the overall oxygen ratio is 1.1.

(第1燃焼方法の考察)
次に、第1燃焼方法の実験結果を説明する。
この実験は、側部導入気体に含まれる燃料(圧縮天然ガス)を燃焼させるのに必要とする理論酸素量に対して側部導入気体に含まれる酸素量の割合を示す酸素比(一段目バーナ酸素比)β1を、0.2、0.4、0.6、0.8の4段階に変化させる形態で燃焼させ、その燃焼状態を、燃焼筒3の開口部を通して、カメラCm(図1参照)にて撮像したものであり、その撮像結果(撮像画像)を図7の表に示す。
(Consideration of the first combustion method)
Next, experimental results of the first combustion method will be described.
In this experiment, an oxygen ratio (first-stage burner) indicating the ratio of the amount of oxygen contained in the side introduced gas to the theoretical amount of oxygen required for burning the fuel (compressed natural gas) contained in the side introduced gas. (Oxygen ratio) β1 is burned in a form in which it is changed in four stages of 0.2, 0.4, 0.6, and 0.8, and the combustion state is passed through the opening of the combustion cylinder 3 to the camera Cm (FIG. 7), and the imaging result (captured image) is shown in the table of FIG.

ちなみに、この実験は、一段目バーナB1の燃焼量が10KWとなるように圧縮天然ガスを供給する状態で行ったものである。
そして、端部導入気体としての軸方向酸素を、10L/minで導入して、側部導入気体に含まれる圧縮天然ガスを燃焼させるのに必要とする理論酸素量に対して端部導入気体に含まれる酸素量の割合を示す酸素比βaxが0.33になるようにし、また、総括酸素比が1.1となるように、下流部導入酸素を下流側燃焼室N2に導入した。
Incidentally, this experiment was performed in a state where compressed natural gas was supplied so that the combustion amount of the first stage burner B1 was 10 KW.
Then, the axial oxygen as the end-introducing gas is introduced at 10 L / min, and the end-introducing gas is used with respect to the theoretical oxygen amount required to burn the compressed natural gas contained in the side-introducing gas. The downstream portion introduced oxygen was introduced into the downstream combustion chamber N2 so that the oxygen ratio βax indicating the ratio of the amount of oxygen contained was 0.33 and the overall oxygen ratio was 1.1.

図7の表の上段は、端部導入気体(軸方向酸素)を導入しない場合の結果を示し、下段は、端部導入気体(軸方向酸素)を導入した場合の結果を示すものである。
一段目バーナ酸素比β1を、燃焼用制限用酸素比である0.2や0.4に設定する状態で、端部導入気体(軸方向酸素)を導入した場合には、一段目バーナB1の燃焼室N1に、管状の火炎Fuが形成されるものとなる。
The upper part of the table of FIG. 7 shows the result when the end introduction gas (axial oxygen) is not introduced, and the lower part shows the result when the end introduction gas (axial oxygen) is introduced.
In the state where the first stage burner oxygen ratio β1 is set to 0.2 or 0.4 which is the limiting oxygen ratio for combustion, when the end introduction gas (axial oxygen) is introduced, the first stage burner B1 A tubular flame Fu is formed in the combustion chamber N1.

これに対して、端部導入気体(軸方向酸素)を導入しない場合には、一段目バーナ酸素比β1を、0.2、0.4、0.6、0.8のいずれに設定しても、一段目バーナB1の燃焼室N1には、管状の火炎Fuが形成されずに、付着火炎Ftが形成されるものとなる。
ちなみに、一段目バーナ酸素比β1を、0.2に設定する場合には、一段目バーナB1には火炎が形成されずに消火状態となる。
On the other hand, when the end portion introduction gas (axial oxygen) is not introduced, the first stage burner oxygen ratio β1 is set to 0.2, 0.4, 0.6, or 0.8. However, the tubular flame Fu is not formed in the combustion chamber N1 of the first-stage burner B1, but the attached flame Ft is formed.
Incidentally, when the first stage burner oxygen ratio β1 is set to 0.2, no flame is formed in the first stage burner B1, and the fire extinguishing state is established.

また、端部導入気体(軸方向酸素)を導入する場合においても、一段目バーナ酸素比β1を、0.6、0.8に設定すると、一段目バーナB1の燃焼室N1には、管状の火炎Fuが形成されずに、付着火炎Ftが形成されるものとなる。
尚、図7の表に示される撮像画像には、径方向に伸びる線状や点状等の発光部分が存在するが、この発光部分は、加熱された状態にある点火栓や火炎検知器が発光することにより生じたものである。
Further, even when the end portion introduction gas (axial oxygen) is introduced, if the first stage burner oxygen ratio β1 is set to 0.6 and 0.8, the combustion chamber N1 of the first stage burner B1 has a tubular shape. The attached flame Ft is formed without forming the flame Fu.
In the captured image shown in the table of FIG. 7, there are light emitting parts such as lines and dots extending in the radial direction. This light emitting part is formed by a spark plug or a flame detector in a heated state. This is caused by light emission.

以上の実験結果から、上述した第1燃焼方法を実施することにより、一段目バーナB1の燃焼室N1に、管状の火炎Fuが形成されることが確認された。
ちなみに、二段目バーナB2の下流側燃焼室N2には、一段目バーナB1の燃焼室N1から流動する圧縮天然ガスの未燃成分が燃焼する火炎が形成されることになるが、この火炎は、下流側燃焼室N2の内面に付着する付着火炎Ftとなる。
From the above experimental results, it was confirmed that the tubular flame Fu was formed in the combustion chamber N1 of the first burner B1 by performing the first combustion method described above.
Incidentally, in the downstream combustion chamber N2 of the second stage burner B2, a flame is formed in which the unburned components of the compressed natural gas flowing from the combustion chamber N1 of the first stage burner B1 are combusted. The adhering flame Ft adheres to the inner surface of the downstream combustion chamber N2.

(第2燃焼方法)
次に、一段目バーナB1及び二段目バーナB2の夫々に圧縮天然ガス(CNG)を供給して燃焼させる第2燃焼方法について説明する。
この第2燃焼方法においては、側部導入気体を供給する側部供給手段D1が、側部導入気体に含まれる燃料(圧縮天然ガス)を燃焼させるのに必要とする理論酸素量に対して側部導入気体に含まれる酸素量の割合を示す酸素比を、燃料が燃焼可能な下限よりも低い、下限に相当する、又は、下限よりも設定小量だけ高い燃焼制限用酸素比に設定するように構成されている。
(Second combustion method)
Next, a second combustion method in which compressed natural gas (CNG) is supplied to each of the first stage burner B1 and the second stage burner B2 and burned will be described.
In this second combustion method, the side supply means D1 for supplying the side introduction gas is on the side of the theoretical oxygen amount required to burn the fuel (compressed natural gas) contained in the side introduction gas. The oxygen ratio indicating the ratio of the amount of oxygen contained in the part introduction gas is set to a combustion limiting oxygen ratio that is lower than the lower limit at which the fuel can burn, corresponds to the lower limit, or is higher than the lower limit by a set small amount. It is configured.

本実施形態では、燃焼制限用酸素比を、0.2〜0.4の間に設定するように構成されている。
ちなみに、上述の第1燃焼方法の説明でも述べた如く、燃料が燃焼可能な下限は、0.3程度であり、燃焼制限用酸素比を、0.4に設定する場合とは、下限よりも設定小量だけ高い比に設定する場合に相当するものであり、設定小量だけ高いとは、0.1程度高いことを意味することになる。
In the present embodiment, the combustion limiting oxygen ratio is set between 0.2 and 0.4.
Incidentally, as described in the explanation of the first combustion method, the lower limit for combusting the fuel is about 0.3, and the case where the combustion limiting oxygen ratio is set to 0.4 is lower than the lower limit. This corresponds to the case where the ratio is set to a high ratio by the small set amount, and high by the small set amount means that it is about 0.1 higher.

また、この第2燃焼方法においては、端部導入気体を供給する端部供給手段D2が、側部導入気体に含まれる燃料(圧縮天然ガス)を燃焼させるのに必要とする理論酸素量に対して側部導入気体と端部導入気体との夫々に含まれる酸素量を合わせた総括酸素量の割合を示す酸素比が燃焼制限用酸素比よりも高い燃焼用酸素比となるように、端部導入気体の導入量を定めるように構成されている。   Further, in the second combustion method, the end supply means D2 for supplying the end introduction gas has a theoretical oxygen amount required for burning the fuel (compressed natural gas) contained in the side introduction gas. The end portion is set so that the oxygen ratio indicating the ratio of the total oxygen amount including the oxygen amounts contained in the side portion introduction gas and the end portion introduction gas is higher than the combustion limiting oxygen ratio. It is comprised so that the introduction amount of introduction gas may be defined.

本実施形態では、側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して端部導入気体に含まれる酸素量の割合を示す酸素比が0.33になるように、端部導入気体(酸素)の導入量を定めるように構成されている。したがって、本実施形態においては、燃焼用酸素比は、0.53〜0.73の範囲となる。   In this embodiment, the oxygen ratio indicating the ratio of the amount of oxygen contained in the end portion introduction gas to the theoretical amount of oxygen necessary for burning the fuel contained in the side portion introduction gas is 0.33. The end portion introduction gas (oxygen) is introduced in a predetermined amount. Therefore, in this embodiment, the combustion oxygen ratio is in the range of 0.53 to 0.73.

加えて、第2燃焼方法においては、下流部導入気体を供給する下流部供給手段E2が、側部導入気体と下流部導入気体とを合わせた全導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して全導入気体に含まれる酸素量の割合を示す酸素比が量論比又はその量論比よりも高い全導入気体用酸素比となるように、下流部導入気体に含まれる酸素量を定めるように構成されている。   In addition, in the second combustion method, it is necessary for the downstream portion supply means E2 for supplying the downstream portion introduction gas to burn the fuel contained in the total introduced gas including the side portion introduction gas and the downstream portion introduction gas. In the downstream portion introduction gas, the oxygen ratio indicating the ratio of the oxygen amount contained in the total introduced gas to the theoretical oxygen amount is a stoichiometric ratio or an oxygen ratio for the total introduced gas higher than the stoichiometric ratio. It is configured to determine the amount of oxygen contained.

本実施形態においては、側部導入気体に含まれる酸素量と下流部導入気体に含まれる酸素量を加えた合計酸素量が、側部導入気体に含まれる燃料(圧縮天然ガス)と下流部導入気体に含まれる燃料(圧縮天然ガス)との合計燃料を燃焼させるのに必要とする理論酸素量の1.1倍となるように、換言すれば、合計燃料の理論酸素量に対して合計酸素量の割合を示す総括酸素比が1.1となるように、下流部導入酸素として酸素を導入するように構成されている。   In this embodiment, the total amount of oxygen obtained by adding the amount of oxygen contained in the side portion introduction gas and the amount of oxygen contained in the downstream portion introduction gas is the fuel (compressed natural gas) contained in the side portion introduction gas and the downstream portion introduction. In other words, the total oxygen with respect to the theoretical oxygen amount of the total fuel is 1.1 times the theoretical oxygen amount necessary for burning the total fuel with the fuel contained in the gas (compressed natural gas). Oxygen is introduced as the downstream portion introduction oxygen so that the overall oxygen ratio indicating the ratio of the amount is 1.1.

さらに、この第2燃焼方法においては、側部供給手段D1が、燃焼速度あるいは噴出速度を適正状態に調整するために、設定量の二酸化炭素を圧縮天然ガス(CNG)に混合させ、且つ、下流部供給手段E2が、燃焼速度あるいは噴出速度を適正状態に調整するために、設定量の二酸化炭素を圧縮天然ガス(CNG)に混合させることになる。   Furthermore, in this second combustion method, the side supply means D1 mixes a set amount of carbon dioxide with compressed natural gas (CNG) in order to adjust the combustion speed or the jetting speed to an appropriate state, and downstream. The part supply means E2 mixes a set amount of carbon dioxide with compressed natural gas (CNG) in order to adjust the combustion speed or the ejection speed to an appropriate state.

すなわち、側部導入気体に含まれる酸素量、側部導入気体に含まれる二酸化炭素の量である二酸化炭素量、下流部導入気体に含まれる酸素量、及び、下流部導入気体に含まれる二酸化炭素の量である二酸化炭素量を加えた気体合計量に対して、側部導入気体に含まれる酸素量と下流部導入気体に含まれる酸素量とを加えた合計酸素量の酸素濃度を示すバーナ全体の酸素濃度が設定濃度以下となるように、側部導入気体や下流部導入気体に含まれる圧縮天然ガス(CNG)に二酸化炭素を混合させることになる。   That is, the amount of oxygen contained in the side portion introduction gas, the amount of carbon dioxide that is the amount of carbon dioxide contained in the side portion introduction gas, the amount of oxygen contained in the downstream portion introduction gas, and the carbon dioxide contained in the downstream portion introduction gas The total burner showing the oxygen concentration of the total oxygen amount in which the oxygen amount contained in the side portion introduction gas and the oxygen amount contained in the downstream portion introduction gas is added to the total gas amount plus the carbon dioxide amount which is the amount of Carbon dioxide is mixed with compressed natural gas (CNG) contained in the side portion introduction gas or the downstream portion introduction gas so that the oxygen concentration of the gas does not exceed the set concentration.

本実施形態では、例えば、バーナ全体の酸素濃度が50%以下になるように、側部導入気体や下流部導入気体に含まれる圧縮天然ガス(CNG)に二酸化炭素を混合させるように構成されている。   In this embodiment, for example, carbon dioxide is mixed with compressed natural gas (CNG) contained in the side introduction gas or the downstream introduction gas so that the oxygen concentration of the entire burner is 50% or less. Yes.

尚、バーナ全体の酸素濃度が50%以下になるように供給する二酸化炭素は、側部導入気体に含まれる圧縮天然ガス(CNG)と下流部導入気体に含まれる圧縮天然ガス(CNG)とに分配されることになるが、その分配比率は、例えば、側部導入気体に含まれる酸素量と下流部導入気体に含まれる酸素量との比率に合わせた比率に定める等、適宜定めることができる。   Carbon dioxide supplied so that the oxygen concentration of the entire burner is 50% or less is converted into compressed natural gas (CNG) contained in the side introduction gas and compressed natural gas (CNG) contained in the downstream introduction gas. The distribution ratio may be determined as appropriate, for example, by determining the ratio according to the ratio between the amount of oxygen contained in the side portion introduction gas and the amount of oxygen contained in the downstream portion introduction gas. .

すなわち、この第2燃焼法においては、燃焼制限用酸素比を、0.2〜0.4の間に設定する状態で、側部導入気体を燃焼室N1に供給するように構成され、また、燃焼用酸素比を、0.53〜0.73の間に設定する状態で、端部導入気体を燃焼室N1に供給するように構成されている。
加えて、側部導入気体に含まれる燃料(圧縮天然ガス)と下流部導入気体に含まれる燃料(圧縮天然ガス)との合計燃料を燃焼させるのに必要とする理論酸素量に対して、側部導入気体に含まれる酸素量と下流部導入気体に含まれる酸素量を加えた合計酸素量の割合を示す総括酸素比が1.1となるように、下流部導入酸素として酸素を導入するように構成されている。
That is, the second combustion method is configured to supply the side introduction gas to the combustion chamber N1 in a state where the combustion limiting oxygen ratio is set between 0.2 and 0.4, The end portion introduction gas is supplied to the combustion chamber N1 in a state where the combustion oxygen ratio is set between 0.53 and 0.73.
In addition to the theoretical oxygen amount required to burn the total fuel of the fuel contained in the side introduction gas (compressed natural gas) and the fuel contained in the downstream introduction gas (compressed natural gas) Introducing oxygen as downstream introduction oxygen so that the overall oxygen ratio indicating the ratio of the total oxygen amount including the oxygen amount contained in the part introduction gas and the oxygen amount contained in the downstream part introduction gas is 1.1. It is configured.

さらに、バーナ全体の酸素濃度が50%以下になるように、側部導入気体や下流部導入気体に含まれる圧縮天然ガス(CNG)に二酸化炭素を混合させた状態で、側部導入気体を燃焼室N1に供給し、かつ、下流部導入気体を下流側燃焼室N2に供給するように構成されている。   Further, the side introduced gas is combusted in a state where carbon dioxide is mixed with the compressed natural gas (CNG) contained in the side introduced gas or the downstream introduced gas so that the oxygen concentration of the entire burner is 50% or less. It supplies to the chamber N1, and is comprised so that downstream part introduction gas may be supplied to the downstream combustion chamber N2.

(第2燃焼方法の考察)
次に、第2燃焼方法の実験結果を説明する。
この実験は、側部導入気体に含まれる燃料(圧縮天然ガス)を燃焼させるのに必要とする理論酸素量に対して側部導入気体に含まれる酸素量の割合を示す酸素比(一段目バーナ酸素比)β1を、燃焼制限用酸素比である0.2に設定した状態で、バーナ全体の酸素濃度を、48%、53%、59%、67%の4段階に変化させる形態で燃焼させ、その燃焼状態を、燃焼筒3の開口部を通して、カメラCm(図1参照)にて撮像したものであり、その撮像結果を図8の表に示す。
(Consideration of second combustion method)
Next, experimental results of the second combustion method will be described.
In this experiment, an oxygen ratio (first-stage burner) indicating the ratio of the amount of oxygen contained in the side introduced gas to the theoretical amount of oxygen required for burning the fuel (compressed natural gas) contained in the side introduced gas. With the oxygen ratio (β1) set to 0.2, which is the combustion limiting oxygen ratio, the burner is burned in such a manner that the oxygen concentration of the entire burner is changed in four stages of 48%, 53%, 59%, and 67%. The combustion state is imaged by the camera Cm (see FIG. 1) through the opening of the combustion cylinder 3, and the imaging result is shown in the table of FIG.

ちなみに、この実験は、側部導入気体に含まれる圧縮天然ガスと下流部導入気体に含まれる圧縮天然ガスとの合計燃料の理論酸素量に対して、側部導入気体に含まれる酸素量と下流部導入気体に含まれる酸素量との合計酸素量の割合を示す総括酸素比が1.1となるように、下流部導入気体に含まれる酸素量を定めるようにした。
また、端部導入気体としての軸方向酸素を、10L/minで導入した。
By the way, this experiment shows the amount of oxygen contained in the side introduction gas and the downstream of the theoretical oxygen amount of the total fuel of the compressed natural gas contained in the side introduction gas and the compressed natural gas contained in the downstream introduction gas. The amount of oxygen contained in the downstream portion introduction gas was determined so that the overall oxygen ratio indicating the ratio of the total amount of oxygen to the amount of oxygen contained in the portion introduction gas was 1.1.
Moreover, axial oxygen as an end portion introduction gas was introduced at 10 L / min.

図8の表の上段は、一段目バーナB1にて10KWの圧縮天然ガスを燃焼させかつ二段目バーナB2にて5.5KWを燃焼させる状態で、総括燃焼量が15KWとなる状態で燃焼させた場合の結果を示し、下段は、一段目バーナB1にて5.5KWの圧縮天然ガスを燃焼させかつ二段目バーナB2にて10KWを燃焼させる状態で、総括燃焼量が15KWとなる状態で燃焼させた場合の結果を示すものである。   The upper part of the table of FIG. 8 is a state in which compressed natural gas of 10 KW is combusted in the first stage burner B1 and 5.5 KW is combusted in the second stage burner B2, and the total combustion amount is 15 kW. The lower part shows the result of burning 5.5 kW of compressed natural gas in the first stage burner B1 and burning 10 kW in the second stage burner B2, with the overall combustion amount being 15 kW. The result when it is made to burn is shown.

図8の表の上段及び下段のいずれにおいても、バーナ全体の酸素濃度が低くなるほど、付着火炎Ftや輝炎の発生が消滅する傾向となり、一段目バーナB1の燃焼室N1に形成される火炎が管状の火炎Fuに近づくことが分かり、バーナ全体の酸素濃度が50%以下では、一段目バーナB1の燃焼室N1に管状の火炎Fuが形成される。   In both the upper and lower stages of the table of FIG. 8, the lower the oxygen concentration of the entire burner, the more the adhesion flame Ft and the bright flame tend to disappear, and the flame formed in the combustion chamber N1 of the first burner B1 It turns out that it approaches the tubular flame Fu, and when the oxygen concentration of the whole burner is 50% or less, the tubular flame Fu is formed in the combustion chamber N1 of the first burner B1.

尚、図8の表に示される画像には、図7の表に示される画像と同様に、径方向に伸びる線状や点状等の発光部分が存在するが、この発光部分は、上述の第1燃焼方法の実験結果の欄にて記載の如く、加熱された状態にある点火栓や火炎検知器が発光することにより生じるものである。   The image shown in the table of FIG. 8 has a light emitting portion such as a line shape or a dot shape extending in the radial direction as in the image shown in the table of FIG. As described in the column of the experimental results of the first combustion method, this is caused by light emission from a spark plug or a flame detector in a heated state.

以上の実験結果から、上述した第2燃焼方法を実施することにより、一段目バーナB1の燃焼室N1に、管状の火炎Fuが形成されることが確認された。
ちなみに、二段目バーナB2の下流側燃焼室N2には、一段目バーナB1の燃焼室N1から流動する未燃分の圧縮天然ガスや、供給される圧縮天然ガスが燃焼する火炎が形成されることになるが、この火炎は、下流側燃焼室N2の内面に付着する付着火炎となる。それでも、バーナ全体の酸素濃度を50%未満(図8では48%)とすれば、二段目バーナの火炎も、付着がほとんどなくなり管状の火炎に近づく。
From the above experimental results, it was confirmed that the tubular flame Fu was formed in the combustion chamber N1 of the first stage burner B1 by performing the second combustion method described above.
Incidentally, in the downstream combustion chamber N2 of the second stage burner B2, an unburned compressed natural gas flowing from the combustion chamber N1 of the first stage burner B1 and a flame in which the supplied compressed natural gas burns are formed. However, this flame becomes an attached flame that adheres to the inner surface of the downstream combustion chamber N2. Nevertheless, if the oxygen concentration of the entire burner is less than 50% (48% in FIG. 8), the flame of the second stage burner is almost free of adhesion and approaches a tubular flame.

(ガラス原料溶解方法)
図9に示すように、管状の火炎を形成するバーナが、一段目バーナB1、二段目バーナB2及び燃焼筒3を上方から下方に向けて並べる縦向き姿勢で加熱炉Rに設置され、被加熱用の粉粒体としてのガラス原料粉末Gfを供給する粉粒体供給手段Kが、端部導入気体に伴ってガラス原料粉末Gfを燃焼室N1に供給するように構成されている。
(Glass raw material melting method)
As shown in FIG. 9, a burner that forms a tubular flame is installed in the heating furnace R in a vertical posture in which the first-stage burner B1, the second-stage burner B2, and the combustion cylinder 3 are arranged from the upper side to the lower side. The granular material supply means K for supplying the glass raw material powder Gf as the heating granular material is configured to supply the glass raw material powder Gf to the combustion chamber N1 along with the end introduction gas.

すなわち、粉粒体供給手段Kが、ガラス原料末Gfを貯留するホッパー26に、貯留されたガラス原料粉末Gfを設定量ずつ繰出す繰出しロール27を備える形態に構成されている。
本実施形態においては、ホッパー26から繰り出したガラス原料粉末Gfを、ベンチュリー式の混合器28を用いて、酸素ボンベ4から供給される酸素に混合し、ガラス原料粉末Gfが混合された酸素を酸素案内管12に供給するように構成されている。
尚、図9においては、図面を簡略化するために、酸素ボンベ4と混合器28との間に配設されることになる第3酸素調節弁20C及び第3酸素供給センサ21Cの記載を省略している。
That is, the granular material supply means K is configured to include a feeding roll 27 that feeds the stored glass raw material powder Gf by a set amount to the hopper 26 that stores the glass raw material powder Gf.
In the present embodiment, the glass raw material powder Gf fed from the hopper 26 is mixed with oxygen supplied from the oxygen cylinder 4 using a venturi mixer 28, and the oxygen mixed with the glass raw material powder Gf is mixed with oxygen. It is configured to be supplied to the guide tube 12.
In FIG. 9, in order to simplify the drawing, the description of the third oxygen control valve 20C and the third oxygen supply sensor 21C that are disposed between the oxygen cylinder 4 and the mixer 28 is omitted. doing.

したがって、被加熱用の粉粒体としてのガラス原料粉末Gfが、端部導入気体としての酸素に伴って燃焼室N1に供給されて、加熱処理により、溶解されることになる。
また、管状の火炎を形成するバーナの下方側箇所には、加熱されて溶解された溶解ガラスGmを回収するガラス貯留槽29が設けられて、一段目バーナB1及び二段目バーナB2の内部での加熱処理や燃焼炉Rの内部での加熱処理にて溶解されたガラス原料粉末Gfが、溶解ガラスGmとしてガラス貯留槽29に回収されることになる。
Therefore, the glass raw material powder Gf as the heated granular material is supplied to the combustion chamber N1 along with oxygen as the end introduction gas, and is melted by the heat treatment.
Further, a glass storage tank 29 for recovering the molten glass Gm that has been heated and melted is provided at a lower portion of the burner that forms a tubular flame, and is provided inside the first-stage burner B1 and the second-stage burner B2. The glass raw material powder Gf melted by this heat treatment or the heat treatment inside the combustion furnace R is recovered in the glass storage tank 29 as the molten glass Gm.

ちなみに、ガラス原料粉末Gfを溶解処理する際には、管状の火炎を形成するバーナの燃焼方法としては、上述した第1燃焼方法と第2燃焼方法とのうちのいずれをも利用できるものであるが、ガラス原料粉末Gfの溶解には高温が要求されるため、第2燃焼方法が好ましいものである。   Incidentally, when the glass raw material powder Gf is subjected to the melting treatment, any of the above-described first combustion method and second combustion method can be used as a burner combustion method for forming a tubular flame. However, since a high temperature is required for melting the glass raw material powder Gf, the second combustion method is preferable.

〔別実施形態〕
次に、別実施形態を列記する。
(1)上記実施形態においては、管状の火炎を形成するバーナが、一段目バーナB1に加えて、二段目バーナB2を備える場合を例示したが、二段目バーナB2を省略する形態で実施してもよい。
この場合、燃焼用酸素比、すなわち、側部導入気体に含まれる燃料(圧縮天然ガス)を燃焼させるのに必要とする理論酸素量に対して側部導入気体と端部導入気体との夫々に含まれる酸素量を合わせた総括酸素量の割合を示す酸素比を、例えば、0.95〜1.2の範囲に設定して、側部導入気体に含まれる燃料(圧縮天然ガス)を、未燃分の発生を抑制した状態で燃焼させることになる。ちなみに、実験によって、端部供給酸素量を総括の酸素比が量論以上になるように増やしても管状の火炎ができることを確認している。
[Another embodiment]
Next, another embodiment is listed.
(1) In the above embodiment, the case where the burner forming the tubular flame includes the second-stage burner B2 in addition to the first-stage burner B1, but the second-stage burner B2 is omitted is implemented. May be.
In this case, each of the side introduced gas and the end introduced gas with respect to the combustion oxygen ratio, that is, the theoretical oxygen amount required to burn the fuel (compressed natural gas) contained in the side introduced gas. The oxygen ratio indicating the ratio of the total oxygen amount combined with the oxygen amount contained is set within a range of, for example, 0.95 to 1.2, and the fuel (compressed natural gas) contained in the side portion introduction gas is Combustion is performed in a state where generation of fuel is suppressed. By the way, it has been confirmed by experiments that a tubular flame can be formed even when the oxygen supply amount at the end is increased so that the overall oxygen ratio becomes more than the stoichiometry.

(2)上記実施形態においては、燃料として、圧縮天然ガスを例示したが、本発明の「燃料」とは燃焼室N1や下流側燃焼室N2に供給可能な燃料を意味し、いわゆる気体状の燃料ガスの他、液体燃料(燃焼室N1や下流側燃焼室N2への導入前に予蒸発させて燃料ガスとして燃焼室N1に導入するもの、及び、液体のまま燃焼室N1や下流側燃焼室N2に噴霧した後蒸発して燃料ガスとなるもの)を含む。 (2) In the above embodiment, compressed natural gas is exemplified as the fuel. However, the “fuel” in the present invention means a fuel that can be supplied to the combustion chamber N1 or the downstream combustion chamber N2, and is a so-called gaseous state. In addition to the fuel gas, liquid fuel (one that is pre-evaporated before being introduced into the combustion chamber N1 and the downstream combustion chamber N2 and introduced into the combustion chamber N1 as a fuel gas, and the combustion chamber N1 and the downstream combustion chamber as a liquid) After being sprayed on N2 and evaporating to become fuel gas).

(3)上記実施形態においては、燃焼室N1に導入する側部導入気体として、燃料、酸素、及び、希釈剤を示したが、希釈剤を省略して、燃料及び酸素を側部導入気体として導入する形態で実施してもよい。
また、上記実施形態においては、下流側燃焼室N2に導入する下流部導入気体として、燃料、酸素、及び、希釈剤を示したが、希釈剤を省略して、燃料及び酸素を側部導入気体として導入する形態で実施してもよい。
(3) In the above embodiment, fuel, oxygen, and a diluent are shown as the side introduction gas introduced into the combustion chamber N1, but the diluent is omitted and the fuel and oxygen are used as the side introduction gas. You may implement by the form to introduce.
Moreover, in the said embodiment, although the fuel, oxygen, and the diluent were shown as downstream part introduction gas introduced into the downstream combustion chamber N2, a diluent is abbreviate | omitted and fuel and oxygen are side part introduction gas. May be implemented in the form introduced as

(4)上記実施形態では、側部導入気体として、酸素、燃料及び希釈剤を燃焼室N1に導入する形態として、酸素と燃料とを各別に導入しかつ燃料に希釈剤を混合する形態を例示したが、酸素に希釈剤を混合させてもよく、また、酸素、燃料、希釈剤を予め混合させた状態で導入する形態を採用してもよい。ちなみに、火炎の付着を抑える目的には、希釈剤を燃料に加える方が有利である。
ちなみに、希釈剤を省略して、側部導入気体として、酸素と燃料とを燃焼室N1に導入する形態としては、酸素と燃料とを各別に導入して、燃焼室N1内にて混合させる形態や、酸素と燃料とを予め混合させた状態で導入する形態を採用することができる。
(4) In the above embodiment, as the mode of introducing oxygen, fuel and diluent into the combustion chamber N1 as the side introduction gas, a mode of introducing oxygen and fuel separately and mixing the diluent with the fuel is illustrated. However, a diluent may be mixed with oxygen, or a form in which oxygen, fuel, and diluent are introduced in a premixed state may be employed. Incidentally, for the purpose of suppressing the adhesion of the flame, it is advantageous to add a diluent to the fuel.
Incidentally, as a form in which the diluent is omitted and oxygen and fuel are introduced into the combustion chamber N1 as the side introduction gas, oxygen and fuel are separately introduced and mixed in the combustion chamber N1. Alternatively, it is possible to adopt a mode in which oxygen and fuel are introduced in a premixed state.

(5)上記実施形態では、下流部導入気体として、酸素、燃料及び希釈剤を下流側燃焼室N2に導入する形態として、酸素と燃料とを各別に導入しかつ燃料に希釈剤を混合する形態を例示したが、酸素に希釈剤を混合させてもよく、また、酸素、燃料、希釈剤を予め混合させた状態で導入する形態や、酸素、燃料、希釈剤を各別に導入する形態を採用してもよい。
ちなみに、希釈剤を省略して、下流部導入気体として、酸素と燃料とを下流側燃焼室N2に導入する形態としては、酸素と燃料とを各別に導入して、下流側燃焼室N2内にて混合させる形態や、酸素と燃料とを予め混合させた状態で導入する形態を採用することができる。
(5) In the above embodiment, oxygen, fuel, and diluent are introduced into the downstream combustion chamber N2 as the downstream portion introduction gas, and oxygen and fuel are separately introduced, and the diluent is mixed with the fuel. Although a diluent may be mixed with oxygen, a form in which oxygen, fuel, and diluent are mixed in advance, or a form in which oxygen, fuel, and diluent are separately introduced are adopted. May be.
Incidentally, as a form in which the diluent is omitted and oxygen and fuel are introduced into the downstream combustion chamber N2 as the downstream portion introduction gas, oxygen and fuel are separately introduced into the downstream combustion chamber N2. And a form in which oxygen and fuel are introduced in a premixed state can be employed.

(6)上記実施形態では、端部導入気体として、酸素のみを導入する形態を例示したが、端部導入気体として、酸素と希釈剤とを導入させる形態で実施してもよい。
この場合、酸素と希釈剤とを各別に導入する形態や酸素と希釈剤とを予め混合させた状態で導入させる形態を採用できる。
(6) In the above-described embodiment, the form in which only oxygen is introduced as the end portion introduction gas is exemplified. However, the end portion introduction gas may be implemented in a form in which oxygen and a diluent are introduced.
In this case, a form in which oxygen and a diluent are introduced separately or a form in which oxygen and a diluent are introduced in a premixed state can be employed.

(7)上記実施形態では、第1燃焼方法における下流部導入酸素として、酸素のみを導入する形態を例示したが、下流部導入気体として、酸素と希釈剤とを導入させる形態で実施してもよい。
この場合、酸素と希釈剤とを各別に導入する形態や酸素と希釈剤とを予め混合させた状態で導入させる形態を採用できる。
なお、燃焼合成を行う場合には、それに必要な原料を供給することになる。原料の一部が気体である場合には、それを搬送気体として利用することも可能である。
(7) In the above embodiment, the form in which only oxygen is introduced as the downstream part introduced oxygen in the first combustion method is exemplified, but the present invention may be implemented in a form in which oxygen and diluent are introduced as the downstream part introduced gas. Good.
In this case, a form in which oxygen and a diluent are introduced separately or a form in which oxygen and a diluent are introduced in a premixed state can be employed.
In addition, when performing combustion synthesis, the raw material required for it is supplied. When a part of the raw material is a gas, it can be used as a carrier gas.

(8)上記実施形態では、下流側燃焼室N2が燃焼室N1よりも大径に形成される場合を例示したが、下流側燃焼室N2を燃焼室N1と同径に形成する形態で実施してもよい。 (8) In the above embodiment, the case where the downstream combustion chamber N2 is formed with a larger diameter than the combustion chamber N1 is illustrated, but the downstream combustion chamber N2 is formed in the same diameter as the combustion chamber N1. May be.

(9)上記実施形態では、希釈剤として、二酸化炭素を例示したが、他のガスを用いるようにしてもよい。
すなわち、希釈剤としては、不活性ガスを用いるのが適当であり、上記実施形態で記載した二酸化炭素やアルゴンがその代表であるが、窒素酸化物が問題にならない場合には、窒素を希釈剤として用いることもできる。
(9) In the above embodiment, carbon dioxide is exemplified as the diluent, but other gases may be used.
That is, as the diluent, it is appropriate to use an inert gas, and the carbon dioxide and argon described in the above embodiment are typical, but when nitrogen oxide is not a problem, nitrogen is used as the diluent. Can also be used.

7 導入口
15 下流側導入口
D1 側部供給手段
D2 端部供給手段
E1 下流部酸素導入手段
E2 下流部供給手段
Gf 加熱用の粉粒体
K 粉粒体供給手段
N1 燃焼室
N2 下流側燃焼室
7 Inlet 15 Downstream side inlet D1 Side supply means D2 End supply means E1 Downstream oxygen introduction means E2 Downstream supply means Gf Powder for heating K Powder supply means N1 Combustion chamber N2 Downstream combustion chamber

Claims (8)

一端が閉塞されかつ他端が開口された円筒状の燃焼室の側面部に当該燃焼室の筒軸心方向に長いスリット状に開口する導入口から燃焼室内面の接線方向に向けて、酸素及び燃料、又は、それらと希釈剤とを側部導入気体として前記燃焼室の内部に導入し、且つ、前記燃焼室の閉塞側の端部から前記燃焼室の筒軸心方向に沿って、酸素、又は、酸素と希釈剤とを端部導入気体として前記燃焼室の筒軸心部に導入して管状の火炎を形成するバーナの燃焼方法であって、
前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記側部導入気体に含まれる酸素量の割合を示す酸素比を、燃料が燃焼可能な下限よりも低い、前記下限に相当する、又は、前記下限よりも設定小量だけ高い燃焼制限用酸素比に設定し、且つ、
前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記側部導入気体と前記端部導入気体との夫々に含まれる酸素量を合わせた総括酸素量の割合を示す酸素比が前記燃焼制限用酸素比よりも高い燃焼用酸素比となるように、前記端部導入気体の導入量を定めることを特徴とする管状の火炎を形成するバーナの燃焼方法。
From the inlet opening in the shape of a slit that is long in the cylinder axis direction of the combustion chamber to the side of the cylindrical combustion chamber that is closed at one end and opened at the other end, oxygen and Fuel, or those and a diluent, are introduced into the combustion chamber as a side introduction gas, and oxygen extends from the closed end of the combustion chamber along the cylinder axis direction of the combustion chamber. Or, a combustion method of a burner that forms a tubular flame by introducing oxygen and a diluent into the cylindrical shaft center portion of the combustion chamber as an end introduction gas,
The oxygen ratio indicating the ratio of the amount of oxygen contained in the side introduction gas to the theoretical amount of oxygen required to burn the fuel contained in the side introduction gas is lower than the lower limit at which the fuel can burn , Set to a combustion limiting oxygen ratio corresponding to the lower limit, or higher by a set small amount than the lower limit, and
The ratio of the total oxygen amount in which the oxygen amount contained in each of the side portion introduction gas and the end portion introduction gas is combined with the theoretical oxygen amount necessary for burning the fuel contained in the side portion introduction gas. A burner combustion method for forming a tubular flame, characterized in that an introduction amount of the end portion introduction gas is determined so that an oxygen ratio indicating a combustion oxygen ratio is higher than the combustion limiting oxygen ratio.
両端が開口しかつ前記燃焼室の径と同じ径又はその径よりも大きな径となるように形成された下流側燃焼室が、前記燃焼室の開口側の端部に連通接続される形態で設けられ、
前記下流側燃焼室の側面部に当該下流側燃焼室の筒軸心方向に長いスリット状に開口する下流側導入口から下流側燃焼室内面の接線方向に向けて、前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量から前記側部導入気体に含まれる酸素量を減算した不足酸素量又はその不足酸素量に設定余剰量を加えた設定酸素量に相当する酸素又はその酸素と希釈剤とを下流部導入酸素として前記下流側燃焼室の内部に導入する請求項1記載の管状の火炎を形成するバーナの燃焼方法。
A downstream combustion chamber that is open at both ends and formed to have the same diameter as or larger than the diameter of the combustion chamber is provided in a form that is connected to the end of the combustion chamber on the opening side. And
Included in the side introduction gas from the downstream inlet opening in the side of the downstream combustion chamber in a slit shape that is long in the cylinder axis direction of the downstream combustion chamber toward the tangential direction of the downstream combustion chamber surface Oxygen corresponding to a set oxygen amount obtained by adding a set surplus amount to the deficient oxygen amount or the deficient oxygen amount obtained by subtracting the oxygen amount contained in the side introduction gas from the theoretical oxygen amount required for burning the fuel 2. The burner combustion method for forming a tubular flame according to claim 1, wherein the oxygen and diluent are introduced into the downstream combustion chamber as downstream portion introduction oxygen.
両端が開口しかつ前記燃焼室の径と同じ径又はその径よりも大きな径となるように形成された下流側燃焼室が、前記燃焼室の開口側の端部に連通接続される形態で設けられ、
前記下流側燃焼室の側面部に当該下流側燃焼室の筒軸心方向に長いスリット状に開口する下流側導入口から下流側燃焼室内面の接線方向に向けて、酸素及び燃料、又は、それらと希釈剤とを下流部導入気体として前記下流側燃焼室の内部に導入し、
前記側部導入気体と前記下流部導入気体とを合わせた全導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記全導入気体に含まれる酸素量の割合を示す酸素比が量論比又はその量論比よりも高い全導入気体用酸素比となるように、前記下流部導入気体に含まれる酸素量を定めることを特徴とする請求項1記載の管状の火炎を形成するバーナの燃焼方法。
A downstream combustion chamber that is open at both ends and formed to have the same diameter as or larger than the diameter of the combustion chamber is provided in a form that is connected to the end of the combustion chamber on the opening side. And
Oxygen and fuel, or these, from the downstream side inlet opening in the side of the downstream side combustion chamber in the shape of a slit long in the cylinder axis direction of the downstream side combustion chamber toward the tangential direction of the downstream side combustion chamber surface And a diluent as a downstream portion introduction gas introduced into the downstream combustion chamber,
Oxygen indicating the ratio of the amount of oxygen contained in the total introduced gas to the theoretical amount of oxygen required to burn the fuel contained in the total introduced gas including the side portion introduced gas and the downstream portion introduced gas The tubular flame according to claim 1, wherein the amount of oxygen contained in the downstream introduction gas is determined so that the ratio becomes a stoichiometric ratio or an oxygen ratio for the total introduced gas higher than the stoichiometric ratio. Burner burning method to be formed.
被加熱用の粉粒体を、前記端部導入気体に伴って前記燃焼室に供給する請求項1〜3のいずれか1項に記載の管状の火炎を形成するバーナの燃焼方法。   The combustion method of the burner which forms the tubular flame of any one of Claims 1-3 which supplies the granular material for to-be-heated to the said combustion chamber with the said edge part introduction gas. 一端が閉塞されかつ他端が開口された円筒状の燃焼室の側面部に当該燃焼室の筒軸心方向に長いスリット状に開口する導入口から燃焼室面の接線方向に向けて、酸素及び燃料、又は、それらと希釈剤とを側部導入気体として前記燃焼室の内部に導入し、且つ、前記燃焼室の閉塞側の端部から前記燃焼室の筒軸心方向に沿って、酸素、又は、酸素と希釈剤とを端部導入気体として前記燃焼室の筒軸心部に導入して管状の火炎を形成するバーナであって、
前記側部導入気体を供給する側部供給手段が、前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記側部導入気体に含まれる酸素量の割合を示す酸素比を、燃料が燃焼可能な下限よりも低い、前記下限に相当する、又は、前記下限よりも少し高い燃焼制限用酸素比に設定するように構成され、
前記端部導入気体を供給する端部供給手段が、前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記側部導入気体と前記端部導入気体との夫々に含まれる酸素量を合わせた総括酸素量の割合を示す酸素比が前記燃焼制限用酸素比よりも高い燃焼用酸素比となるように、前記端部導入気体の導入量を定めるように構成されていることを特徴とする管状の火炎を形成するバーナ。
From the inlet opening in the shape of a slit long in the cylinder axial direction of the combustion chamber toward the tangential direction of the combustion chamber surface from the side surface portion of the cylindrical combustion chamber whose one end is closed and the other end is opened. Fuel, or those and a diluent, are introduced into the combustion chamber as a side introduction gas, and oxygen extends from the closed end of the combustion chamber along the cylinder axis direction of the combustion chamber. Alternatively, a burner that forms a tubular flame by introducing oxygen and a diluent into the cylindrical shaft center portion of the combustion chamber as an end-introducing gas,
The ratio of the amount of oxygen contained in the side introduction gas with respect to the theoretical amount of oxygen required for burning the fuel contained in the side introduction gas by the side supply means for supplying the side introduction gas. The oxygen ratio shown is configured to be set to a combustion limiting oxygen ratio that is lower than the lower limit at which fuel can burn, corresponds to the lower limit, or slightly higher than the lower limit,
The end supply means for supplying the end-introducing gas has a relationship between the side-introducing gas and the end-introducing gas with respect to the theoretical oxygen amount required to burn the fuel contained in the side-introducing gas. The amount of introduction of the end portion introduction gas is determined so that the oxygen ratio indicating the ratio of the total oxygen amount combined with the oxygen amount contained in each is a combustion oxygen ratio higher than the combustion limiting oxygen ratio. A burner for forming a tubular flame characterized by being formed.
両端が開口しかつ前記燃焼室の径と同じ径又はその径よりも大きな径となるように形成された下流側燃焼室が、前記燃焼室の開口側の端部に連通接続される形態で設けられ、
前記下流側燃焼室の側面部に当該下流側燃焼室の筒軸心方向に長いスリット状に開口する下流側導入口から下流側燃焼室内面の接線方向に向けて下流部導入酸素として前記下流側燃焼室の内部に導入する下流部酸素導入手段が、前記側部導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量から前記側部導入気体に含まれる酸素量を減算した不足酸素量又はその不足酸素量に設定余剰量を加えた設定酸素量に相当する酸素又はその酸素と希釈剤とを前記下流部導入酸素として導入するように構成されている請求項5に記載の管状の火炎を形成するバーナ。
A downstream combustion chamber that is open at both ends and formed to have the same diameter as or larger than the diameter of the combustion chamber is provided in a form that is connected to the end of the combustion chamber on the opening side. And
The downstream side oxygen as the downstream introduced oxygen from the downstream side inlet port that opens in the shape of a slit long in the cylinder axis direction of the downstream side combustion chamber to the tangential direction of the downstream side combustion chamber surface on the side surface portion of the downstream side combustion chamber Insufficient oxygen obtained by subtracting the amount of oxygen contained in the side portion introduction gas from the theoretical amount of oxygen required for the downstream portion oxygen introduction means introduced into the combustion chamber to burn the fuel contained in the side portion introduction gas. The tubular tube according to claim 5, wherein oxygen corresponding to a set oxygen amount obtained by adding a set surplus amount to an amount or a deficient oxygen amount or oxygen and a diluent thereof are introduced as the downstream portion introduction oxygen. A burner that forms a flame.
両端が開口しかつ前記燃焼室の径と同じ径又はその径よりも大きな径となるように形成された下流側燃焼室が、前記燃焼室の開口側の端部に連通接続される形態で設けられ、
前記下流側燃焼室の側面部に当該下流側燃焼室の筒軸心方向に長いスリット状に開口する下流側導口から下流側燃焼室内面の接線方向に向けて、酸素及び燃料、又は、それらと希釈剤とを下流部導入気体として前記下流部燃焼室の内部に導入する下流部供給手段が、前記側部導入気体と前記下流部導入気体とを合わせた全導入気体に含まれる燃料を燃焼させるのに必要とする理論酸素量に対して前記全導入気体に含まれる酸素量の割合を示す酸素比が量論比又はその量論比よりも高い全導入気体用酸素比となるように、前記下流部導入気体に含まれる酸素量を定めるように構成されている請求項5に記載の管状の火炎を形成するバーナ。
A downstream combustion chamber that is open at both ends and formed to have the same diameter as or larger than the diameter of the combustion chamber is provided in a form that is connected to the end of the combustion chamber on the opening side. And
Oxygen and fuel, or these, from a downstream guide opening in the shape of a slit long in the cylinder axis direction of the downstream combustion chamber toward the tangential direction of the downstream combustion chamber surface on the side surface of the downstream combustion chamber And a diluent are introduced into the downstream combustion chamber as a downstream part introduction gas, and the fuel contained in the total introduction gas including the side part introduction gas and the downstream part introduction gas is combusted. So that the oxygen ratio indicating the ratio of the oxygen amount contained in the total introduced gas to the theoretical oxygen amount required for the total introduced gas becomes a stoichiometric ratio or an oxygen ratio for the total introduced gas higher than the stoichiometric ratio, The burner for forming a tubular flame according to claim 5, wherein the burner is configured to determine an amount of oxygen contained in the downstream portion introduction gas.
被加熱用の粉粒体を供給する粉粒体供給手段が、前記端部導入気体に伴って前記粉粒体を前記燃焼室に供給するように構成されている請求項5〜7のいずれか1項に記載の管状の火炎を形成するバーナ。   The granular material supply means which supplies the granular material for to-be-heated is comprised so that the said granular material may be supplied to the said combustion chamber with the said edge part introduction gas. A burner for forming the tubular flame according to item 1.
JP2013250217A 2013-12-03 2013-12-03 Method of burning burner for forming tubular flame and burner for forming tubular flame Active JP6253377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013250217A JP6253377B2 (en) 2013-12-03 2013-12-03 Method of burning burner for forming tubular flame and burner for forming tubular flame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013250217A JP6253377B2 (en) 2013-12-03 2013-12-03 Method of burning burner for forming tubular flame and burner for forming tubular flame

Publications (2)

Publication Number Publication Date
JP2015108462A true JP2015108462A (en) 2015-06-11
JP6253377B2 JP6253377B2 (en) 2017-12-27

Family

ID=53438932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013250217A Active JP6253377B2 (en) 2013-12-03 2013-12-03 Method of burning burner for forming tubular flame and burner for forming tubular flame

Country Status (1)

Country Link
JP (1) JP6253377B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019739A (en) * 2017-11-29 2018-05-11 北京科技大学 A kind of low nitrogen source pure oxygen burning method
JP2019035565A (en) * 2017-08-22 2019-03-07 ダイニチ工業株式会社 Vortex combustor and portable power generator using the same
CN111351030A (en) * 2020-03-25 2020-06-30 济南黄台煤气炉有限公司 Cyclone type airflow field combustion liquid state slag discharging multifunctional boiler
CN112902152A (en) * 2021-02-07 2021-06-04 哈尔滨工业大学 Two-stage combustion chamber combustion device for co-combustion of low-volatile solid fuel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301403A (en) * 1995-05-29 1995-11-14 Mitsubishi Heavy Ind Ltd Combustion device of boiler furnace
JPH1163417A (en) * 1997-08-20 1999-03-05 Ebara Corp Two stage combustor
JP2005090820A (en) * 2003-09-16 2005-04-07 Jfe Steel Kk Tubular flame burner and its combustion method
JP2010210101A (en) * 2009-03-06 2010-09-24 Osaka Gas Co Ltd Composite pipe-like flame burner
JP2012193878A (en) * 2011-03-15 2012-10-11 Osaka Gas Co Ltd Tubular flame burner
JP2014001910A (en) * 2012-06-20 2014-01-09 Osaka Gas Co Ltd Burning method of composite tubular flame burner, and composite tubular flame burner
JP2014001118A (en) * 2012-06-20 2014-01-09 Osaka Gas Co Ltd Glass melting method and glass in-air melting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301403A (en) * 1995-05-29 1995-11-14 Mitsubishi Heavy Ind Ltd Combustion device of boiler furnace
JPH1163417A (en) * 1997-08-20 1999-03-05 Ebara Corp Two stage combustor
JP2005090820A (en) * 2003-09-16 2005-04-07 Jfe Steel Kk Tubular flame burner and its combustion method
JP2010210101A (en) * 2009-03-06 2010-09-24 Osaka Gas Co Ltd Composite pipe-like flame burner
JP2012193878A (en) * 2011-03-15 2012-10-11 Osaka Gas Co Ltd Tubular flame burner
JP2014001910A (en) * 2012-06-20 2014-01-09 Osaka Gas Co Ltd Burning method of composite tubular flame burner, and composite tubular flame burner
JP2014001118A (en) * 2012-06-20 2014-01-09 Osaka Gas Co Ltd Glass melting method and glass in-air melting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019035565A (en) * 2017-08-22 2019-03-07 ダイニチ工業株式会社 Vortex combustor and portable power generator using the same
CN108019739A (en) * 2017-11-29 2018-05-11 北京科技大学 A kind of low nitrogen source pure oxygen burning method
WO2019104649A1 (en) * 2017-11-29 2019-06-06 北京科技大学 Low nitrogen-source pure oxygen combustion method
CN111351030A (en) * 2020-03-25 2020-06-30 济南黄台煤气炉有限公司 Cyclone type airflow field combustion liquid state slag discharging multifunctional boiler
CN112902152A (en) * 2021-02-07 2021-06-04 哈尔滨工业大学 Two-stage combustion chamber combustion device for co-combustion of low-volatile solid fuel
CN112902152B (en) * 2021-02-07 2022-04-22 哈尔滨工业大学 Two-stage combustion chamber combustion device for co-combustion of low-volatile solid fuel

Also Published As

Publication number Publication date
JP6253377B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6705849B2 (en) Two-stage oxygen fuel burner
US11747013B2 (en) Low NOx and CO combustion burner method and apparatus
US20170051913A1 (en) Combustion system with a perforated flame holder and an external flue gas recirculation apparatus
US9366435B2 (en) Ignition torch and pressurized gasification furnace including the same
CN105556210A (en) Porous flame holder for low nox combustion
WO2015123147A2 (en) Burners with flame control and positioning, and related methods
JP6253377B2 (en) Method of burning burner for forming tubular flame and burner for forming tubular flame
SG184920A1 (en) Gas cutting method, gas cutting machine, and cutting tip
CN107208883A (en) There is the improved turbulent burner of fuel injection device in the upstream and downstream of cyclone
US6718773B2 (en) Method for igniting a thermal turbomachine
WO2010126171A1 (en) Blast furnace operation method, low-calorific-value gas combustion method for same, and blast furnace equipment
JP2011106803A (en) Method of burning blast furnace gas by combustion burner, and method of operating blast furnace
WO2018021249A1 (en) Auxiliary burner for electric furnace
CA2787878C (en) Stabilizing combustion of oxygen and flue gas
ES2896929T3 (en) Combustion procedure, and burner for its implementation
US20210190310A9 (en) Burner system including a distal flame holder and a non-reactive fluid source
BR112016002457B1 (en) BURNER ASSEMBLY AND METHOD FOR COMBUSTING GASEOUS OR LIQUID FUEL TO HEAT AN INDUSTRIAL OVEN
JP2006017367A (en) Hydrogen/oxygen burning method and device
CN105917169A (en) High output porous tile burner
JP5704248B2 (en) Tubular flame burner
JP2009115334A (en) Backfire preventing method and device of partial premixing burner
WO2018021248A1 (en) Auxiliary burner for electric furnace
KR101267877B1 (en) Co-combustion burner for low-btu gas with oil
JP4760977B2 (en) Blast furnace operation method
Chudnovsky et al. NOx Reduction in Partially Premixed Flames by Flue Gas Recirculation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171128

R150 Certificate of patent or registration of utility model

Ref document number: 6253377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250