JP2015108055A - Method of imparting antifouling property to polymer - Google Patents

Method of imparting antifouling property to polymer Download PDF

Info

Publication number
JP2015108055A
JP2015108055A JP2013251015A JP2013251015A JP2015108055A JP 2015108055 A JP2015108055 A JP 2015108055A JP 2013251015 A JP2013251015 A JP 2013251015A JP 2013251015 A JP2013251015 A JP 2013251015A JP 2015108055 A JP2015108055 A JP 2015108055A
Authority
JP
Japan
Prior art keywords
antifouling
powder
polymer material
natural radioactive
radioactive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013251015A
Other languages
Japanese (ja)
Other versions
JP6208566B2 (en
Inventor
淑 百瀬
Kiyoshi Momose
淑 百瀬
清生 長谷川
Kiyoo Hasegawa
清生 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013251015A priority Critical patent/JP6208566B2/en
Publication of JP2015108055A publication Critical patent/JP2015108055A/en
Application granted granted Critical
Publication of JP6208566B2 publication Critical patent/JP6208566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antifouling imparting method of a novel structure which is free from the problem of toxicity, can exhibit antifouling effect with less blending amounts, and can maintain antifouling effect for a long term.SOLUTION: This invention provides a method of imparting antifouling property to polymer, wherein natural radioactive substance powder, with non-magnetized or demagnetized ferromagnetic powder, is added to polymer such as a coating, they are mixed and dispersed to impart antifouling property to the general-purpose coating, the coating is applied to the bottom of a ship or the like to be cured, and then subjected to magnetization treatment. As natural radioactive substance powder, normally used is natural radioactive mineral powder comprising Th and/or U as a primary radionuclide.

Description

本発明は、高分子材の防汚性付与方法に関し、特に、船舶等に塗布される防汚塗料として好適な高分子材の防汚性付与方法に関する。   The present invention relates to a method for imparting antifouling property to a polymer material, and more particularly, to a method for imparting antifouling property to a polymer material suitable as an antifouling paint applied to a ship or the like.

本発明において「防汚」とは、「船底、さらには、排水管、漁具、浮標、水中建造物などへの水生生物(海息生物)の付着を防止乃至抑止すること」をいう。   In the present invention, “antifouling” refers to “preventing or inhibiting the attachment of aquatic organisms (marine life organisms) to the bottom of a ship, further drainage pipes, fishing gear, buoys, underwater structures, etc.”.

また、配合単位を示す「部」「%」は、特に断らない限り「質量」単位とする。   Further, “parts” and “%” indicating the blending units are “mass” units unless otherwise specified.

船舶では船底にムラサキ貝、フジツボ、カキなどの貝類が付着すると、船の重量が増加し、水流抵抗が増加する。このため、これらの海息生物の付着による汚染を防止しなければならない。   In a ship, when shellfish such as mussels, barnacles and oysters adhere to the bottom of the ship, the weight of the ship increases and water resistance increases. For this reason, contamination by the attachment of these marine organisms must be prevented.

また、船舶と同様に排水管、漁具、浮標、水中建造物などに海息生物が付着すると、排水効率の低下、重量増加などの弊害が生じる。   In addition, when marine organisms adhere to drain pipes, fishing gear, buoys, underwater structures, etc., similar to ships, harmful effects such as a decrease in drainage efficiency and an increase in weight occur.

そこで、海息生物による汚染を防止するために、防汚性を備えた船底塗料(防汚塗料)が市販されている。該船底塗料は、船底以外の排水管、漁具、浮標、水中建造物などの塗装にも適用されている。   Therefore, in order to prevent pollution by marine organisms, ship bottom paints (antifouling paints) having antifouling properties are commercially available. The ship bottom paint is also applied to paint on drain pipes other than the ship bottom, fishing gear, buoys, underwater structures, and the like.

従来、船底塗料には、海息生物を殺滅させて付着を防止するという防汚性付与方法を駆使するため、毒性の高い有機錫を含有するスズポリマー型加水分解型塗料が使用されてきた。しかし、近年では、海息生物保護の見地から高い毒性物質の使用が制約されたので、有機錫を含有しないスズフリー型の船底塗料(防汚塗料)が使用されるようになった(特許文献1段落0007)。   Conventionally, tin polymer type hydrolyzable paints containing highly toxic organic tin have been used for ship bottom paints in order to make full use of a method for imparting antifouling properties by killing marine organisms to prevent adhesion. . However, in recent years, since the use of highly toxic substances is restricted from the viewpoint of marine life protection, tin-free ship bottom paints (antifouling paints) containing no organic tin have been used (Patent Document 1). Paragraph 0007).

そして、現在使用されている、スズフリー型の船底塗料としては、定義の仕方は文献により若干異なるが、大別して以下の3種がある。   And as for the tin-free type ship bottom paint currently used, the way of definition differs slightly depending on the literature, but there are roughly the following three types.

(a)加水分解形(自己研磨形):塗料に含まれる樹脂の表面が海水により加水分解され、これにともなって塗料に含まれる防汚剤(銅イオン化合物)が水中に少しずつ溶出し、塗膜表面が更新されて防汚を行うもの。   (a) Hydrolyzed form (self-polishing form): The surface of the resin contained in the paint is hydrolyzed by seawater, and as a result, the antifouling agent (copper ion compound) contained in the paint elutes into the water little by little. The coating surface is renewed for antifouling.

(b)水和溶解形(水和分解形、水和崩壊形):ロジン等の親水性の樹脂に亜酸化銅(Cu2O)などの防汚成分を含めたもの。塗膜成分が少しずつ水中に溶出して亜酸化銅などの薬剤が塗膜表面に現れるとともに塗膜表面が滑り易くなって、付着した海息生物が脱落し易くなる。 (b) Hydrated dissolved form (hydrated decomposed form, hydrated disintegrated form): A rosin or other hydrophilic resin containing an antifouling component such as cuprous oxide (Cu 2 O). The coating film components gradually elute into the water and chemicals such as cuprous oxide appear on the coating film surface, and the coating film surface becomes slippery, so that attached marine organisms are easily removed.

(c)抽出形塗料(不溶解性マトリックス形):疎水性樹脂に亜酸化銅(Cu2O)などの防汚成分を含めたもの。塗料自体の溶解はなく、防汚剤のみがマトリックスから水中に少しずつ溶出する。 (c) Extractable paint (insoluble matrix): A hydrophobic resin containing antifouling ingredients such as cuprous oxide (Cu 2 O). There is no dissolution of the paint itself, and only the antifouling agent elutes gradually from the matrix into the water.

しかし、上記に挙げるような防汚塗料は、塗料の溶解ないし防汚剤の溶出により防汚作用を発揮させることを前提としており、防汚効果の長期間にわたる維持は予定していない(特許文献1段落0010)。   However, the antifouling paints listed above are based on the premise that the antifouling action is exhibited by dissolving the paint or elution of the antifouling agent, and it is not planned to maintain the antifouling effect over a long period of time (Patent Document) 1 paragraph 0010).

そこで、特許文献1において、有機金属や毒性化学薬品を含有することなく、メジアン粒子径が3〜10μmの常時マイナスイオンを放出する、モナズ石粉(希土類含有鉱物粉、放射性核種物質)および電気石粉(トルマリン粉)の混合物からなる防汚塗料用添加剤が提案されている(特許請求の範囲・要約等)。   Therefore, in Patent Document 1, monazite powder (rare earth-containing mineral powder, radionuclide substance) and tourmaline powder (a rare earth-containing mineral powder, radionuclide substance) that release a constant negative ion having a median particle diameter of 3 to 10 μm without containing an organic metal or a toxic chemical. An additive for antifouling paints consisting of a mixture of (tourmaline powder) has been proposed (claims, abstract, etc.).

同様に、モナズ石粉および電気石粉を必須とし、ジルコン石粉、バストネス石粉などを、適宜、組合わせ混合して調製した防汚塗料用添加剤が、特許文献2・3等において提案されている(各特許請求の範囲・要約等)。   Similarly, Patent Documents 2 and 3 propose additives for antifouling paint prepared by combining monazite powder and electric stone powder as essential components, and appropriately mixing and mixing zircon stone powder, bustness stone powder, and the like (each (Claims, abstracts, etc.)

なお、特許文献4には、海生物の付着・成長を抑制する棒状の磁石を固定保持した磁気処理装置を備えた海水配管装置が提案されている(要約、特許請求の範囲等)。本海水配管装置は、棒状磁石の磁気を利用して海生物の付着・成長を抑制するもので、本発明の特許性に影響を与えるものではない。   Patent Document 4 proposes a seawater piping device including a magnetic processing device in which a rod-like magnet that suppresses adhesion and growth of marine organisms is fixed and held (summary, claims, etc.). This seawater piping apparatus suppresses the adhesion / growth of marine organisms using the magnetism of a rod-shaped magnet, and does not affect the patentability of the present invention.

特開2000−198965号公報JP 2000-198965 A 特開2002− 80315号公報Japanese Patent Laid-Open No. 2002-80315 特開2004−238454号公報JP 2004-238454 A 特開2000−270755号公報JP 2000-270755 A

しかし、特許文献1〜3における防汚付与剤を添加した防汚塗料は、いずれも、マイナスイオン効果により防汚塗料に防汚性付与乃至防汚性を増大させるものである。マイナスイオンで十分な防汚効果を得るためには、後述の如く、多量の防汚添加剤(マイナスイオンを放出するモナズ石粉や電気石粉)の配合を必要とした。   However, all of the antifouling paints to which the antifouling imparting agent is added in Patent Documents 1 to 3 increase the antifouling property or antifouling property to the antifouling paints by the negative ion effect. In order to obtain a sufficient antifouling effect with negative ions, it was necessary to add a large amount of antifouling additives (monaz stone powder and tourmaline powder releasing negative ions) as described later.

本発明は、上記にかんがみて、毒性の問題がなく、しかも、少ない量の配合で防汚効果を発揮でき、さらには、防汚効果の長期間の維持が可能な、新規な構成の高分子材の防汚付与方法及びそれに使用する防汚添加剤を提供することを目的とする。   In view of the above, the present invention is a polymer having a novel structure that has no toxicity problem, can exhibit an antifouling effect with a small amount of blending, and can maintain the antifouling effect for a long period of time. It aims at providing the antifouling provision method of material, and the antifouling additive used for it.

本発明者らは、上記課題を解決するために、鋭意開発に努力をした結果、下記構成の高分子材の防汚性付与方法に想到した。   As a result of diligent development to solve the above-mentioned problems, the present inventors have come up with a method for imparting antifouling property to a polymer material having the following constitution.

本発明の高分子材の防汚性付与方法の一つは、液状の又は粉粒状の高分子材に未着磁乃至脱磁処理の強磁性体粉とともに天然放射性物質紛を添加して、混合分散させたものを硬化させることを特徴とするものである。   One of the methods for imparting antifouling property of the polymer material of the present invention is to add a natural radioactive substance powder together with a non-magnetized or demagnetized ferromagnetic powder to a liquid or powdery polymer material, and mix The dispersed material is cured.

同じく他の高分子材の防汚性付与方法は、上記構成において、さらに、該硬化高分子材を着磁処理することを特徴とするものである。   Similarly, another method for imparting antifouling property to a polymer material is characterized in that, in the above configuration, the cured polymer material is further subjected to a magnetizing treatment.

同じくさらに他の高分子材の防汚性付与方法は、液状又は粉粒状の高分子材に未着磁乃至脱磁処理した強磁性体粉を添加して、混合分散させたものを硬化させ、さらに、該硬化高分子材を着磁処理することを特徴とするものである。   Similarly, another method for imparting antifouling property to a polymer material is to add a non-magnetized or demagnetized ferromagnetic powder to a liquid or powdery polymer material, and cure the mixed and dispersed material, Furthermore, the cured polymer material is magnetized.

本発明の高分子材の防汚添加剤は、液状又は粉粒状の高分子材に添加し、硬化させた高分子材に水生生物の防汚効果を付与する添加剤であって、未着磁の乃至脱磁処理した強磁性体粉と天然放射性物質粉を混合して、γ線放射線当量(湿度60%、測定距離0mm)(以下、同じ。)で、0.1μSV/h以上を示すものとされていることを特徴とするものである。   The polymer material antifouling additive of the present invention is an additive that imparts an antifouling effect to aquatic organisms on a polymer material that is added to a liquid or powdery polymer material and cured, and is not magnetized. A ferromagnetic powder that has been demagnetized and natural radioactive substance powder are mixed, and a gamma ray radiation equivalent (humidity 60%, measurement distance 0 mm) (hereinafter the same) shows 0.1 μSV / h or more. It is characterized by being.

以下、本発明の実施形態を、塗料に適用する場合を例に採り説明する。本発明は、塗料以外の高分子材製品、例えば、繊維、ゴムシート、プラスチックシート等にも適用できるものである。   Hereinafter, a case where the embodiment of the present invention is applied to a paint will be described as an example. The present invention can also be applied to polymer material products other than paint, such as fibers, rubber sheets, plastic sheets, and the like.

(1)本発明に適用する塗料は、耐水性及び耐摩耗性・耐擦傷性に優れ、かつ、FRP、鋼材、コンクリート、木材等の基材に対する接着性に優れているものが望ましい。海水や淡水が接触する船底、排水管、漁具、浮標、水中構造物(以下「船底等」と略すことがある。)に適用するためである。   (1) The paint applied to the present invention is preferably excellent in water resistance, abrasion resistance and scratch resistance, and excellent in adhesion to substrates such as FRP, steel, concrete, and wood. This is because it is applied to ship bottoms, drain pipes, fishing gear, buoys, and underwater structures (hereinafter sometimes abbreviated as “boat bottoms”) in contact with seawater or fresh water.

すなわち、鋼板(鋼材)用、コンクリート用、木材用、漁具用等の汎用の各種塗料をベースとすることができる。   That is, it can be based on various general-purpose paints for steel plates (steel materials), concrete, wood, fishing gear, and the like.

前記高分子材として、アルキッド樹脂系、アルキル樹脂系、アクリル樹脂系(以上、熱可塑性樹脂)、エポキシ樹脂系、フェノール樹脂系、不飽和ポリエステル系、メラミン樹脂系、ウレタン樹脂系(以上、熱硬化性樹脂)、さらには、ゴム材として塩化ゴム系等を挙げることができる。   As the polymer material, alkyd resin, alkyl resin, acrylic resin (above, thermoplastic resin), epoxy resin, phenol resin, unsaturated polyester, melamine resin, urethane resin (above, thermosetting) And a rubber material such as chlorinated rubber.

なお、従来の前記防汚塗料に適用した場合は、防汚効果のさらなる増大が期待できるが、前記(c)抽出形を除き、(a)加水分解形や(b)水和溶解形は、塗膜の溶解乃至溶出を伴うため、長期間の防汚効果の維持が困難である。   In addition, when applied to the conventional antifouling paint, it can be expected to further increase the antifouling effect, except for the (c) extract form, (a) hydrolyzed form and (b) hydrated dissolved form, Due to dissolution or elution of the coating film, it is difficult to maintain the antifouling effect for a long period of time.

(2)前記強磁性体粉の材料としては、狭義の強磁性体である硬磁性体及び/又は弱い強磁性体である軟磁性体を使用可能である。硬磁性体のみ・軟磁性体のみでもよいが、硬磁性体と軟磁性体との混合系とすることが望ましい。硬磁性体は、軟磁性体に比して、高い残留磁化を得難いが、保持力が大きく消磁され難い。逆に軟磁性体は、硬磁性体に比して、高い残留磁化を得易いが、保持力が小さく消磁されやすい。このため、混合系とした方が両者の磁化特性を生かして、磁気による防汚効果を増大かつ安定させやすい。   (2) As the material of the ferromagnetic powder, a hard magnetic material that is a narrowly defined ferromagnetic material and / or a soft magnetic material that is a weak ferromagnetic material can be used. Only a hard magnetic material or only a soft magnetic material may be used, but a mixed system of a hard magnetic material and a soft magnetic material is desirable. A hard magnetic material is less likely to obtain a high remanent magnetization than a soft magnetic material, but has a large coercive force and is difficult to be demagnetized. On the other hand, soft magnetic materials are easier to obtain higher remanent magnetization than hard magnetic materials, but are less susceptible to demagnetization. For this reason, the mixed system makes it easier to increase and stabilize the antifouling effect due to magnetism by utilizing the magnetization characteristics of both.

ここで硬磁性体としては、アルニコ、サマリウムコバルト、ネオジウム鉄ボロン、ネオジウム鉄窒素、フェライト(Mn−Zn系、Ni−Zn系)、マグネタイト(Fe)、Fe、等を挙げることができる。軟磁性体としては、三酸化二鉄(Fe)、三酸化二クロム(Cr)、等を挙げることができる。 Here, examples of the hard magnetic material include alnico, samarium cobalt, neodymium iron boron, neodymium iron nitrogen, ferrite (Mn—Zn, Ni—Zn), magnetite (Fe 3 O 4 ), Fe, and the like. . Examples of the soft magnetic material include ferric trioxide (Fe 2 O 3 ) and dichromium trioxide (Cr 2 O 3 ).

(3)前記天然放射性物質粉としては、α線、β線、γ線等を発生する本来の天然放射性物質(鉱物)ばかりでなく、同程度のエネルギーを有する電磁波(例えば、マイナスイオン)を発生し、強磁性体を磁化可能な天然物質(鉱物)も含む。   (3) The natural radioactive substance powder generates not only the original natural radioactive substance (mineral) that generates alpha rays, beta rays, gamma rays, but also electromagnetic waves (for example, negative ions) having the same level of energy. It also includes natural substances (minerals) that can magnetize ferromagnetic materials.

天然放射性物質は、通常、一次天然放射性核種とするが、二次天然放射性核種のうち、少なくも5年以上の半減期を有する長寿命のものも使用可能である。これらは、磁化エネルギー値が高く、かつ、長期間の防汚効果を維持可能とするためである。一次放射性核種としては、238U(4.5×10y)、235U(7.04×10y)、232Th(1.405×1010y)、等を、二次放射性核種としては、234U(2.455×10y)、230Th(7.538×10y)、226Ra(1,600×10y)、227Ac(21.77y)、238Ra(5.75y)等を挙げることができる。 The natural radioactive substance is usually a primary natural radionuclide, but a secondary natural radionuclide having a long life of at least 5 years can be used. This is because the magnetization energy value is high and the antifouling effect for a long period can be maintained. As the primary radionuclide, 238 U (4.5 × 10 9 y), 235 U (7.04 × 10 8 y), 232 Th (1.405 × 10 10 y), etc., and as the secondary radionuclide, 234 U (2.455) X 10 5 y), 230 Th (7.538 x 10 4 y), 226 Ra (1,600 x 10 3 y), 227 Ac (21.77 y), 238 Ra (5.75 y) and the like.

これらの天然放射性物質粉は、γ線放射線当量において、人体に対する危険性が低い範囲内(例えば、5μSV/h以下)で、かつ、0.1μSV/h以上、さらには1μSV/h以上、よりさらには2μSV/h以上が望ましい。天然放射性物質粉により強磁性体粉を磁化させる必要があるためである。   These natural radioactive substance powders have a low risk to human body (for example, 5 μSV / h or less) in terms of γ-ray radiation equivalent, and are 0.1 μSV / h or more, further 1 μSV / h or more, and more Is preferably 2 μSV / h or more. This is because it is necessary to magnetize the ferromagnetic powder with the natural radioactive substance powder.

通常、天然放射性物質粉は放射性鉱物を使用する。具体的には、ThO2、UO含有鉱物である、モナザイト、パイロクロワ、ゼノタイム等を挙げることができる。これらの中でも、入手のし易さからモナザイトが特に好ましい。なお、本来の天然放射性物質ではないが、マイナスイオンを継続的に発する炭酸塩鉱石(バネストネサイト)、ケイ酸塩鉱石(ジルコン)、チタン鉱石、等も使用可能である。 Usually, natural radioactive material powder uses radioactive minerals. Specifically, there can be mentioned monazite, pyrocroix, xenotime, etc., which are ThO 2 and U 3 O 8 containing minerals. Among these, monazite is particularly preferable because of its availability. In addition, although it is not an original natural radioactive substance, the carbonate ore (banestone site), the silicate ore (zircon), titanium ore etc. which generate | occur | produce a negative ion continuously can also be used.

上記防汚添加剤を構成する各粉粒体の粒子径(レーザ回折法によるメジアン径)(一次粒径)は、0.1〜5μm、さらには0.5〜3μmの範囲のものが望ましい。   The particle diameter (median diameter by laser diffraction method) (primary particle diameter) of each powder constituting the antifouling additive is preferably in the range of 0.1 to 5 μm, more preferably 0.5 to 3 μm.

粒子径が大きいと、塗料に添加した場合に、液状での塗料に沈降が発生しやすく、均一に添加剤が分散された塗膜を得難くなる。このため、安定した防汚効果が得難くなる。さらには、相対的に比表面積が小さくなり、磁気量および放射線量が相対的に小さくなる。このため添加剤(防汚付与成分)の添加量が相対的に多くなる。なお、粒子の大きさ、形状並びに塗料の粘度(粘性率)によってこれら粒子の沈降現象は一定ではないので、沈降の発生を抑止するために、添加剤の塗料への添加時に、無機系(ベントナイト、アエロジルなど)及び有機系(セルロース系、ウレタン系、アクリル系、脂肪酸系など)の沈降防止剤を適宜に併用することができる。   When the particle size is large, when it is added to the paint, precipitation tends to occur in the liquid paint, and it becomes difficult to obtain a coating film in which the additive is uniformly dispersed. For this reason, it becomes difficult to obtain a stable antifouling effect. Furthermore, the specific surface area becomes relatively small, and the magnetic amount and radiation dose become relatively small. For this reason, the additive amount of the additive (antifouling imparting component) is relatively increased. In addition, since the sedimentation phenomenon of these particles is not constant depending on the size and shape of the particles and the viscosity (viscosity) of the paint, an inorganic system (bentonite) is added when the additive is added to the paint in order to prevent the sedimentation. , Aerosil, etc.) and organic (cellulosic, urethane, acrylic, fatty acid, etc.) anti-settling agents can be used in combination.

逆に、防汚添加剤の一次粒径が小さいと、添加剤が飛散や凝集しやすくなり、防汚添加剤の取扱い性に問題が発生しやすくなる。   On the other hand, when the primary particle size of the antifouling additive is small, the additive is likely to scatter and aggregate, and a problem is likely to occur in the handleability of the antifouling additive.

なお、入手した強磁性体粉および天然放射性物質粉の粒子径が上記範囲の上限値より大きいときは、微粉化して使用する。微粉化は汎用の各種ミル、マイクロナイザー、レイモンドミル、ジェットミル、等の微粉砕機を用いて行うことができる。また、磁性体紛および天然放射性物質粉が凝集している場合は、解砕処理をして使用することが望ましい。   In addition, when the particle diameter of the obtained ferromagnetic powder and natural radioactive substance powder is larger than the upper limit of the above range, it is used after pulverizing. The pulverization can be performed by using a general pulverizer such as various general-purpose mills, micronizers, Raymond mills, jet mills and the like. Moreover, when the magnetic substance powder and the natural radioactive substance powder are agglomerated, it is desirable to use after crushing.

上記強磁性体粉と天然放射性物質粉の混合比は、強磁性体粉磁磁気特性(初期透磁率、飽和磁束密度)と天然放射性物質粉の放射線当量により異なるが、たとえば、γ線放射線当量:1〜5μSV/hの場合、99/1〜85/15、望ましくは、96/4〜90/10とする。天然放射性物質粉の比率が少ないと、着磁処理しない場合において、実用的な防汚効果を発揮できる磁化強さ(磁気モーメント)を形成し難い。   The mixing ratio of the ferromagnetic powder and the natural radioactive substance powder varies depending on the ferromagnetic powder magnetic characteristics (initial permeability, saturation magnetic flux density) and the radiation equivalent of the natural radioactive substance powder. In the case of 1 to 5 μSV / h, 99/1 to 85/15, preferably 96/4 to 90/10. If the ratio of the natural radioactive substance powder is small, it is difficult to form a magnetization strength (magnetic moment) that can exhibit a practical antifouling effect when not magnetized.

上記防汚成分(防汚添加剤)は、塗料における均一分散を容易とするために、あらかじめ、任意量の水、有機溶剤、液状樹脂などと混合しておいてもよい。なお、この際、強磁性体粉は、通常、脱磁処理をする。なお、未着磁であれば必然的ではないが、脱磁処理しておくことが望ましい。磁力による防汚成分を構成する強磁性体粉の凝集現象を確実に阻止するためである。   The antifouling component (antifouling additive) may be mixed in advance with an arbitrary amount of water, an organic solvent, a liquid resin or the like in order to facilitate uniform dispersion in the paint. At this time, the ferromagnetic powder is usually demagnetized. In addition, it is not inevitable if it is not magnetized, but it is desirable to demagnetize it. This is for reliably preventing the aggregation phenomenon of the ferromagnetic powder constituting the antifouling component by the magnetic force.

そして、上記防汚成分物粉は防汚添加剤として、耐水性・耐摩耗性・耐擦傷性等に優れた前記汎用塗料に添加して使用する。すなわち、前述の如く、被塗布物に応じて、それぞれに適した各種汎用塗料(鋼材用、プラスチック(FRPを含む。)用、ゴム用、木材用、コンクリート用、等)に添加して使用する。   The antifouling component powder is used as an antifouling additive added to the general-purpose paint excellent in water resistance, abrasion resistance, scratch resistance and the like. That is, as described above, depending on the object to be coated, various general-purpose paints (for steel, plastic (including FRP), rubber, wood, concrete, etc.) are added and used. .

このときの防汚添加剤の塗料(塗膜成分)100部に対する添加量は、通常0.1〜10部、望ましくは3〜5部の範囲で、防汚要求性能に対応して、適宜、設定する。天然放射性物質の種類により、磁性物質に有効な磁性を付与するに必要な天然放射性物質の混合割合が若干変動する。添加量が多いと、塗料の粘度が上昇して、塗装作業性が低下するおそれがある。   The amount of the antifouling additive added to 100 parts of the paint (coating film component) at this time is usually set within the range of 0.1 to 10 parts, preferably 3 to 5 parts, corresponding to the required antifouling performance. . Depending on the type of natural radioactive substance, the mixing ratio of the natural radioactive substance necessary for imparting effective magnetism to the magnetic substance varies slightly. If the amount added is large, the viscosity of the paint increases and the coating workability may decrease.

上記防汚用添加剤は、前記(a)、(b)、(c)のようなスズフリー型の各種防汚塗料(船底塗料)にも適用できる。その場合も、防汚効果の増大、塗替えスパンの長期化((c)の場合も)に寄与する。   The antifouling additive can also be applied to various tin-free antifouling paints (boat bottom paints) such as (a), (b), and (c). This also contributes to an increase in the antifouling effect and prolonged repainting span (in the case of (c)).

なお、上記適用塗料の形態は、水系(エマルション、サスペンション)、溶剤系、粉体系を問わない。   In addition, the form of the said applied coating material does not ask | require water system (emulsion, suspension), a solvent system, and a powder system.

こうして調製した天然放射性物質紛からなる本発明の防汚塗料による船底への防汚塗膜の形成は、通常、下記の如く行う。   Formation of the antifouling coating film on the ship bottom with the antifouling paint of the present invention comprising the natural radioactive material powder thus prepared is usually carried out as follows.

すなわち、鋼材製、木製、FRP製の船艇において、最初に、船底に付着する水分、塗料、錆、油脂、海息生物などの汚染物を除去し、素地を露出させ、それぞれの素地に適した下塗塗料(プライマー)を製造元の説明書に基づいて塗布する。   In other words, in steel, wooden, and FRP boats, first remove contaminants such as moisture, paint, rust, oils and fats, marine organisms attached to the bottom of the ship, and expose the substrate, making it suitable for each substrate. Apply the primer (primer) according to the manufacturer's instructions.

下塗塗膜が硬化後、上記防汚塗料を、船底に塗布して硬化させて防汚塗膜とする。塗布方法は、特に限定されず、刷毛、スプレー、ローラなどの塗装具を適宜用いて行う。塗膜の厚み、塗装回数、乾燥養生方法などについては市販塗料(被添加塗料)の製造元の塗料説明書に従う。   After the undercoat coating is cured, the antifouling coating is applied to the bottom of the ship and cured to form an antifouling coating. The application method is not particularly limited, and is performed using a paint tool such as a brush, a spray, or a roller as appropriate. Follow the manufacturer's paint instructions for commercial paints (added paints) for coating thickness, number of paintings, and drying curing methods.

こうして形成した防汚塗膜は、防汚添加剤が軟磁性体粉のみの場合を除いて、放射性物質粉により磁性を帯びて、防汚効果を示すため、着磁処理は必然的ではない。   The antifouling coating film thus formed is magnetized by the radioactive substance powder and exhibits an antifouling effect except for the case where the antifouling additive is only soft magnetic powder.

しかし、防汚添加剤が強磁性体粉のみの場合には必然的に、または、強磁性体粉に天然放射性物質粉を併用する場合でさらに強い磁力を付与して防汚効果を増大させたいときには、着磁装置を用いて該塗膜に着磁処理を施す。添加剤が強磁性体粉に天然放射性物質粉を併用する防汚添加剤の場合は、天然放射性物質粉の混合比を低減させることができる。   However, when the antifouling additive is only ferromagnetic powder, it is necessary to increase the antifouling effect by applying a stronger magnetic force when using natural radioactive substance powder together with ferromagnetic powder. In some cases, the coating film is magnetized using a magnetizing device. When the additive is an antifouling additive that uses natural radioactive substance powder in combination with ferromagnetic powder, the mixing ratio of natural radioactive substance powder can be reduced.

具体的には、着磁装置として、高磁力を維持した状態の磁石(ネオジム磁石、サマコバ磁石、フェライト磁石など)を用い、これらの中の何れかの磁石を塗膜の表面に押し当てて、磁石の位置を少しずつ移動させることで着磁処理を完了する。   Specifically, as a magnetizing device, a magnet (neodymium magnet, samacoba magnet, ferrite magnet, etc.) that maintains a high magnetic force is used, and one of these magnets is pressed against the surface of the coating film, The magnetizing process is completed by moving the position of the magnet little by little.

大面積部分の着磁処理には、工業用の大型着磁装置(例えば、コイル式着磁装置)を使用し、上記項記載と同様な方法で着磁処理を行う。   For magnetizing the large area portion, an industrial large-sized magnetizing device (for example, a coil-type magnetizing device) is used, and magnetizing is performed in the same manner as described above.

しかし、着磁装置の磁力が強すぎると、着磁装置との接触面で塗膜が着磁装置に向けて強く吸引され、その結果、塗膜が被塗装物から剥離することがあるので磁石を低磁力のものに交換、又は、装置の磁力を適宜調節する。   However, if the magnetic force of the magnetizing device is too strong, the coating film is strongly attracted toward the magnetizing device at the contact surface with the magnetizing device, and as a result, the coating film may peel from the object to be coated. Is replaced with one having a low magnetic force, or the magnetic force of the apparatus is appropriately adjusted.

なお、着磁処理は、硬化した塗膜に対して行うことが望ましい。塗膜が未硬化の場合、塗膜が流動性を有していることにより、強磁性体粉が凝集したり移動したりして、強磁性体粉の均一分散性が低下するおそれがあるためである。   The magnetizing treatment is desirably performed on the cured coating film. If the coating film is uncured, the ferromagnetic powder may agglomerate or move due to the fluidity of the coating film, which may reduce the uniform dispersibility of the ferromagnetic powder. It is.

本発明は上記説明の通り、強磁性体粉と天然放射性物質粉で防汚添加剤を調製し、該添加剤を既製の塗料に含有させることで磁気を帯びた塗膜を形成させ、磁気を忌避する海息生物の付着を回避し、防汚効果を高めることができる。そして、該防汚塗膜に着磁処理を施すことができるので、防汚力をさらに増大させることができる。   As described above, the present invention prepares an antifouling additive with a ferromagnetic powder and a natural radioactive substance powder, and by adding the additive to a ready-made paint, a magnetic coating film is formed. It can avoid the attachment of marine organisms to avoid and enhance the antifouling effect. Since the antifouling coating film can be magnetized, the antifouling power can be further increased.

本発明に係る防汚添加剤とその添加剤を含有する防汚塗料および、その塗膜の着磁方法の、特長点を纏めると下記の如くになる。   The features of the antifouling additive, the antifouling paint containing the additive, and the method of magnetizing the coating film according to the present invention are summarized as follows.

(1) 上記防汚添加剤で使用する強磁性体物質粉と天然放射性物質粉は、毒性を有していないので海洋を汚染することなく、安全に船底、水中構造物、漁具、浮標、工業用水系設備等に適用することができる。   (1) Ferromagnetic substance powder and natural radioactive substance powder used in the above antifouling additives are not toxic and can safely be used to safely prevent ship pollution, underwater structures, fishing gear, buoys, industrial It can be applied to irrigation facilities.

(2) 甲殻類、貝類などの生物の付着量を大幅に減少させることができる。   (2) The amount of organisms such as crustaceans and shellfish can be greatly reduced.

(3) 塗料の耐久性が増し、前回の塗布から次回の塗布までの塗替え期間が伸びるので、塗替え塗装費用が軽減される。   (3) The durability of the paint is increased and the repainting period from the previous application to the next application is extended, thus reducing the cost of repainting.

(4) 河川、海洋などの、防汚塗膜の磁気による浄化も期待できる。   (4) Magnetic purification of antifouling coatings in rivers, oceans, etc. can also be expected.

(5) 本発明の着磁処理を駆使することで、天然放射性物質粉の使用を低減乃至省略でき、該添加剤の資材コストを全体として低減させることができる。   (5) By making full use of the magnetizing treatment of the present invention, the use of natural radioactive substance powder can be reduced or omitted, and the material cost of the additive as a whole can be reduced.

(6) 現在使用されている船底塗料では6ヶ月又は年にー度、付着した海息生物の除去作業や塗料の塗り替え作業が必要であったが、本発明に係る防汚添加剤及び該添加剤を含有する塗料を用いて、さらには、その形成膜の着磁処理を行うことにより、塗膜の塗替えスパンを長期化することができ、経費の削減効果が高い。また、船舶等の航行スピードアップ、エンジン負荷の軽減、消費燃料の節約、船体の損傷軽減など、その効果は大きい。   (6) The currently used ship bottom paints required removal of attached marine organisms and paint repainting every 6 months or years. The antifouling additive according to the present invention and its addition By using the paint containing the agent and further performing the magnetization treatment of the formed film, it is possible to extend the repainting span of the coating film, and the cost reduction effect is high. In addition, the effect is great, such as speeding up navigation of ships, reducing engine load, saving fuel consumption, and reducing damage to the hull.

以上、防汚塗料(船底塗料)に適用する場合を主として例に採り説明したが、塗料以外の高分子材製品、例えば、繊維、ゴムシート、プラスチックシート、等にも適用できるものである。   As described above, the case where the present invention is applied to an antifouling paint (ship bottom paint) has been mainly described as an example, but the present invention can also be applied to polymer material products other than paint, such as fibers, rubber sheets, and plastic sheets.

その場合は、高分子材は、液状ないし粉粒状(ペレット等)の高分子材に本発明の防汚添加剤(強磁性体粉のみの場合も含む。)を添加し、混練後、紡糸又は成形して硬化(乾燥・固化)させて、適宜、着磁処理を行う。こうして、磁性を帯びた高分子材製品は、漁網としたり、さらに、排水管、浮標、水中建造物等に張り付けたりして、それらに、防汚効果を付与できる。なお、最終製品によっては、インサート成形又は絵付け成形により、防汚膜を製品表面に形成することもできる。   In that case, the polymer material is added to the liquid or powdery (pellet or the like) polymer material with the antifouling additive of the present invention (including the case of only ferromagnetic powder), and after kneading, spinning or It is molded and cured (dried and solidified) and subjected to a magnetizing treatment as appropriate. In this way, the magnetic polymer material product can be used as a fishing net, or further attached to a drain pipe, a buoy, an underwater structure or the like, thereby imparting an antifouling effect thereto. Depending on the final product, an antifouling film can be formed on the product surface by insert molding or painting.

なお、本発明と特許文献1〜3との防汚添加剤の添加量及び粒子径に係るコメントを下記する。   In addition, the comment which concerns on the addition amount and particle diameter of an antifouling additive of this invention and patent documents 1-3 is mentioned below.

特許文献1〜3における防汚添加剤の防汚効果を確実に奏する添加量(実施例レベル)は、特許文献1:含有率9%(外掛け10%)(段落0019)、特許文献2:含有率10%(段落0028)、特許文献3:含有率8%(段落0027)と、本発明の実施例における含有率5%に比して、相対的に多量の配合を必要としている。   The amount of addition (Example level) that reliably exhibits the antifouling effect of the antifouling additive in Patent Documents 1 to 3 is as follows: Patent Document 1: Content 9% (outer coating 10%) (paragraph 0019), Patent Document 2: Compared with the content rate of 10% (paragraph 0028) and Patent Document 3: the content rate of 8% (paragraph 0027) and the content rate of 5% in the examples of the present invention, a relatively large amount of blending is required.

また、これらの防汚添加剤を構成する粉粒体の粒径は、特許文献1:3〜10μm(特許請求の範囲)、特許文献2:1〜10μm(段落0012)、特許文献3:1〜25μm(段落0016)と、本発明の実施例(強磁性体粉:1.5〜2.0μm、放射性セラミックス粉:0.5〜1.0μmに比して、相対的に大きい。   In addition, the particle sizes of the particles constituting these antifouling additives are: Patent Document 1: 3 to 10 μm (Claims), Patent Document 2: 1 to 10 μm (Paragraph 0012), Patent Document 3: 1 ˜25 μm (paragraph 0016) and the embodiment of the present invention (ferromagnetic powder: 1.5 to 2.0 μm, radioactive ceramic powder: 0.5 to 1.0 μm), which is relatively large.

このため、上記各特許文献における防汚添加剤を含有する防汚塗料を船底に適用するに際して、防汚塗料の粘度増大による塗布作業性の低下、及び、塗布後硬化前の流動(液状)塗膜における沈降速度の速いことも相まって均一な防汚塗膜を得難い。さらには、硬化後の防汚塗膜の表面平滑性を得難く、汚物が付着し易いとともに、航行中に摩耗しやすくなり、塗膜耐久期間の長期化が困難であると考えられる。   For this reason, when applying the antifouling paint containing the antifouling additive in each of the above patent documents to the ship bottom, the coating workability is reduced due to the increase in viscosity of the antifouling paint, and the fluid (liquid) coating before curing after application is applied. It is difficult to obtain a uniform antifouling coating film due to the high sedimentation rate of the membrane. Furthermore, it is difficult to obtain the surface smoothness of the antifouling coating film after curing, and the filth tends to adhere to the coating film.

以下、実施例によって、本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

下記電磁波強度およびγ線放射線当量は、下記に準拠して測定したものである。   The following electromagnetic wave intensity and γ-ray radiation equivalent are measured according to the following.

1)電磁波強度・・・電磁波測定器(「テラメータ-TM-701」カネテック株式会社商品名)を用いて、湿度60%、測定距離30mmにおけるものを測定した。     1) Electromagnetic wave intensity: Measured at 60% humidity and 30 mm measurement distance using an electromagnetic wave measuring device ("TERRAMETR-TM-701", trade name of Kanetec Corporation).

2)γ線放射線当量・・・ガイガー測定器(「SC intillation Survey Meter PA-100」γ線測定用、堀場製作所社商品名)を用いて、被測定物に接して(湿度60%、測定距離0mm)測定した。     2) γ-ray radiation equivalent: Using a Geiger measuring instrument (“SC intillation Survey Meter PA-100” for γ-ray measurement, product name of Horiba, Ltd.), contact the object to be measured (humidity 60%, measurement distance) 0 mm).

各実施例(試験例)で使用した強磁性体粉および天然放射性物質粉は下記特性値(製造会社製品説明書に基づく。)を有するものを使用した。   The ferromagnetic powder and natural radioactive substance powder used in each example (test example) were those having the following characteristic values (based on manufacturer's product instructions).

<強磁性体粉>
1)硬磁性体粉A(市販Mn-Zn系フェライト粉)
粒子径:1.5〜2.0μm
嵩比重:1.3
初期透磁率:6000-12000μi
飽和磁束密度:350-460mT
2)硬磁性体粉B(市販Ni-Zn系フェライト粉 )
粒子径:1.5〜1.8μm
嵩比重:1.3
初期透磁率:5-2000μi
飽和磁束密度:220-450mT
3)軟磁性体粉(市販三酸化二鉄(Fe2O3)粉;三津和化学薬品製)
粒子径:不明
嵩比重:1.4
<Ferromagnetic powder>
1) Hard magnetic powder A (commercially available Mn-Zn ferrite powder)
Particle size: 1.5-2.0μm
Bulk specific gravity: 1.3
Initial permeability: 6000-12000μi
Saturation magnetic flux density: 350-460mT
2) Hard magnetic powder B (commercially available Ni-Zn ferrite powder)
Particle size: 1.5-1.8μm
Bulk specific gravity: 1.3
Initial permeability: 5-2000μi
Saturation magnetic flux density: 220-450mT
3) Soft magnetic powder (commercially available ferric trioxide (Fe 2 O 3 ) powder; manufactured by Mitsuwa Chemicals)
Particle size: unknown
Bulk specific gravity: 1.4

<天然放射性物質粉>
1)放射性セラミックス粉
(モナザイト/ジルコン系;美濃顔料化学社製)
粒子径:0.5〜1.0μm
嵩比重:1.1
電磁波強度:0.29mG/h
γ放射線当量:4.77μSV/h
放射線濃度:250Bq/h
<Natural radioactive material powder>
1) Radioactive ceramic powder (monazite / zircon system; manufactured by Mino Pigment Chemical Co., Ltd.)
Particle size: 0.5-1.0μm
Bulk specific gravity: 1.1
Electromagnetic field strength: 0.29mG / h
γ radiation equivalent: 4.77μSV / h
Radiation concentration: 250Bq / h

<実施例群I>
強磁性体粉(硬磁性体粉A・B、軟磁性体粉、混合系強磁性体粉)と、天然放射性物質粉(放射性セラミックス粉)とを強磁性体粉/天然放射性物質粉=98/2の混合物を添加剤として、表1に示す各市販塗料と組み合わせて、塗料100部(塗膜形成成分)に対して3部ずつ添加混合し、実施例群Iの各防汚塗料を調製した。
<Example group I>
Ferromagnetic powder (hard magnetic powder A / B, soft magnetic powder, mixed-type ferromagnetic powder) and natural radioactive powder (radio ceramic powder) ferromagnetic powder / natural radioactive powder = 98 / Using the mixture of No. 2 as an additive, in combination with each commercially available paint shown in Table 1, 3 parts were added to and mixed with 100 parts of paint (coating film forming component) to prepare each antifouling paint of Example Group I. .

なお、表示の各塗料は、下記の市販塗料をそれぞれ使用した。
1)アクリル樹脂塗料:
「アスカ」(関西ペイント株式会社商品名)
常温架橋形アクリル樹脂系つや有り塗料/水性
2)市販アルキド樹脂塗料:
アクリル変性アルキッド樹脂塗料/油性
「カンペOFP」 (関西ペイント株式会社商品名)
3)船底塗料:加水分解型船底塗料/油性
「なぎ塗料一番」(日本ペイントマリン株式会社商品名)
In addition, the following commercially available coating materials were used for each indicated coating material.
1) Acrylic resin paint:
"Asuka" (Kansai Paint Co., Ltd. product name)
Room temperature cross-linked acrylic resin-based glossy paint / water-based 2) Commercially available alkyd resin paint:
Acrylic-modified alkyd resin paint / oil-based "Kampe OFP" (Kansai Paint Co., Ltd. trade name)
3) Ship bottom paint: Hydrolyzed ship bottom paint / oil-based "Nagi Paint Ichiban" (Nippon Paint Marine Co., Ltd. trade name)

上記各防汚塗料を、FRP板(ガラス繊維マット強化不飽和ポリエステル、4mmt×70mm×150mm)に2回塗り(平均塗布量:約2.3g)を施した供試体を各2枚ずつ作成した。   Two test pieces were prepared by applying each of the antifouling paints twice to an FRP plate (glass fiber mat reinforced unsaturated polyester, 4 mm t × 70 mm × 150 mm) (average coating amount: about 2.3 g).

そして、供試体を4日間放置養生した後に、供試体の一種類毎の各1枚ずつ、合計12枚を選び、これらに下記の磁石を用いて着磁処理をおこなった。具体的には、供試体の塗膜を損傷させないように、塗膜と磁石との接触面にキッチンペーパーを挟んでから、磁石を徐々に移動させ、塗膜全面を着磁処理をして着磁処理有とした。残りの供試体12枚については、着磁処理無とした。   Then, after the specimens were left and cured for 4 days, a total of 12 specimens were selected, one for each kind of specimen, and subjected to magnetization treatment using the following magnets. Specifically, in order not to damage the coating film on the specimen, sandwich the kitchen paper between the contact surface of the coating film and the magnet, move the magnet gradually, and apply the magnetizing treatment to the entire coating film surface. With magnetic treatment. The remaining 12 specimens were not magnetized.

磁石仕様・・・ネオジウム磁石、
寸法:78.5mm×4.5mm×1.5mm、
表面集束密度:420mT
吸着力:7.5kgf
Magnet specification: Neodymium magnet,
Dimensions: 78.5mm x 4.5mm x 1.5mm,
Surface focusing density: 420mT
Adsorption power: 7.5kgf

(海中浸漬試験)
上記で作成した着磁処理無と着磁処理有の上記各供試体2組(合計24枚)を、下記条件で海中に浸漬させた状態で放置し、海息生物の付着状態を観察した。
設置場所:沖縄県宜野湾市真喜志地域 宜野湾港マリーナ港内
設置期間:平成18年3月3日〜平成18年10月6日
浸漬状態:水深 約1.5mに懸垂
(Underwater immersion test)
The above-mentioned two specimens (24 sheets in total) with and without magnetizing treatment created above were left immersed in the sea under the following conditions, and the state of attachment of marine organisms was observed.
Installation location: Makishi area, Ginowan City, Okinawa Prefecture Ginowan Port Marina Port Installation period: March 3, 2006 to October 6, 2006 Immersion: Suspended at a depth of about 1.5 m

水中から前記各供試体を引き上げ、表面の汚染状態(海息生物付着状態)を観察した評価結果(以下、単に「評価結果」という。)を表1に示す。   Table 1 shows the evaluation results (hereinafter simply referred to as “evaluation results”) obtained by pulling up the test specimens from the water and observing the surface contamination state (sea marine organism adhesion state).

評価基準は下記の通りとした。
◎:貝甲類の付着しない部分が全体の95%以上の状態、
○:貝甲類の付着しない部分が全体の70%以上、95%未満の状態、
△:貝甲類の付着しない部分が全体の50%以上、70%未満の状態、
▲:貝甲類の付着しない部分が全体の20%以上、50%未満の状態、
×:貝甲類の付着しない部分が全体の20%未満、
―:試験せず。
The evaluation criteria were as follows.
◎: 95% or more of the parts where the shellfish are not attached,
○: The portion where the shellfish is not attached is 70% or more and less than 95% of the total,
△: The portion where the shellfish is not attached is 50% or more and less than 70% of the total,
▲: The part where the shellfish does not adhere is 20% or more of the whole and less than 50%,
×: less than 20% of the shellfish is not attached,
-: Not tested.

Figure 2015108055
Figure 2015108055

<実施例群II>
実施例群Iにおいて、添加剤を強磁性体粉/天然放射性物質粉=95/5とし、添加剤と塗料との組み合わせを表3に示すものとした以外は、同様にして、各防汚塗料を調製した。そして調製した各防汚塗料を用い、実施例群Iと同様にして、FRP板又は鋼板に塗布して、供試体を調製し、海中浸漬試験を行った。評価結果を表2に示す。
<Example group II>
Each antifouling paint was the same as in Example Group I except that the additive was ferromagnetic powder / natural radioactive substance powder = 95/5 and the combination of additive and paint was shown in Table 3. Was prepared. And using each prepared antifouling paint, it applied to the FRP board or the steel plate like Example group I, the specimen was prepared, and the underwater immersion test was done. The evaluation results are shown in Table 2.

Figure 2015108055
Figure 2015108055

<実施例群III>
実施例群1において、添加剤を強磁性体粉のみとし、添加剤と塗料との組み合わせを表2に示すものとした以外は、同様にして、各防汚塗料を調製した。そして、調製した各防汚塗料を用い、実施例群Iと同様にして、FRP板に塗布して、供試体を作成し、海中浸漬試験を行った。評価結果を表3に示す。
<Example group III>
In the example group 1, each antifouling paint was prepared in the same manner except that only the ferromagnetic powder was used as the additive and the combination of the additive and the paint was shown in Table 2. And using each prepared antifouling paint, it applied to the FRP board like Example group I, the specimen was created, and the underwater immersion test was done. The evaluation results are shown in Table 3.

Figure 2015108055
Figure 2015108055

なお、実施例群I・II・IIIにおける各供試体の塗膜のγ放射線当量(測定距離0mm)は、いずれも、天然放射性物質粉より若干低い約4.5μSVであると推定される。   The γ radiation equivalent (measurement distance 0 mm) of the coating film of each specimen in Example Group I, II, and III is estimated to be about 4.5 μSV, which is slightly lower than that of natural radioactive substance powder.

<参考例群>
表4に示す前記各市販塗料を用いて、実施例群Iと同様にして、FRP板又は鋼板に塗布して、着磁処理は施さずに供試体を作成し、海中浸漬試験を行った。評価結果を表4に示す。
<Reference example group>
Using each of the commercially available paints shown in Table 4, in the same manner as in Example Group I, it was applied to an FRP plate or a steel plate, a specimen was prepared without applying a magnetizing treatment, and an underwater immersion test was conducted. The evaluation results are shown in Table 4.

Figure 2015108055
Figure 2015108055

<考察>
(i)添加剤成分の天然放射性物質の添加を省略した場合、着磁処理を施こすことで貝甲類の付着防止効果を高めることができた。
<Discussion>
(I) When the addition of the natural radioactive material as an additive component was omitted, the adhesion prevention effect of the shellfish could be enhanced by applying the magnetizing treatment.

(ii)本発明の添加剤を未添加の状態で用いたアクリル樹脂塗料・アルキッド樹脂塗料の形成膜には貝甲類が付着した。但し、試験に用いた船底塗料には、あらかじめ、防汚作用があるので、試験中に貝甲類が付着することはなかった。   (Ii) Shellfish shells adhered to the formed film of the acrylic resin paint / alkyd resin paint in which the additive of the present invention was not added. However, since the ship bottom paint used in the test had an antifouling action in advance, shellfish did not adhere during the test.

上記の結果を纏めると、本発明の防汚添加剤とそれを含有する塗料及び、その防汚塗膜の着磁処理による防汚効果が十分発揮されていることが分かる。   When the above results are summarized, it can be seen that the antifouling effect of the present invention, the paint containing the antifouling additive, and the antifouling effect by the magnetization treatment of the antifouling coating film are sufficiently exhibited.

Claims (9)

液状の又は粉粒状の高分子材に未着磁の乃至脱磁処理をした強磁性体粉とともに天然放射性物質粉を添加して、混合分散させたものを硬化させることを特徴とする高分子材の防汚性付与方法。   A polymer material characterized by adding a natural radioactive substance powder together with an unmagnetized or demagnetized ferromagnetic powder to a liquid or powdery polymer material, and curing the mixed and dispersed material. For imparting antifouling properties. 液状の又は粉粒状の高分子材に未着磁の乃至脱磁処理をした強磁性体粉とともに天然放射性物質粉を添加して、混合分散させたものを硬化させ、さらに、該硬化高分子材を着磁処理することを特徴とする高分子材の防汚性付与方法。   Add a natural radioactive substance powder together with a non-magnetized or demagnetized ferromagnetic powder to a liquid or powdery polymer material, cure the mixed and dispersed material, and further cure the cured polymer material. A method for imparting antifouling property to a polymer material, characterized by subjecting to a magnetic treatment. 液状の又は粉粒状の高分子材に未着磁の乃至脱磁処理をした強磁性体粉を添加して、混合分散させたものを硬化させ、さらに、該硬化高分子材を着磁処理することを特徴とする高分子材の防汚性付与方法。   An unmagnetized or demagnetized ferromagnetic powder is added to a liquid or powdery polymer material, and the mixed and dispersed material is cured, and the cured polymer material is further magnetized. A method for imparting antifouling property to a polymer material. 前記天然放射性物質粉が、一次放射性核種であるTh及び/又はUを含有する天然放射性鉱物粉であることを特徴とする請求項1又は2記載の高分子材の防汚性付与方法。   The method for imparting antifouling property to a polymer material according to claim 1 or 2, wherein the natural radioactive substance powder is a natural radioactive mineral powder containing Th and / or U which are primary radionuclides. 前記強磁性体粉が硬磁性体粉と軟磁性体粉との混合系であることを特徴とする請求項1、2又は3記載の高分子材の防汚性付与方法。   4. The method for imparting antifouling property to a polymer material according to claim 1, wherein the ferromagnetic powder is a mixed system of hard magnetic powder and soft magnetic powder. 前記液状の又は粉粒状の高分子材が、耐水性および耐摩耗性・耐擦傷性を有する防汚塗料であることを特徴とする請求項1〜5のいずれかに記載の高分子材の防汚性付与方法。   The polymer material according to any one of claims 1 to 5, wherein the liquid or powdery polymer material is an antifouling paint having water resistance, abrasion resistance and scratch resistance. Dirty imparting method. 液状又は粉粒状の高分子材に添加し、硬化させた高分子材に水生生物の防汚効果を付与する防汚添加剤であって、未着磁の乃至脱磁処理した強磁性体粉に天然放射性物質粉を混合して、γ線放射線当量(湿度60%、測定距離0mm;以下同じ)で、0.1μSV/h以上を示すものとされていることを特徴とする高分子材の防汚添加剤。   An antifouling additive that is added to a liquid or powdery polymer material and imparts an antifouling effect to aquatic organisms on the cured polymer material, and is applied to an unmagnetized or demagnetized ferromagnetic powder. Antifouling of polymer material characterized by mixing natural radioactive substance powder and showing γ-ray radiation equivalent (humidity 60%, measuring distance 0 mm; the same shall apply hereinafter) 0.1 μSV / h or more Additive. 前記強磁性体粉と前記天然放射性物質粉との混合比が、天然放射性物質粉がγ線放射線当量:1〜5μSV/hの場合、前者/後者(質量比)=99/1〜85/15であることを特徴とする請求項7記載の高分子材の防汚添加剤。   When the mixing ratio of the ferromagnetic powder and the natural radioactive substance powder is such that the natural radioactive substance powder has a γ-ray radiation equivalent of 1 to 5 μSV / h, the former / the latter (mass ratio) = 99/1 to 85/15 The polymer material antifouling additive according to claim 7, wherein 前記強磁性体粉が硬磁性体粉と軟磁性体粉との混合系であることを特徴とする請求項7又は8記載の高分子材の防汚添加剤。   9. The polymer material antifouling additive according to claim 7 or 8, wherein the ferromagnetic powder is a mixed system of hard magnetic powder and soft magnetic powder.
JP2013251015A 2013-12-04 2013-12-04 Method for imparting antifouling property to polymer material Active JP6208566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013251015A JP6208566B2 (en) 2013-12-04 2013-12-04 Method for imparting antifouling property to polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013251015A JP6208566B2 (en) 2013-12-04 2013-12-04 Method for imparting antifouling property to polymer material

Publications (2)

Publication Number Publication Date
JP2015108055A true JP2015108055A (en) 2015-06-11
JP6208566B2 JP6208566B2 (en) 2017-10-04

Family

ID=53438661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013251015A Active JP6208566B2 (en) 2013-12-04 2013-12-04 Method for imparting antifouling property to polymer material

Country Status (1)

Country Link
JP (1) JP6208566B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110452536A (en) * 2018-05-08 2019-11-15 中环海化(厦门)船舶智能涂料有限公司 A kind of intelligent bionic anti-fouling material that surface texture is controllable

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106487A (en) * 1989-09-20 1991-05-07 Kota Shimamoto Method for preventing fouling of aquatic organism
JPH061932A (en) * 1992-06-19 1994-01-11 Mitsubishi Heavy Ind Ltd Electrically conductive paint for preventing adhesion of marine life
US6001157A (en) * 1998-12-28 1999-12-14 Nogami; Hideaki Additive for antifouling paint
JP2000340415A (en) * 1999-05-25 2000-12-08 One Akitoshi Magnetic energy infrared rays radiating material and radiating member
JP2001294818A (en) * 2000-02-07 2001-10-23 Mitsumasa Sugimoto Coating for preventing adhesion of organism, and method for using the same
JP2004026893A (en) * 2002-06-21 2004-01-29 Nitto Kasei Co Ltd Antifouling coating composition, underwater articles, and antifouling method
JP2008274094A (en) * 2007-04-27 2008-11-13 Sano Shoji Kk Antifouling paint addition auxiliary agent and ship bottom paint containing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106487A (en) * 1989-09-20 1991-05-07 Kota Shimamoto Method for preventing fouling of aquatic organism
JPH061932A (en) * 1992-06-19 1994-01-11 Mitsubishi Heavy Ind Ltd Electrically conductive paint for preventing adhesion of marine life
US6001157A (en) * 1998-12-28 1999-12-14 Nogami; Hideaki Additive for antifouling paint
JP2000340415A (en) * 1999-05-25 2000-12-08 One Akitoshi Magnetic energy infrared rays radiating material and radiating member
JP2001294818A (en) * 2000-02-07 2001-10-23 Mitsumasa Sugimoto Coating for preventing adhesion of organism, and method for using the same
JP2004026893A (en) * 2002-06-21 2004-01-29 Nitto Kasei Co Ltd Antifouling coating composition, underwater articles, and antifouling method
JP2008274094A (en) * 2007-04-27 2008-11-13 Sano Shoji Kk Antifouling paint addition auxiliary agent and ship bottom paint containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110452536A (en) * 2018-05-08 2019-11-15 中环海化(厦门)船舶智能涂料有限公司 A kind of intelligent bionic anti-fouling material that surface texture is controllable

Also Published As

Publication number Publication date
JP6208566B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
CN104087126A (en) Marine anticorrosive coating
JP5681332B2 (en) Paint and coated steel
US6294006B1 (en) Anticorrosive and antifouling additive for paints and paint containing the same
CN104693970A (en) Contact type inshore fishing boat anti-fouling paint and preparation method thereof
Li et al. Corrosion inhibitors for metals in maintenance equipment: introduction and recent developments
CN103694755B (en) A kind of High-efficiency ocean anticorrosive paint
JP2007314763A (en) Edge cover coating and method for forming thick film coating to steel edge using the same
JP2013209874A (en) Magnetic layer of building member
JP6208566B2 (en) Method for imparting antifouling property to polymer material
Xie et al. Accumulation, chemical speciation and ecological risks of heavy metals on expanded polystyrene microplastics in seawater
Soon et al. Seawater contamination associated with in-water cleaning of ship hulls and the potential risk to the marine environment
Wang et al. Macrofouling organisms: protection or damage of steel in marine environments?
JP5916228B2 (en) Magnetic film structure and method of manufacturing magnetic film structure
Ahmed et al. Study on the corrosion protection performance of new ferrite/kaolin core-shell pigments in epoxy-based paints
Kiil et al. Marine biofouling protection: design of controlled release antifouling paints
JP5988133B2 (en) Mixture for magnetically adhering paint and magnetically adhering paint
JP2012158684A (en) Additive for antifouling coating and antifouling coating containing the additive
Viswanathan et al. Laboratory experiments on river-estuary geonanomaterials
CN109206991A (en) A kind of preparation method of electromagnetic drive type hydrogel nonpolluting coating material
CN101921530A (en) Nontoxic biological antifouling coating, preparation method thereof and antifouling treatment method of substrate
Hattori et al. Magnetization of activated sludge by an external magnetic field
Jeffrey et al. The effect of microbiological involvement on the topography of corroding mild steel in coastal seawater
JP2004026893A (en) Antifouling coating composition, underwater articles, and antifouling method
Wang et al. Marine environmental risk assessment method for active substances used in antifouling systems on ships in China
Noufal et al. The impact of implementing the international convention on the control of harmful anti-fouling systems in ships (AFS convention) on the marine environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170907

R150 Certificate of patent or registration of utility model

Ref document number: 6208566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250