JP2015105947A - Defect inspection machine, defect inspection apparatus, and defect inspection method - Google Patents

Defect inspection machine, defect inspection apparatus, and defect inspection method Download PDF

Info

Publication number
JP2015105947A
JP2015105947A JP2013258628A JP2013258628A JP2015105947A JP 2015105947 A JP2015105947 A JP 2015105947A JP 2013258628 A JP2013258628 A JP 2013258628A JP 2013258628 A JP2013258628 A JP 2013258628A JP 2015105947 A JP2015105947 A JP 2015105947A
Authority
JP
Japan
Prior art keywords
coil
sensor
defect
defect inspection
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013258628A
Other languages
Japanese (ja)
Inventor
賢二 毎床
Kenji Maitoko
賢二 毎床
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013258628A priority Critical patent/JP2015105947A/en
Publication of JP2015105947A publication Critical patent/JP2015105947A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a quick inspection of cracking, chipping, hair cracking or the like present in a solar battery cell in a noncontact state in which a lift-off distance is set to not less than 2 mm and not more than 30 mm for the solar battery cell including a conductive layer.SOLUTION: Provided is a method and an apparatus for inspecting a crack, a chip, a hair crack or the like present in a solar battery cell in a noncontact state in which a lift-off distance is not less than 2 mm, by extracting a signal component necessary for inspection by performing processing for forming an excitation coil and a sensor coil for applying a magnetic field to the solar battery cell on a conductive layer of a multilayer insulating substrate, and cancelling an excitation induction voltage and external noise mixed into the sensor coil by differential synthesis.

Description

本発明は、少なくともシリコン等の半導体層とアルミニウム等の導電体層とが積層された太陽電池セル及び、太陽電池セルを多数配設した太陽電池モジュールに内在する割れや欠け、ヘアクラック等の欠陥を非接触状態且つ、高速、簡便に欠陥を検査する装置及び方法に関する。  The present invention is a solar cell in which at least a semiconductor layer such as silicon and a conductor layer such as aluminum are laminated, and defects such as cracks, chips and hair cracks inherent in a solar cell module in which a large number of solar cells are arranged. The present invention relates to an apparatus and a method for simply inspecting defects at a high speed in a non-contact state.

太陽エネルギーの利用方法として、シリコン型の太陽電池が知られているが、斯かる太陽光発電を商業ベースで広く実用化するためには、発電コストの低価格化が必要であり、太陽電池モジュールを構成する太陽電池セルの低価格化も急務となっている。
例えば半導体層が多結晶型シリコンからなる太陽電池素子では、材料価格を低減するために、より一層の薄型化が図られつつある。
Silicon type solar cells are known as a method of utilizing solar energy. In order to make such photovoltaic power generation widely available on a commercial basis, it is necessary to reduce the power generation cost. There is also an urgent need to reduce the price of solar cells that make up the battery.
For example, in a solar cell element in which the semiconductor layer is made of polycrystalline silicon, further reduction in thickness is being attempted in order to reduce the material cost.

しかしながら、シリコン等の半導体層は硬くて脆いため、薄型化するためのスライシング工程や、その後の表面処理工程、電極形成工程等の生産工程において、或いはハンドリングする際において、半導体層に割れや欠けのような欠陥が発生する場合がある。これらの欠陥が生産工程で発生すると、生産性を阻害する他、製品に混入すると発電性能を低下させるという問題がある。  However, since a semiconductor layer such as silicon is hard and brittle, the semiconductor layer is not cracked or chipped in the slicing process for thinning, the subsequent surface treatment process, the production process such as the electrode formation process, or the handling. Such defects may occur. When these defects occur in the production process, productivity is hindered, and when mixed into a product, there is a problem that power generation performance is lowered.

上記の割れや欠けのような欠陥は、ヘアクラックと称される微細なヘアクラックが成長して生ずることが多い。従って微細なヘアクラックの段階で検出、除去できれば、生産性の改善や太陽電池モジュールの設置後に起こる発電性能の低下を最小限に留め、長期的に安定発電を実現することが可能となる。  Defects such as cracks and chips are often caused by the growth of fine hair cracks called hair cracks. Therefore, if it can be detected and removed at the stage of fine hair cracks, it is possible to minimize productivity degradation and decrease in power generation performance that occurs after the installation of the solar cell module, and to realize stable power generation in the long term.

従来から割れやヘアクラック等の簡易検出方法として、生産工程中での目視検査が実施されているが、検査員の個人差が大きいことや、ヘアクラックと無害なスリ傷あるいは、多結晶の太陽電池セルの場合、結晶の境界である粒界の模様との識別ができない等の問題があった。  Conventionally, visual inspection during the production process has been performed as a simple detection method for cracks, hair cracks, etc., but there are large individual differences among inspectors, hair cracks and harmless scratches, or polycrystalline sun. In the case of a battery cell, there is a problem that it cannot be distinguished from a grain boundary pattern that is a boundary between crystals.

特許文献1に開示された公報には、半導体層と導電体層とが積層された太陽電池素子に対向配置され、太陽電池素子に交流磁界を作用させて渦電流を誘起すると共に、誘起された渦電流を検出して渦電流信号として出力するプローブコイルと、プローブコイルから出力された渦電流信号を互いに位相が90°異なる2つの信号成分に分離する信号処理部と、信号処理部で分離された何れかの信号成分の振幅変化に基づいて、太陽電池素子に生じた、ヘアクラックを検出する検出部とを備えた太陽電池素子のヘアクラック検出方法及び装置が提案されている。  The gazette disclosed in Patent Document 1 is arranged so as to be opposed to a solar cell element in which a semiconductor layer and a conductor layer are laminated, and to induce an eddy current by applying an alternating magnetic field to the solar cell element. A probe coil that detects eddy current and outputs it as an eddy current signal, a signal processing unit that separates the eddy current signal output from the probe coil into two signal components that are 90 ° out of phase with each other, and a signal processing unit. In addition, there has been proposed a method and an apparatus for detecting a hair crack in a solar cell element that includes a detection unit that detects a hair crack generated in the solar cell element based on a change in amplitude of any one of the signal components.

特許文献2に開示された公報には、渦流探傷用プローブであって、そのコイルがプリントコイルとされ、かつ励磁コイルと検出コイルとが積層されてなることを特徴とし、多数のプリントコイルが所定配列にて配設される渦流探傷用プローブが提案されている。  The gazette disclosed in Patent Document 2 is a probe for eddy current flaw detection, characterized in that its coil is a printed coil, and an exciting coil and a detection coil are laminated, and a large number of printed coils are predetermined. There have been proposed eddy current flaw detection probes arranged in an array.

特開2006−319303JP 2006-319303 A 特開平9−33488JP-A-9-33488

しかしながら、特許文献1の方法では渦電流を検出するプローブコイルと励磁コイルが同一のプローブコイルであるため、非接触での検査においては、プローブコイルに干渉する励磁成分のほうが、欠陥検出に必要な渦電流信号よりも数千倍から数万倍も大きくなる欠点があり、検査に必要な信号成分を分離することは極めて困難となるため、リフトオフが5mm以上での検査において、太陽電池素子のヘアクラックの検出は実現できていない。またプローブコイルが1個のみで装置が構成されているため、被検体を広範囲に渡りスキャンする必要があり太陽電池素子のヘアクラック検出を高速で行えない問題がある。  However, in the method of Patent Document 1, since the probe coil for detecting eddy current and the excitation coil are the same probe coil, in the non-contact inspection, the excitation component that interferes with the probe coil is more necessary for defect detection. There is a disadvantage that it is several thousand times to several tens of thousands times larger than the eddy current signal, and it is extremely difficult to separate signal components necessary for the inspection. Therefore, in the inspection with a lift-off of 5 mm or more, the hair of the solar cell element Crack detection has not been realized. Further, since the apparatus is composed of only one probe coil, it is necessary to scan the subject over a wide range, and there is a problem that hair crack detection of solar cell elements cannot be performed at high speed.

特許文献2では、走査計測における計測死角を解消する目的で、走査方向の垂直方向にプリントコイル26が千鳥配列された図10が示されている。しかしながら渦電流を検出するプローブコイルが千鳥配列の場合、プリントコイル26と励磁コイルとの距離が異なるため励磁誘導電圧成分が不均一となり、励磁誘導電圧成分を完全に相殺することが困難となり検出性能を低下させる問題がある。とくにリフトオフが数mmとなるオープン磁路プローブではこの問題が致命的な欠点となる。  Patent Document 2 shows FIG. 10 in which printed coils 26 are arranged in a staggered manner in the vertical direction of the scanning direction for the purpose of eliminating the measurement blind spot in the scanning measurement. However, when the probe coils for detecting eddy currents are in a staggered arrangement, the distance between the print coil 26 and the excitation coil is different, so that the excitation induced voltage component becomes non-uniform, making it difficult to completely cancel the excitation induced voltage component, and the detection performance. There is a problem of lowering. This problem becomes a fatal defect particularly in an open magnetic path probe with a lift-off of several millimeters.

本発明は、前記のように隣接の励磁コイルによる励磁誘導電圧成分の干渉或いは、不均一により検出性能を低下させる問題を鑑みてなされたもので、積層絶縁基板に励磁コイルと検出コイルとを形成するが、その特徴として励磁コイルを外周に配設し内側に2個以上のセンサコイルを励磁コイルから等距離の位置に形成する構造とすることにより、励磁コイルからの励磁磁界がセンサコイルに及ぼす影響を極力等価となる構造とする。  The present invention has been made in view of the problem of lowering detection performance due to interference or non-uniformity of excitation induced voltage components due to adjacent excitation coils as described above. The excitation coil and the detection coil are formed on a laminated insulating substrate. However, as a feature thereof, an excitation coil is arranged on the outer periphery and two or more sensor coils are formed at equal distances from the excitation coil so that an excitation magnetic field from the excitation coil affects the sensor coil. Make the effect as equivalent as possible.

次に2個のセンサコイルの出力の差を取ることにより、外来ノイズと励磁誘導電圧成分を相殺することで太陽電池セルに生じた割れや欠け、ヘアクラック等の検出に必要な渦電流情報成分を効果的に抽出する。抽出された渦電流情報成分は欠陥検出回路により、欠陥情報として分離することによりリフトオフが6mm以上での検査においても太陽電池セルに内在する割れや欠け、割れや欠け、ヘアクラック等の検出を可能とする。  Next, by taking the difference between the outputs of the two sensor coils, the external noise and the excitation induced voltage component are canceled out, and the eddy current information component necessary for detecting cracks, chips, hair cracks, etc. that have occurred in the solar cells. Effectively extract. The extracted eddy current information component is separated by the defect detection circuit as defect information, so that it is possible to detect cracks, chips, cracks, chips, hair cracks, etc. inherent in solar cells even when the lift-off is 6 mm or more. And

請求項1記載の欠陥検査機によれば、半導体層と導電体層とが積層された太陽電池セル30に磁界を作用させる励磁コイル2及び、前記太陽電池セル30に誘起した渦電流検出するセンサコイルを一体として形成されたセンサ部5および、センサコイル3によって検出された渦電流情報に基づいて前記太陽電池セル30に生じた割れや欠け、ヘアクラック等を判定する欠陥検出回路6とを備え、検出された渦電流情報に基づいて前記太陽電池セル30に内在する割れや欠け、ヘアクラック等の欠陥検出を可能とする。  According to the defect inspection machine according to claim 1, the exciting coil 2 for applying a magnetic field to the solar cell 30 in which the semiconductor layer and the conductor layer are laminated, and the sensor for detecting the eddy current induced in the solar cell 30. A sensor unit 5 formed integrally with a coil, and a defect detection circuit 6 for determining cracks, chips, hair cracks, etc. generated in the solar battery cell 30 based on eddy current information detected by the sensor coil 3. Based on the detected eddy current information, it is possible to detect defects such as cracks, chips and hair cracks inherent in the solar battery cell 30.

請求項2に記載の欠陥検査機によれば、太陽電池セル30を走査計測する場合、励磁コイル2が、十分長い平行部分を有する長軸状平面図形を有しており、センサコイル3がそのセンサコイル内部の長軸に沿って配置された複数個のセンサコイルから構成されており、その隣接したコイルユニットが長軸の両側の面積が実質上同一の同一形状でかつ互いに長軸に対して直交する軸に関して線対称とならない図形で形成されたセンサコイル構造にすることにより走査計測における計測の死角を無くした検査を可能とする。  According to the defect inspection machine of claim 2, when scanning and measuring the solar battery cell 30, the exciting coil 2 has a long-axis plane figure having a sufficiently long parallel portion, and the sensor coil 3 is It consists of a plurality of sensor coils arranged along the long axis inside the sensor coil, and the adjacent coil units have the same shape with the same area on both sides of the long axis and are mutually in relation to the long axis. By using a sensor coil structure formed of a figure that is not line-symmetric with respect to an orthogonal axis, inspection that eliminates the blind spot of measurement in scanning measurement is possible.

請求項3に記載の欠陥検査機によれば、積層絶縁基板の導体層の数にそれぞれ励磁コイル2とセンサコイル3とを形成しビアホール導体24で接続しコイルの巻き数を増やしたセンサ構造とすることで、センサ部のセンサコイルパターンを多数増設した多チャンネルの検査装置の場合においても、積層絶縁基板の製造精度である0.1mm以下となる寸法精度で前記センサ部5のセンサコイル3と励磁コイル2を形成できるため、隣接のセンサ出力信号の差を取ることにより励磁コイル2からの励磁誘導電圧を相殺することが可能となり、検査に必要な渦電流信号だけを効率良くとり出し検出感度を向上させることを可能とする。  According to the defect inspection machine of the third aspect, the sensor structure in which the exciting coil 2 and the sensor coil 3 are respectively formed on the number of conductor layers of the laminated insulating substrate and connected by the via-hole conductor 24 to increase the number of turns of the coil. As a result, even in the case of a multi-channel inspection apparatus in which a large number of sensor coil patterns of the sensor unit are added, the sensor coil 3 of the sensor unit 5 and the dimensional accuracy of 0.1 mm or less, which is the manufacturing accuracy of the laminated insulating substrate Since the excitation coil 2 can be formed, the excitation induction voltage from the excitation coil 2 can be canceled by taking the difference between adjacent sensor output signals, and only the eddy current signal necessary for inspection can be efficiently extracted and detected. It is possible to improve.

さらにセンサ部5はセンサコイル3と励磁コイル2とを併設した積層絶縁基板センサであることから、センサ部5の構造が簡素化され、高精度でありながら小型、軽量且つ、安価に、しかも短時間で大量に作製できるという優れた効果を有する。  Further, since the sensor unit 5 is a laminated insulating substrate sensor in which the sensor coil 3 and the excitation coil 2 are provided, the structure of the sensor unit 5 is simplified, and the sensor unit 5 is highly accurate, small, light, inexpensive, and short. It has an excellent effect that it can be produced in a large amount in time.

請求項4に記載の欠陥検査機によれば、前記センサ部5の表層部に励磁コイル2及びセンサコイル3を形成しないことでセンサ部の汚れを防止する機能を持たせることを特徴とする。  According to the defect inspection machine of the fourth aspect of the present invention, the excitation coil 2 and the sensor coil 3 are not formed on the surface layer portion of the sensor portion 5 so that the sensor portion is prevented from being soiled.

請求項5に記載の欠陥検査機によれば、曲面の有る検査対象の割れや欠け、クラック等の検査を可能とするためにセンサ部60を可撓性の有る絶縁基板、例えばポリイミド絶縁基板等に形成し被検査体70の表面に添わせる構造にすることにより、曲面をもった被検査体の検査を可能とする。  According to the defect inspection machine of claim 5, the sensor unit 60 is made of a flexible insulating substrate, for example, a polyimide insulating substrate, etc. in order to enable inspection of cracks, chips, cracks, etc. of the inspection target having a curved surface. The structure to be formed and attached to the surface of the inspection object 70 enables inspection of the inspection object having a curved surface.

請求項6に記載の欠陥検査装置によれば、太陽電池モジュール100の幅に対応して配列してなるセンサ部集合体7と、そのセンサ部5の数に対応する複数の欠陥検出処理部10の出力を逐次処理部11により統括的に処理することで太陽電池モジュール100の幅方向検査の欠陥検査を可能とする。  According to the defect inspection apparatus of the sixth aspect, the sensor unit assembly 7 arranged corresponding to the width of the solar cell module 100 and a plurality of defect detection processing units 10 corresponding to the number of the sensor units 5. Are sequentially processed by the sequential processing unit 11 to enable the defect inspection of the solar cell module 100 in the width direction inspection.

請求項7に記載の欠陥検査方法によれば、請求項1から5に記載の欠陥検査機または請求項6の欠陥検査装置を用い、センサ部5または前記センサ部集合体7検査対象の太陽電池モジュール100の面から2mm以上30mm以下の距離として平行に配置し、太陽電池モジュール100との距離を保ちつつその長軸方向に直角な方向に相対的に移動して検査する太陽電池の欠陥検査方法を提供する。また欠陥検出処理部10の各出力を逐次処理部11により順次切り替えながら太陽電池モジュール100との位置を相対的に移動することにより太陽電池モジュールの更なる高速検査を実現できる。  According to the defect inspection method of claim 7, the solar cell to be inspected by the sensor unit 5 or the sensor unit assembly 7 using the defect inspection machine according to claim 1 or the defect inspection device of claim 6. A solar cell defect inspection method in which a distance of 2 mm or more and 30 mm or less from the surface of the module 100 is arranged in parallel, and the distance is relatively moved in a direction perpendicular to the long axis direction while maintaining the distance from the solar cell module 100. I will provide a. Further, the high-speed inspection of the solar cell module can be realized by relatively moving the position with respect to the solar cell module 100 while sequentially switching the outputs of the defect detection processing unit 10 by the sequential processing unit 11.

図1は、本発明の一実施形態に係る欠陥検出の基本構成を示す図である。FIG. 1 is a diagram showing a basic configuration of defect detection according to an embodiment of the present invention. 図2は、本装置のセンサ部の構造一例を示す図である。FIG. 2 is a diagram showing an example of the structure of the sensor unit of the present apparatus. 図3は、本装置のセンサ部を両面基板で形成した一例を示す図である。FIG. 3 is a diagram illustrating an example in which the sensor unit of the present apparatus is formed of a double-sided substrate. 図4は、本装置のセンサ部を積層絶縁基板で形成した一例を示す図である。FIG. 4 is a view showing an example in which the sensor unit of the present apparatus is formed of a laminated insulating substrate. 図5は、本装置のセンサ部である積層絶縁基板の断面の一例を示す図である。FIG. 5 is a diagram illustrating an example of a cross section of a laminated insulating substrate which is a sensor unit of the present apparatus. 図6は、本装置で太陽電池モジュールを検出する構成を示す図である。FIG. 6 is a diagram showing a configuration for detecting a solar cell module by this apparatus. 図7は、本装置のセンサ部を可撓性の有る絶縁基板上に形成した図である。FIG. 7 is a diagram in which the sensor unit of the present apparatus is formed on a flexible insulating substrate. 図8は、センサコイルの出力と差信号の波形を示す図である。FIG. 8 is a diagram illustrating the output of the sensor coil and the waveform of the difference signal. 図9は、センサコイルの出力と渦電流情報を分離抽出した波形を示す図である。FIG. 9 is a diagram showing waveforms obtained by separating and extracting the output of the sensor coil and eddy current information. 図10は、プリントコイル26が千鳥配列とされた示す図である。FIG. 10 is a diagram showing the printed coils 26 in a staggered arrangement.

本発明を実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、添付図面を参照しつつ、本発明の一実施形態について説明する。図1はセンサ部5に接続された欠陥検出回路6と欠陥検出処理部10から構成され、センサ部5により検査対象体である太陽電池セル30に交流磁界を作用させ、太陽電池セル30に誘起する渦電流信号情報に基づいて太陽電池セル30の割れや欠け、ヘアクラック等の検査を行う構成例を示す。  Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 includes a defect detection circuit 6 and a defect detection processing unit 10 connected to the sensor unit 5, and an alternating magnetic field is applied to the solar cell 30 as an inspection object by the sensor unit 5 to induce the solar cell 30. The structural example which test | inspects the crack of the photovoltaic cell 30, a crack, a hair crack, etc. based on the eddy current signal information to show is shown.

まず励磁駆動回路1より励磁コイル2に正弦波を印加すると励磁コイル2から太陽電池セル30に向かう交流磁界が発生する。その交流磁界の作用により太陽電池セル30の導電体層に渦電流が流れる。太陽電池セル30に流れる電流渦はセンサコイル3−1からセンサコイル3−nによって検出されるが、センサコイルの出力には太陽電池セル30に誘起された渦電流に対応する逆起電力の電圧に加え、励磁コイル2から直接誘導される励磁誘導電圧及び、外来ノイズ成分が合成された重畳信号となっている。  First, when a sine wave is applied from the excitation drive circuit 1 to the excitation coil 2, an alternating magnetic field from the excitation coil 2 toward the solar battery cell 30 is generated. An eddy current flows through the conductor layer of the solar battery cell 30 by the action of the alternating magnetic field. The eddy current flowing in the solar battery cell 30 is detected by the sensor coil 3-1 to the sensor coil 3-n. The output of the sensor coil is a voltage of a counter electromotive force corresponding to the eddy current induced in the solar battery cell 30. In addition, the excitation induction voltage directly induced from the excitation coil 2 and the superposed signal are synthesized with the external noise component.

そこで図2に示すようにセンサ第一コイル3−1とセンサ第二コイル3−2の出力と差を取ることで、重畳信号に含まれる励磁誘導電圧及び、外来ノイズ成分を相殺し低減させることにより図9に示す割れや欠け、ヘアクラック等の検出に必要な渦電流情報成分VSgを効果的に抽出する。抽出された渦電流情報成分VSgは欠陥検出回路6により判別処理を行う。ここで欠陥検出回路6はセンサ第一コイル3−1とセンサ第二コイル3−2の出力と差を取った信号と、センサ第三コイル3−3とセンサ第四コイル3−4の出力と差を取った信号との差を二重に取ることにより双方の信号の逆位相となる割れや欠け、ヘアクラック等の検出に有用な信号を抽出しても良い。  Therefore, as shown in FIG. 2, by taking the difference from the outputs of the sensor first coil 3-1 and the sensor second coil 3-2, the excitation induction voltage and the external noise component included in the superimposed signal are canceled and reduced. Thus, the eddy current information component VSg necessary for detecting cracks, chips, hair cracks and the like shown in FIG. 9 is effectively extracted. The extracted eddy current information component VSg is subjected to discrimination processing by the defect detection circuit 6. Here, the defect detection circuit 6 receives the difference between the outputs of the sensor first coil 3-1 and the sensor second coil 3-2, the outputs of the sensor third coil 3-3 and the sensor fourth coil 3-4. A signal useful for detecting cracks, chippings, hair cracks, etc., which are in opposite phases of both signals, may be extracted by taking the difference from the difference signal twice.

更にセンサ部5と太陽電池セル30との表面の距離を一定に保ちつつ両者を相対的に移動

Figure 2015105947
け、割れや欠け、ヘアクラック等を高速、簡便に高速検査することが可能となる。Further, the distance between the surface of the sensor unit 5 and the solar battery cell 30 is relatively moved while maintaining a constant distance.
Figure 2015105947
It is possible to perform high-speed and simple high-speed inspection of cracks, chips, hair cracks, and the like.

図2は、本発明のセンサ部5の励磁コイル2とセンサコイル3を形成した図を示す。励磁コイル2の内周にセンサ第一コイル3−1からセンサ第nコイル3−nまでを形成する構造とすることで絶縁基板の製造精度である50μm以下となる寸法精度で前記センサ部全体の部品を形成できるため、隣接の励磁誘導電圧を正確に相殺することが容易になり検査に必要な渦電流信号を効果的に抽出することで検出感度を飛躍的に向上させられる。  FIG. 2 shows a diagram in which the excitation coil 2 and the sensor coil 3 of the sensor unit 5 of the present invention are formed. By forming the structure from the sensor first coil 3-1 to the sensor n-th coil 3-n on the inner periphery of the exciting coil 2, the entire sensor section can be obtained with a dimensional accuracy of 50 μm or less, which is the manufacturing accuracy of the insulating substrate. Since components can be formed, it is easy to accurately cancel adjacent excitation induced voltages, and the detection sensitivity can be dramatically improved by effectively extracting eddy current signals necessary for inspection.

図3は、本装置のセンサ部を両面基板で形成した一例を示す。励磁コイルは十分長い平行部分を有する長軸状平面図形を有するコイル又は図3に示すように励磁コイルが2個以上のセンサコイル3を逆巻きとなるループで取り囲むように形成しても良い。  FIG. 3 shows an example in which the sensor unit of the present apparatus is formed of a double-sided substrate. The exciting coil may be formed so as to surround a coil having a long-axis plane figure having a sufficiently long parallel portion or two or more sensor coils 3 as shown in FIG.

図4は、本発明に関わるセンサ部5を積層絶縁基板で構成した図を示す。当該積層絶縁基板によるセンサ部5は励磁磁界調節、励磁誘導電圧均一化、センサコイル巻き数増設、検出死角排除、センサ部保護及び汚れ防止、偽造防止機能等の多彩な機能を有している。図4を例にセンサ部5の各機能を説明する。  FIG. 4 shows a diagram in which the sensor unit 5 according to the present invention is formed of a laminated insulating substrate. The sensor unit 5 using the laminated insulating substrate has various functions such as excitation magnetic field adjustment, excitation induction voltage equalization, increase in the number of turns of the sensor coil, detection dead angle elimination, sensor unit protection and contamination prevention, and counterfeit prevention functions. Each function of the sensor unit 5 will be described with reference to FIG.

励磁磁界調節機能として、励磁磁界調整コイル27に外接続電極22より微弱な電流を流すことにより積層絶縁基板a層励磁コイル20からの励磁磁界に逆方向の磁界を発生させ、積層絶縁基板の端にある第一センサコイル及び第二センサコイルの励磁誘導電圧を等価にする。これにより欠陥検査に不要な励磁誘導電圧を相殺し検査感度を上げる。更に積層絶縁基板上に励磁遮蔽パターン25を設け励磁コイルからセンサコイルに表面から伝わる励磁誘導電圧を遮蔽する機能を持たせてもよい。  As an exciting magnetic field adjustment function, a weak current from the external connection electrode 22 is caused to flow through the exciting magnetic field adjusting coil 27 to generate a magnetic field in the opposite direction to the exciting magnetic field from the laminated insulating substrate a layer exciting coil 20 and the end of the laminated insulating substrate. The excitation induction voltages of the first sensor coil and the second sensor coil are equalized. This cancels out the excitation induced voltage unnecessary for defect inspection and increases inspection sensitivity. Further, an excitation shielding pattern 25 may be provided on the laminated insulating substrate so as to have a function of shielding the excitation induced voltage transmitted from the surface from the excitation coil to the sensor coil.

励磁誘導電圧均一化機能として、励磁誘導電圧を千から10万分の一以下まで相殺すことを目指し励磁コイル2と隣接するセンサコイルとの距離関係を50μm以下で形成する。図9に励磁誘導電圧が相殺され欠陥検査に必要な渦電流情報成分VSgが強調されたイメージ波形を示す。励磁コイル2に印加する励磁電流はリフトオフ距離と検査対象の特性に最適な値が好ましく、数百Hzから200MHzの正弦波又はそれらを含んだパルス波でも良い。  As a function for equalizing the excitation induction voltage, the distance relationship between the excitation coil 2 and the adjacent sensor coil is formed at 50 μm or less with the aim of canceling the excitation induction voltage from 1,000 to 1 / 100,000 or less. FIG. 9 shows an image waveform in which the excitation induced voltage is canceled and the eddy current information component VSg necessary for defect inspection is emphasized. The exciting current applied to the exciting coil 2 is preferably an optimum value for the lift-off distance and the characteristics of the inspection object, and may be a sine wave of several hundred Hz to 200 MHz or a pulse wave including them.

センサコイル巻き数増設機能能として、積層絶縁基板a層にセンサコイル3aを設け、積層絶縁基板b層にセンサコイル3bに設け、上下のコイルパターンをビアホール導体24により直列に接続することで、積層絶縁基板の層数だけコイルの巻き数を増やし検出感度を上げることを可能とする。また積層絶縁基板上で2個又はそれ以上センサコイルを逆極性で接続しセンサ部で励磁誘導電圧と外来ノイズ成分とを相殺する機能を持たせてもよい。  As a function for increasing the number of turns of the sensor coil, the sensor coil 3a is provided on the laminated insulating substrate a layer, the sensor coil 3b is provided on the laminated insulating substrate b layer, and the upper and lower coil patterns are connected in series by the via-hole conductor 24. The detection sensitivity can be increased by increasing the number of turns of the coil by the number of layers of the insulating substrate. Further, two or more sensor coils may be connected with opposite polarity on the laminated insulating substrate, and the sensor unit may have a function of canceling the excitation induced voltage and the external noise component.

検出死角排除機能能として、太陽電池セル30を走査計測する場合、走査方向に垂直方向にセンサ部5のセンサコイルを2個以上備え、センサコイル相互の差を取る方式において走査方向に対して線対称とならい図形、例えば斜め長円、斜め楕円或いは、並行四辺形や多角形に形成されたセンサコイルとすることにより走査計測における計測死角を無くし、あらゆる方向の割れやヘアクラック等の検出を可能とする。計測死角を無くすやり方として図10に示すように、センサコイルを千鳥状の配列とし、コイル相互の差を取る方法も有るが、この場合長軸の両側の面積が実質上同一でないため走査方向に垂直方向に検査試料がさしかかるエッジ部で、試料が両コイルに到達するまでに時間差が生じることにより出力信号が大きく変動する問題が有るので高感度検査には向かない。  As the detection blind spot exclusion function, when the solar cell 30 is scanned and measured, the sensor unit 5 is provided with two or more sensor coils in a direction perpendicular to the scanning direction, and a line is formed with respect to the scanning direction in a method of taking a difference between the sensor coils. It is possible to detect cracks, hair cracks, etc. in all directions by eliminating the measurement blind spot in scanning measurement by using a sensor coil formed in a symmetrical figure, such as an oblique ellipse, an oblique ellipse, or a parallelogram or polygon. And As shown in FIG. 10, there is a method of eliminating the measurement blind spot by arranging the sensor coils in a staggered arrangement and taking the difference between the coils. However, in this case, the areas on both sides of the major axis are not substantially the same. Since there is a problem that the output signal greatly fluctuates due to a time difference until the sample reaches the two coils at the edge portion where the inspection sample approaches in the vertical direction, it is not suitable for high-sensitivity inspection.

センサ部保護及び汚れ防止機能能として、積層絶縁基板の表層部に励磁コイル及びセンサコイルを形成しない構造にすることでセンサ部のコイルパターンを保護し汚れ防止するとともに外部からコイルパターン構造を見えなくして偽造防止の役割を持たせる。  The sensor part protection and dirt prevention function function prevents the coil pattern structure from being seen from the outside while protecting the coil pattern of the sensor part by preventing the sensor coil coil and sensor coil from being formed on the surface layer part of the laminated insulating substrate. In order to prevent forgery.

図5は、本装置のセンサ部を積層絶縁基板とした断面の一例を示す図で、外部接続端子22から絶縁体層28を貫くビアホール導体24によって積層絶縁基板の導電体層に配設された上下層のコイルパターン或いは中継パターンを接続する。  FIG. 5 is a view showing an example of a cross section in which the sensor unit of the present apparatus is a laminated insulating substrate, and is disposed on the conductor layer of the laminated insulating substrate by a via-hole conductor 24 that penetrates the insulating layer 28 from the external connection terminal 22. Connect upper and lower coil patterns or relay patterns.

図6は、太陽電池モジュール100の幅に対応して配列されたセンサ部5または前記センサ部集合体7検査対象の太陽電池モジュール100の面から2mm以上30mm以下の距離として平行に配置し、太陽電池モジュール100との距離を保ちつつその長軸方向に直角な方向に相対的に移動して検査する太陽電池の欠陥検査の構成例を示す、逐次処理部11により各欠陥検出処理部10の出力を順次切り替えながら太陽電池モジュール100との位置を相対的に移動することにより、1回走査で太陽電池モジュール100に内在する割れや欠け、ヘアクラック等を高速検出できる。更に検出情報は太陽電池モジュール100とセンサコイル3との相対位置情報と連動させ二次元画像等で表示しても良い。  FIG. 6 shows a sensor unit 5 arranged corresponding to the width of the solar cell module 100 or the sensor unit assembly 7 arranged in parallel as a distance of 2 mm or more and 30 mm or less from the surface of the solar cell module 100 to be inspected. Output of each defect detection processing unit 10 by the sequential processing unit 11 showing a configuration example of defect inspection of a solar cell that is moved and inspected in a direction perpendicular to the long axis direction while maintaining a distance from the battery module 100. By moving the position relative to the solar cell module 100 while sequentially switching the two, it is possible to detect cracks, chips, hair cracks, and the like inherent in the solar cell module 100 in a single scan. Furthermore, the detection information may be displayed as a two-dimensional image or the like in conjunction with the relative position information between the solar cell module 100 and the sensor coil 3.

図7は、本発明の応用例としてセンサ部60を可撓性の有るポリイミドなどの絶縁基板に形成し、被検査体70に添わせる構造とすることで曲面を有する被検査体70の割れや欠け、クラック等の欠陥検査を可能とする。  FIG. 7 shows an example in which the sensor unit 60 is formed on a flexible polyimide insulating substrate as an application example of the present invention, and the inspection unit 70 having a curved surface is formed by attaching the sensor unit 60 to the inspection target 70. It enables defect inspection such as chipping and cracking.

図8は、本発明のセンサコイルの隣接したセンサ第一コイル3−1とセンサ第二コイル3−2の出力と差を取ることにより励磁誘導電圧を相殺した信号の波形を示す図である。  FIG. 8 is a diagram showing a waveform of a signal in which the excitation induced voltage is canceled by taking a difference from the outputs of the sensor first coil 3-1 and the sensor second coil 3-2 adjacent to each other in the sensor coil of the present invention.

図9は、本発明のセンサコイルの隣接したセンサ第一コイル3−1とセンサ第一コイルとセンサ第二コイル3−2の出力と差を取ることにより励磁誘導電圧を相殺し、検査に必要な渦電流情報VSgを分離抽出した波形を示す図である。  FIG. 9 shows the difference between the outputs of the sensor first coil 3-1, the sensor first coil, and the sensor second coil 3-2 adjacent to the sensor coil of the present invention, thereby canceling the excitation induced voltage and necessary for the inspection. It is a figure which shows the waveform which isolate | separated and extracted the eddy current information VSg.

図10は、特許文献2のプリントコイル26が千鳥配列としたフィルム基板を示す図である。  FIG. 10 is a diagram showing a film substrate in which the printed coils 26 of Patent Document 2 are arranged in a staggered arrangement.

本発明は太陽電池セル、モジュールの製造工程から出荷検査、設置前の受け入れ検査、設置後のメンテナンス現場での検査に至るまで幅広い応用展開が可能である。  The present invention can be applied to a wide range of applications from manufacturing processes of solar cells and modules to shipping inspection, acceptance inspection before installation, and inspection at the maintenance site after installation.

本発明は太陽電池セル、モジュールの割れや欠け、ヘアクラック等の高速検査のみならず、金属や透明電極の厚みや電気的性能のムラ及び欠陥の高速検査、更にリチウムイオン電池のセパレータ等に混入した金属性異物の高速検査まで幅広い応用の可能性を含んでいる。  The present invention is not only used for high-speed inspection of solar cells, module cracks and chips, hair cracks, etc., but also for high-speed inspection of metal and transparent electrode thickness and electrical performance irregularities and defects, and mixing into lithium ion battery separators, etc. This includes the possibility of a wide range of applications up to high-speed inspection of metallic foreign matter.

1 励磁駆動回路
2 励磁コイル
3 センサコイル
3−1 センサ第一コイル
3−2 センサ第二コイル
3−3 センサ第三コイル
3−4 センサ第四コイル
3−n センサ第nコイル
4 ビアホール導体接続パターン
5 センサ部
6 欠陥検出回路
7 センサ部集合体
10 欠陥検出処理部
10−n 第n欠陥検出処理部
11 逐次処理部
20 a層励磁コイル
22 外部接続端子
24 ビアホール導体
25 励磁遮蔽パターン
27 励磁磁界調整コイル
28 絶縁体層
3a−1 a層第一センサコイル
3a−2 a層第二センサコイル
3a−3 a層第二センサコイル
3a−n a層第nセンサコイル
3b−1 b層第一センサコイル
3b−2 b層第二センサコイル
3b−3 b層第三センサコイル
3b−n b層第nセンサコイル
3c c層センサコイル
50 披検査体又は太腸電池セル
60 可撓性を有する絶縁基板上に形成されたセンサ部
70 曲面のある被検査体
100 太陽電池モジュール
V1 センサ第一コイルの出力波形
V2 センサ第二コイルの出力波形
V3 V1とV2との差出力波形イメージ
VSg 欠陥情報の波形イメージ
21 フィルム基板
26 千鳥配列されたプリントコイル
DESCRIPTION OF SYMBOLS 1 Excitation drive circuit 2 Excitation coil 3 Sensor coil 3-1 Sensor 1st coil 3-2 Sensor 2nd coil 3-3 Sensor 3rd coil 3-4 Sensor 4th coil 3-n Sensor nth coil 4 Via-hole conductor connection pattern DESCRIPTION OF SYMBOLS 5 Sensor part 6 Defect detection circuit 7 Sensor part aggregate | assembly 10 Defect detection process part 10-n nth defect detection process part 11 Sequential process part 20 a layer excitation coil 22 External connection terminal 24 Via-hole conductor 25 Excitation shield pattern 27 Excitation magnetic field adjustment Coil 28 Insulator layer 3a-1 a layer first sensor coil 3a-2 a layer second sensor coil 3a-3 a layer second sensor coil 3a-na a layer n sensor coil 3b-1 b layer first sensor coil 3b-2 b layer second sensor coil 3b-3 b layer third sensor coil 3b-n b layer n sensor coil 3c c layer sensor coil 50 Battery cell 60 Sensor section 70 formed on flexible insulating substrate 100 Inspected object 100 with curved surface Solar cell module V1 Output waveform V2 of sensor first coil Output waveform V3 of sensor second coil V1 and V2 Difference output waveform image VSg Defect information waveform image 21 Film substrate 26 Staggered printed coil

Claims (7)

太陽電池セルに対向配置され励磁磁界を作用させる励磁コイルと、前記励磁コイルと同一面内の前記励磁コイルに取り囲まれる位置に配設された渦電流欠陥情報検出用センサコイルとを積層絶縁基板の導体層に形成したセンサ部および、前記センサコイルによって検出された渦電流欠陥情報に基づいて前記太陽電池セルの欠陥検査する欠陥検出処理部を備え、前記励磁コイルにより作用させた励磁磁界を介在して得られる渦電流欠陥情報に基づいて前記欠陥検出処理部により前記太陽電池セルの割れや欠け、ヘアクラック等の欠陥を検査する欠陥検査機。  An exciting coil disposed opposite to the solar battery cell to act on an exciting magnetic field, and an eddy current defect information detecting sensor coil disposed at a position surrounded by the exciting coil in the same plane as the exciting coil are formed on a laminated insulating substrate. A sensor unit formed on a conductor layer; and a defect detection processing unit that inspects defects of the solar battery cell based on eddy current defect information detected by the sensor coil, and includes an excitation magnetic field applied by the excitation coil. The defect inspection machine which inspects defects, such as a crack of a solar cell, a crack, and a hair crack, by the defect detection processing part based on eddy current defect information obtained by this. 前記励磁コイルが、十分長い平行部分を有する長軸状平面図形を有しており、前記センサコイルがそのセンサコイル内部の長軸に沿って配置された複数個のセンサコイルから構成されており、その隣接したセンサコイルが長軸の両側の面積が実質上同一の同一形状でかつ互いに長軸に対して直交する軸に関して線対称とならない図形で形成されたセンサコイルを有してなる請求項1に記載の欠陥検査機。  The excitation coil has a long-axis plane figure having a sufficiently long parallel portion, and the sensor coil is composed of a plurality of sensor coils arranged along the long axis inside the sensor coil; 2. The adjacent sensor coil has a sensor coil formed of a figure that has substantially the same shape on both sides of the major axis and is not line-symmetric with respect to an axis orthogonal to the major axis. Defect inspection machine described in. 前記センサ部が、前記積層絶縁基板の複数の導体層に形成された励磁コイルとセンサコイルとからなり、それぞれのセンサコイルの巻き数を増やすようにビアホール導体で接続されてなる構造を有する請求項1から請求項2に記載の欠陥検査機。  The said sensor part consists of an excitation coil and a sensor coil which were formed in a plurality of conductor layers of the above-mentioned laminated insulation board, and has a structure connected by a via hole conductor so that the number of turns of each sensor coil may be increased. The defect inspection machine according to claim 1. 前記積層絶縁基板の表層部を前記励磁コイル及び前記センサコイルを形成しない層とした請求項1から請求項3に記載の欠陥検査機。  The defect inspection machine according to claim 1, wherein a surface layer portion of the laminated insulating substrate is a layer that does not form the excitation coil and the sensor coil. 曲面の有る検査対象の割れや欠け、クラック等の検査を可能とするためにセンサ部を、可撓性を有する絶縁基板上に形成した請求項1から請求項4に記載の欠陥検査機。  The defect inspection machine according to any one of claims 1 to 4, wherein the sensor portion is formed on a flexible insulating substrate in order to enable inspection of a crack, a chip, a crack or the like of an inspection target having a curved surface. 請求項1から5に記載の欠陥検査機のセンサ部を複数個、太陽電池モジュールの幅に対応して配列してなるセンサ部集合体と、そのセンサ部の数に対応する複数の欠陥検出処理部と、前記複数の欠陥検出処理部を統括的に処理する逐次処理部とを備えた欠陥検査装置。  A plurality of sensor parts of the defect inspection machine according to claim 1, wherein a plurality of sensor parts are arranged corresponding to the width of the solar cell module, and a plurality of defect detection processes corresponding to the number of the sensor parts. And a sequential processing unit that collectively processes the plurality of defect detection processing units. 請求項1から5に記載の欠陥検査機または請求項6の欠陥検査装置を用い、前記センサ部集合体を検査対象の太陽電池モジュールの面から2mm以上30mm以下の距離として平行に配置し、太陽電池モジュールとの距離を保ちつつその長軸方向に直角な方向に相対的に移動して検査する太陽電池の欠陥検査方法。  Using the defect inspection machine according to claim 1 or the defect inspection apparatus according to claim 6, the sensor unit assembly is arranged in parallel at a distance of 2 mm or more and 30 mm or less from the surface of the solar cell module to be inspected. A method for inspecting a defect of a solar cell, in which a distance from a battery module is maintained while moving relative to a direction perpendicular to the major axis direction and inspected.
JP2013258628A 2013-11-28 2013-11-28 Defect inspection machine, defect inspection apparatus, and defect inspection method Pending JP2015105947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013258628A JP2015105947A (en) 2013-11-28 2013-11-28 Defect inspection machine, defect inspection apparatus, and defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258628A JP2015105947A (en) 2013-11-28 2013-11-28 Defect inspection machine, defect inspection apparatus, and defect inspection method

Publications (1)

Publication Number Publication Date
JP2015105947A true JP2015105947A (en) 2015-06-08

Family

ID=53436121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258628A Pending JP2015105947A (en) 2013-11-28 2013-11-28 Defect inspection machine, defect inspection apparatus, and defect inspection method

Country Status (1)

Country Link
JP (1) JP2015105947A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096876A (en) * 2015-11-27 2017-06-01 株式会社電子工学センター Probe of eddy current flaw inspection device, and eddy current flaw inspection device
CN111189905A (en) * 2020-01-09 2020-05-22 中国石油大学(华东) Three-dimensional size evaluation method for corrosion defects of underwater structure based on alternating-current electromagnetic field
CN111486784A (en) * 2020-06-02 2020-08-04 向军 Road bridge detects uses road surface crack degree of depth measuring device
CN113406193A (en) * 2021-06-23 2021-09-17 厦门大学 Flexible eddy current sensing film based on trapezoidal coil array, detection device and method
CN114080544A (en) * 2019-08-16 2022-02-22 株式会社Lg新能源 Eddy current sensor with improved crack detection capability and eddy current inspection apparatus including the same
CN116413332A (en) * 2023-06-12 2023-07-11 中国石油大学(华东) Flexible array monitoring probe for underwater structural crack
EP4067892A4 (en) * 2020-11-05 2023-07-19 LG Energy Solution, Ltd. Eddy current sensor for inspecting cracks in battery cell, and system for detecting cracks in battery cell comprising same
KR102634105B1 (en) * 2022-09-19 2024-02-06 (주)위플로 Appratus and method for checking the drive system of an electric vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096876A (en) * 2015-11-27 2017-06-01 株式会社電子工学センター Probe of eddy current flaw inspection device, and eddy current flaw inspection device
US12000795B2 (en) 2019-08-16 2024-06-04 Lg Energy Solution, Ltd. Eddy current sensor having improved crack detection capability, and eddy current inspection device including same
CN114080544A (en) * 2019-08-16 2022-02-22 株式会社Lg新能源 Eddy current sensor with improved crack detection capability and eddy current inspection apparatus including the same
CN114080544B (en) * 2019-08-16 2024-05-03 株式会社Lg新能源 Eddy current sensor and eddy current inspection apparatus including the same
CN111189905A (en) * 2020-01-09 2020-05-22 中国石油大学(华东) Three-dimensional size evaluation method for corrosion defects of underwater structure based on alternating-current electromagnetic field
CN111189905B (en) * 2020-01-09 2023-09-05 中国石油大学(华东) Three-dimensional size assessment method for corrosion defect of underwater structure based on alternating-current electromagnetic field
CN111486784A (en) * 2020-06-02 2020-08-04 向军 Road bridge detects uses road surface crack degree of depth measuring device
CN111486784B (en) * 2020-06-02 2021-10-01 湖南省交通建设质量监督检测有限公司 Road bridge detects uses road surface crack degree of depth measuring device
EP4067892A4 (en) * 2020-11-05 2023-07-19 LG Energy Solution, Ltd. Eddy current sensor for inspecting cracks in battery cell, and system for detecting cracks in battery cell comprising same
CN113406193A (en) * 2021-06-23 2021-09-17 厦门大学 Flexible eddy current sensing film based on trapezoidal coil array, detection device and method
CN113406193B (en) * 2021-06-23 2024-06-14 厦门大学 Flexible eddy current sensing film based on trapezoidal coil array, detection device and detection method
KR102634105B1 (en) * 2022-09-19 2024-02-06 (주)위플로 Appratus and method for checking the drive system of an electric vehicle
CN116413332A (en) * 2023-06-12 2023-07-11 中国石油大学(华东) Flexible array monitoring probe for underwater structural crack
CN116413332B (en) * 2023-06-12 2023-09-08 中国石油大学(华东) Flexible array monitoring probe for underwater structural crack

Similar Documents

Publication Publication Date Title
JP2015105947A (en) Defect inspection machine, defect inspection apparatus, and defect inspection method
JP4814511B2 (en) Pulsed eddy current sensor probe and inspection method
EP1600769A1 (en) Omni-directional eddy current probe
US8528407B2 (en) Method and apparatus for in-line quality control of wafers
JP5922633B2 (en) Eddy current flaw detection probe and eddy current flaw detection method
US9933394B2 (en) Method and apparatus for detecting cracks and delamination in composite materials
CN103499636B (en) Based on the lossless detection method of microdefect in the thin plate class ferromagnetic material of the magnetostatic power of survey
US8884614B2 (en) Eddy current array probe
CN106198718B (en) Drag-line corrosion sites detection device and method based on metal magnetic memory
JP2006177949A (en) Eddy current probe and eddy current array probe
WO2011077827A1 (en) Flaw detection device and flaw detection method
US9164061B2 (en) Arrangement for crack detection in metallic materials in a metal making process
JP4157597B2 (en) Wafer silicon layer flaw detection apparatus and flaw detection method
US7948233B2 (en) Omnidirectional eddy current array probes and methods of use
Chang et al. A magnetoelectric-ultrasonic multimodal system for synchronous NDE of surface and internal defects in metal
JP2006319303A (en) Method and apparatus of detecting cracks of solar cell element
US20180266993A1 (en) Non-destructive evaluation of additive manufacturing components
WO2018217626A1 (en) Non-destructive evaluation of additive manufacturing components
JP2011033510A (en) Eddy current flaw detection probe
Espy et al. Non-destructive evaluation with a linear array of 11 HTS SQUIDs
JP2011027603A (en) Eddy current flaw detection probe
Xie et al. A novel flexible eddy-current probe with high sensitivity for NDT
CA2711168A1 (en) Method for compensation of responses from eddy current probes
Silitonga et al. Front glass crack inspection of thin-film solar photovoltaic modules using high-order ultrasonic Lamb waves
Murner et al. Buried corrosion detection in multi-layer airframe structures using pulsed eddy current