JP2015104238A - Double stator type rotary electric machine - Google Patents

Double stator type rotary electric machine Download PDF

Info

Publication number
JP2015104238A
JP2015104238A JP2013243747A JP2013243747A JP2015104238A JP 2015104238 A JP2015104238 A JP 2015104238A JP 2013243747 A JP2013243747 A JP 2013243747A JP 2013243747 A JP2013243747 A JP 2013243747A JP 2015104238 A JP2015104238 A JP 2015104238A
Authority
JP
Japan
Prior art keywords
diameter side
rotor core
permanent magnet
rotor
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013243747A
Other languages
Japanese (ja)
Other versions
JP6156096B2 (en
Inventor
草瀬 新
Arata Kusase
草瀬  新
武雄 前川
Takeo Maekawa
武雄 前川
啓次 近藤
Keiji Kondo
啓次 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013243747A priority Critical patent/JP6156096B2/en
Publication of JP2015104238A publication Critical patent/JP2015104238A/en
Application granted granted Critical
Publication of JP6156096B2 publication Critical patent/JP6156096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double stator type rotary electric machine that is able to prevent deformation of the peripheral portion of a hole part.SOLUTION: A double stator type rotary electric machine comprises: a hole part which is arranged between outside-diameter-side permanent magnets Ma, Mb and an inside-diameter-side permanent magnet Mc and through which a first fixing member 3 is passed to be used for fixing a rotor core to a rotary shaft; holding parts 15c, 15f provided on one or both surface parts of the rotor core and holding a permanent magnet; and a bridge 15d connecting the central part 15e of the rotor core and the holding part 15c. The two outside-diameter-side permanent magnets Ma, Mb are identical in the direction of magnetization. In this structure, since stress on the bridge 15d is restricted when processing or fixing using the first fixing member 3 are carried out, deformation of the peripheral portion of the hole part can be prevented. Therefore, while magnetic force corresponding to required torque is ensured by the two separate outside-diameter-side permanent magnets Ma, Mb, damage can be prevented.

Description

本発明は、ロータを挟んで配置される二つのステータを有するダブルステータ型回転電機に関する。   The present invention relates to a double stator type rotating electric machine having two stators arranged with a rotor interposed therebetween.

一般にダブルステータ型モータは、磁気力作用ギャップ面を広くでき、体格の割に高トルクが得られ、構造的にロータがドーナツ状リングコアとなるため内外両面の各磁極作用トルクをシャフトに伝える強度設計が重要である。   In general, a double stator motor has a magnetic force acting gap surface that can be widened, high torque can be obtained for its physique, and the rotor is structurally a donut-shaped ring core. is important.

従来では、ロータの外周面からの外側永久磁石の剥がれを防止するとともに、極力トルクの減少を抑制することを目的とするダブルステータ型モータに関する技術の一例が開示されている(例えば特許文献1を参照)。このダブルステータ型モータにおけるロータコアは、外側永久磁石及び内側永久磁石の数と同数の材質が磁性体であるスタッドボルトにより締着するとともに、シャフトとの連結部材の材質を磁性体とする。   Conventionally, an example of a technique related to a double stator motor that aims to prevent the outer permanent magnet from peeling off from the outer peripheral surface of the rotor and to suppress a reduction in torque as much as possible has been disclosed (for example, Patent Document 1). reference). The rotor core in this double stator type motor is fastened by a stud bolt whose magnetic material is the same as the number of outer permanent magnets and inner permanent magnets, and the material of the connecting member with the shaft is magnetic.

特開2007−282331号公報JP 2007-282331 A

しかし、特許文献1に記載の技術を適用して、各磁極ごとにスタッドボルトにより締着を行うと強度的に優れる反面、高強度化に有効な磁極部のロータ固定ボルト用の穴やボルト締結に関しては以下の問題点がある。   However, if the technique described in Patent Document 1 is applied and fastening is performed with stud bolts for each magnetic pole, the strength is excellent. On the other hand, the rotor fixing bolt holes and bolt fastening of the magnetic pole portion effective for high strength are provided. Has the following problems.

第1点は、特に外径面側において、永久磁石を組み付け挿入しにくいことである。第2点は、組み立てた後にスタッドボルトで締結すると磁石が割れるなど、磁石の健全な組み付け性に支障を及ぼすことである。第3点は、当初から大きなクリアランスを設定が必要になるため、性能が限定的になってしまうことである。   The first point is that it is difficult to assemble and insert a permanent magnet, particularly on the outer diameter surface side. The second point is that the magnet is broken when it is fastened with a stud bolt after it is assembled. The third point is that the performance becomes limited because it is necessary to set a large clearance from the beginning.

上述した磁石組みつけ性の問題について、発明者らは固定用部材の穴部を加工する際や締結を行う際において、当該穴部の周辺部位でふくらみ変形が生じることが原因であることを突き止めた。   Regarding the above-described problem of magnet assembly, the inventors have found out that the deformation of the hole around the hole is caused when the hole of the fixing member is processed or fastened. It was.

本発明はこのような点に鑑みてなしたものであり、第1の目的は、穴部の周辺部位について変形を防止できるダブルステータ型回転電機を提供することである。第2の目的は、仮に穴部の周辺部位辺部が変形しても永久磁石の損傷を防止できるダブルステータ型回転電機を提供することである。   The present invention has been made in view of such a point, and a first object is to provide a double stator type rotating electric machine capable of preventing deformation of a peripheral portion of a hole. The second object is to provide a double stator type rotating electrical machine that can prevent the permanent magnet from being damaged even if the peripheral part side part of the hole is deformed.

上記課題を解決するためになされた第1の発明は、永久磁石がロータコア(1,2)の外径側と内径側にそれぞれ設けられるロータ(15)と、前記ロータを介して対向配置されるとともに相巻線(11,13a,14a)が巻装される二つのステータ(13,14)を有するダブルステータ型回転電機(MG)において、前記外径側に設けられる前記永久磁石(6,Ma,Mb)と前記内径側に設けられる前記永久磁石(7,Mc,Md,Me)との相互間に配置され、前記ロータコアを回転軸(8,18)に対して直接的または間接的に固定する際に用いる固定用部材を通す穴部(15a,15b)と、前記ロータコアの一方または双方の表面部に備えられ、前記永久磁石にかかる一面の一部または全部を保持する保持部(15c,15f,15i,15j)と、前記ロータコアの中央部(15e)と前記保持部(15c,15j)とを連結するブリッジ(15d,15h)とを有し、前記ブリッジを挟んで設けられる二つの前記永久磁石は、磁化方向が同じであることを特徴とする。   A first invention made to solve the above-described problem is that a permanent magnet is disposed opposite to a rotor (15) provided on each of an outer diameter side and an inner diameter side of a rotor core (1, 2) via the rotor. In addition, in the double stator type rotating electrical machine (MG) having two stators (13, 14) around which the phase windings (11, 13a, 14a) are wound, the permanent magnets (6, Ma) provided on the outer diameter side. , Mb) and the permanent magnets (7, Mc, Md, Me) provided on the inner diameter side, and directly or indirectly fixing the rotor core to the rotation shafts (8, 18). Holes (15a, 15b) through which the fixing member used when performing, and a holding part (15c, 15b) that is provided on one or both surface parts of the rotor core and that holds a part or all of one surface of the permanent magnet 15 , 15i, 15j) and a bridge (15d, 15h) connecting the central portion (15e) of the rotor core and the holding portion (15c, 15j), and the two permanent members provided across the bridge Magnets have the same magnetization direction.

この構成によれば、ロータコアの中央部に設けられる穴部の近傍には、ロータコアの中央部と保持部とを連結するブリッジを備える。加工する際や、固定用部材を用いた固定(かしめや締結等)を行う際に応力をブリッジが抑制されるので、穴部の周辺部位(特に永久磁石を収容する部位)の変形を防止することができる。ブリッジを挟んで二つに分割した永久磁石を設けるので、必要なトルクに対応する磁力を確保しながらも、仮に穴部の周辺部位が変形しても永久磁石が損傷(欠損や割れ等)を防止することができる。   According to this structure, the bridge | bridging which connects the center part of a rotor core and a holding | maintenance part is provided in the vicinity of the hole provided in the center part of a rotor core. Since the bridge is restrained in stress when processing and fixing (caulking, fastening, etc.) using a fixing member, deformation of the peripheral part of the hole (particularly, the part containing the permanent magnet) is prevented. be able to. Since a permanent magnet divided into two across the bridge is provided, the permanent magnet will be damaged (defects, cracks, etc.) even if the peripheral part of the hole is deformed while securing the magnetic force corresponding to the required torque. Can be prevented.

第2の発明は、前記ロータコアの表面に凹凸が生じないように、前記保持部と前記リラクタンス極部とをつないで連続するように成形することを特徴とする。   According to a second aspect of the present invention, the holding portion and the reluctance pole portion are connected and continuously formed so that the surface of the rotor core is not uneven.

この構成によれば、ロータコアの外周縁部とブリッジとが堅固になるために変形が抑えられる。そのため、ブリッジが動きにくく、穴部周辺の変形がより抑制される。   According to this configuration, since the outer peripheral edge portion of the rotor core and the bridge are rigid, deformation is suppressed. Therefore, the bridge is difficult to move, and deformation around the hole is further suppressed.

第3の発明は、前記ロータの周方向における同一部位であって、前記外径側と前記内径側に設けられる前記永久磁石とは、磁化方向が互いに対向するように着磁するか、または、磁化方向が互いに背反するように着磁し、前記二つのステータに巻装される各相巻線(コイル)には、一方のステータから発した磁束が他方のステータを貫かずに前記永久磁石と前記ロータコアを通り、再び前記一方のステータに戻るように磁束が流れるように通電することを特徴とする。   3rd invention is the same site | part in the circumferential direction of the said rotor, Comprising: The said permanent magnet provided in the said outer diameter side and the said inner diameter side is magnetized so that a magnetization direction may mutually oppose, or In each phase winding (coil) that is magnetized so that the magnetization directions are opposite to each other, the magnetic flux generated from one stator does not penetrate the other stator and the permanent magnet Electricity is supplied so that magnetic flux flows through the rotor core and returns to the one stator again.

この構成によれば、一方のステータから発した磁束が他方のステータを貫かずに永久磁石とロータコアを通り、再び一方のステータに戻るように磁束が流れる。このようにステータの起磁力を並列起磁力構成とすると、リラクタンストルク効果が向上して、トルク等をより高性能化することができる。   According to this configuration, the magnetic flux flows so that the magnetic flux generated from one stator passes through the permanent magnet and the rotor core without passing through the other stator and returns to the one stator again. When the magnetomotive force of the stator is configured as a parallel magnetomotive force in this way, the reluctance torque effect is improved, and the torque and the like can be improved.

なお、「相巻線」の相数は問わず、単相でも複数相でもよい。「ダブルステータ型回転電機」は、回転する部位(例えば軸やシャフト等)を有する機器であれば任意である。例えば、発電機,電動機,電動発電機等が該当する。「ロータコアの中央部」は、ロータコアの径方向における中央部を意味する。「固定用部材」は、ロータを固定する部材であれば、材料(材質を含む)や形状などを問わない。ロータコアの「表面部」は、ロータコアの径方向における外周面部または内周面部を意味する。「保持部」は、永久磁石の少なくとも一面にかかる一部または全部を保持できれば任意の形状でよい。「巻装」は巻き回すことを意味する。   In addition, the number of phases of the “phase winding” is not limited and may be a single phase or a plurality of phases. The “double stator type rotating electrical machine” is optional as long as it is a device having a rotating part (for example, a shaft or a shaft). For example, a generator, a motor, a motor generator, and the like are applicable. The “central portion of the rotor core” means the central portion in the radial direction of the rotor core. As long as the “fixing member” is a member that fixes the rotor, any material (including material) or shape may be used. The “surface portion” of the rotor core means an outer peripheral surface portion or an inner peripheral surface portion in the radial direction of the rotor core. The “holding portion” may have any shape as long as it can hold a part or all of at least one surface of the permanent magnet. “Winding” means winding.

ダブルステータ型回転電機の第1構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 1st structural example of a double stator type rotary electric machine. ロータの構成例を模式的に示す断面図である。It is sectional drawing which shows the structural example of a rotor typically. ロータの構成例を模式的に示す平面図である。It is a top view which shows the structural example of a rotor typically. ロータの構成例を模式的に示す側面図である。It is a side view which shows typically the structural example of a rotor. ロータの第1構成例を部分的に拡大して模式的に示す平面図である。FIG. 3 is a plan view schematically showing a first configuration example of the rotor partially enlarged. 電磁鋼板の第1構成例を模式的に示す平面図である。It is a top view which shows typically the 1st structural example of an electromagnetic steel plate. 永久磁石と穴部との間隔を模式的に示す平面図である。It is a top view which shows typically the space | interval of a permanent magnet and a hole part. ロータの第2構成例を部分的に拡大して模式的に示す平面図である。FIG. 6 is a plan view schematically showing a second configuration example of the rotor partially enlarged. 電磁鋼板の第2構成例を模式的に示す平面図である。It is a top view which shows typically the 2nd structural example of an electromagnetic steel plate. ロータの第3構成例を部分的に拡大して模式的に示す平面図である。FIG. 10 is a plan view schematically showing a third configuration example of the rotor partially enlarged. ロータの第4構成例を部分的に拡大して模式的に示す平面図である。It is a top view which expands partially and shows typically the 4th structural example of a rotor partially. ロータの第5構成例を部分的に拡大して模式的に示す平面図である。FIG. 10 is a plan view schematically showing a fifth configuration example of the rotor partially enlarged. ダブルステータ型回転電機の第2構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 2nd structural example of a double stator type rotary electric machine. ダブルステータ型回転電機の第3構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 3rd structural example of a double stator type rotary electric machine. ロータの他の構成例を模式的に示す断面図である。It is sectional drawing which shows the other structural example of a rotor typically. ロータの他の構成例を模式的に示す断面図である。It is sectional drawing which shows the other structural example of a rotor typically.

以下、本発明を実施するための形態について、図面に基づいて説明する。なお、各図は、本発明を説明するために必要な要素を図示し、実際の全要素を図示しているとは限らない。断面図では、見やすさを優先するため、説明に必要な要素についてハッチングする。上下左右等の方向を言う場合には、図面の記載を基準とする。許容誤差範囲には、製造許容誤差、設計許容誤差、実用上支障がない誤差などのような所定の許容範囲を含む。磁石用穴部は磁石を収容できれば、貫通穴でもよく、非貫通穴(凹状部位)でもよい。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. Each figure shows elements necessary for explaining the present invention, and does not necessarily show all actual elements. In the cross-sectional view, elements necessary for explanation are hatched in order to prioritize the visibility. When referring to directions such as up, down, left and right, the description in the drawings is used as a reference. The allowable error range includes a predetermined allowable range such as a manufacturing allowable error, a design allowable error, and an error that has no practical problem. The magnet hole may be a through hole or a non-through hole (concave portion) as long as it can accommodate a magnet.

本形態は図1〜図12を参照しながら説明する。図1に示す回転電機MGは、ダブルステータ型の回転電機である。当該回転電機MGは、外径側ステータ13(固定子),内径側ステータ14(固定子),ロータ15(回転子),回転軸18(シャフト)などをハウジング12内に有する。   This embodiment will be described with reference to FIGS. The rotating electrical machine MG shown in FIG. 1 is a double stator type rotating electrical machine. The rotating electrical machine MG includes an outer diameter side stator 13 (stator), an inner diameter side stator 14 (stator), a rotor 15 (rotor), a rotating shaft 18 (shaft), and the like in the housing 12.

ハウジング12は、コップ状のハウジング部材12aと、平板状のハウジング部材12bで構成する。ハウジング部材12a,12bと回転軸18の間には軸受17(ベアリング)が介在され、回転軸18は回転自在に支持される。   The housing 12 includes a cup-shaped housing member 12a and a flat-plate housing member 12b. A bearing 17 (bearing) is interposed between the housing members 12a and 12b and the rotary shaft 18, and the rotary shaft 18 is rotatably supported.

外径側ステータ13と内径側ステータ14は、ロータ15を介して対向配置されるとともに、それぞれハウジング部材12aの内壁面に固定される。各ステータの固定方法は問わない。外径側ステータ13には相巻線13aが巻装され、内径側ステータ14には相巻線14aが巻装される。より具体的には対応するステータコア(ステータ鉄心)に相巻線13a,14aがそれぞれ巻装される。   The outer diameter side stator 13 and the inner diameter side stator 14 are arranged to face each other via the rotor 15 and are respectively fixed to the inner wall surface of the housing member 12a. The fixing method of each stator is not ask | required. A phase winding 13 a is wound around the outer diameter side stator 13, and a phase winding 14 a is wound around the inner diameter side stator 14. More specifically, phase windings 13a and 14a are wound around corresponding stator cores (stator cores), respectively.

ロータ15は、ディスク16を介して回転軸18に固定される。ロータ15はディスク16に固定される。ロータ15の構成例や固定方法については後述する(図2〜図17を参照)。ディスク16は、図示するように径方向と軸方向に沿ったL字状に成形され、回転軸18に固定される。回転軸18に対する固定方法は問わない。   The rotor 15 is fixed to the rotary shaft 18 via the disk 16. The rotor 15 is fixed to the disk 16. A configuration example and a fixing method of the rotor 15 will be described later (see FIGS. 2 to 17). The disk 16 is formed in an L shape along the radial direction and the axial direction as shown in the figure, and is fixed to the rotary shaft 18. The fixing method with respect to the rotating shaft 18 does not matter.

図2〜図4に示すロータ15は、第1ロータコア1,第2ロータコア2,第1固定用部材3、第2固定用部材4などを有する。第1ロータコア1と第2ロータコア2は、図示するように一体成形してもよく、別体に成形してから固定する構成としてもよい。以下では、第1ロータコア1と第2ロータコア2からなる構造体を単に「ロータコア」と呼ぶ。   2 to 4 includes a first rotor core 1, a second rotor core 2, a first fixing member 3, a second fixing member 4, and the like. The first rotor core 1 and the second rotor core 2 may be integrally molded as illustrated, or may be configured to be molded separately and then fixed. Hereinafter, the structure including the first rotor core 1 and the second rotor core 2 is simply referred to as “rotor core”.

図2に示す第1ロータコア1は、第1固定用部材3を通すための貫通穴15aを有する。第2ロータコア2は、第1穴径R1よりも大きく成形される第2穴径R2の貫通穴15bを有する(R2>R1;図4を参照)。貫通穴15a,15b(固定用穴)は同軸に成形され、座ぐり穴と貫通穴が一体になったような穴である。図示しないが、第1穴径R1と第2穴径R2を同じに設定してもよい(R1=R2)。貫通穴15a,15bは「穴部」に相当する。   The first rotor core 1 shown in FIG. 2 has a through hole 15a for allowing the first fixing member 3 to pass therethrough. The second rotor core 2 has a through hole 15b having a second hole diameter R2 that is formed larger than the first hole diameter R1 (R2> R1; see FIG. 4). The through-holes 15a and 15b (fixing holes) are formed coaxially, and are such that the counterbore and the through-hole are integrated. Although not shown, the first hole diameter R1 and the second hole diameter R2 may be set to be the same (R1 = R2). The through holes 15a and 15b correspond to “holes”.

ロータコアを構成する第1ロータコア1と第2ロータコア2は、いずれも単体や積層体等の形態を問わない。本形態では、一例として、図1の矢印D1から見た図3に示すように磁性体によって円筒状に成形し、磁性体の一つである電磁鋼板(鉄鋼材料)を積層する積層体で成形する。円筒状に成形することによって、第1固定用部材3を通す貫通穴15a,15bは円周上に複数成形される。貫通穴15a,15bの数は任意に設定してよい。   The first rotor core 1 and the second rotor core 2 constituting the rotor core may be in the form of a single body or a laminated body. In this embodiment, as an example, as shown in FIG. 3 as viewed from the arrow D1 in FIG. 1, a magnetic body is formed into a cylindrical shape, and a laminated body in which electromagnetic steel plates (steel materials) that are one of the magnetic bodies are stacked is formed. To do. By forming in a cylindrical shape, a plurality of through holes 15a and 15b through which the first fixing member 3 is passed are formed on the circumference. The number of through holes 15a and 15b may be set arbitrarily.

ロータコアの外周縁部には、外径側永久磁石6を収容するための収容部(例えば図6に示す磁石用穴部Ha,Hb)が成形される。ロータコアの内周縁部には、内径側永久磁石7を収容するための収容部(例えば図6に示す磁石用凹部Hcおよび保持部15f)が成形される。すなわち内径側永久磁石7を磁石用凹部Hcに収容させたうえで、爪状の保持部15fを変形させて(例えばかしめて)固定する(図4を参照)。   A housing portion (for example, magnet holes Ha and Hb shown in FIG. 6) for housing the outer diameter side permanent magnet 6 is formed on the outer peripheral edge portion of the rotor core. A housing portion (for example, the magnet recess Hc and the holding portion 15f shown in FIG. 6) for housing the inner diameter side permanent magnet 7 is formed on the inner peripheral edge portion of the rotor core. That is, after the inner diameter side permanent magnet 7 is accommodated in the magnet recess Hc, the claw-shaped holding portion 15f is deformed (for example, caulked) and fixed (see FIG. 4).

外径側永久磁石6と内径側永久磁石7の数(以下では単に「磁石数」と呼ぶ。)は、基本的に極対数でよいが、分割などを行って磁石数を増やしてもよい。図3に示す構成例では、第1固定用部材3を通す貫通穴15a,15bは外径側永久磁石6と内径側永久磁石7の間に設けるため、磁石数は貫通穴15a,15bの数と一致させている。貫通穴15a,15bの数が磁石数よりも少なくなるように構成してもよい。例えば、図3に示す第1固定用部材3が上記極対数のn極(nは自然数)以上おきとなるように貫通穴15a,15bを設ける形態が該当する。   The number of outer diameter side permanent magnets 6 and inner diameter side permanent magnets 7 (hereinafter simply referred to as “the number of magnets”) may be basically the number of pole pairs, but the number of magnets may be increased by division or the like. In the configuration example shown in FIG. 3, since the through holes 15a and 15b through which the first fixing member 3 is passed are provided between the outer diameter side permanent magnet 6 and the inner diameter side permanent magnet 7, the number of magnets is the number of the through holes 15a and 15b. To match. You may comprise so that the number of through-holes 15a and 15b may become smaller than the number of magnets. For example, a configuration in which the through holes 15a and 15b are provided so that the first fixing member 3 shown in FIG. 3 is more than n poles (n is a natural number) of the number of pole pairs is applicable.

第1固定用部材3は、少なくともフランジ部3aを有する棒状部材である。第1固定用部材3は任意の材料で成形してよいが、磁束を流し易くするために磁性体で成形するとよい。図2に示すように、第1固定用部材3は第2固定用部材4を介在させて貫通穴15aに通され、さらに貫通穴15aと同軸で成形されるディスク5の貫通穴5hに通される。ディスク5は、図1に示すディスク16の一構成例である。第1固定用部材3は、ロータ15の先端部(図2の上端部)側にフランジ部3aが成形され、ディスク5側は貫通穴5hに通した後にかしめられてカシメ部3bが成形される(図4をも参照)。こうしてロータ15はディスク5を介して間接的に回転軸18に固定される(図1を参照)。   The first fixing member 3 is a rod-shaped member having at least a flange portion 3a. The first fixing member 3 may be formed of any material, but may be formed of a magnetic material so that the magnetic flux can easily flow. As shown in FIG. 2, the first fixing member 3 is passed through the through hole 15a with the second fixing member 4 interposed, and is further passed through the through hole 5h of the disk 5 formed coaxially with the through hole 15a. The The disk 5 is a configuration example of the disk 16 shown in FIG. The first fixing member 3 is formed with a flange portion 3a on the tip end portion (upper end portion in FIG. 2) side of the rotor 15, and the disk 5 side is caulked after passing through the through hole 5h to form a caulking portion 3b. (See also FIG. 4). Thus, the rotor 15 is indirectly fixed to the rotating shaft 18 via the disk 5 (see FIG. 1).

第2固定用部材4は、磁性体で成形され、座面部4aや段差部4bなどを有する。第2固定用部材4は任意の材料で成形してよいが、磁束を流し易くするために磁性体で成形するとよい。座面部4aは「ツバ部」に相当し、第2ロータコア2や外径側永久磁石6を押さえ付けて固定する部位である。座面部4aと段差状に成形される段差部4bは、第1ロータコア1を押さえ付けて固定する部位である。段差部4bには貫通穴15aの一部を構成する穴を有する。   The 2nd fixing member 4 is shape | molded with the magnetic body, and has the seat surface part 4a, the level | step difference part 4b, etc. FIG. The second fixing member 4 may be formed of any material, but may be formed of a magnetic material so that the magnetic flux can easily flow. The seat surface portion 4a corresponds to a “head portion” and is a portion that presses and fixes the second rotor core 2 and the outer diameter side permanent magnet 6. The stepped portion 4b formed in a stepped shape with the seating surface portion 4a is a portion that presses and fixes the first rotor core 1. The step portion 4b has a hole constituting a part of the through hole 15a.

図4には、図5や図8の矢印D2から見たロータ15の側面図を示す。図4に示すロータ15は、図示するように複数枚の電磁鋼板15gを積層して成形される。電磁鋼板15gの枚数は、電磁鋼板15gの板厚を考慮して適切に設定する。一枚の電磁鋼板15gの成形例については後述する(図6,図9を参照)。第1ロータコア1の貫通穴15aは第1穴径R1で成形され、第2ロータコア2の貫通穴15bは第1穴径R1以上の大きさからなる第2穴径R2で成形される(R2≧R1)。貫通穴15bは、第1固定用部材3のフランジ部3a(頭部)の一部または全部が収まる深さ(高さ)にするとよい。ディスク5の貫通穴5hは、貫通穴15a,15bと同軸上に成形され、第1固定用部材3を通すために第2ロータコア2と同じ第1穴径R1で成形される。   FIG. 4 shows a side view of the rotor 15 as viewed from the arrow D2 in FIGS. The rotor 15 shown in FIG. 4 is formed by laminating a plurality of electromagnetic steel plates 15g as shown. The number of the electromagnetic steel plates 15g is appropriately set in consideration of the thickness of the electromagnetic steel plate 15g. An example of forming one electromagnetic steel sheet 15g will be described later (see FIGS. 6 and 9). The through hole 15a of the first rotor core 1 is formed with a first hole diameter R1, and the through hole 15b of the second rotor core 2 is formed with a second hole diameter R2 having a size equal to or larger than the first hole diameter R1 (R2 ≧ R1). The through hole 15b may have a depth (height) in which a part or all of the flange portion 3a (head) of the first fixing member 3 is accommodated. The through-hole 5h of the disk 5 is formed coaxially with the through-holes 15a and 15b, and is formed with the same first hole diameter R1 as that of the second rotor core 2 in order to pass the first fixing member 3.

以上ではロータ15を概略的に説明したが、ロータ15の具体的な構成例について図5〜図12を参照しながら説明する。図5〜図12において、一つの外径側永久磁石Maと一つの外径側永久磁石Mbは、一つの外径側永久磁石6に相当する。内径側永久磁石Mc,Md,Meはそれぞれが内径側永久磁石7に相当する。   Although the rotor 15 has been schematically described above, a specific configuration example of the rotor 15 will be described with reference to FIGS. 5 to 12, one outer diameter side permanent magnet Ma and one outer diameter side permanent magnet Mb correspond to one outer diameter side permanent magnet 6. Each of the inner diameter side permanent magnets Mc, Md, and Me corresponds to the inner diameter side permanent magnet 7.

(第1構成例)
図5に示す第1構成例のロータ15Aは、ロータコアの外周縁部に外径側永久磁石Ma,Mbを設け、同じく内周縁部に内径側永久磁石Mcを設ける。複数の外径側永久磁石6(すなわち外径側永久磁石Maと外径側永久磁石Mbの組)は、図3に示すようにロータコアの外周縁部に沿って設けられる。外径側永久磁石6を構成する外径側永久磁石Maと外径側永久磁石Mbは磁化方向を同じにし、周方向に隣り合う外径側永久磁石6どうしは磁化方向を逆にする。複数の内径側永久磁石Mcは、図3に示すようにロータコアの内周縁部に沿って設けられ、周方向に隣り合う内径側永久磁石Mc(すなわち内径側永久磁石7)どうしは磁化方向を逆にする。図4に太線矢印で示す各磁石の磁化方向例は、外径側永久磁石Ma,Mbと内径側永久磁石Mcとで磁化方向が互いに対向するように着磁する例である。図8に示すように、外径側永久磁石Ma,Mbと内径側永久磁石Mcとで磁化方向が互いに背反するように着磁してもよい。
(First configuration example)
The rotor 15A of the first configuration example shown in FIG. 5 is provided with the outer diameter side permanent magnets Ma and Mb at the outer peripheral edge portion of the rotor core, and similarly with the inner diameter side permanent magnet Mc at the inner peripheral edge portion. The plurality of outer diameter side permanent magnets 6 (that is, a set of the outer diameter side permanent magnet Ma and the outer diameter side permanent magnet Mb) are provided along the outer peripheral edge of the rotor core as shown in FIG. The outer diameter side permanent magnet Ma and the outer diameter side permanent magnet Mb constituting the outer diameter side permanent magnet 6 have the same magnetization direction, and the outer diameter side permanent magnets 6 adjacent to each other in the circumferential direction have opposite magnetization directions. The plurality of inner diameter side permanent magnets Mc are provided along the inner peripheral edge of the rotor core as shown in FIG. 3, and the inner diameter side permanent magnets Mc (that is, the inner diameter side permanent magnets 7) adjacent to each other in the circumferential direction have opposite magnetization directions. To. The example of the magnetization direction of each magnet indicated by a thick arrow in FIG. 4 is an example in which the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc are magnetized so that the magnetization directions face each other. As shown in FIG. 8, the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc may be magnetized so that the magnetization directions are opposite to each other.

一つの外径側磁石体を構成する外径側永久磁石Maと外径側永久磁石Mbは、ブリッジ15dを挟んで配置される。具体的には図5に示すように、外径側永久磁石Maは磁石用穴部Haに収容し、外径側永久磁石Mbは磁石用穴部Hbに収容する。磁石用穴部Ha,Hbにそれぞれ対応するロータコアの外周縁部は、外径側永久磁石Ma,Mbにかかる各々の一面(外周面)について全部を保持するので、保持部15cに相当する。内径側永久磁石Mcは、図5に示すように磁石用凹部Hcに収容させたうえで、爪状の保持部15fを変形させて(例えばかしめて)固定する。すなわち、保持部15fは内径側永久磁石Mcにかかる一面(内周面)について一部を保持する。   The outer diameter side permanent magnet Ma and the outer diameter side permanent magnet Mb constituting one outer diameter side magnet body are arranged with the bridge 15d interposed therebetween. Specifically, as shown in FIG. 5, the outer diameter side permanent magnet Ma is accommodated in the magnet hole Ha, and the outer diameter side permanent magnet Mb is accommodated in the magnet hole Hb. The outer peripheral edge portions of the rotor core corresponding to the magnet holes Ha and Hb respectively hold the entire one surface (outer peripheral surface) of the outer diameter side permanent magnets Ma and Mb, and thus correspond to the holding portion 15c. As shown in FIG. 5, the inner diameter side permanent magnet Mc is accommodated in the magnet recess Hc, and then the claw-shaped holding portion 15f is deformed (for example, caulked) and fixed. That is, the holding portion 15f holds a part of one surface (inner peripheral surface) applied to the inner diameter side permanent magnet Mc.

周方向に隣り合う外径側磁石体の相互間と、周方向に隣り合う内径側永久磁石Mcの相互間には、破線で示す無極性のリラクタンス極部Reを配置する。言い換えると、異なる極性の永久磁石の相互間にリラクタンス極部Reを配置する。こうすることで、磁束φi,φoが流れる流路を確保して、リラクタンストルク効果を向上させることができ、より高性能を達成できる効果がある。   A nonpolar reluctance pole portion Re indicated by a broken line is disposed between the outer diameter side magnet bodies adjacent in the circumferential direction and between the inner diameter side permanent magnets Mc adjacent in the circumferential direction. In other words, the reluctance pole portion Re is disposed between the permanent magnets having different polarities. By doing so, it is possible to secure a flow path through which the magnetic fluxes φi and φo flow, improve the reluctance torque effect, and achieve an effect of achieving higher performance.

図1に示すように、ロータ15Aの外周面に対向して外径側ステータ13が配置され、同じく内周面に対向して内径側ステータ14が配置される。これらの配置に加えて、図示しない制御部(例えば制御装置や電力変換装置など)によって、相巻線13a,14aの通電による磁束φi,φoの流れを制御する構成としてもよい。   As shown in FIG. 1, the outer diameter side stator 13 is disposed to face the outer peripheral surface of the rotor 15 </ b> A, and the inner diameter side stator 14 is also disposed to face the inner peripheral surface. In addition to these arrangements, the flow of the magnetic fluxes φi and φo by energization of the phase windings 13a and 14a may be controlled by a control unit (not shown) (for example, a control device or a power conversion device).

例えば、外径側ステータ13から発した磁束φoが内径側ステータ14を貫かずに外径側永久磁石Ma,Mbやロータコア(リラクタンス極部Reを含む)を通り、再び外径側ステータ13に流れるように(矢印D3を参照)、相巻線13aへの通電を制御する。同様に、内径側ステータ14から発した磁束φiが外径側ステータ13を貫かずに外径側永久磁石Mcやロータコア(リラクタンス極部Reを含む)を通り、再び内径側ステータ14に流れるように(矢印D4を参照)、相巻線14aへの通電を制御する。なお相巻線13a,14aの通電制御によっては、図示する磁束φi,φoの流れがそれぞれ逆方向になることもある(図10に示す矢印D5,D6の方向を参照)。   For example, the magnetic flux φo generated from the outer diameter side stator 13 passes through the outer diameter side permanent magnets Ma and Mb and the rotor core (including the reluctance pole portion Re) without passing through the inner diameter side stator 14 and flows again to the outer diameter side stator 13. (See arrow D3), the energization to the phase winding 13a is controlled. Similarly, the magnetic flux φi generated from the inner diameter side stator 14 does not pass through the outer diameter side stator 13, passes through the outer diameter side permanent magnet Mc and the rotor core (including the reluctance pole portion Re), and flows again to the inner diameter side stator 14. (Refer to arrow D4), the energization to the phase winding 14a is controlled. Depending on the energization control of the phase windings 13a and 14a, the flow of the illustrated magnetic fluxes φi and φo may be reversed (see directions of arrows D5 and D6 shown in FIG. 10).

図6に示す電磁鋼板15gは、ロータ15Aのロータコアを構成する第1ロータコア1と第2ロータコア2の成形例である。電磁鋼板15gの外周縁部には、周方向に磁石用穴部Ha,Hbを並べて設け、磁石用穴部Haと磁石用穴部Hbとの間にはブリッジ15dを設ける。ロータコアの表面(外周面;図面上側)に凹凸が生じないように、保持部15cとリラクタンス極部Reとをつないで連続するように成形する。保持部15cとブリッジ15dは結合されてT字状になる。保持部15cの径方向幅(厚さ)は任意に設定してよい。なお、磁束が流れ易くするには小さく(薄く)するのがよく、保持部15cの剛性を高めるには大きく(厚く)するのがよいので、双方を考慮して設定するとよい。   An electromagnetic steel plate 15g shown in FIG. 6 is a molding example of the first rotor core 1 and the second rotor core 2 that constitute the rotor core of the rotor 15A. Magnet holes Ha and Hb are provided side by side in the circumferential direction on the outer peripheral edge of the electromagnetic steel sheet 15g, and a bridge 15d is provided between the magnet hole Ha and the magnet hole Hb. The holding part 15c and the reluctance pole part Re are connected and formed so as to prevent the surface of the rotor core (outer peripheral surface; upper side in the drawing) from being uneven. The holding portion 15c and the bridge 15d are joined to form a T shape. The radial width (thickness) of the holding portion 15c may be set arbitrarily. In order to make the magnetic flux easily flow, it is preferable to make it small (thin) and to increase the rigidity of the holding portion 15c, it is good to make it large (thick).

電磁鋼板15gの内周縁部には、磁石用凹部Hcを設け、当該磁石用凹部Hcの周方向端かつ内周面端に保持部15f(爪部)を設ける。磁石用穴部Ha,Hbと磁石用凹部Hcの間(すなわちロータコアの中央部15e)には、貫通穴15a,15bを設ける。   A magnet concave portion Hc is provided at the inner peripheral edge of the electromagnetic steel sheet 15g, and a holding portion 15f (claw portion) is provided at the circumferential end and the inner peripheral surface end of the magnet concave portion Hc. Through holes 15a and 15b are provided between the magnet holes Ha and Hb and the magnet recess Hc (that is, the central portion 15e of the rotor core).

上述した貫通穴15a,15bと、磁石用穴部Ha,Hbまたは磁石用凹部Hcとの間隔は、次のように設定するとよい。なお貫通穴15a,15bは径の大きさが相違するだけであるので、図6〜図12の説明においては貫通穴15aを代表して説明する。   The interval between the above-described through holes 15a and 15b and the magnet holes Ha and Hb or the magnet recess Hc may be set as follows. Since the through holes 15a and 15b are different only in diameter, the description of FIGS. 6 to 12 will be made on behalf of the through hole 15a.

第1間隔設定例は、貫通穴15aと磁石用穴部Ha,Hbの径方向距離を示す第1距離L1と、貫通穴15aと磁石用凹部Hcの径方向距離を示す第2距離L2とを同一にするか(L1=L2)、許容誤差範囲内でほぼ同一にする(L1≒L2)。   In the first interval setting example, a first distance L1 indicating a radial distance between the through hole 15a and the magnet holes Ha and Hb, and a second distance L2 indicating a radial distance between the through hole 15a and the magnet recess Hc are set. Either the same (L1 = L2) or almost the same within the allowable error range (L1≈L2).

第2間隔設定例は、貫通穴15aと磁石用穴部Ha,Hbとの間の厚みを示す第1肉厚T1と、貫通穴15aと磁石用凹部Hcとの間の厚みを示す第2肉厚T2とを同一にするか(T1=T2)、許容誤差範囲内でほぼ同一にする(T1≒T2)。   In the second interval setting example, the first thickness T1 indicating the thickness between the through hole 15a and the magnet holes Ha and Hb, and the second thickness indicating the thickness between the through hole 15a and the magnet recess Hc. The thickness T2 is set to be the same (T1 = T2) or substantially the same within the allowable error range (T1≈T2).

貫通穴15aに第1固定用部材3を通し、磁石用穴部Ha,Hbに外径側永久磁石Ma,Mbをそれぞれ収容し、磁石用凹部Hcに内径側永久磁石Mcを収容すると、間隔は図7のようになる。上述した第1間隔設定例と第2間隔設定例は一方または双方を満たすように設定するとよい。   When the first fixing member 3 is passed through the through hole 15a, the outer diameter side permanent magnets Ma and Mb are accommodated in the magnet holes Ha and Hb, respectively, and the inner diameter side permanent magnet Mc is accommodated in the magnet recess Hc, the interval is As shown in FIG. The first interval setting example and the second interval setting example described above may be set so as to satisfy one or both of them.

(第2構成例)
図8に示す第2構成例のロータ15Bは、図5に示す第1構成例のロータ15Aと同様に、ロータコアの外周縁部に外径側永久磁石Ma,Mbを設け、同じく内周縁部に内径側永久磁石Mcを設ける。ロータ15Bがロータ15Aと相違するのは、凹部Ka,Kb,Kcを設ける点である。なお、ロータ15Bには図5に示す磁束φi,φoと同様の磁束が流れたり、図10に示す磁束φi,φoと同様の磁束が流れたりするが、見やすさを考慮して図8では図示を省略している。
(Second configuration example)
As in the rotor 15A of the first configuration example shown in FIG. 5, the rotor 15B of the second configuration example shown in FIG. 8 is provided with outer diameter side permanent magnets Ma and Mb on the outer peripheral edge of the rotor core, An inner diameter side permanent magnet Mc is provided. The rotor 15B is different from the rotor 15A in that concave portions Ka, Kb, Kc are provided. The rotor 15B flows with the same magnetic flux as the magnetic fluxes φi and φo shown in FIG. 5 or the same magnetic flux as the magnetic fluxes φi and φo shown in FIG. 10, but is shown in FIG. Is omitted.

図8に太線矢印で示す各磁石の磁化方向例は、外径側永久磁石Ma,Mbと内径側永久磁石Mcとで磁化方向が互いに背反するように着磁する例である。図4に示すように、外径側永久磁石Ma,Mbと内径側永久磁石Mcとで磁化方向が互いに対向するように着磁してもよい。   The example of the magnetization direction of each magnet shown by the thick arrow in FIG. 8 is an example in which the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc are magnetized so that the magnetization directions are opposite to each other. As shown in FIG. 4, the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc may be magnetized so that the magnetization directions face each other.

図9に示すように、凹部Kaは磁石用穴部Haの一部を構成し、貫通穴15aに向かって凹ませた部位である。凹部Kbは磁石用穴部Hbの一部を構成し、貫通穴15aに向かって凹ませた部位である。凹部Kcは磁石用凹部Hcの一部を構成し、貫通穴15aに向かって凹ませた部位である。貫通穴15aと凹部Ka,Kb,Kcとの間隔は、それぞれ上述した第1間隔設定例と第2間隔設定例は一方または双方を満たすように設定するとよい(図6を参照)。この場合、磁石用穴部Ha,Hbと磁石用凹部Hcを、順に凹部Ka,Kb,Kcにそれぞれ読み替える。   As shown in FIG. 9, the concave portion Ka constitutes a part of the magnet hole Ha and is a portion recessed toward the through hole 15a. The recessed portion Kb constitutes a part of the magnet hole Hb and is a portion recessed toward the through hole 15a. The recess Kc constitutes a part of the magnet recess Hc and is a portion recessed toward the through hole 15a. The interval between the through hole 15a and the recesses Ka, Kb, Kc may be set so as to satisfy one or both of the first interval setting example and the second interval setting example described above (see FIG. 6). In this case, the magnet holes Ha and Hb and the magnet recess Hc are read as recesses Ka, Kb, and Kc, respectively.

図8や図9に示す凹部Ka,Kb,Kcのうちで一以上の凹部を設けることにより、仮に第1固定用部材3を用いた固定を行う際に中央部15eに変形が生じたとしても、当該凹部が変形を吸収する。そのため、外径側永久磁石Ma,Mbや内径側永久磁石Mcへの影響が無くなり、損傷をより確実に防止することができる。   Even if the central portion 15e is deformed when the first fixing member 3 is fixed by providing one or more of the concave portions Ka, Kb, and Kc shown in FIGS. The recess absorbs deformation. Therefore, there is no influence on the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc, and damage can be prevented more reliably.

(第3構成例)
図10に示す第3構成例のロータ15Cは、ロータコアの外周縁部に外径側永久磁石Ma,Mbを設ける点で図5に示す第1構成例のロータ15Aと同様であるが、内周縁部には内径側永久磁石Md,Meを設ける点で相違する。また、外径側永久磁石Maと外径側永久磁石Mbとの間にブリッジ15dを設けるのと同様に、内径側永久磁石Mdと内径側永久磁石Meとの間にブリッジ15hを設ける点でも相違する。そのため、図6に示す電磁鋼板15gには、ブリッジ15dの径方向内径側(図6の下側)にブリッジ15hを成形する。当該ブリッジ15hにも内径側先端に保持部15fを成形する。
(Third configuration example)
The rotor 15C of the third configuration example shown in FIG. 10 is the same as the rotor 15A of the first configuration example shown in FIG. This is different in that the inner diameter side permanent magnets Md and Me are provided in the part. Further, the bridge 15h is provided between the inner diameter side permanent magnet Md and the inner diameter side permanent magnet Me in the same manner as the bridge 15d is provided between the outer diameter side permanent magnet Ma and the outer diameter side permanent magnet Mb. To do. Therefore, a bridge 15h is formed on the electromagnetic steel plate 15g shown in FIG. 6 on the radially inner diameter side (lower side in FIG. 6) of the bridge 15d. A holding portion 15f is also formed on the inner diameter side tip of the bridge 15h.

図10に太線矢印で示す各磁石の磁化方向例は、図5と同様に、外径側永久磁石Ma,Mbと内径側永久磁石Mcとで磁化方向が互いに対向するように着磁する例である。図8に示すように、外径側永久磁石Ma,Mbと内径側永久磁石Mcとで磁化方向が互いに背反するように着磁してもよい。   The example of the magnetization direction of each magnet indicated by a thick arrow in FIG. 10 is an example in which the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc are magnetized so that the magnetization directions face each other, as in FIG. is there. As shown in FIG. 8, the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc may be magnetized so that the magnetization directions are opposite to each other.

図10には、さらに図示しない制御部によって制御される磁束φi,φoの流れをそれぞれ矢印D5,D6で示す。外径側ステータ13から発した磁束φoが内径側ステータ14を貫かずに外径側永久磁石Ma,Mbやロータコア(リラクタンス極部Reを含む)を通り、再び外径側ステータ13に流れる(矢印D5を参照)。同様に、内径側ステータ14から発した磁束φiが外径側ステータ13を貫かずに外径側永久磁石Mcやロータコア(リラクタンス極部Reを含む)を通り、再び内径側ステータ14に流れる(矢印D6を参照)。なお、図示する磁束φi,φoの流れがそれぞれ逆方向になることもある(図5に示す矢印D3,D4の方向を参照)。   In FIG. 10, the flow of magnetic fluxes φi and φo controlled by a control unit (not shown) is indicated by arrows D5 and D6, respectively. Magnetic flux φo generated from the outer diameter side stator 13 passes through the outer diameter side permanent magnets Ma and Mb and the rotor core (including the reluctance pole portion Re) without passing through the inner diameter side stator 14 and flows again to the outer diameter side stator 13 (arrow) See D5). Similarly, the magnetic flux φi generated from the inner diameter side stator 14 passes through the outer diameter side permanent magnet Mc and the rotor core (including the reluctance pole portion Re) without penetrating the outer diameter side stator 13 and flows again to the inner diameter side stator 14 (arrow) See D6). Note that the flow of the magnetic fluxes φi and φo shown in the figure may be in opposite directions (see directions of arrows D3 and D4 shown in FIG. 5).

(第4構成例)
図11に示す第4構成例のロータ15Dは、図5に示す第1構成例のロータ15Aと同様に、ロータコアの外周縁部に外径側永久磁石Ma,Mbを設け、同じく内周縁部に内径側永久磁石Mcを設ける。ロータ15Dがロータ15Aと相違するのは、爪状の保持部15fに代えて、図5,図8,図10に示す保持部15cと同様の保持部15iを設ける点である。そのため、図6に示す電磁鋼板15gには、内径側端部(図6の下側)に保持部15iを成形する。内径側永久磁石Mcは磁石用穴部Hdに収容される。当該磁石用穴部Hdは、図6に示す磁石用凹部Hcと図11に示す保持部15iとで構成される。
(Fourth configuration example)
As in the rotor 15A of the first configuration example shown in FIG. 5, the rotor 15D of the fourth configuration example shown in FIG. 11 is provided with outer diameter side permanent magnets Ma and Mb on the outer peripheral edge portion of the rotor core, An inner diameter side permanent magnet Mc is provided. The rotor 15D is different from the rotor 15A in that a holding portion 15i similar to the holding portion 15c shown in FIGS. 5, 8, and 10 is provided in place of the claw-like holding portion 15f. Therefore, a holding portion 15i is formed on the inner diameter side end portion (lower side in FIG. 6) of the electromagnetic steel sheet 15g shown in FIG. The inner diameter side permanent magnet Mc is accommodated in the magnet hole Hd. The magnet hole Hd includes a magnet recess Hc shown in FIG. 6 and a holding portion 15i shown in FIG.

図11に太線矢印で示す各磁石の磁化方向例は、図5と同様に、外径側永久磁石Ma,Mbと内径側永久磁石Mcとで磁化方向が互いに対向するように着磁する例である。図8に示すように、外径側永久磁石Ma,Mbと内径側永久磁石Mcとで磁化方向が互いに背反するように着磁してもよい。   The magnetization direction example of each magnet indicated by a thick arrow in FIG. 11 is an example in which the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc are magnetized so that the magnetization directions face each other, as in FIG. is there. As shown in FIG. 8, the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc may be magnetized so that the magnetization directions are opposite to each other.

ロータ15Dには、図示しない制御部の制御によって図5に示す磁束φi,φoと同様の磁束が流れたり、図10に示す磁束φi,φoと同様の磁束が流れたりするが、見やすさを考慮して図11では図示を省略している。   A magnetic flux similar to the magnetic fluxes φi and φo shown in FIG. 5 flows through the rotor 15D or a magnetic flux similar to the magnetic fluxes φi and φo shown in FIG. In FIG. 11, the illustration is omitted.

(第5構成例)
図12に示す第5構成例のロータ15Eは、図5に示す第1構成例のロータ15Aと同様にロータコアの外周縁部に外径側永久磁石Ma,Mbを設け、図10に示す第3構成例のロータ15Cと同様に内周縁部に内径側永久磁石Md,Meを設ける。外径側永久磁石Maと外径側永久磁石Mbとの間にブリッジ15dを挟むように設けるのと同様に、内径側永久磁石Mdと内径側永久磁石Meとの間にブリッジ15hを挟むように設ける。内径側永久磁石Mdは磁石用穴部Heに収容され、内径側永久磁石Meは磁石用穴部Hfに収容される。
(Fifth configuration example)
The rotor 15E of the fifth configuration example shown in FIG. 12 is provided with outer diameter side permanent magnets Ma and Mb on the outer peripheral edge portion of the rotor core, similarly to the rotor 15A of the first configuration example shown in FIG. Similarly to the rotor 15C of the configuration example, inner diameter side permanent magnets Md and Me are provided on the inner peripheral edge. The bridge 15h is sandwiched between the inner diameter side permanent magnet Md and the inner diameter side permanent magnet Me in the same manner as the bridge 15d is sandwiched between the outer diameter side permanent magnet Ma and the outer diameter side permanent magnet Mb. Provide. The inner diameter side permanent magnet Md is accommodated in the magnet hole He, and the inner diameter side permanent magnet Me is accommodated in the magnet hole Hf.

内径側永久磁石Md,Meにそれぞれ対応するロータコアの外周縁部は、内径側永久磁石Md,Meにかかる各々の一面(外周面)について全部を保持するので、保持部15jcに相当する。保持部15jとブリッジ15hは結合されてT字状になる。保持部15jの径方向幅は、保持部15cと同様に任意に設定してよい。そのため、図6に示す電磁鋼板15gには、ブリッジ15dの径方向内径側(図6の下側)に図10に示すブリッジ15hと、内径側端部(図6の下側)に図12に示す保持部15jを成形する。   The outer peripheral edge portion of the rotor core corresponding to each of the inner diameter side permanent magnets Md and Me holds all of one surface (outer peripheral surface) of the inner diameter side permanent magnets Md and Me, and thus corresponds to the holding portion 15jc. The holding portion 15j and the bridge 15h are joined to form a T shape. The radial width of the holding portion 15j may be arbitrarily set similarly to the holding portion 15c. Therefore, the electromagnetic steel sheet 15g shown in FIG. 6 has a bridge 15h shown in FIG. 10 on the radially inner diameter side (lower side in FIG. 6) of the bridge 15d and an inner diameter side end (lower side in FIG. 6) in FIG. A holding portion 15j shown is formed.

図12に太線矢印で示す各磁石の磁化方向例は、図5と同様に、外径側永久磁石Ma,Mbと内径側永久磁石Mcとで磁化方向が互いに対向するように着磁する例である。図8に示すように、外径側永久磁石Ma,Mbと内径側永久磁石Mcとで磁化方向が互いに背反するように着磁してもよい。   The example of the magnetization direction of each magnet indicated by a thick arrow in FIG. 12 is an example in which the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc are magnetized so that the magnetization directions face each other, as in FIG. is there. As shown in FIG. 8, the outer diameter side permanent magnets Ma and Mb and the inner diameter side permanent magnet Mc may be magnetized so that the magnetization directions are opposite to each other.

ロータ15Eには、図示しない制御部の制御によって図5に示す磁束φi,φoと同様の磁束が流れたり、図10に示す磁束φi,φoと同様の磁束が流れたりするが、見やすさを考慮して図12では図示を省略している。   A magnetic flux similar to the magnetic fluxes φi and φo shown in FIG. 5 flows through the rotor 15E or a magnetic flux similar to the magnetic fluxes φi and φo shown in FIG. In FIG. 12, the illustration is omitted.

(他の構成例)
上述した第1構成例〜第5構成例は、二以上を任意に組み合わせて適用してもよい。一のロータ15(15A,15B,15C,15D,15E)に設けられる複数の極に対して、第1構成例〜第5構成例のうちで二以上を任意に組み合わせて適用してもよい。例えば、ある極は第1構成例を適用し、別の極は第2構成例を適用する形態などが該当する。どの極にどの構成例を適用するのかは自在に設定してよい。
(Other configuration examples)
The first to fifth configuration examples described above may be applied in any combination of two or more. Any combination of two or more of the first to fifth configuration examples may be applied to a plurality of poles provided in one rotor 15 (15A, 15B, 15C, 15D, 15E). For example, a configuration in which the first configuration example is applied to a certain pole and the second configuration example is applied to another pole is applicable. Which configuration example is applied to which pole may be freely set.

〔他の実施の形態〕
以上では本発明を実施するための形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
Although the form for implementing this invention was demonstrated above, this invention is not limited to the said form at all. In other words, various forms can be implemented without departing from the scope of the present invention. For example, the following forms may be realized.

上述した実施の形態では、外径側ステータ13に相巻線13aを巻装し、内径側ステータ14に相巻線14aを巻装する構成とした(図1を参照)。この形態に代えて、図13に示すように外径側ステータ13と内径側ステータ14について一つの相巻線(U字状の相巻線11)で巻装する構成としてもよい。相巻線の構成が相違するに過ぎないので、上述した実施の形態と同様の作用効果を得ることができる。   In the embodiment described above, the phase winding 13a is wound around the outer diameter side stator 13, and the phase winding 14a is wound around the inner diameter side stator 14 (see FIG. 1). Instead of this configuration, as shown in FIG. 13, the outer diameter side stator 13 and the inner diameter side stator 14 may be wound with one phase winding (U-shaped phase winding 11). Since only the configuration of the phase winding is different, the same effect as the above-described embodiment can be obtained.

上述した実施の形態では、ディスク16と回転軸18を別体に成形し、ディスク16を回転軸18に固定する構成とした(図1を参照)。この形態に代えて、図14に示すように、ディスク部位18aを有する回転軸18を適用してもよい。ディスク部位18aはディスク16に相当する。言い換えると、図14に示す回転軸18は、図1に示すディスク16と回転軸18を一体成形したものであり、ロータ15を直接的に固定する形態となる。別体に成形して固定するか、一体成形するかの相違に過ぎないので、上述した実施の形態と同様の作用効果を得ることができる。   In the above-described embodiment, the disk 16 and the rotating shaft 18 are formed separately, and the disk 16 is fixed to the rotating shaft 18 (see FIG. 1). Instead of this form, as shown in FIG. 14, a rotating shaft 18 having a disk portion 18a may be applied. The disk portion 18 a corresponds to the disk 16. In other words, the rotating shaft 18 shown in FIG. 14 is obtained by integrally forming the disk 16 and the rotating shaft 18 shown in FIG. 1 and directly fixes the rotor 15. Since there is only a difference between molding and fixing separately, or integral molding, the same effects as those of the above-described embodiment can be obtained.

上述した実施の形態では、ロータ15をディスク5(16,18a)に固定する際、第1固定用部材3を貫通穴15a,15b,5hに通した後にかしめてカシメ部3bを成形する構成とした(図2を参照)。この形態に代えて、第1固定用部材3を貫通穴15a,15b,5hに通した後、図15に示すように接合部3cを成形する構成としてもよく、図16に示すように締結部3d,3eを成形する構成としてもよい。固定方法が相違するに過ぎないので、上述した実施の形態と同様の作用効果を得ることができる。   In the above-described embodiment, when the rotor 15 is fixed to the disk 5 (16, 18a), the first fixing member 3 is passed through the through holes 15a, 15b, 5h and then caulked portion 3b is formed. (See FIG. 2). Instead of this configuration, the first fixing member 3 may be passed through the through holes 15a, 15b, and 5h, and then the joint portion 3c may be formed as shown in FIG. 15, and the fastening portion as shown in FIG. It is good also as a structure which shape | molds 3d and 3e. Since only the fixing method is different, it is possible to obtain the same effects as the above-described embodiment.

図15に示す接合部3cは、ディスク5と第1固定用部材3とを接合した部位である。接合は、例えばレーザー光線のエネルギーを利用して行うレーザー溶接、アークを発生させて溶接するアーク溶接、ハンダを熱で溶かして接合するハンダ付けなどが該当する。   15 is a portion where the disk 5 and the first fixing member 3 are joined. Joining includes, for example, laser welding using the energy of a laser beam, arc welding for generating and welding an arc, and soldering for melting and joining solder.

図16に示す締結部3d,3eは、第1固定用部材3をネジ付きボルトで成形し、ディスク5に備えるネジ穴3dにねじ込んで締結する形態や、ナット3eと締結する形態、ネジ穴3dにねじ込むとともにナット3eと締結する形態などが該当する。さらに第1固定用部材3やナット3e等の締結部材に対して、図15に示す接合部3cのような接合を行ってもよい。   The fastening portions 3d and 3e shown in FIG. 16 are formed by forming the first fixing member 3 with a screwed bolt and screwing it into the screw hole 3d provided in the disk 5, or fastening with the nut 3e, screw hole 3d. And the like that is screwed into the nut 3e and fastened to the nut 3e. Furthermore, you may join like fastening part 3c shown in FIG. 15 with respect to fastening members, such as the 1st fixing member 3 and the nut 3e.

図示しないが、ロータ15をディスク5(16,18a)に固定する際、カシメ部3b,接合部3cおよび締結部3d,3eのうちで、二以上の固定方法を任意に組み合わせて固定してもよい。固定方法は、ディスク5側に適用してもよく、フランジ部3a側に適用してもよく、ディスク5側とフランジ部3a側の双方に適用してもよい。二以上の固定方法を適用することにより、軸方向長さを従来よりも短くでき、ディスク5(16,18a)に対するロータ15の固定をより強固に行える。回転軸18に対しても同様である。   Although not shown, when the rotor 15 is fixed to the disk 5 (16, 18a), any combination of two or more fixing methods among the caulking portion 3b, the joining portion 3c, and the fastening portions 3d, 3e may be fixed. Good. The fixing method may be applied to the disk 5 side, may be applied to the flange portion 3a side, or may be applied to both the disk 5 side and the flange portion 3a side. By applying two or more fixing methods, the axial length can be made shorter than before, and the rotor 15 can be more firmly fixed to the disk 5 (16, 18a). The same applies to the rotating shaft 18.

上述した実施の形態では、内径側永久磁石7(内径側永久磁石Mc,Md,Me)をロータコア(第1ロータコア1および第2ロータコア2)に成形される凹部(磁石用凹部Hc)に収容し、爪状の保持部15fを変形させて固定する構成とした(図1を参照)。この形態に代えて、内径側永久磁石7と保持部15fとの間に板状部材を介在させて上記ロータコアの凹部に収容する構成としてもよい。この場合には、保持部15fを変形させてもよく、変形させなくてもよい。   In the embodiment described above, the inner diameter side permanent magnet 7 (inner diameter side permanent magnet Mc, Md, Me) is accommodated in the recess (magnet recess Hc) formed in the rotor core (the first rotor core 1 and the second rotor core 2). The claw-shaped holding portion 15f is deformed and fixed (see FIG. 1). Instead of this configuration, a plate-like member may be interposed between the inner diameter side permanent magnet 7 and the holding portion 15f so as to be accommodated in the concave portion of the rotor core. In this case, the holding portion 15f may be deformed or may not be deformed.

上述した実施の形態では、ハウジング12は、コップ状のハウジング部材12aと、平板状のハウジング部材12bで構成した(図1を参照)。この形態に代えて、ハウジング部材12aをコップ状以外の形状で成形してもよく、ハウジング部材12bを平板状以外の形状で成形してもよい。すなわち、ハウジング部材12aとハウジング部材12bは、外径側ステータ13,内径側ステータ14,ロータ15,回転軸18などを収容できれば、どのような形状で構成してもよい。ハウジング12の構造が相違するに過ぎないので、上述した実施の形態と同様の作用効果を得ることができる。   In the embodiment described above, the housing 12 is constituted by the cup-shaped housing member 12a and the flat-plate-shaped housing member 12b (see FIG. 1). Instead of this form, the housing member 12a may be formed in a shape other than a cup shape, and the housing member 12b may be formed in a shape other than a flat plate shape. That is, the housing member 12a and the housing member 12b may be configured in any shape as long as the outer diameter side stator 13, the inner diameter side stator 14, the rotor 15, the rotating shaft 18 and the like can be accommodated. Since only the structure of the housing 12 is different, it is possible to obtain the same effect as the above-described embodiment.

上述した実施の形態では、第1固定用部材3と第2固定用部材4を別体で成形する構成とした(図2,図15,図16を参照)。この形態に代えて、図示しないが、第1固定用部材3と第2固定用部材4を一体成形してもよい。第1固定用部材3と第2固定用部材4の端面は許容誤差範囲内で揃えるのが望ましく、同一面とするのが最もよい。第2固定用部材4の座面部4aは、第2ロータコア2の端面を基準として角度θを持たせて、座面部4aが第2ロータコア2の端面に接するように構成してもよい。固定方法の相違に過ぎないので、上述した実施の形態と同様の作用効果を得ることができる。   In the embodiment described above, the first fixing member 3 and the second fixing member 4 are formed separately (see FIGS. 2, 15, and 16). Instead of this form, although not shown, the first fixing member 3 and the second fixing member 4 may be integrally formed. The end surfaces of the first fixing member 3 and the second fixing member 4 are desirably aligned within an allowable error range, and are best set to be the same surface. The seat surface portion 4 a of the second fixing member 4 may be configured such that the seat surface portion 4 a contacts the end surface of the second rotor core 2 with an angle θ with respect to the end surface of the second rotor core 2. Since there is only a difference in the fixing method, it is possible to obtain the same effects as those of the above-described embodiment.

〔実施の形態の効果〕
上述した実施の形態によれば、以下に示す各効果を得ることができる。
[Effect of the embodiment]
According to the embodiment described above, the following effects can be obtained.

(1)ダブルステータ型回転電機MGにおいて、外径側に設けられる外径側永久磁石Ma,Mbと内径側に設けられる内径側永久磁石Mc,Md,Meとの相互間に配置され、ロータコアを回転軸18に対して直接的または間接的に固定する際に用いる第1固定用部材3を通す貫通穴15a,15b(穴部)と、ロータコアの一方または双方の表面部に備えられ、永久磁石にかかる一面の一部または全部を保持する保持部15c,15f,15i,15jと、ロータコアの中央部15eと保持部15c,15jとを連結するブリッジ15d,15hとを有し、ブリッジ15d,15hを挟んで設けられる二つの永久磁石は、磁化方向が同じである構成とした(図5,図8,図11,図12を参照)。この構成によれば、加工する際や、第1固定用部材3(固定用部材)を用いた固定(かしめや締結等)を行う際に応力をブリッジ15d,15hが抑制されるので、貫通穴15a,15bの周辺部位(特に永久磁石を収容する磁石用穴部Ha,Hb,Hd,He,Hf)の変形を防止することができる。ブリッジ15d,15hを挟んで二つに分割した永久磁石(外径側永久磁石Ma,Mbや内径側永久磁石Md,Me)を設けるので、必要なトルクに対応する磁力を確保しながらも、仮に貫通穴15a,15bの周辺部位が変形しても永久磁石(外径側永久磁石6や内径側永久磁石7)が損傷するのを防止することができる。   (1) In the double stator type rotary electric machine MG, the rotor core is disposed between outer diameter side permanent magnets Ma, Mb provided on the outer diameter side and inner diameter side permanent magnets Mc, Md, Me provided on the inner diameter side. Permanent magnets are provided in one or both surface portions of the through holes 15a and 15b (hole portions) through which the first fixing member 3 used when directly or indirectly fixing the rotary shaft 18 is passed, and the rotor core. Holding portions 15c, 15f, 15i, and 15j for holding a part or all of the one surface, and bridges 15d and 15h for connecting the central portion 15e of the rotor core and the holding portions 15c and 15j, and the bridges 15d and 15h. The two permanent magnets provided with the magnet sandwiched between them have the same magnetization direction (see FIGS. 5, 8, 11, and 12). According to this configuration, since the bridges 15d and 15h are suppressed during processing and when fixing (caulking, fastening, etc.) using the first fixing member 3 (fixing member) is performed, the through-holes are suppressed. It is possible to prevent deformation of the peripheral portions of 15a and 15b (particularly, the magnet holes Ha, Hb, Hd, He, and Hf for accommodating the permanent magnets). Since permanent magnets (outer diameter side permanent magnets Ma, Mb and inner diameter side permanent magnets Md, Me) divided into two across the bridges 15d, 15h are provided, the magnetic force corresponding to the necessary torque is ensured, but temporarily Even if the peripheral portions of the through holes 15a and 15b are deformed, the permanent magnet (the outer diameter side permanent magnet 6 or the inner diameter side permanent magnet 7) can be prevented from being damaged.

(2)異なる極性の永久磁石(外径側永久磁石Ma,Mbや内径側永久磁石Mc,Md,Me)の相互間には、無極性のリラクタンス極部Reを配置する構成とした(図5,図8,図11,図12を参照)。この構成によれば、磁束φi,φoが流れる流路を確保して、リラクタンストルク効果を向上させることができ、より高性能を達成できる。   (2) A nonpolar reluctance pole portion Re is arranged between permanent magnets of different polarities (outer diameter side permanent magnets Ma, Mb and inner diameter side permanent magnets Mc, Md, Me) (FIG. 5). FIG. 8, FIG. 11, and FIG. 12). According to this configuration, a flow path through which the magnetic fluxes φi and φo flow can be secured, the reluctance torque effect can be improved, and higher performance can be achieved.

(3)ロータコアの表面に凹凸が生じないように、保持部15c,15jとリラクタンス極部Reとをつないで連続するように成形する構成とした(図4〜図12を参照)。この構成によれば、ロータコアの外周縁部である保持部15c,15jとブリッジ15d,15hとが堅固になるために変形が抑えられる。そのため、ブリッジ15d,15hが動きにくく、貫通穴15a,15b(穴部)の周辺部の変形がより抑制される。   (3) The holding portions 15c and 15j and the reluctance pole portion Re are connected and formed so as to be continuous so as not to cause unevenness on the surface of the rotor core (see FIGS. 4 to 12). According to this configuration, the holding portions 15c and 15j, which are the outer peripheral edge portions of the rotor core, and the bridges 15d and 15h are rigid, so that deformation is suppressed. Therefore, the bridges 15d and 15h are difficult to move, and deformation of the peripheral portions of the through holes 15a and 15b (hole portions) is further suppressed.

(4)ロータ15の周方向における同一部位であって、外径側に設けられる外径側永久磁石6(Ma,Mb)と内径側に設けられる内径側永久磁石7(Mc,Md,Me)とは、磁化方向が互いに対向するように着磁するか、または、磁化方向が互いに背反するように着磁した(図5,図8,図11,図12を参照)。また、二つのステータに巻装される各相巻線13a,14aには、一方のステータから発した磁束φi,φoが他方のステータを貫かずに永久磁石とロータコアを通り、再び一方のステータに戻るように磁束φi,φoが流れるように通電する構成とした(図5,図10を参照)。この構成によれば、一方のステータから発した磁束φi,φoが他方のステータを貫かずに永久磁石とロータコアを通り、再び一方のステータに戻るように磁束φi,φoが流れる。このようにステータの起磁力を並列起磁力構成とすると、リラクタンストルク効果が向上して、トルク等をより高性能化することができる。   (4) Outer diameter side permanent magnet 6 (Ma, Mb) provided on the outer diameter side and inner diameter side permanent magnet 7 (Mc, Md, Me) provided on the inner diameter side, which are the same part in the circumferential direction of the rotor 15 Is magnetized so that the magnetization directions oppose each other, or magnetized so that the magnetization directions are opposite to each other (see FIGS. 5, 8, 11, and 12). Further, in each phase winding 13a, 14a wound around two stators, magnetic fluxes φi, φo generated from one stator pass through the permanent magnet and the rotor core without passing through the other stator, and again to one stator. It was set as the structure which supplies with electricity so that magnetic flux (phi) i and (phi) o may flow so that it may return (refer FIG. 5, FIG. 10). According to this configuration, the magnetic fluxes φi and φo flow so that the magnetic fluxes φi and φo generated from one stator pass through the permanent magnet and the rotor core without passing through the other stator and return to the one stator again. When the magnetomotive force of the stator is configured as a parallel magnetomotive force in this way, the reluctance torque effect is improved, and the torque and the like can be improved.

(5)外径側に設けられる外径側永久磁石6(Ma,Mb)と貫通穴15a,15b(穴部)との間の第1間隔(第1距離L1,第1肉厚T1)と、内径側に設けられる内径側永久磁石7(Mc,Md,Me)と貫通穴15a,15b(穴部)との間の第2間隔(第2距離L2,第2肉厚T2)とは、許容誤差範囲内を含む同一間隔である構成とした(図6,図7を参照)。この構成によれば、圧力を伴ってロータ15を回転軸18に直接的または間接的に固定する場合には貫通穴15a,15bの周辺部に応力(変形を含む)が生じるが、当該応力は等方性があるので外径側永久磁石6や内径側永久磁石7に対する影響を最小限に抑えることができる。   (5) A first interval (first distance L1, first thickness T1) between the outer diameter side permanent magnet 6 (Ma, Mb) provided on the outer diameter side and the through holes 15a, 15b (hole portions); The second distance (second distance L2, second thickness T2) between the inner diameter side permanent magnet 7 (Mc, Md, Me) provided on the inner diameter side and the through holes 15a, 15b (hole portions) is: It was set as the structure which is the same space | interval including the tolerance | permissible_error range (refer FIG. 6, FIG. 7). According to this configuration, when the rotor 15 is directly or indirectly fixed to the rotating shaft 18 with pressure, stress (including deformation) is generated in the peripheral portions of the through holes 15a and 15b. Since it is isotropic, the influence on the outer diameter side permanent magnet 6 and the inner diameter side permanent magnet 7 can be minimized.

(6)永久磁石が配置される部位に対応するロータコアの中央部15eには、貫通穴15a,15b(穴部)に向かって凹ませる凹部Ka,Kb,Kcを有する構成とした(図8,図9を参照)。この構成によれば、圧力を伴ってロータ15を回転軸18に直接的または間接的に固定する場合において、貫通穴15a,15bの周辺部に生じる応力を凹部Ka,Kb,Kcで吸収する。そのため、外径側永久磁石6や内径側永久磁石7が損傷するのをより確実に防止することができる。   (6) The central portion 15e of the rotor core corresponding to the portion where the permanent magnet is disposed has the concave portions Ka, Kb, Kc that are recessed toward the through holes 15a, 15b (hole portions) (FIG. 8, (See FIG. 9). According to this configuration, when the rotor 15 is directly or indirectly fixed to the rotating shaft 18 with pressure, stress generated in the peripheral portions of the through holes 15a and 15b is absorbed by the recesses Ka, Kb, and Kc. Therefore, it can prevent more reliably that the outer diameter side permanent magnet 6 and the inner diameter side permanent magnet 7 are damaged.

(7)貫通穴15a,15b(穴部)は、n極以上おきにロータコアに設けられる構成とした(図3を参照)。この構成によれば、ロータ15を回転軸18に直接的または間接的に固定するための工程に要する時間と手間を抑制することができる。   (7) The through holes 15a and 15b (holes) are provided in the rotor core every n poles or more (see FIG. 3). According to this configuration, it is possible to reduce the time and labor required for the process for fixing the rotor 15 to the rotating shaft 18 directly or indirectly.

3 第1固定用部材(固定用部材)
4 第2固定用部材(固定用部材)
11,13a,14a 相巻線
13 外径側ステータ(ステータ)
14 内径側ステータ(ステータ)
15(15A,15B,15C,15D,15E) ロータ
15a,15b 貫通穴(穴部)
15c,15f,15i,15j 保持部
15d,15h ブリッジ
18 回転軸(シャフト)
MG ダブルステータ型回転電機
Ma,Mb 外径側永久磁石(永久磁石)
Mc,Md,Me 内径側永久磁石(永久磁石)
3 First fixing member (fixing member)
4 Second fixing member (fixing member)
11, 13a, 14a Phase winding 13 Outer diameter side stator (stator)
14 Inner diameter side stator (stator)
15 (15A, 15B, 15C, 15D, 15E) Rotor 15a, 15b Through hole (hole)
15c, 15f, 15i, 15j Holding portion 15d, 15h Bridge 18 Rotating shaft (shaft)
MG Double-stator type rotating electrical machine Ma, Mb Outer diameter side permanent magnet (permanent magnet)
Mc, Md, Me Inner diameter side permanent magnet (permanent magnet)

Claims (7)

永久磁石がロータコア(1,2)の外径側と内径側にそれぞれ設けられるロータ(15)と、前記ロータを介して対向配置されるとともに相巻線(11,13a,14a)が巻装される二つのステータ(13,14)を有するダブルステータ型回転電機(MG)において、
前記外径側に設けられる前記永久磁石(6,Ma,Mb)と前記内径側に設けられる前記永久磁石(7,Mc,Md,Me)との相互間に配置され、前記ロータコアを回転軸(8,18)に対して直接的または間接的に固定する際に用いる固定用部材を通す穴部(15a,15b)と、
前記ロータコアの一方または双方の表面部に備えられ、前記永久磁石にかかる一面の一部または全部を保持する保持部(15c,15f,15i,15j)と、
前記ロータコアの中央部(15e)と前記保持部(15c,15j)とを連結するブリッジ(15d,15h)とを有し、
前記ブリッジを挟んで設けられる二つの前記永久磁石は、磁化方向が同じであることを特徴とするダブルステータ型回転電機。
Permanent magnets are disposed on the outer diameter side and inner diameter side of the rotor core (1, 2), respectively, and the rotor (15) is disposed opposite to the rotor core (1, 13a, 14a). In a double stator type rotating electrical machine (MG) having two stators (13, 14),
The rotor core is disposed between the permanent magnet (6, Ma, Mb) provided on the outer diameter side and the permanent magnet (7, Mc, Md, Me) provided on the inner diameter side, and the rotor core is disposed on a rotating shaft ( 8, 18) holes (15a, 15b) through which fixing members used when directly or indirectly fixing are provided;
A holding portion (15c, 15f, 15i, 15j) that is provided on one or both surface portions of the rotor core and holds part or all of one surface of the permanent magnet;
A bridge (15d, 15h) connecting the central portion (15e) of the rotor core and the holding portion (15c, 15j);
The two permanent magnets provided with the bridge interposed therebetween have the same magnetization direction.
異なる極性の前記永久磁石の相互間には、無極性のリラクタンス極部(Re)を配置することを特徴とする請求項1に記載のダブルステータ型回転電機。   The double stator rotating electric machine according to claim 1, wherein nonpolar reluctance poles (Re) are arranged between the permanent magnets of different polarities. 前記ロータコアの表面に凹凸が生じないように、前記保持部(15c)と前記リラクタンス極部とをつないで連続するように成形することを特徴とする請求項2に記載のダブルステータ型回転電機。   3. The double stator rotating electric machine according to claim 2, wherein the holding portion (15 c) and the reluctance pole portion are connected to be continuous so as to prevent unevenness on the surface of the rotor core. 前記ロータの周方向における同一部位であって、前記外径側と前記内径側に設けられる前記永久磁石とは、磁化方向が互いに対向するように着磁するか、または、磁化方向が互いに背反するように着磁し、
前記二つのステータに巻装される各相巻線には、一方のステータから発した磁束(φi,φo)が他方のステータを貫かずに前記永久磁石と前記ロータコアを通り、再び前記一方のステータに戻るように磁束が流れるように通電することを特徴とする請求項1から3のいずれか一項に記載のダブルステータ型回転電機。
The permanent magnets provided on the outer diameter side and the inner diameter side of the same portion in the circumferential direction of the rotor are magnetized so that the magnetization directions face each other, or the magnetization directions are opposite to each other. Magnetized and
In each phase winding wound around the two stators, the magnetic flux (φi, φo) generated from one stator passes through the permanent magnet and the rotor core without passing through the other stator, and again returns to the one stator. The double stator rotating electric machine according to any one of claims 1 to 3, wherein the electric current is applied so that the magnetic flux flows so as to return to step (a).
前記外径側に設けられる前記永久磁石と前記穴部との間の第1間隔(L1,T1)と、前記内径側に設けられる前記永久磁石と前記穴部との間の第2間隔(L2,T2)とは、許容誤差範囲内を含む同一間隔であることを特徴とする請求項1から4のいずれか一項に記載のダブルステータ型回転電機。   A first interval (L1, T1) between the permanent magnet provided on the outer diameter side and the hole, and a second interval (L2) between the permanent magnet provided on the inner diameter side and the hole. , T2) are the same intervals including within an allowable error range. 5. The double stator type rotating electric machine according to any one of claims 1 to 4. 前記永久磁石が配置される部位に対応する前記ロータコアの中央部には、前記穴部に向かって凹ませる凹部(Ka,Kb,Kc)を有することを特徴とする請求項1から5のいずれか一項に記載のダブルステータ型回転電機。   The center part of the said rotor core corresponding to the site | part in which the said permanent magnet is arrange | positioned has a recessed part (Ka, Kb, Kc) dented toward the said hole part, The any one of Claim 1 to 5 characterized by the above-mentioned. The double stator type rotating electric machine according to one item. 前記穴部は、n極(nは自然数)以上おきに前記ロータコアに設けられることを特徴とする請求項1から6のいずれか一項に記載のダブルステータ型回転電機。   The double stator rotating electric machine according to any one of claims 1 to 6, wherein the hole is provided in the rotor core every n poles (n is a natural number) or more.
JP2013243747A 2013-11-26 2013-11-26 Double stator rotary electric machine Active JP6156096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243747A JP6156096B2 (en) 2013-11-26 2013-11-26 Double stator rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243747A JP6156096B2 (en) 2013-11-26 2013-11-26 Double stator rotary electric machine

Publications (2)

Publication Number Publication Date
JP2015104238A true JP2015104238A (en) 2015-06-04
JP6156096B2 JP6156096B2 (en) 2017-07-05

Family

ID=53379520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243747A Active JP6156096B2 (en) 2013-11-26 2013-11-26 Double stator rotary electric machine

Country Status (1)

Country Link
JP (1) JP6156096B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623418A (en) * 2016-07-13 2018-01-23 铃木株式会社 Electric rotating machine
CN111181256A (en) * 2020-01-15 2020-05-19 山东大学 Phase group concentrated winding magnetic concentration type rotating linear motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178475A (en) * 1992-12-02 1994-06-24 Aichi Emerson Electric Co Ltd Magnet rotor
JP2007282331A (en) * 2006-04-04 2007-10-25 Toyota Auto Body Co Ltd Double stator motor
JP2009073472A (en) * 2007-08-27 2009-04-09 Toyota Central R&D Labs Inc Power transmission device
JP2009100537A (en) * 2007-10-16 2009-05-07 Toyota Industries Corp Method for manufacturing core in rotor with permanent magnet and core
JP2010259256A (en) * 2009-04-27 2010-11-11 Honda Motor Co Ltd Controller of motor
US20130093275A1 (en) * 2010-06-23 2013-04-18 Amotech Co., Ltd. Double-stator/double-rotor type motor and direct drive apparatus for washer using same
JP2013128405A (en) * 2011-11-14 2013-06-27 Fanuc Ltd Rotor of permanent magnet synchronous motor, motor and machine tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178475A (en) * 1992-12-02 1994-06-24 Aichi Emerson Electric Co Ltd Magnet rotor
JP2007282331A (en) * 2006-04-04 2007-10-25 Toyota Auto Body Co Ltd Double stator motor
JP2009073472A (en) * 2007-08-27 2009-04-09 Toyota Central R&D Labs Inc Power transmission device
JP2009100537A (en) * 2007-10-16 2009-05-07 Toyota Industries Corp Method for manufacturing core in rotor with permanent magnet and core
JP2010259256A (en) * 2009-04-27 2010-11-11 Honda Motor Co Ltd Controller of motor
US20130093275A1 (en) * 2010-06-23 2013-04-18 Amotech Co., Ltd. Double-stator/double-rotor type motor and direct drive apparatus for washer using same
JP2013128405A (en) * 2011-11-14 2013-06-27 Fanuc Ltd Rotor of permanent magnet synchronous motor, motor and machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623418A (en) * 2016-07-13 2018-01-23 铃木株式会社 Electric rotating machine
CN111181256A (en) * 2020-01-15 2020-05-19 山东大学 Phase group concentrated winding magnetic concentration type rotating linear motor

Also Published As

Publication number Publication date
JP6156096B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5108236B2 (en) Rotor for motor
US10050480B2 (en) Axial flux machine having a lightweight design
JP2009095087A (en) Axial gap motor
JP2008271640A (en) Axial gap motor
JP2010178472A (en) Axial gap motor
US20120187696A1 (en) Rotating electric machine and wind power generation system
JP2001119872A (en) Synchronous rotating electric machine, wind turbine power generator, and manufacturing methods for them
US20220149683A1 (en) Rotary motor and manufacturing method for rotor
JP2014045634A (en) Rotor and rotary electric machine including the same
JP2008167639A (en) Axial gap motor
JP5924194B2 (en) Multi-gap rotating electric machine
JP6156096B2 (en) Double stator rotary electric machine
JP2010115017A (en) Axial-gap rotary electric machine
WO2021210119A1 (en) Magnetic-geared motor
JP2010110166A (en) Axial gap type rotating electric machine
JP2021087242A (en) Rotor equipped with end plate disposed on end surface of rotor core, and electric motor equipped with rotor
JP2012152054A (en) Rotary electric machine and wind power generation system
JP2010093988A (en) Permanent magnet type rotating machine
JP6190905B1 (en) Rotating electric machine and manufacturing method thereof
JP2010093928A (en) Axial gap type motor
JP2009095089A (en) Axial gap motor
JP2010017010A (en) Axial gap motor
JP2007252040A (en) Stator of rotary electric machine
JP2013090461A (en) Stator of axial gap type rotary electric machine, and axial gap type rotary electric machine
JP4771011B1 (en) Rotating electric machine and wind power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6156096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250