JP2015099055A - Combustion analyzer - Google Patents

Combustion analyzer Download PDF

Info

Publication number
JP2015099055A
JP2015099055A JP2013238197A JP2013238197A JP2015099055A JP 2015099055 A JP2015099055 A JP 2015099055A JP 2013238197 A JP2013238197 A JP 2013238197A JP 2013238197 A JP2013238197 A JP 2013238197A JP 2015099055 A JP2015099055 A JP 2015099055A
Authority
JP
Japan
Prior art keywords
value
flame temperature
soot
time
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013238197A
Other languages
Japanese (ja)
Other versions
JP6166156B2 (en
Inventor
勇人 山下
Yuto Yamashita
勇人 山下
正顕 河野
Masaaki Kono
正顕 河野
姉崎 幸信
Yukinobu Anezaki
幸信 姉崎
健太郎 西田
Kentaro Nishida
健太郎 西田
橋詰 剛
Takeshi Hashizume
剛 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2013238197A priority Critical patent/JP6166156B2/en
Publication of JP2015099055A publication Critical patent/JP2015099055A/en
Application granted granted Critical
Publication of JP6166156B2 publication Critical patent/JP6166156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: the amount of soot generated and the amount of soot oxidized cannot be measured separately in conventional two-color method.SOLUTION: A combustion analyzer includes: a light intensity measurement unit 20 which detects light intensities of light emitted from flame and having different two wavelengths λ, λat a predetermined interval; a flame temperature calculation section 31 which determines a flame temperature T from a ratio of the detected light intensities of the two wavelengths; a KL value calculation section 32 which calculates a KL value by use of the determined flame temperature; a soot-generation/oxidization determination section 33 which compares a current flame temperature Twith a previous flame temperature T, and a current KL value KLwith a previous KL value KL; an oxidized soot calculation section 34 which calculates a reduction between the previous KL value and the current KL value, as the amount of soot oxidized, when the current flame temperature is higher than the previous one and the current KL value is smaller than the previous one; and a generated soot calculation section 35 which calculates an increase between the previous KL value and the current KL value, as the amount of soot generated, when the current flame temperature is lower than the previous one and the current KL value is larger than the previous one.

Description

本発明は、燃焼機関などにおける燃焼状態を解析するための装置に関する。   The present invention relates to an apparatus for analyzing a combustion state in a combustion engine or the like.

圧縮点火機関などの燃焼機関においては、燃焼室およびこれに連通する吸排気ポートの形状や燃焼室に供給される燃料の噴射時期および噴射圧力などを最適化させるため、燃焼室内での燃料の燃焼状態を実時間で把握できるようにすることが有効である。この目的のため、二色法を利用して燃焼室にて生成する火炎の温度とKL値とを計測し、煤の濃度を取得するようにした技術が特許文献1などで提案されている。   In a combustion engine such as a compression ignition engine, the combustion of fuel in the combustion chamber is performed in order to optimize the shape of the combustion chamber and the intake / exhaust port communicating with the combustion chamber, and the injection timing and pressure of the fuel supplied to the combustion chamber. It is effective to be able to grasp the state in real time. For this purpose, Patent Document 1 proposes a technique for measuring the temperature and KL value of a flame generated in a combustion chamber using a two-color method and acquiring the soot concentration.

上述した二色法は、特許文献1や非特許文献1などで周知のように、火炎の輝度を同時に2つの異なる波長にて計測することにより、火炎温度およびKL値を算出することが可能である。KL値は火炎温度と煤の濃度とに比例した値であるので、火炎温度とKL値とが分かれば煤の濃度を求めることができる。   The two-color method described above can calculate the flame temperature and the KL value by measuring the flame brightness at two different wavelengths simultaneously, as is well known in Patent Document 1 and Non-Patent Document 1. is there. Since the KL value is proportional to the flame temperature and the soot concentration, the soot concentration can be determined if the flame temperature and the KL value are known.

特開2008−144673号公報JP 2008-144673 A

日本機械学会論文集B編47巻417号Japan Society of Mechanical Engineers, Proceedings B, 47, 417

燃焼室内において燃料の着火により火炎が発生し、これに伴って煤の生成とその酸化とが燃焼室のあちこちにて連続的に起こる。この場合、特許文献1に開示された従来の二色法では、燃焼室内にて生成した煤の酸化の程度を本質的に把握することができない。つまり、従来の二色法では煤の生成量からその酸化量を差し引いた最終的な煤の濃度しか把握することができず、生成した煤の酸化の程度を分離して計測することができないという課題があった。   A flame is generated by the ignition of fuel in the combustion chamber, and the generation of soot and its oxidation occur continuously in the combustion chamber. In this case, the conventional two-color method disclosed in Patent Document 1 cannot essentially grasp the degree of oxidation of soot generated in the combustion chamber. In other words, in the conventional two-color method, only the final soot concentration obtained by subtracting the oxidation amount from the soot production amount can be grasped, and the degree of soot oxidation produced cannot be measured separately. There was a problem.

本発明の目的は、燃焼機関における燃料の燃焼に伴って生成する煤の酸化状態を実時間にて連続的に計測することができるようにした方法およびこの方法を実施し得る装置を提供することにある。   An object of the present invention is to provide a method capable of continuously measuring in real time the oxidation state of soot generated as fuel is burned in a combustion engine, and an apparatus capable of implementing this method. It is in.

本発明の第1の形態は、火炎からの放射光に関し、異なる2つの波長の光強度を一定時間毎に検出する光強度計測器と、検出した2つの波長の光強度の比率を基準物体における同じ2つの波長の光強度の比率と比較して火炎温度を求める火炎温度算出部と、この火炎温度算出部にて求められた火炎温度を用いてKL値を算出するKL値算出部と、今回求めた火炎温度が前回求めた火炎温度よりも低いか否かを判定すると同時に今回算出したKL値が前回算出したKL値よりも大きいか否かを判定する煤生成・酸化判定部と、今回求めた火炎温度が前回求めた火炎温度よりも高く、かつ今回算出したKL値が前回算出したKL値よりも小さいとの前記煤生成・酸化判定部での判定結果に基づき、前回算出したKL値に対して今回算出したKL値の減少分を煤の酸化量として算出する煤酸化量算出部と、今回求めた火炎温度が前回求めた火炎温度よりも低く、かつ今回算出したKL値が前回算出したKL値よりも大きいとの前記煤生成・酸化判定部での判定結果に基づき、前回算出したKL値に対して今回算出したKL値の増分を煤の生成量として算出する煤生成量算出部とを具えたことを特徴とする燃焼解析装置にある。   The first aspect of the present invention relates to light emitted from a flame, a light intensity measuring device that detects light intensities of two different wavelengths at regular intervals, and a ratio of the detected light intensities of two wavelengths in a reference object. A flame temperature calculation unit for calculating a flame temperature by comparing with the ratio of the light intensity of the same two wavelengths, a KL value calculation unit for calculating a KL value using the flame temperature obtained by the flame temperature calculation unit, and this time A soot generation / oxidation determination unit that determines whether or not the calculated flame temperature is lower than the previously calculated flame temperature and at the same time whether or not the currently calculated KL value is greater than the previously calculated KL value; Based on the determination result in the soot generation / oxidation determination unit that the flame temperature is higher than the flame temperature obtained last time and the KL value calculated this time is smaller than the previously calculated KL value, the previously calculated KL value is KL value calculated for this time The soot oxidation amount calculation unit that calculates the reduction amount as the amount of soot oxidation, and the flame temperature calculated this time is lower than the flame temperature calculated last time and the KL value calculated this time is larger than the KL value calculated last time And a soot generation amount calculation unit that calculates an increment of the KL value calculated this time as a generation amount of soot based on a determination result in the soot generation / oxidation determination unit. It is in the combustion analyzer.

本発明において、高温かつ酸素不足に晒された火炎内における未燃の燃料は、熱分解による脱水素反応、すなわち炭化を経て煤前駆物質を生成し、この煤前駆物質が凝集・合体することで煤となる。この反応は吸熱反応であるので、煤前駆物質が生ずる箇所での火炎温度は低下することとなる。煤が生成した火炎内に酸素が導入されると、煤が燃えて酸化し、火炎温度が上昇する。つまり、煤が生成した場所では火炎温度が低下すると共に煤の生成によりKL値が増加するのに対し、煤が酸化した場所では火炎温度が上昇すると共に煤の減少によりKL値も低下する。   In the present invention, unburned fuel in a flame exposed to high temperature and oxygen shortage generates a soot precursor through a dehydrogenation reaction by pyrolysis, that is, carbonization, and this soot precursor aggregates and coalesces. Become a trap. Since this reaction is an endothermic reaction, the flame temperature at the location where the soot precursor is generated will decrease. When oxygen is introduced into the flame generated by soot, the soot burns and oxidizes, increasing the flame temperature. That is, in the place where soot is generated, the flame temperature is lowered and the KL value is increased due to the generation of soot, whereas in the place where the soot is oxidized, the flame temperature is increased and the KL value is also lowered due to the reduction of soot.

本発明の第2の形態は、火炎からの放射光に関し、異なる2つの波長の光強度を一定時間毎に検出するステップと、検出した2つの波長の光強度の比率を基準物体における同じ2つの波長の光強度の比率と比較して火炎温度を求めるステップと、求めた火炎温度を用いてKL値を算出するステップと、今回求めた火炎温度が前回求めた火炎温度よりも低いか否かを判定するステップと、今回算出したKL値が前回算出したKL値よりも大きいか否かを判定するステップと、今回求めた火炎温度が前回求めた火炎温度よりも低く、かつ今回算出したKL値が前回算出したKL値よりも大きいと判断した場合、前回算出したKL値に対して今回算出したKL値の増分だけ煤が生成していると判定するステップと、今回求めた火炎温度が前回求めた火炎温度よりも高く、かつ今回算出したKL値が前回算出したKL値よりも小さいと判断した場合、前回算出したKL値に対して今回算出したKL値の減少分だけ煤が酸化していると判定するステップとを具えたことを特徴とする燃焼解析方法にある。   The second aspect of the present invention relates to the radiation light from the flame, the step of detecting the light intensities of two different wavelengths at regular intervals, and the ratio of the detected light intensities of the two wavelengths to the same two in the reference object The step of obtaining the flame temperature by comparing with the ratio of the light intensity of the wavelength, the step of calculating the KL value using the obtained flame temperature, and whether or not the flame temperature obtained this time is lower than the flame temperature obtained last time. A step of determining, a step of determining whether or not the KL value calculated this time is larger than the KL value calculated last time, the flame temperature calculated this time is lower than the flame temperature calculated last time, and the KL value calculated this time is When it is determined that the KL value is larger than the previously calculated KL value, a step of determining that soot is generated by an increment of the KL value calculated this time with respect to the KL value calculated last time, and the flame temperature calculated this time were previously determined. When it is determined that the KL value calculated above is higher than the flame temperature and the KL value calculated this time is smaller than the KL value calculated last time, the soot is oxidized by the decrease of the KL value calculated this time with respect to the KL value calculated last time. A combustion analysis method characterized by comprising the step of determining.

本発明によると、火炎温度およびKL値の時系列変化を取得することにより、煤の生成量のみならず、煤の酸化量をも連続的に取得することができる。   According to the present invention, it is possible to continuously acquire not only the amount of soot generation but also the amount of soot oxidation by acquiring time-series changes in flame temperature and KL value.

本発明による燃焼解析装置の一実施形態を模式的に表すブロック図である。It is a block diagram showing typically one embodiment of a combustion analysis device by the present invention. 図1に示した実施形態における光強度計測器の部分の概念図である。It is a conceptual diagram of the part of the light intensity measuring device in the embodiment shown in FIG. 図1に示した実施形態における火炎解析手順を表すフローチャートである。It is a flowchart showing the flame analysis procedure in embodiment shown in FIG. 圧縮火花点火機関の燃焼室におけるスワール状となる火炎の模式図である。It is a schematic diagram of the flame which becomes a swirl in the combustion chamber of a compression spark ignition engine. 図1に示した実施形態において、煤生成量から煤酸化量を減算した値と、煤排出量との関係を表すグラフである。In the embodiment shown in FIG. 1, it is a graph showing the relationship between the value which subtracted the soot oxidation amount from the soot production amount, and soot discharge amount. 光強度計測器の他の実施形態の概念図である。It is a conceptual diagram of other embodiment of a light intensity measuring device. 光強度計測器の別な実施形態の概念図である。It is a conceptual diagram of another embodiment of a light intensity measuring device.

本発明による燃焼解析装置を圧縮点火方式の内燃機関に応用した実施形態について、図1〜図7を参照しながら詳細に説明する。しかしながら、本発明はこのような実施形態のみに限らず、火花点火方式の内燃機関などの他の燃焼機関に対しても応用することができる。   An embodiment in which a combustion analysis apparatus according to the present invention is applied to a compression ignition internal combustion engine will be described in detail with reference to FIGS. However, the present invention is not limited to such an embodiment, but can be applied to other combustion engines such as a spark ignition type internal combustion engine.

本実施形態における燃焼解析装置を模式的に図1に示し、その光強度計測器の概略構成を模式的に図2に示す。すなわち、本実施形態における燃焼解析装置10は、異なる2つの波長λ,λの光強度を一定時間毎に検出する光強度計測器20と、この光強度計測器20からの情報に基づいて煤の生成量および酸化量を連続的に算出する解析ユニット30とを具えている。 A combustion analysis apparatus according to this embodiment is schematically shown in FIG. 1, and a schematic configuration of the light intensity measuring instrument is schematically shown in FIG. That is, the combustion analysis apparatus 10 in the present embodiment is based on the light intensity measuring device 20 that detects the light intensities of two different wavelengths λ 1 and λ 2 at regular intervals, and information from the light intensity measuring device 20. And an analysis unit 30 for continuously calculating the amount of soot produced and the amount of oxidation.

本実施形態おける光強度計測器20は、火炎Fからの放射光を2方向に分けるビームスプリッター21と、一対の干渉フィルター22,22と、火炎Fに対する撮影領域が同一となるように設定される一対の高速度モノクロビデオカメラ23,23とを有する。一対の干渉フィルター22,22の一方である第1の干渉フィルター22は、ビームスプリッター21から導かれる一方の放射光のうち、第1の波長λの放射光のみを透過させる。一対のモノクロビデオカメラ23,23の一方である第1のモノクロビデオカメラ23は、第1の干渉フィルター22を通過した第1の波長λの放射光の光強度を計測してこれを解析ユニット30の火炎温度算出部31に出力する。一対の干渉フィルター22,22の他方である第2の干渉フィルター22は、ビームスプリッター21から導かれる他方の放射光のうち、第2の波長λの放射光のみを透過させる。一対のモノクロビデオカメラ23,23の他方である第2のモノクロビデオカメラ23は、第2の干渉フィルター22を通過した第2の波長λの放射光の光強度を計測してこれを解析ユニット30の火炎温度算出部31に出力する。 The light intensity measuring device 20 in the present embodiment is set so that the beam splitter 21 that divides the emitted light from the flame F into two directions, the pair of interference filters 22 1 and 22 2, and the imaging region for the flame F are the same. And a pair of high-speed monochrome video cameras 23 1 and 23 2 . First interference filter 22 1 is one of a pair of interference filters 22 1, 22 2, of the one of the radiation derived from the beam splitter 21, which transmits only the first radiation at a wavelength lambda 1. One first monochrome video camera 23 1 is a pair of monochrome video camera 23 1, 23 2, and the light intensity of the first wavelength lambda 1 of the emitted light which has passed through the first interference filter 22 1 is measured This is output to the flame temperature calculation unit 31 of the analysis unit 30. The second interference filter 22 2 , which is the other of the pair of interference filters 22 1 and 22 2 , transmits only the radiation light having the second wavelength λ 2 among the other radiation light guided from the beam splitter 21. The second monochrome video camera 23 2 , which is the other of the pair of monochrome video cameras 23 1 and 23 2 , measures the light intensity of the emitted light having the second wavelength λ 2 that has passed through the second interference filter 22 2. This is output to the flame temperature calculation unit 31 of the analysis unit 30.

本実施形態における解析ユニット30は、火炎温度算出部31と、KL値算出部32と、煤生成・酸化判定部33と、煤酸化量算出部34と、煤生成量算出部35とを有する。
火炎温度算出部31は、検出した2つの波長λ,λの光強度の比率を基準物体における同じ2つの波長λ,λの光強度の比率と比較して火炎温度Tを求めてこれをKL値算出部32と煤生成・酸化判定部33とに出力する。従って、この火炎温度算出部31には基準物体、すなわち黒体における同じ2つの波長λ,λの光強度の比率とその温度との関係を示すマップが記憶されている。
The analysis unit 30 in the present embodiment includes a flame temperature calculation unit 31, a KL value calculation unit 32, a soot generation / oxidation determination unit 33, a soot oxidation amount calculation unit 34, and a soot generation amount calculation unit 35.
The flame temperature calculation unit 31 compares the detected light intensity ratio of the two wavelengths λ 1 and λ 2 with the light intensity ratio of the same two wavelengths λ 1 and λ 2 in the reference object to obtain the flame temperature T. This is output to the KL value calculation unit 32 and the soot generation / oxidation determination unit 33. Therefore, the flame temperature calculation unit 31 stores a map indicating the relationship between the temperature and the ratio of the light intensity of the same two wavelengths λ 1 and λ 2 in the reference object, that is, the black body.

二色法において、黒体およびそれ以外の一般物体の分光放射のうち、2つの波長の輝度に着目し、2つの接近した適当な波長を選択した場合、両者の放射率はほぼ同じとなる。一般物体において2つの波長の放射率が等しいという前提が成立する場合、その輝度の比率は黒体における2つの波長の輝度の比率に等しくなる。従って、測定対象の輝度の比率を求め、あらかじめ測定しておいた黒体の輝度の比率と比較し、同じ輝度の比率となっている黒体の温度を測定対象の温度と見なすことが可能となる。本実施形態における火炎温度算出部31は、測定対象となる火炎Fに関し、光強度計測器20により計測された異なる2つの波長λ,λの輝度の比率を算出する。そして、算出した比率と予め記憶しておいた黒体における同じ波長λ,λでの輝度の比率のデーターとを比較し、同じ輝度比率となる黒体の温度を火炎温度Tとして読み出している。このため、あらかじめ火炎撮影で用いる光強度計測器20と同じ光学系を同じ撮影条件にて標準光源からの放出光を撮影する。そして、2つの波長λ,λに対する画像の輝度値から、それぞれの波長λ,λに対応する(4)式のA,Bを算出し、火炎温度算出部31に記憶させておく。 In the two-color method, when attention is paid to the luminance of two wavelengths among the spectral radiation of a black body and other general objects, and two appropriate wavelengths that are close to each other are selected, the emissivities of the two are almost the same. When the premise that the emissivity of two wavelengths is equal in a general object holds, the ratio of the luminance is equal to the ratio of the luminance of the two wavelengths in the black body. Therefore, the ratio of the luminance of the measurement object is obtained and compared with the luminance ratio of the black body measured in advance, and the temperature of the black body having the same luminance ratio can be regarded as the temperature of the measurement object. Become. The flame temperature calculation unit 31 in the present embodiment calculates the ratio of the luminance of two different wavelengths λ 1 and λ 2 measured by the light intensity measuring device 20 with respect to the flame F to be measured. Then, the calculated ratio is compared with the luminance ratio data at the same wavelength λ 1 and λ 2 in the black body stored in advance, and the temperature of the black body having the same luminance ratio is read as the flame temperature T. Yes. For this reason, the emitted light from the standard light source is imaged in advance using the same optical system as the light intensity measuring instrument 20 used in flame imaging under the same imaging conditions. The two wavelengths lambda 1, the brightness value of an image for lambda 2, respectively wavelengths lambda 1, corresponding to lambda 2 (4) expression of A, and calculates the B, should be stored in the flame temperature calculation section 31 .

KL値算出部32は、この火炎温度算出部31にて求められた火炎温度Tを用いてKL値を算出する。一般に、煤のような黒体からの輻射光の強度E0(λ, T)は、波長をλ,火炎温度をT,黒体放射第1定数(3.74×10−16)をc、黒体放射第2定数(1.44×10−2)をcで表すと、ウィーンの近似式から以下のように記述することができる。
0(λ, T)=cλ−5・exp(−c/λT) ・・・(1)
The KL value calculation unit 32 calculates the KL value using the flame temperature T obtained by the flame temperature calculation unit 31. In general, the intensity E 0 (λ, T) of the radiant light from a black body such as a kite has a wavelength λ, a flame temperature T, and a black body radiation first constant (3.74 × 10 −16 ) c 1 When the black body radiation second constant (1.44 × 10 −2 ) is represented by c 2 , it can be described as follows from the Wien approximation.
E 0 (λ, T) = c 1 λ −5 · exp (−c 2 / λT) (1)

ここで、黒体ではない火炎の放射率をελで表すと、この火炎の輻射光の強度E(λ, T)は以下の(2)式の通りとなる。
(λ, T)=ελ0(λ, T)=ελλ−5・exp(−c/λT) ・・・(2)
Here, when the emissivity of a flame that is not a black body is represented by ε λ , the intensity E (λ, T) of the radiant light of the flame is expressed by the following equation (2).
E (λ, T) = ε λ E 0 (λ, T) = ε λ c 1 λ −5 · exp (−c 2 / λT) (2)

また、波長λにおける火炎の輝度に対応した黒体の輝度温度をTで表すと、(1)式は以下の(3)式のように変形することができる。
(λ, T)=ελ0(λ,Ta)=cλ−5・exp(−c/λT) ・・・(3)
ここで、高速度ビデオカメラなどで撮影した画像の輝度値Xと火炎の輻射光の強度E(λ, T)との間に比例関係、すなわちE(λ, T)=k・Xが成立すると仮定する。この場合、−λ/c=Aおよび(λ/c)・ln(ck)=Bで表すと、(3)式を以下の(4)式のように変形することができる。
1/T=A・ln(E(λ, T))+B ・・・(4)
Further, the brightness temperature of the black body that correspond to the brightness of the flame at the wavelength λ is represented by T a, (1) formula can be modified as the following equation (3).
E (λ, T) = ε λ E 0 (λ, Ta) = c 1 λ −5 · exp (−c 2 / λT a ) (3)
Here, when a proportional relationship is established between the luminance value X of an image taken by a high-speed video camera or the like and the intensity E (λ, T) of the flame radiation, that is, E (λ, T) = k · X is established. Assume. In this case, when represented by −λ / c 2 = A and (λ / c 2 ) · ln (c 1 / λ 5 k) = B, the equation (3) is transformed into the following equation (4): Can do.
1 / T a = A · ln (E (λ, T) ) + B (4)

一方、HottelおよびBroughtonは火炎の輻射に関して以下の(5)式を提唱している。
ελ=1−exp(−KL/λα) ・・・(5)
On the other hand, Hottel and Broughton have proposed the following equation (5) for flame radiation.
ε λ = 1−exp (−KL / λα) (5)

ここで、Kは火炎中の煤の濃度に比例する吸収係数であり、Lは輻射光を検出する方向に関する火炎の厚みであり、αは放射率の波長依存性を表す指数であり、可視域では1.38となる。つまり、KL値とは輻射光を検出する火炎の奥行き方向に関する煤濃度の積分値となる。(5)式と(2),(3)式とを用いてKLについて解くと、以下の(6)式が得られる。
KL=−λα・ln〔1−exp[−(c/λ)・{(1/T)−(1/T)}]〕 ・・・(6)
Here, K is an absorption coefficient proportional to the concentration of soot in the flame, L is the thickness of the flame with respect to the direction in which the radiant light is detected, α is an index representing the wavelength dependence of the emissivity, and visible range Then it becomes 1.38. That is, the KL value is an integral value of the soot concentration in the depth direction of the flame for detecting the radiation light. Solving for KL using Equation (5) and Equations (2) and (3), the following Equation (6) is obtained.
KL = −λα · ln [1-exp [− (c 2 / λ) · {(1 / T a ) − (1 / T)}]] (6)

従って、黒体ではない火炎に対して求められた火炎温度Tから上の(6)式を用いてKL値を算出することができる。   Therefore, the KL value can be calculated from the flame temperature T obtained for a flame that is not a black body, using the above equation (6).

煤生成・酸化判定部33は、今回求めた火炎温度Tが前回求めた火炎温度Tn−1よりも低いか否かを判定すると同時に今回算出したKL値KLが前回算出したKL値KLn−1よりも大きいか否かを判定する。 The soot production / oxidation determination unit 33 determines whether or not the flame temperature T n obtained this time is lower than the flame temperature T n−1 obtained last time, and at the same time the KL value KL n calculated this time is the KL value KL calculated last time. It is determined whether it is larger than n-1 .

煤酸化量算出部34は、今回の火炎温度Tが前回の火炎温度Tn−1よりも高く、かつ今回のKL値KLが前回のKL値KLn−1よりも小さいとの煤生成・酸化判定部33での判定結果に基づき、今回のKL値KLの減少分を煤の酸化量として算出する。 The soot oxidation amount calculation unit 34 generates soot when the current flame temperature T n is higher than the previous flame temperature T n−1 and the current KL value KL n is smaller than the previous KL value KL n−1. - based on the determination result in the oxidation determination unit 33 calculates the decrease in the current KL value KL n as oxidation of soot.

煤生成量算出部35は、今回の火炎温度Tが前回の火炎温度Tn−1よりも低く、かつ今回のKL値KLが前回のKL値KLn−1よりも大きいとの煤生成・酸化判定部33での判定結果に基づき、今回のKL値KLの増分を煤の生成量として算出する。 The soot generation amount calculation unit 35 generates soot when the current flame temperature T n is lower than the previous flame temperature T n−1 and the current KL value KL n is greater than the previous KL value KL n−1. - based on the determination result in the oxidation determination unit 33 calculates the increment of the current KL value KL n as the amount of soot.

より具体的には、あらかじめ設定した一定の撮影周期tにて光強度計測器20により火炎画像を撮影し、火炎温度算出部31およびKL値算出部32にて撮影画像の各画素に対する火炎温度TとKL値KLとを求める。次に、画像上の同一座標に対し、時刻tおよび時刻tn−1での火炎温度T,Tn−1およびKL値KL,KLn−1を比較する。KL値が増加し、かつ火炎温度が低下している場合には、煤の生成により吸熱反応が生じたと判断し、KL値の増加分を煤の生成量とする。また、KL値が減少しかつ火炎温度が増加する場合は、煤の酸化(再燃焼)による発熱反応が生じたと判断し、KL値の減少分を煤の酸化量とする。なお、上記の条件以外のKL値の変化は、同一座標への煤の進入か、あるいは同一座標からの煤の移動に伴う変化と見なすことができる。以上のルーチンを、画像上の各画素および各時刻間で行うことで、煤の生成量と酸化量とについて空間分布と時系列データーの計測とが可能となる。 More specifically, the flame image taken by the optical intensity measurement device 20 at a constant shooting period t n set in advance, the flame temperature for each pixel of the captured image at the flame temperature calculation unit 31 and the KL value calculating section 32 seek and T n and the KL value KL n. Next, the flame temperatures T n and T n−1 and the KL values KL n and KL n−1 at the time t n and the time t n−1 are compared with the same coordinates on the image. When the KL value increases and the flame temperature decreases, it is determined that an endothermic reaction has occurred due to the generation of soot, and the increase in the KL value is taken as the amount of soot generation. If the KL value decreases and the flame temperature increases, it is determined that an exothermic reaction has occurred due to soot oxidation (reburning), and the decrease in the KL value is taken as the amount of soot oxidation. Note that a change in the KL value other than the above condition can be regarded as a change due to the entry of the heel to the same coordinate or the movement of the heel from the same coordinate. By performing the above routine between each pixel and each time on the image, it is possible to measure the spatial distribution and time-series data for the amount of soot produced and the amount of oxidation.

本実施形態においては一対の高速度モノクロビデオカメラ23,23を用いるようにしたが、高速度カラービデオカメラを用いることも可能である。この場合、ビームスプリッター21や一対の干渉フィルター22,22も不要となり、しかも1台のカラービデオカメラのみで光強度計測器20を構成することができる。カラービデオカメラを用いる場合、RGB信号のうちの少なくとも2つの信号(例えばRとGか、RとBか、GとB)を用いることで異なる2種類の波長の光に対する火炎画像の輝度値、すなわち光強度を検出すればよい。通常、カラービデオカメラのR信号の中心波長は700nmであり、G信号は546nmであり、B信号は435nm近辺に設定されている。従って、例えばR信号とG信号の輝度を抽出することで、異なる2種類の波長の光強度を検出することができる。 In this embodiment, a pair of high-speed monochrome video cameras 23 1 and 23 2 is used, but a high-speed color video camera can also be used. In this case, the beam splitter 21 and the pair of interference filters 22 1 and 22 2 are not required, and the light intensity measuring device 20 can be configured with only one color video camera. When using a color video camera, the brightness value of the flame image for light of two different wavelengths by using at least two of the RGB signals (for example, R and G, R and B, or G and B), That is, the light intensity may be detected. Usually, the center wavelength of the R signal of the color video camera is 700 nm, the G signal is 546 nm, and the B signal is set around 435 nm. Therefore, for example, by extracting the luminance of the R signal and the G signal, it is possible to detect the light intensities of two different wavelengths.

本実施形態における火炎の解析手順について図3に示すフローチャートを用いて説明すると、まずS11のステップにて火炎Fの光強度を異なる2つの波長λ,λにて検出し、S12のステップにてその火炎温度TおよびKL値KLを算出する。次いで、S13のステップにて今回算出した火炎温度TおよびKL値KLが初回であるか否かを判定し、ここで今回算出した火炎温度TおよびKL値KLが初回であると判断した場合には、S11のステップに戻り、上述した処理を繰り返す。なお、S12のステップでの火炎温度TおよびKL値KLの算出は、火炎温度算出部31,KL値算出部32,煤生成・酸化判定部33,煤酸化量算出部34,煤生成量算出部35での演算周期に応じた所定の周期tにて連続的に行われる。 The flame analysis procedure in the present embodiment will be described with reference to the flowchart shown in FIG. 3. First, in step S11, the light intensity of the flame F is detected at two different wavelengths λ 1 and λ 2 , and in step S12. The flame temperature T n and the KL value KL n are calculated. Then, it is determined whether or not the flame temperature T n and KL value KL n the calculated time is the first time in S13 step determines that here now calculated flame temperature T n and KL value KL n is the first time If so, the process returns to step S11 to repeat the above-described processing. The calculation of the flame temperature T n and KL value KL n at step S12, the flame temperature calculation section 31, KL value calculating section 32, soot generation and oxidation determining unit 33, soot oxidation amount calculating section 34, the soot generation amount The calculation is performed continuously at a predetermined cycle t n according to the calculation cycle in the calculation unit 35.

S13のステップにて今回算出した火炎温度TおよびKL値KLがこの処理を開始してから2回目以降であると判断した場合には、S14のステップに移行して今回求めた火炎温度Tが前回求めた火炎温度Tn−1と同じであるか否かを判定する。ここで、今回の火炎温度Tと前回の火炎温度Tn−1とが同じである、すなわち火炎温度が変化していないので煤の発生も煤の酸化も実質的に起こっていないと判断した場合には、S11のステップに戻り、再度上述した処理を繰り返す。 If it is determined that the flame temperature T n and the KL value KL n calculated this time in step S13 are the second and subsequent times after starting this process, the process proceeds to step S14 and the flame temperature T calculated this time is determined. n is equal to or the same as the flame temperature T n-1 previously obtained. Here, it is determined that the present flame temperature T n is the same as the previous flame temperature T n−1 , that is, the flame temperature is not changed, so that neither generation of soot nor oxidation of soot has occurred substantially. In that case, the process returns to step S11 and the above-described processing is repeated again.

一方、S14のステップにて今回の火炎温度Tと前回の火炎温度Tn−1とが相違していると判断した場合には、S15のステップに移行して今回求めた火炎温度Tが前回求めた火炎温度Tn−1よりも低いか否かを判定する。ここで、今回の火炎温度Tが前回の火炎温度Tn−1よりも低い、すなわち火炎温度Tが低下していると判断した場合には、S16のステップに移行して今度は今回算出したKL値KLが前回算出したKL値KLn−1よりも大きいか否かを判定する。ここで、今回のKL値KLが前回のKL値KLn−1よりも大きい、すなわち火炎温度の低下に伴って煤が発生していると判断した場合には、S17のステップに移行する。そして、前回のKL値KLn−1に対して今回のKL値KLの減少分を煤の酸化量として算出する。 On the other hand, if it is determined in step S14 that the current flame temperature T n is different from the previous flame temperature T n−1 , the process proceeds to step S15 and the flame temperature T n obtained this time is determined. It is determined whether or not it is lower than the flame temperature Tn-1 obtained last time. Here, lower than the flame temperature T n-1 of this flame temperature T n is the last, that is, when the flame temperature T n is determined to be decreased, in turn calculated this time and proceeds to S16 in step the KL value KL n determines whether larger or not than the KL value KL n-1 previously calculated. Here, when it is determined that the current KL value KL n is larger than the previous KL value KL n−1 , that is, soot is generated as the flame temperature decreases, the process proceeds to step S17. Then, the amount of decrease in the current KL value KL n with respect to the previous KL value KL n−1 is calculated as the amount of soot oxidation.

先のS15のステップにて今回の火炎温度Tが前回の火炎温度Tn−1よりも高い、すなわち火炎温度Tが上昇していると判断した場合には、S18のステップに移行する。このS18のステップでは、今回算出したKL値KLが前回算出したKL値KLn−1よりも小さいか否かを判定する。ここで、今回のKL値KLが前回のKL値KLn−1よりも小さい、すなわち火炎温度Tの上昇に伴って煤が酸化していると判断した場合には、S19のステップに移行して前回のKL値KLn−1に対して今回のKL値KLの減少分を煤の酸化量として算出する。 This flame temperature T n in the previously described step S15 is higher than the flame temperature T n-1 of the previous, that is, when the flame temperature T n is determined to have risen, the process proceeds to S18 in step. In step S18, it is determined whether or not the KL value KL n calculated this time is smaller than the previously calculated KL value KL n-1 . Here, when it is determined that the current KL value KL n is smaller than the previous KL value KL n−1 , that is, the soot is oxidized as the flame temperature T n increases, the process proceeds to step S19. Then, the amount of decrease in the current KL value KL n with respect to the previous KL value KL n−1 is calculated as the amount of soot oxidation.

S16のステップにて今回のKL値KLが前回のKL値KLn−1以下である、すなわち煤の発生も煤の酸化も実質的に起こっていないと判断した場合には、S11のステップに戻り、再度上述した処理を繰り返す。S18のステップにて今回のKL値KLが前回のKL値KLn−1以上である、すなわち煤の発生も煤の酸化も実質的に起こっていないと判断した場合も同様に、S11のステップに戻って再度上述した処理を繰り返す。 If it is determined in step S16 that the current KL value KLn is less than or equal to the previous KL value KLn -1 , that is, neither soot generation nor soot oxidation occurs substantially, the process proceeds to step S11. Return and repeat the process described above. Similarly, if it is determined in step S18 that the current KL value KLn is equal to or greater than the previous KL value KLn -1 , that is, neither generation of soot nor oxidation of soot has occurred. The process described above is repeated again.

なお、先のS17およびS19のステップを実行した後、再びS11以降のステップが繰り返され、これらS17のステップおよびS19のステップにて煤の生成量と煤の酸化量とがそれぞれ累積的に算出される。   In addition, after executing the steps of S17 and S19, the steps after S11 are repeated again, and the amount of soot generated and the amount of soot oxidation are calculated cumulatively in the steps of S17 and S19, respectively. The

ところで、内燃機関の燃焼室では、この燃焼室内に発生するスワール流によって火炎が移動するため、この火炎を本発明の燃焼解析装置10を用いて解析する場合、光強度計測器20によって得られる画像に対する補正処理が必要となる。つまり、今回の算出時刻tおよび前回の算出時刻tn−1における火炎温度T,Tn−1およびKL値KL,KLn−1を比較する際に、スワール流によって火炎が移動する分だけ比較座標の位置補正を行う必要があり、これを図4を用いて模式的に説明する。二点鎖線で示す前回の算出時刻tn−1における火炎Fの画像に対し、スワール流Sによって移動した後の実線で示す今回の算出時刻tにおける火炎Fの画像をスワール流Sの移動方向と逆方向に移動させて二つの火炎Fの画像が重なり合うようにすればよい。 By the way, in the combustion chamber of the internal combustion engine, the flame moves due to the swirl flow generated in the combustion chamber. Therefore, when this flame is analyzed using the combustion analysis device 10 of the present invention, an image obtained by the light intensity measuring device 20 is obtained. It is necessary to correct for the above. That is, when comparing the flame temperatures T n and T n−1 and the KL values KL n and KL n−1 at the current calculation time t n and the previous calculation time t n−1, the flame moves by the swirl flow. It is necessary to correct the position of the comparison coordinates by the amount, and this will be schematically described with reference to FIG. The image of the flame F at the previous calculation time t n-1 indicated by the two-dot chain line, the moving direction of the image swirl flow S of the flame F in the current calculation time t n indicated by the solid line after moving by the swirl flow S The images of the two flames F may be overlapped by moving in the opposite direction.

本実施形態による火炎Fの解析結果を図5に示すが、これは本実施形態による燃焼解析装置10を用いて算出した煤の累積排出量から煤の累積酸化量を減算した値を横軸に取り、実際の煤の排出量を縦軸に取ったものである。この図5において、算出された煤の生成量と実際の煤の排出量とに直線状の比例関係が得られていることからも明らかなように、本計測における煤の生成量と酸化量の計測結果が妥当であることを確認することができよう。   FIG. 5 shows the analysis result of the flame F according to the present embodiment, which is obtained by subtracting the cumulative oxidation amount of soot calculated using the combustion analysis apparatus 10 according to the present embodiment on the horizontal axis. The actual amount of soot discharged is taken on the vertical axis. In FIG. 5, it is clear from the fact that a linear proportional relationship is obtained between the calculated soot generation amount and the actual soot discharge amount. You will be able to confirm that the measurement results are valid.

上述した光強度計測器20の構成に関しては、本実施形態以外の任意の構成を採用することが可能であり、例えば図6や図7に示したものなどを挙げることができる。   Regarding the configuration of the light intensity measuring instrument 20 described above, any configuration other than the present embodiment can be adopted, and examples include those shown in FIGS. 6 and 7.

図6に示す光強度計測器20は、1台の高速度モノクロビデオカメラ23と、このモノクロビデオカメラ23の焦点面に対して画像を2分割して撮影するためのステレオアダプター24と、一対の干渉フィルター22,22とを有する。ステレオアダプター24は、モノクロビデオカメラ23の光軸を中心に一方側と他方側とに対称に配された2組の反射鏡25,25を組み合わせたものである。本実施形態では1台のモノクロビデオカメラ23の焦点面に2つの波長λ,λの火炎Fの画像が半分ずつ形成されることになり、火炎Fの解像度が1/2に低下してしまう。しかしながら、モノクロビデオカメラ23が1台だけであっても干渉フィルター22,22とステレオアダプター24とを組み合わせることによって光強度計測器20を構成することが可能となる。 The light intensity measuring device 20 shown in FIG. 6 includes a single high-speed monochrome video camera 23, a stereo adapter 24 for taking an image by dividing it into the focal plane of the monochrome video camera 23, and a pair of Interference filters 22 1 and 22 2 are provided. The stereo adapter 24 is a combination of two sets of reflecting mirrors 25 1 and 25 2 that are symmetrically arranged on one side and the other side about the optical axis of the monochrome video camera 23. In this embodiment, half of the images of the flames F having the two wavelengths λ 1 and λ 2 are formed on the focal plane of one monochrome video camera 23, and the resolution of the flame F is reduced to 1/2. End up. However, even if there is only one monochrome video camera 23, the light intensity measuring device 20 can be configured by combining the interference filters 22 1 and 22 2 and the stereo adapter 24.

図7に示す光強度計測器20は、撮像光学系26と、イメージファイバー27と、ビームスプリッター21と、一対の干渉フィルター22,22と、一対の光電子増倍管28,28とを有する。2つの異なる波長λ,λの火炎Fの輝度情報が一対の光電子増倍管28,28に導かれるようになっており、上述したような高速度ビデオカメラを用いずとも光強度計測器20を構成することが理解できよう。 7 includes an imaging optical system 26, an image fiber 27, a beam splitter 21, a pair of interference filters 22 1 and 22 2, and a pair of photomultiplier tubes 28 1 and 28 2 . Have The luminance information of the flame F having two different wavelengths λ 1 and λ 2 is guided to the pair of photomultiplier tubes 28 1 and 28 2 , and the light intensity can be obtained without using the high-speed video camera as described above. It will be understood that the measuring instrument 20 is configured.

なお、本発明はその特許請求の範囲に記載された事項のみから解釈されるべきものであり、上述した実施形態においても、本発明の概念に包含されるあらゆる変更や修正が記載した事項以外に可能である。つまり、上述した実施形態におけるすべての事項は、本発明を限定するためのものではなく、本発明とは直接的に関係のないあらゆる構成を含め、その用途や目的などに応じて任意に変更し得るものである。   It should be noted that the present invention should be construed only from the matters described in the claims, and in the above-described embodiment, all the changes and modifications included in the concept of the present invention are other than those described. Is possible. That is, all matters in the above-described embodiment are not intended to limit the present invention, and include any configuration not directly related to the present invention. To get.

10 燃焼解析装置
20 光強度計測器
21 ビームスプリッター
22,22 干渉フィルター
23,23,23 高速度モノクロビデオカメラ
24 ステレオアダプター
25,25 反射鏡
26 撮像光学系
27 イメージファイバー
28,28 光電子増倍管
30 解析ユニット
31 火炎温度算出部
32 KL値算出部
33 煤生成・酸化判定部
34 煤酸化量算出部
35 煤生成量算出部
λ,λ 波長
F 火炎
S スワール流
,Tn−1 火炎温度
KL,KLn−1 KL値
10 Combustion Analysis device 20 optical intensity measurement device 21 the beam splitter 22 1, 22 2 interference filter 23 1, 23 2 high speed monochrome video camera 24 Stereo adapter 25 1, 25 2 reflector 26 imaging optical system 27 images the fiber 28 1 , 28 2 Photomultiplier tube 30 Analysis unit 31 Flame temperature calculation unit 32 KL value calculation unit 33 Soot generation / oxidation determination unit 34 Soot oxidation amount calculation unit 35 Soot generation amount calculation unit λ 1 , λ 2 wavelength F Flame S Swirl flow T n , T n-1 Flame temperature KL n , KL n-1 KL value

Claims (1)

火炎からの放射光に関し、異なる2つの波長の光強度を一定時間毎に検出する光強度計測器と、
検出した2つの波長の光強度の比率を基準物体における同じ2つの波長の光強度の比率と比較して火炎温度を求める火炎温度算出部と、
この火炎温度算出部にて求められた火炎温度を用いてKL値を算出するKL値算出部と、
今回求めた火炎温度が前回求めた火炎温度よりも低いか否かを判定すると同時に今回算出したKL値が前回算出したKL値よりも大きいか否かを判定する煤生成・酸化判定部と、
今回求めた火炎温度が前回求めた火炎温度よりも高く、かつ今回算出したKL値が前回算出したKL値よりも小さいとの前記煤生成・酸化判定部での判定結果に基づき、前回算出したKL値に対して今回算出したKL値の減少分を煤の酸化量として算出する煤酸化量算出部と、
今回求めた火炎温度が前回求めた火炎温度よりも低く、かつ今回算出したKL値が前回算出したKL値よりも大きいとの前記煤生成・酸化判定部での判定結果に基づき、前回算出したKL値に対して今回算出したKL値の増分を煤の生成量として算出する煤生成量算出部と
を具えたことを特徴とする燃焼解析装置。
A light intensity measuring device that detects light intensity of two different wavelengths at regular intervals with respect to the emitted light from the flame;
A flame temperature calculation unit for determining a flame temperature by comparing a ratio of the detected light intensities of the two wavelengths with a ratio of the light intensities of the same two wavelengths in the reference object;
A KL value calculating unit that calculates a KL value using the flame temperature obtained by the flame temperature calculating unit;
A soot generation / oxidation determination unit that determines whether the flame temperature calculated this time is lower than the flame temperature calculated last time, and at the same time, determines whether the KL value calculated this time is larger than the previously calculated KL value;
Based on the determination result in the soot generation / oxidation determination unit that the flame temperature obtained this time is higher than the flame temperature obtained last time and the KL value calculated this time is smaller than the KL value calculated last time, the previously calculated KL A soot oxidation amount calculating unit that calculates a decrease in the KL value calculated this time as the oxidation amount of soot;
Based on the determination result in the soot production / oxidation determination unit that the flame temperature calculated this time is lower than the flame temperature calculated last time and the KL value calculated this time is larger than the KL value calculated last time, the previously calculated KL A combustion analysis apparatus comprising: a soot generation amount calculation unit that calculates, as a soot generation amount, an increment of the KL value calculated this time with respect to a value.
JP2013238197A 2013-11-18 2013-11-18 Combustion analyzer Expired - Fee Related JP6166156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013238197A JP6166156B2 (en) 2013-11-18 2013-11-18 Combustion analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013238197A JP6166156B2 (en) 2013-11-18 2013-11-18 Combustion analyzer

Publications (2)

Publication Number Publication Date
JP2015099055A true JP2015099055A (en) 2015-05-28
JP6166156B2 JP6166156B2 (en) 2017-07-19

Family

ID=53375757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013238197A Expired - Fee Related JP6166156B2 (en) 2013-11-18 2013-11-18 Combustion analyzer

Country Status (1)

Country Link
JP (1) JP6166156B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193948A (en) * 2017-05-19 2018-12-06 マツダ株式会社 Control method and device for engine, and method and device for detecting the number of discharge particles in engine
CN117268550A (en) * 2023-11-20 2023-12-22 合肥瑞石测控工程技术有限公司 Industrial furnace combustor flame on-line identification system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164128A (en) * 2003-12-02 2005-06-23 Kawasaki Heavy Ind Ltd Combustion control method and its system
WO2008059976A1 (en) * 2006-11-17 2008-05-22 Imagineering, Inc. Reaction analyzer, recording medium, measurement system, and control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164128A (en) * 2003-12-02 2005-06-23 Kawasaki Heavy Ind Ltd Combustion control method and its system
WO2008059976A1 (en) * 2006-11-17 2008-05-22 Imagineering, Inc. Reaction analyzer, recording medium, measurement system, and control system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN DUO ET AL.: "Measurement of Soot Temperature, Emissivity and Concentration of a Heavy-Oil Flame through Pyrometr", INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE(12MTC),2012 IEEE INTERNATIONAL, JPN6017018559, 13 May 2012 (2012-05-13) *
飯田 訓正: ""ディーゼル排気微粒子の性状およびエンジン内燃焼におけるすすの生成と制御"", エアロゾル研究, vol. Vol.12,No.3, JPN6017018557, 1997, pages 183〜188頁 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193948A (en) * 2017-05-19 2018-12-06 マツダ株式会社 Control method and device for engine, and method and device for detecting the number of discharge particles in engine
CN117268550A (en) * 2023-11-20 2023-12-22 合肥瑞石测控工程技术有限公司 Industrial furnace combustor flame on-line identification system
CN117268550B (en) * 2023-11-20 2024-02-02 合肥瑞石测控工程技术有限公司 Industrial furnace combustor flame on-line identification system

Also Published As

Publication number Publication date
JP6166156B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
Luong et al. Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines
Huang et al. Vision-based measurement of temperature distribution in a 500-kW model furnace using the two-colour method
Merola et al. Knock investigation by flame and radical species detection in spark ignition engine for different fuels
Shawal et al. High-speed imaging of early flame growth in spark-ignited engines using different imaging systems via endoscopic and full optical access
Goschütz et al. Endoscopic imaging of early flame propagation in a near-production engine
JP6166156B2 (en) Combustion analyzer
Barro et al. Optical investigations of soot reduction mechanisms using post-injections in a cylindrical constant volume chamber (CCVC)
Pastor et al. Soot quantification of single-hole diesel sprays by means of extinction imaging
CN113484025B (en) Flame temperature measuring device of optical engine
CN108731837B (en) Measuring method of flame temperature measuring system with double-light-path optical structure
CN112763480B (en) Diagnosis method for atmospheric pressure induction coupling plasma temperature field
JP5792435B2 (en) In-cylinder state monitoring device and control device for spark ignition internal combustion engine
TW201321728A (en) Non-contact temperature measuring method
Simonini et al. Soot temperature and concentration measurements from colour charge coupled device camera images using a three-colour method
Ma et al. In-cylinder temperature estimation from an optical spray-guided DISI engine with color-ratio pyrometry (CRP)
TWI465702B (en) Non-contact temperature measurung method
Vögelin et al. Experimental investigation of multi-in-cylinder pyrometer measurements and exhaust soot emissions under steady and transient operation of a heavy-duty diesel engine
Yu et al. Simulation and experimental measurement of CO2*, OH* and CH2O* chemiluminescence from an optical diesel engine fueled with n-heptane
Buono et al. Optical piston temperature measurement in an internal combustion engine
Schütte et al. Spatially resolved air-fuel ratio and residual gas measurements by spontaneous Raman scattering in a firing direct injection gasoline engine
Gross et al. Infrared Borescopic Analysis of Ignition and Combustion Variability in a Heavy-Duty Natural-Gas Engine
Lopez et al. Characterization of in-cylinder soot oxidation using two-color pyrometry in a production light-duty diesel engine
CN106595868A (en) Blast furnace combustion zone temperature field detection method based on improved three-color method
CN1693859A (en) Contactless high-temp measuring method based on data mixed
Sarangi et al. Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170622

R150 Certificate of patent or registration of utility model

Ref document number: 6166156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees