JP2015098810A - Exhaust gas regenerative brake type hybrid engine - Google Patents

Exhaust gas regenerative brake type hybrid engine Download PDF

Info

Publication number
JP2015098810A
JP2015098810A JP2013238528A JP2013238528A JP2015098810A JP 2015098810 A JP2015098810 A JP 2015098810A JP 2013238528 A JP2013238528 A JP 2013238528A JP 2013238528 A JP2013238528 A JP 2013238528A JP 2015098810 A JP2015098810 A JP 2015098810A
Authority
JP
Japan
Prior art keywords
engine
exhaust
high pressure
valve
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013238528A
Other languages
Japanese (ja)
Inventor
昭夫 中村
Akio Nakamura
昭夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013238528A priority Critical patent/JP2015098810A/en
Publication of JP2015098810A publication Critical patent/JP2015098810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device capable of recovering kinetic energy to be recovered at the time of applying brake in view of the fact that originally an automobile engine has no function for recovering energy and kinetic energy to be recovered at the time of applying brake is exclusively deposited as heat energy at a braking system.SOLUTION: An exhaust valve 2 for blocking an exhaust system is installed at the exhaust system and high pressure exhaust gas obtained by the exhaust valve 2 is recovered and stored in a cylinder 6. In addition, high pressure air stored in the cylinder is guided by a pipe passage to an intake system so as to perform a high pressure forced intake through a direct driving valve 13, thereby an engine is driven by high pressure air. This invention comprises the aforesaid constitution and provides a compact self-contained type hybrid engine in which the engine itself has a function of regenerative brake and is set free from a necessity for additional arrangement of a power system.

Description

この発明は、自動車等のエンジンにおいて、制動時のエネルギーを回収し、駆動力として再生する、回生制動を実現するものである。       The present invention realizes regenerative braking in an engine such as an automobile, in which energy during braking is recovered and regenerated as driving force.

従来の自動車等のエンジンは、元来エネルギーを回収する機能を備えておらず、別途設けられた制動系は、制動時に運動エネルギーを回収することなく、専ら熱エネルギーとして捨てている。       Conventional engines such as automobiles do not originally have a function of recovering energy, and a separately provided braking system does not recover kinetic energy at the time of braking, but exclusively discards it as heat energy.

特開2010−247797号公報JP 2010-247797 A

檜垣和夫著 エンジンのABC 講談社 2009年Kazuo Higaki Engine ABC Kodansha 2009

しかしながら、以上の技術によれば、制動時に運動エネルギーは回収されず、制動系にて専ら熱エネルギーとして捨てられており、回生制動を行うためには電動発電機と蓄電装置を別途併設するなどの手段が必要であった。
そこで、この発明は、エンジン自体で回生制動を行う手段を提供することを課題とする。
However, according to the above technology, kinetic energy is not recovered during braking, but is discarded as thermal energy exclusively in the braking system. For regenerative braking, a motor generator and a power storage device are provided separately. Means were needed.
Accordingly, an object of the present invention is to provide means for performing regenerative braking by the engine itself.

以上の課題を解決するために、本発明は、排気系統中にこれを閉塞するバルブと高圧の排気を回収、貯留する管路とボンベを設け、また該ボンベ内に貯留された高圧空気を吸気系統に導く管路と高圧強制吸気を制御するバルブを設けたことを特徴とするハイブリッドエンジンである。         In order to solve the above-described problems, the present invention provides a valve and a high-pressure exhaust line for collecting and storing a valve that closes the exhaust system in the exhaust system and a cylinder, and intakes high-pressure air stored in the cylinder. The hybrid engine is characterized in that a pipe leading to the system and a valve for controlling high-pressure forced intake are provided.

本発明によれば、制動の際には排気系をバルブにて閉塞してエンジンをコンプレッサーとして働かせ、運動エネルギーを高圧空気として回収でき、また、始動を含む駆動の際には強制吸気バルブを制御してエンジンをエアモーターとして働かせることができる。
かくしてエンジン自体に回生制動の機能を付与し、電動発電機等の動力系を別途併設することなく燃料消費の大幅な削減をもたらすことができる。
According to the present invention, the exhaust system is closed by a valve during braking, the engine can be operated as a compressor, and the kinetic energy can be recovered as high-pressure air, and the forced intake valve is controlled during driving including starting. The engine can be operated as an air motor.
Thus, a regenerative braking function can be provided to the engine itself, and fuel consumption can be greatly reduced without separately providing a power system such as a motor generator.

この発明の一実施形態を示す管路構成図である。It is a pipe line lineblock diagram showing one embodiment of this invention. 従来技術を示す管路図である。It is a pipeline diagram which shows a prior art.

この発明の一実施形態を、図1に示す。
エンジン本体1は4サイクルガソリンエンジンであり、排気弁2の閉塞により逆止弁3を経て導かれた高圧の排気をボンベ6に回収、貯留する管路の間に、外部から高圧空気を導く為の管路と逆止弁4が設けられており、コネクター7を介して外部コンプレッサー8に接続されている。ボンベ6は複数本で構成され、逆止弁5と背圧弁9とを介して直列に接続されている。
また吸気系統に設けられているスロットル弁10は回生制動時には燃料供給の停止に併せて吸気抵抗を回避するために全開に、エアモーター走行時には強制吸気のために全閉に制御される他、高圧強制吸気を制御するバルブとして、エゼクター駆動用バルブ12とエンジン本体の直接駆動用バルブ13が設けられており、両者が選択的に制御される。
One embodiment of the present invention is shown in FIG.
The engine body 1 is a four-cycle gasoline engine, in order to guide high-pressure air from the outside between pipes that collect and store high-pressure exhaust gas that has been guided through the check valve 3 when the exhaust valve 2 is blocked. And a check valve 4 are connected to an external compressor 8 via a connector 7. The cylinder 6 is composed of a plurality of cylinders, and is connected in series via a check valve 5 and a back pressure valve 9.
The throttle valve 10 provided in the intake system is controlled to be fully opened to avoid intake resistance in conjunction with the stop of fuel supply during regenerative braking, and to fully closed for forced intake when the air motor is running. As valves for controlling forced intake, an ejector drive valve 12 and a direct drive valve 13 of the engine body are provided, and both are selectively controlled.

この実施形態によれば、以下の効果がある。
外部コンプレッサー8により高圧空気をボンベ6に供給してエアモーター走行の比率を高めて、燃料消費をさらに削減することができる。
ボンベ6を複数直列接続することにより、全体としての容量を高める一方で、複数ボンベの順次充填により、作動圧力の早期立ち上がりと高位安定をもたらすことができる。
また、貯留された高圧空気は直接駆動によるエアモーター走行に供される他、ガソリンエンジンとして走行する際にも、エゼクター11を高圧空気で駆動し過給機として働かせることで、加速時等に吸気効率を上げ、エンジンの出力を高めることができる。
According to this embodiment, there are the following effects.
The external compressor 8 can supply high-pressure air to the cylinder 6 to increase the air motor traveling ratio, thereby further reducing fuel consumption.
By connecting a plurality of cylinders 6 in series, the capacity as a whole can be increased. On the other hand, by sequentially filling a plurality of cylinders, it is possible to bring about an early rise in operating pressure and high stability.
The stored high-pressure air is used not only for direct-drive air motor running, but also when running as a gasoline engine, the ejector 11 is driven by high-pressure air and used as a supercharger, so that it is aspirated during acceleration. Efficiency can be increased and engine output can be increased.

他の実施形態を以下に説明する。
図1の実施形態では、複数のボンベ6を用いて、回生制動の効果を高める構成であったが、他の実施形態では、容量の小さいボンベ単体によるコンパクトなシステムとして、既設のエンジンに増設したものでも良い。この場合も始動、加速をエアモーターに委ね、停車時のアイドリングもストップすることにより、燃料消費を削減することができる。
Other embodiments are described below.
In the embodiment of FIG. 1, the configuration is such that the effect of regenerative braking is enhanced by using a plurality of cylinders 6. However, in another embodiment, the system is expanded to an existing engine as a compact system with a single cylinder having a small capacity. Things can be used. In this case as well, fuel consumption can be reduced by leaving the start and acceleration to the air motor and stopping idling when the vehicle is stopped.

また、このシステムを、電動発電機と蓄電装置を別途併設するところの従来のハイブリッドシステムに搭載すれば、急速充電に能力的限界を有する蓄電装置を補完し、より有効な回生制動を実現できる。     If this system is installed in a conventional hybrid system in which a motor generator and a power storage device are separately provided, a power storage device having a capability limit for rapid charging can be complemented and more effective regenerative braking can be realized.

また、図1の実施形態では、高圧の排気を直接ボンベ6に導く構成であったが、他の実施形態では、高圧排気で斜板ピストンモーターを駆動し、それに連動する斜板コンプレッサーで高圧空気を供給してボンベ6に導くものでも良い。
この場合、斜板の傾斜角の調整により、低負荷から高負荷まで広範囲の制動力に対応して効率良く清浄な高圧空気が得られ、通常のエンジン走行時にも過給機として用いることができる。
In the embodiment shown in FIG. 1, the high-pressure exhaust is directly guided to the cylinder 6. However, in other embodiments, the swash plate piston motor is driven by the high-pressure exhaust, and the high-pressure air is driven by the swash plate compressor linked thereto. May be supplied to the cylinder 6.
In this case, by adjusting the inclination angle of the swash plate, clean high-pressure air can be efficiently obtained corresponding to a wide range of braking force from low load to high load, and can be used as a supercharger even during normal engine running. .

また、図1の実施形態では、エンジン本体1は4サイクルガソリンエンジンであったが、他の実施形態では、2サイクルエンジンやディーゼルエンジンなどの内燃機関でも、蒸気機関などの外燃機関でも良い。     In the embodiment of FIG. 1, the engine body 1 is a four-cycle gasoline engine. However, in other embodiments, an internal combustion engine such as a two-cycle engine or a diesel engine or an external combustion engine such as a steam engine may be used.

1 エンジン本体
2 排気弁
3 逆止弁
4 逆止弁
5 逆止弁
6 ボンベ
7 コネクター
8 外部コンプレッサー
9 背圧弁
10 スロットル弁
11 エゼクター
12 エゼクター駆動用バルブ
13 直接駆動用バルブ
1 Engine Body 2 Exhaust Valve 3 Check Valve 4 Check Valve 5 Check Valve 6 Cylinder 7 Connector 8 External Compressor 9 Back Pressure Valve 10 Throttle Valve 11 Ejector 12 Ejector Drive Valve 13 Direct Drive Valve

Claims (1)

エンジンの排気系統中にこれを閉塞するバルブと高圧の排気を回収、貯留する管路とボンベを設け、また該ボンベ内に貯留された高圧空気を吸気系統に導く管路と高圧強制吸気を制御するバルブを設けたことを特徴とするハイブリッドエンジン。         A valve and cylinder that collects and stores high-pressure exhaust in the engine exhaust system and a cylinder that collects and stores the exhaust, and a pipe that guides the high-pressure air stored in the cylinder to the intake system and high-pressure forced intake are controlled. A hybrid engine characterized by providing a valve to perform.
JP2013238528A 2013-11-19 2013-11-19 Exhaust gas regenerative brake type hybrid engine Pending JP2015098810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013238528A JP2015098810A (en) 2013-11-19 2013-11-19 Exhaust gas regenerative brake type hybrid engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013238528A JP2015098810A (en) 2013-11-19 2013-11-19 Exhaust gas regenerative brake type hybrid engine

Publications (1)

Publication Number Publication Date
JP2015098810A true JP2015098810A (en) 2015-05-28

Family

ID=53375577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013238528A Pending JP2015098810A (en) 2013-11-19 2013-11-19 Exhaust gas regenerative brake type hybrid engine

Country Status (1)

Country Link
JP (1) JP2015098810A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032579B1 (en) * 2015-11-27 2016-11-30 正裕 井尻 Supercharger for internal combustion engine
JP6052699B1 (en) * 2016-06-29 2016-12-27 正裕 井尻 Supercharger for internal combustion engine
WO2018070002A1 (en) * 2016-10-13 2018-04-19 正裕 井尻 Supercharging device of internal combustion engine
WO2018092257A1 (en) * 2016-11-18 2018-05-24 正裕 井尻 Turbocharger for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032579B1 (en) * 2015-11-27 2016-11-30 正裕 井尻 Supercharger for internal combustion engine
JP6052699B1 (en) * 2016-06-29 2016-12-27 正裕 井尻 Supercharger for internal combustion engine
WO2018070002A1 (en) * 2016-10-13 2018-04-19 正裕 井尻 Supercharging device of internal combustion engine
WO2018092257A1 (en) * 2016-11-18 2018-05-24 正裕 井尻 Turbocharger for internal combustion engine

Similar Documents

Publication Publication Date Title
CN102498272B (en) Turbocharged reciprocating piston engine having a connected pressure tank for bridging turbo lag, and method for operating said engine
US7607503B1 (en) Operating a vehicle with high fuel efficiency
US7231998B1 (en) Operating a vehicle with braking energy recovery
US10669955B2 (en) Engine control device
EP2873828B1 (en) Improved turbocharger system
US9441532B2 (en) Engine assembly with turbine generator control
US9957902B2 (en) Isothermal compression based combustion engine
JP2007332960A (en) Internal combustion engine having secondary air blowing-in device
JP2015098810A (en) Exhaust gas regenerative brake type hybrid engine
US10570834B2 (en) Supercharging for improved engine braking and transient performance
GB2403772A (en) Regenerative air hybrid engine comprising an internal combustion engine connected to a compressed air storage tank via shut-off valves
JP2016188607A (en) Internal combustion engine and supercharging method for the same
WO2004080744A1 (en) Regenerative air hybrid engine
CN104847481A (en) Gas-pressure energy-storage type turbocharger
CN104879209A (en) Fixed-pressure exhaust/pulse exhaust switching device of engine
JP6672784B2 (en) Engine control device
CN204729167U (en) A kind of engine charge pressurization system and motor turnover gas system
JP5533562B2 (en) In-cylinder pressure control system for diesel engine
US11773793B2 (en) Method and system for compressed air supply
RU197378U1 (en) Combined boost for car engine
JP6561828B2 (en) Engine control device
JP6672856B2 (en) Engine control device
CN106089504A (en) Engine brake energy recycling device
JP2007009766A (en) Cylinder number control engine and method of operating the same
US20170159613A1 (en) Method of operating an automotive system for powering a vehicle