JP2015095520A - Panel-type building material with dielectric antenna - Google Patents

Panel-type building material with dielectric antenna Download PDF

Info

Publication number
JP2015095520A
JP2015095520A JP2013233379A JP2013233379A JP2015095520A JP 2015095520 A JP2015095520 A JP 2015095520A JP 2013233379 A JP2013233379 A JP 2013233379A JP 2013233379 A JP2013233379 A JP 2013233379A JP 2015095520 A JP2015095520 A JP 2015095520A
Authority
JP
Japan
Prior art keywords
building material
panel
type building
antenna
rod antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013233379A
Other languages
Japanese (ja)
Inventor
鈴木 文雄
Fumio Suzuki
文雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013233379A priority Critical patent/JP2015095520A/en
Publication of JP2015095520A publication Critical patent/JP2015095520A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PROBLEM TO BE SOLVED: To provide a panel-type building material with a dielectric antenna in which a beautiful color tone is provided or a pattern is drawn apparently on a surface.SOLUTION: The panel-type building material with the dielectric antenna includes a semiconductor power generation layer 2 in which a number of rod antennas 3 are disposed. A height of the rod antenna 3 in a vertical direction with respect to a surface of the semiconductor power generation layer 2 is 0.01 to 40 times as high as a maximum sensitivity wavelength of the semiconductor power generation layer. A radius of the rod antenna 3 is 0.005 to 1.5 times as large as the height. Between the rod antennas 3, a reflection layer 6 is provided that reflects a part of electromagnetic waves from the sun. The reflection layer 6 may be formed from a material of which the specific dielectric constant is lower than that of the rod antenna 3 and since materials of various color tones are selectable, the surface of the panel-type building material with the dielectric antenna can be colored or patterns can be drawn thereon.

Description

本発明は、太陽から放射された電磁波を効率良く受信するアンテナを有し、かつ、所望の色合いからなるパネル型建材に関する。   The present invention relates to a panel-type building material having an antenna that efficiently receives electromagnetic waves radiated from the sun and having a desired color.

従来より、太陽電池は、太陽から放射された電磁波、特に可視光領域の波長の光エネルギーを如何に吸収し、効率よく電流に変換できるかという視点で開発が進められてきた。図1は、典型的な、快晴時の地上における日射の放射スペクトルを表す図である。大気圏外での放射量に比べると、大気、水蒸気及びオゾンによる吸収による減衰の影響で、地上においては、若干、減衰するものの、0.3μm〜3.2μmの領域、即ち、紫外線領域から赤外線領域にわたって、放射量が観測される。また、図1から太陽光による放射エネルギーの最も高い波長は、0.5μm付近であることがわかる。   Conventionally, solar cells have been developed from the viewpoint of how to absorb electromagnetic waves radiated from the sun, particularly light energy having a wavelength in the visible light region, and efficiently convert them into electric current. FIG. 1 is a diagram showing a typical radiation spectrum of solar radiation on the ground during clear weather. Compared to the amount of radiation outside the atmosphere, although it attenuates slightly on the ground due to the effects of attenuation due to absorption by the atmosphere, water vapor, and ozone, the region is 0.3 μm to 3.2 μm, that is, from the ultraviolet region to the infrared region. The amount of radiation is observed. Moreover, it can be seen from FIG. 1 that the highest wavelength of radiant energy from sunlight is around 0.5 μm.

一方、図2は、結晶シリコン太陽電池の分光感度特性を示している。ここで、分光感度とは、照射強度に対する出力電流の比である。図2から、結晶シリコン太陽電池は、少なくとも0.3μmから1.2μmまで感度を有している。そして、0.6μm〜1.1μm付近も感度が優れ、最大の感度は、0.9μm付近の波長であることがわかる。   On the other hand, FIG. 2 shows the spectral sensitivity characteristics of the crystalline silicon solar cell. Here, the spectral sensitivity is the ratio of the output current to the irradiation intensity. From FIG. 2, the crystalline silicon solar cell has sensitivity from at least 0.3 μm to 1.2 μm. It can be seen that the sensitivity is excellent in the vicinity of 0.6 μm to 1.1 μm, and the maximum sensitivity is a wavelength in the vicinity of 0.9 μm.

上記のように太陽の放射スペクトルの最大エネルギーを示す波長が、0.5μm付近(緑〜黄の可視光領域)であるのに対し、結晶シリコン太陽電池の分光感度の最大波長は、0.9μm(赤外線領域)である。したがって、0.5μmから0.9μmの波長領域の電磁波を効率よく吸収できれば、太陽電池の変換効率の向上に大きく寄与できると考えられる。   As described above, the wavelength indicating the maximum energy of the solar radiation spectrum is around 0.5 μm (green to yellow visible light region), whereas the maximum wavelength of the spectral sensitivity of the crystalline silicon solar cell is 0.9 μm. (Infrared region). Therefore, if electromagnetic waves in the wavelength region of 0.5 μm to 0.9 μm can be efficiently absorbed, it is considered that it can greatly contribute to the improvement of the conversion efficiency of the solar cell.

ところで、従来より、太陽からの電磁波を効率よく吸収させる技術として、(1)太陽電池の表面における可視光の反射率を低くする方法や(2)レンズで可視光を集束する方法等が知られている。   By the way, conventionally, as a technique for efficiently absorbing electromagnetic waves from the sun, (1) a method of reducing the reflectance of visible light on the surface of a solar cell, (2) a method of focusing visible light with a lens, and the like are known. ing.

(1)の方法は、太陽電池の表面に微細なピラミッドを作りテクスチュア表面としたり、太陽電池の表面をスリッド状にして偏光板にする方法が知られている。しかし、テクスチャ表面の構造は形状がランダムであり理論的計算に限界があり、反射を理想的に制御できないおそれがある。また、偏光板は、横波又は縦波のどちらかをカットしてしまうため、太陽光を集光する点では効率的ではない。 As the method (1), there are known methods in which a fine pyramid is formed on the surface of a solar cell to form a texture surface, or the surface of the solar cell is made into a slit shape to form a polarizing plate. However, the structure of the texture surface is random in shape, and theoretical calculations are limited, and reflection may not be ideally controlled. Moreover, since a polarizing plate cuts either a transverse wave or a longitudinal wave, it is not efficient at the point which condenses sunlight.

(2)の方法は、太陽が移動するにつれ、集光量に変動が生じるため、太陽光を効率よく集光するためには太陽追尾機能が必要となる。 In the method (2), since the amount of collected light varies as the sun moves, a solar tracking function is required to efficiently collect sunlight.

特許文献1には、図17に示すように、高さが太陽電池の最大感度波長の0.5〜5倍で、最小幅が高さの0.5〜2倍で、比誘電率が2〜10であるアンテナを太陽電池本体の表面に無数に配設した発明が開示されている。特許文献1の発明によれば、太陽電池本体の表面側に誘電体でもって無数の誘電体アンテナを突出して設けているため、アンテナの先端に入射する電磁波のみでなく、アンテナの近傍を通過する電磁波をも受信することができるため、太陽追尾機能は必要とせずに、効率よく太陽電池本体に電磁波を供給することができる。   In Patent Document 1, as shown in FIG. 17, the height is 0.5 to 5 times the maximum sensitivity wavelength of the solar cell, the minimum width is 0.5 to 2 times the height, and the relative dielectric constant is 2. 10 to 10 are disclosed on the surface of the solar cell main body. According to the invention of Patent Document 1, an infinite number of dielectric antennas projecting from a dielectric on the surface side of the solar cell body, so that not only electromagnetic waves incident on the tip of the antenna but also the vicinity of the antenna is passed. Since electromagnetic waves can also be received, an electromagnetic wave can be efficiently supplied to the solar cell body without requiring a solar tracking function.

特開2002−368244号公報JP 2002-368244 A

しかしながら、特許文献1に記載された技術では、パネルの表面が凹凸形状のために、太陽電池の表面に彩色を施すことが難しく、太陽電池パネルを建材に用いるには、美的観点から優れたものになりにくかった。   However, in the technique described in Patent Document 1, since the surface of the panel is uneven, it is difficult to color the surface of the solar cell, and it is excellent from an aesthetic viewpoint to use the solar cell panel as a building material. It was hard to become.

本発明は、太陽から放射された電磁波を効率良く受信して太陽電池の本体に供給する機能を持ち、かつ、所望の色合いからなるパネル型建材を提供することを目的とする。   An object of the present invention is to provide a panel-type building material having a function of efficiently receiving electromagnetic waves radiated from the sun and supplying the electromagnetic waves to the main body of the solar cell and having a desired color.

(1)上記目的を達成するため、本発明の一態様に係る誘電体アンテナ付きパネル型建材は、半導体発電層と、裏面電極と、前記半導体発電層の表面に接し、当該表面に対し第1の角度(V)をなして延伸し、前記半導体発電層の表面に対し垂直方向の高さ(H)が、前記半導体発電層の最大感度波長の0.01〜40倍であり、半径(R)が前記高さ(H)の0.005〜1.5倍であり、所望の比誘電率を有する、複数のロッドアンテナと、前記半導体発電層に接し、前記複数のロッドアンテナの間に配置された表面電極と、前記表面電極と接し、入射波の一部を反射し、前記ロッドアンテナの比誘電率よりも小さい材質で構成され、前記表面電極とは異なる色に着色された反射層と、から構成され、前記高さ(H)が、前記表面電極の厚みと前記反射層の厚さとの和に等しいか、又はそれ以上である、ことを特徴とする。 (1) In order to achieve the above object, a panel-type building material with a dielectric antenna according to an aspect of the present invention is in contact with a semiconductor power generation layer, a back electrode, and the surface of the semiconductor power generation layer, and is The height (H) in the direction perpendicular to the surface of the semiconductor power generation layer is 0.01 to 40 times the maximum sensitivity wavelength of the semiconductor power generation layer, and the radius (R) ) Is 0.005 to 1.5 times the height (H) and has a desired dielectric constant, and is disposed between the plurality of rod antennas in contact with the semiconductor power generation layer. A reflective layer that is in contact with the surface electrode, reflects a part of the incident wave, is made of a material smaller than the relative dielectric constant of the rod antenna, and is colored in a color different from the surface electrode; , And the height (H) of the surface electrode Mito or equal to the sum of the thickness of the reflective layer is or more, characterized in that.

(1)の誘電体アンテナ付きパネル型建材によれば、反射層は、ロッドアンテナよりも比誘電率の低い材質であればよく、透明は要求されないため、様々な色調の材質を選ぶことができる。このため、本誘電体アンテナ付きパネル型建材は、外観上、表面が美しい色調であったり、文様が描かれたものとすることができる。例えば、建材用として、ビルの壁面に利用する場合には、美しい色調や模様、あるいは文字、標識の描かれたパネルとして提供することができる。   According to the panel type building material with a dielectric antenna of (1), the reflective layer may be made of a material having a relative dielectric constant lower than that of the rod antenna, and is not required to be transparent. Therefore, materials of various colors can be selected. . For this reason, the panel type building material with a dielectric antenna according to the present invention can have a beautiful color tone or a pattern on the appearance. For example, when it is used as a building material on a wall surface of a building, it can be provided as a panel on which a beautiful color tone or pattern, or a character or a sign is drawn.

さらに、(1)の誘電体アンテナ付きパネル型建材によれば、ロッドアンテナの先端又は近傍に直接入射する電磁波だけでなく、反射層により反射された電磁波をロッドアンテナが受信することができるため、受信効率の高いアンテナ機能を有するパネル型建材を提供することができる。   Furthermore, according to the panel-type building material with a dielectric antenna of (1), the rod antenna can receive not only the electromagnetic wave directly incident on or near the tip of the rod antenna, but also the electromagnetic wave reflected by the reflective layer. A panel-type building material having an antenna function with high reception efficiency can be provided.

(2)上記目的を達成するため、本発明の一態様に係る誘電体アンテナ付きパネル型建材は、前記複数のロッドアンテナは、第1の直線上に第1の間隔(P1)で配置され、第2の直線上に第2の間隔(P2)で配置され、第1の直線と第2の直線とは、前記複数のロッドアンテナのうちのひとつを中心に第2の角度(G)をもって交差するように配置された、ことを特徴とする。   (2) In order to achieve the above object, in the panel-type building material with a dielectric antenna according to one aspect of the present invention, the plurality of rod antennas are arranged on a first straight line at a first interval (P1), The second straight line is arranged on the second straight line at a second interval (P2), and the first straight line and the second straight line intersect with one of the plurality of rod antennas at a second angle (G). It arrange | positions so that it may do.

(2)の誘電体アンテナ付きパネル型建材によれば、製作過程において、第1の直線にそって間隔P1ごとに、又は第1の直線と角度Gをなす第2の直線に沿って間隔P2ごとに誘電体が規則的に配置されるように設計をすることにより、規則的なエッチング加工の処理に適したパターニングをすることができる。   According to the panel type building material with a dielectric antenna of (2), in the manufacturing process, every interval P1 along the first straight line, or along the second straight line forming an angle G with the first straight line, the distance P2 By designing so that the dielectrics are regularly arranged every time, patterning suitable for regular etching processing can be performed.

(3)上記目的を達成するため、本発明の一態様に係る誘電体アンテナ付きパネル型建材は、第2の角度(G)は60度であり、第1の間隔(P1)及び第2の間隔(P2)は、以下の式(1)を満たす、
2・R≦P1=P2 (1)
ことを特徴とする。
(3) In order to achieve the above object, in the panel-type building material with a dielectric antenna according to one aspect of the present invention, the second angle (G) is 60 degrees, and the first interval (P1) and the second The interval (P2) satisfies the following formula (1):
2 ・ R ≦ P1 = P2 (1)
It is characterized by that.

(3)の誘電体アンテナ付きパネル型建材によれば、ロッドアンテナが太陽からの電磁波を効率よく受信することと、パネル型建材の表面を所望の色調とすることが両立可能となる。   According to the panel type building material with a dielectric antenna of (3), the rod antenna can efficiently receive electromagnetic waves from the sun and the surface of the panel type building material can have a desired color tone.

(4)上記目的を達成するため、本発明の一態様に係る誘電体アンテナ付きパネル型建材は、複数のロッドアンテナのそれぞれの実効面積の合計が、パネル型建材の表面全体の面積に対し、100%以上である、ことを特徴とする。   (4) In order to achieve the above object, the panel type building material with a dielectric antenna according to one aspect of the present invention has a total effective area of each of the plurality of rod antennas with respect to the entire surface area of the panel type building material. It is characterized by being 100% or more.

(4)の誘電体アンテナ付きパネル型建材によれば、ロッドアンテナが太陽からの電磁波をさらに効率よく受信することと、パネル型建材の表面を所望の色調とすることが両立可能となる。   According to the panel type building material with a dielectric antenna of (4), the rod antenna can receive electromagnetic waves from the sun more efficiently and the surface of the panel type building material can have a desired color tone.

(5)上記目的を達成するため、本発明の一態様に係る誘電体アンテナ付きパネル型建材は、第1の角度(V)は、0度以上28度未満である、ことを特徴とする。   (5) In order to achieve the above object, the panel type building material with a dielectric antenna according to one aspect of the present invention is characterized in that the first angle (V) is not less than 0 degrees and less than 28 degrees.

(5)の誘電体アンテナ付きパネル型建材によれば、例えば、ビルの乱立する地域で、太陽高度が高い限られた時間帯のみしか太陽光が差し込まない場所においては、受信効率を向上させることができる。   According to the panel-type building material with a dielectric antenna of (5), for example, in a place where buildings are prone, in a place where sunlight is inserted only in a limited time zone where the solar altitude is high, the reception efficiency should be improved. Can do.

(6)上記目的を達成するため、本発明の一態様に係る誘電体アンテナ付きパネル型建材は、前記複数のロッドアンテナ及び前記反射層の表面に配置された保護層と、前記反射層と、表面電極との間に配置された防錆層と、からなることを特徴とする。   (6) In order to achieve the above object, a panel type building material with a dielectric antenna according to one aspect of the present invention includes a protective layer disposed on the surfaces of the plurality of rod antennas and the reflective layer, the reflective layer, And a rust prevention layer disposed between the surface electrode and the surface electrode.

(6)の誘電体アンテナ付きパネル型建材によれば、保護層によりロッドアンテナ及び反射層の腐蝕、剥離、汚れを防止し、さらに、表面電極の錆の発生を防止することができる。   According to the panel type building material with a dielectric antenna of (6), the protective layer can prevent the rod antenna and the reflective layer from being corroded, peeled off, and soiled, and can further prevent the surface electrode from being rusted.

(7)上記目的を達成するため、本発明の一態様に係る誘電体アンテナ付きパネル型建材は、前記保護層の表面が親水性基を有する材質で構成された、ことを特徴とする。   (7) In order to achieve the above object, a panel type building material with a dielectric antenna according to an aspect of the present invention is characterized in that the surface of the protective layer is made of a material having a hydrophilic group.

(7)の誘電体アンテナ付きパネル型建材によれば、誘電体アンテナ付きパネル型建材のパネル表面の親水性基の親水機能により、汚れを洗い流すため、パネル型建材表面への汚れの付着を防止することができる。   According to the panel-type building material with dielectric antenna of (7), the dirt is washed away by the hydrophilic function of the hydrophilic group on the panel surface of the panel-type building material with dielectric antenna, thereby preventing the adhesion of dirt on the panel-type building material surface. can do.

(8)上記目的を達成するため、本発明の一態様に係る誘電体アンテナ付きパネル型建材は、前記ロッドアンテナが、比誘電率を2〜10とする材質の誘電体から構成される、ことを特徴とする。   (8) In order to achieve the above object, in the panel-type building material with a dielectric antenna according to one aspect of the present invention, the rod antenna is composed of a dielectric material having a relative dielectric constant of 2 to 10. It is characterized by.

(8)の誘電体アンテナ付きパネル型建材によれば、効率よく電磁波を受信することができる。   According to the panel type building material with a dielectric antenna of (8), electromagnetic waves can be received efficiently.

本発明によれば、太陽電池の表面での反射を抑え、所望の色合いからなる太陽電池パネルを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reflection on the surface of a solar cell can be suppressed and the solar cell panel which consists of desired colors can be provided.

太陽から放射された電磁波の地上における放射強度を示す図である。It is a figure which shows the radiation intensity in the ground of the electromagnetic waves radiated | emitted from the sun. 結晶シリコン太陽電池の分光感度特性を示す図である。It is a figure which shows the spectral sensitivity characteristic of a crystalline silicon solar cell. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Aの構成を示す図である。It is a figure which shows the structure of panel type building material 1-A as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Aの断面図である。It is sectional drawing of panel type building material 1-A as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Bの断面図である。It is sectional drawing of panel type building material 1-B as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネルのロッドアンテナ3の平面的な配置を示す図である。It is a figure which shows planar arrangement | positioning of the rod antenna 3 of the panel as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネルのロッドアンテナ3が受信する電磁波のパターンを示す図である。It is a figure which shows the pattern of the electromagnetic waves which the rod antenna 3 of the panel as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention receives. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネルのロッドアンテナ3が電磁波を捕捉するイメージを表す図である。It is a figure showing the image which the rod antenna 3 of the panel as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention captures electromagnetic waves. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネルのロッドアンテナ3の平面的な配置を示す図である。It is a figure which shows planar arrangement | positioning of the rod antenna 3 of the panel as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネルのロッドアンテナ3の平面的な配置を示す図である。It is a figure which shows planar arrangement | positioning of the rod antenna 3 of the panel as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネルのロッドアンテナ3の平面的な配置を示す図である。It is a figure which shows planar arrangement | positioning of the rod antenna 3 of the panel as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Cの断面図である。It is sectional drawing of the panel type building material 1-C as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Dの断面図である。It is sectional drawing of panel type building material 1-D as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Eの断面図である。It is sectional drawing of the panel type building material 1-E as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Fの断面図である。It is sectional drawing of the panel type building material 1-F as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネルを示す図である。It is a figure which shows the panel as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention. 従来の誘電体アンテナ付きパネルを示す図である。It is a figure which shows the conventional panel with a dielectric antenna.

以下、本発明の一実施形態について図面を適宜参照しつつ説明する。
[第1実施形態]
図3は、本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Aの構成を示す図である。
図4は、本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Aの断面図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate.
[First Embodiment]
FIG. 3 is a diagram showing a configuration of a panel type building material 1-A as an embodiment according to the panel type building material with a dielectric antenna of the present invention.
FIG. 4 is a cross-sectional view of a panel type building material 1-A as an embodiment according to the panel type building material with a dielectric antenna of the present invention.

本発明の誘電体アンテナ付きパネル型建材は、建物等の壁面等に用いられる建築材であるが、それに限定されず、個人住宅の屋根、集合住宅又はビルディング等の屋上に設置される太陽電池パネルや大規模な太陽電池発電所に設置される太陽電池パネルをも含むものとする。   The panel type building material with a dielectric antenna of the present invention is a building material used for a wall surface of a building or the like, but is not limited thereto, and is a solar cell panel installed on a roof of a private house, an apartment house or a building. And solar panels installed in large-scale solar power plants.

パネル型建材1−Aは、半導体発電層2と、ロッドアンテナ3と、表面電極4と、裏面電極5と、反射層6と、を備えている。   The panel type building material 1-A includes a semiconductor power generation layer 2, a rod antenna 3, a front electrode 4, a back electrode 5, and a reflective layer 6.

半導体発電層2は、太陽放射による電磁波エネルギーを電流に変換する半導体から構成される。図4に示すように、半導体発電層2は、表面電極4と裏面電極5と間に層状に配置されている。本実施形態の半導体発電層2は、図示しないが、n型アモルファスシリコン層、i型アモルファスシリコン層、p型アモルファスシリコン層等のシリコン系の素材から構成される。シリコン系の素材としては、例えば、アモルファスシリコン、結晶シリコン、多結晶シリコン等がある。本発明の半導体発電層2は、シリコン系に限らず、化合物半導体系や有機物系の素材であってもよい。   The semiconductor power generation layer 2 is composed of a semiconductor that converts electromagnetic wave energy generated by solar radiation into current. As shown in FIG. 4, the semiconductor power generation layer 2 is disposed in layers between the front electrode 4 and the back electrode 5. Although not shown, the semiconductor power generation layer 2 of the present embodiment is composed of a silicon-based material such as an n-type amorphous silicon layer, an i-type amorphous silicon layer, or a p-type amorphous silicon layer. Examples of the silicon-based material include amorphous silicon, crystalline silicon, and polycrystalline silicon. The semiconductor power generation layer 2 of the present invention is not limited to silicon, but may be a compound semiconductor or organic material.

ロッドアンテナ3は、誘電体で構成され、半導体発電層2の表面から垂直方向に伸びる円柱状のアンテナである。この複数のロッドアンテナ3は、所定の間隔Pで配置されている。ロッドアンテナ3の高さHは、半導体発電層2の最大感度波長λmaxの0.01倍〜10倍が望ましい。ロッドアンテナ3の円柱の太さ、即ち直径Dは、高さHの0.01〜20倍が望ましい。換言すれば、半径Rは、高さHの0.005〜10倍が望ましい。ロッドアンテナ3と隣接するロッドアンテナ3との間隔Pは、最大感度波長λmaxの0.01倍〜40倍が望ましい。最大感度波長λmaxは、半導体発電層2を構成する材料により変化するが、一般に広く利用されているシリコンでは0.9マイクロメートルである。   The rod antenna 3 is a cylindrical antenna made of a dielectric material and extending in the vertical direction from the surface of the semiconductor power generation layer 2. The plurality of rod antennas 3 are arranged at a predetermined interval P. The height H of the rod antenna 3 is preferably 0.01 to 10 times the maximum sensitivity wavelength λmax of the semiconductor power generation layer 2. The thickness of the cylinder of the rod antenna 3, that is, the diameter D, is desirably 0.01 to 20 times the height H. In other words, the radius R is preferably 0.005 to 10 times the height H. The distance P between the rod antenna 3 and the adjacent rod antenna 3 is preferably 0.01 to 40 times the maximum sensitivity wavelength λmax. Although the maximum sensitivity wavelength λmax varies depending on the material constituting the semiconductor power generation layer 2, it is 0.9 micrometers for silicon that is generally widely used.

なお、第1実施形態においては、ロッドアンテナ3は、円柱状としているが、本発明の誘電体付きパネル型建材のロッドアンテナ3の形状は円柱状に限定されず、多角柱状、楕円形状であってもよい。さらに、アンテナの先端は平坦面に限定されず、図5に示すように、湾曲面としてもよい。   In the first embodiment, the rod antenna 3 has a cylindrical shape, but the shape of the rod antenna 3 of the panel-type building material with a dielectric according to the present invention is not limited to a cylindrical shape, and is a polygonal column shape or an elliptical shape. May be. Furthermore, the tip of the antenna is not limited to a flat surface, and may be a curved surface as shown in FIG.

さらに、第1実施形態においては、複数のロッドアンテナ3は、縦方向に間隔Pで直線上に並び、横方向にも間隔Pで直線上に並ぶように配置され、縦方向と横方向との2つの直線は直角に交わっているが、本発明の誘電体付きパネル型建材のロッドアンテナ3の配置は上述の配置に限定されない。図6に示すように、第1の直線L1の方向に沿って間隔P1ごとに配置され、第1の直線L1と第2の直線L2とがロッドアンテナ3上で角度Gをなして交わるように配置されていればよく、角度Gは90度に限定されない。
ここで、間隔P1は、ロッドアンテナ3の中心と第1の直線状に配置する隣のロッドアンテナ3の中心との距離である。間隔P2は、ロッドアンテナ3の中心と第2の直線状に配置する隣のロッドアンテナ3の中心との距離である。
Further, in the first embodiment, the plurality of rod antennas 3 are arranged so as to be arranged in a straight line at intervals P in the vertical direction, and to be arranged in a straight line at intervals P in the horizontal direction as well. Although the two straight lines intersect at right angles, the arrangement of the rod antenna 3 of the dielectric-equipped panel type building material of the present invention is not limited to the above arrangement. As shown in FIG. 6, the first straight line L1 and the second straight line L2 are arranged at intervals P1 along the direction of the first straight line L1 so that the first straight line L1 and the second straight line L2 intersect at an angle G on the rod antenna 3. The angle G is not limited to 90 degrees.
Here, the interval P1 is a distance between the center of the rod antenna 3 and the center of the adjacent rod antenna 3 arranged in the first linear shape. The interval P2 is a distance between the center of the rod antenna 3 and the center of the adjacent rod antenna 3 arranged in the second linear shape.

ロッドアンテナ3は、ロッドアンテナ3の先端に入射する電磁波だけでなく、近傍を通過する電磁波をも受信するため、ロッドアンテナ3とロッドアンテナ3との間の凹部に入射する電磁波をロッドアンテナ3が効率よく受信し、半導体発電層2に供給することができる。   Since the rod antenna 3 receives not only the electromagnetic wave incident on the tip of the rod antenna 3 but also the electromagnetic wave passing through the vicinity, the rod antenna 3 transmits the electromagnetic wave incident on the concave portion between the rod antenna 3 and the rod antenna 3. It can be efficiently received and supplied to the semiconductor power generation layer 2.

図7は、本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネルのロッドアンテナ3が受信する電磁波のパターンを示す図である。図7に示すように、太陽から放射された電磁波は、パネル表面に対し垂直方向に伸びる主ビーム(メインビーム)パターン、及び、主ビーム(メインビーム)パターンの中心線に対して約62度付近に存在する副ビーム(サイドローブビーム)パターンとして受信される。即ち、ロッドアンテナ3は、パネル面の垂直方向から左右各々62度の角度の領域の電磁波を吸収することになる。   FIG. 7 is a diagram showing an electromagnetic wave pattern received by the rod antenna 3 of the panel as one embodiment of the panel type building material with a dielectric antenna of the present invention. As shown in FIG. 7, the electromagnetic wave radiated from the sun is approximately 62 degrees with respect to the main beam (main beam) pattern extending in the direction perpendicular to the panel surface and the center line of the main beam (main beam) pattern. Is received as a side beam (side lobe beam) pattern. That is, the rod antenna 3 absorbs electromagnetic waves in a region having an angle of 62 degrees to the left and right from the vertical direction of the panel surface.

したがって、ロッドアンテナ3がパネル型建材の表面に対し、垂直に延伸している場合、パネルの垂直方向に各々62度、即ち、124度の範囲から入射する電磁波を効率よく受信することができる。したがって、本発明の誘電体アンテナ付きパネル型建材を水平に設置する場合、ロッドアンテナ3は、太陽高度が62度以上の範囲内、即ち、おおよそ8時頃〜16時頃の太陽放射を、効率よく受信することができる。
つまり、地球の時点により太陽が移動する軌道を追尾しなくとも、太陽からの電磁波の放射を効率よく受信することができる。
Therefore, when the rod antenna 3 extends perpendicularly to the surface of the panel-type building material, it is possible to efficiently receive electromagnetic waves incident from the range of 62 degrees, that is, 124 degrees in the vertical direction of the panel. Therefore, when the panel-type building material with a dielectric antenna of the present invention is installed horizontally, the rod antenna 3 has an efficiency of solar radiation within a solar altitude of 62 degrees or more, that is, approximately from 8:00 to 16:00. Can receive well.
That is, it is possible to efficiently receive the radiation of the electromagnetic wave from the sun without tracking the trajectory where the sun moves according to the time of the earth.

図8は、本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材のロッドアンテナ3が電磁波を受信するイメージを表す図である。
ロッドアンテナ3の先端の平面が円形の場合、当該円の面積をSaとすると、ロッドアンテナの先端から波長λの高さにおける実効面積Se(実際に電磁波を捕捉可能な領域)は、面積Saの約4倍であることが実験から得られている。
したがって、ロッドアンテナ3の先端に位置する円Caの半径Ra、実効面積を有する円Ceの半径Reとは、式(1)の関係を満たす。
π・Re・Re/(π・Ra・Ra)=4 ・・・(1)
式(1)から、実効面積を有する円Ceの半径Reは、ロッドアンテナ3の先端に位置する円の半径Raの2倍であることになる。
FIG. 8 is a diagram illustrating an image in which the rod antenna 3 of the panel-type building material as an embodiment according to the panel-type building material with a dielectric antenna of the present invention receives electromagnetic waves.
When the flat surface of the tip of the rod antenna 3 is circular, if the area of the circle is Sa, the effective area Se (region where electromagnetic waves can be actually captured) at the height of the wavelength λ from the tip of the rod antenna is the area Sa. Experiments have shown that it is about 4 times.
Therefore, the radius Ra of the circle Ca located at the tip of the rod antenna 3 and the radius Re of the circle Ce having an effective area satisfy the relationship of the formula (1).
π · Re · Re / (π · Ra · Ra) = 4 (1)
From equation (1), the radius Re of the circle Ce having an effective area is twice the radius Ra of the circle located at the tip of the rod antenna 3.

上記の知見に基づき、電磁波を効率的に受信することができる複数のロッドアンテナ3の配置を検討してみる。まず、最密充填の観点から、第1の直線L1と第2の直線L2との交差する角度Gは60度であり、かつ、第1の直線上のロッドアンテナ3とロッドアンテナ3との間隔P1及び第2の直線上のロッドアンテナ3とロッドアンテナ3との間隔P2とは等しいことが適当といえる。換言すれば、複数のロッドアンテナ3は、正三角形の頂点に位置するように配置することが適当である。   Based on the above findings, consider the arrangement of a plurality of rod antennas 3 that can efficiently receive electromagnetic waves. First, from the viewpoint of close packing, the angle G at which the first straight line L1 and the second straight line L2 intersect is 60 degrees, and the distance between the rod antenna 3 and the rod antenna 3 on the first straight line. It can be said that the interval P2 between the rod antenna 3 and the rod antenna 3 on P1 and the second straight line is equal. In other words, it is appropriate to arrange the plurality of rod antennas 3 so as to be positioned at the vertices of an equilateral triangle.

さらに、間隔P1及び間隔P2を、どのくらいの距離とするかという点について図9から図11を用いて検討する。ロッドアンテナ3の本数に対してなるべく多くの電磁波を効率よくキャッチするという観点からは、電磁波を捕捉できない領域の面積をなるべく小さくし、かつ、実効面積を有する円Ce同士の重複する面積をなるべく小さくすることが望まれる。
図9から図11は、本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材のロッドアンテナ3の平面的な配置を示す図である。図8を用いて説明した実効面積を有する円Ceは、図9から図11においては、パネル型建材の表面に垂直に投影させた円として点線で示される。
Further, the distance between the interval P1 and the interval P2 will be discussed with reference to FIGS. From the viewpoint of efficiently catching as many electromagnetic waves as possible with respect to the number of rod antennas 3, the area of a region where electromagnetic waves cannot be captured is made as small as possible, and the overlapping area of circles Ce having effective areas is made as small as possible. It is desirable to do.
9 to 11 are diagrams showing a planar arrangement of the rod antenna 3 of the panel type building material as an embodiment according to the panel type building material with a dielectric antenna of the present invention. The circle Ce having the effective area described with reference to FIG. 8 is indicated by a dotted line as a circle projected perpendicularly on the surface of the panel type building material in FIGS.

図9に示すように、3つのロッドアンテナ3の実効面積を有する円Ceが1点Pcで交わるようなロッドアンテナ3の配置K1は、電磁波を捕捉できない領域がなく、かつ、実効面積を有する円Ce同士の重複する面積が小さいため、電磁波の受信効率の観点からは、最適な配置である。この配置K1の状態では、間隔P1及び間隔P2は、式(2)の関係を満たす。
P1=P2=2√3・Ra ・・・(2)
As shown in FIG. 9, the arrangement K1 of the rod antenna 3 such that the circle Ce having the effective area of the three rod antennas 3 intersects at one point Pc is a circle having no effective area and no effective area. Since the overlapping area of Ce is small, it is an optimal arrangement from the viewpoint of electromagnetic wave reception efficiency. In the state of this arrangement K1, the interval P1 and the interval P2 satisfy the relationship of Expression (2).
P1 = P2 = 2√3 · Ra (2)

次に、上述の配置K1の状態よりもさらに間隔P1及び間隔P2を大きくしていくと、実効面積を有する円Ce同士が接するような配置K2になる。配置K2においては、既に実効面積を有する円Ce間に電磁波を受信できない隙間が生じているが、さらに間隔P1及び間隔P2を大きくすれば、電磁波の受信できない領域はますます増大し、受信効率はさらに低下してしまう。配置K2の状態では、間隔P1及び間隔P2は、4・Raに等しい。   Next, when the interval P1 and the interval P2 are further increased as compared with the state of the arrangement K1, the arrangement K2 is such that the circles Ce having effective areas are in contact with each other. In the arrangement K2, there is a gap where the electromagnetic wave cannot be received between the circles Ce that already have an effective area. However, if the interval P1 and the interval P2 are further increased, the area where the electromagnetic wave cannot be received increases more and the reception efficiency is increased. It will fall further. In the state of the arrangement K2, the interval P1 and the interval P2 are equal to 4 · Ra.

また、上述の配置K1の状態よりも間隔P1及び間隔P2を小さくしていくと、ロッドアンテナ3同士が接するような配置K3になる。配置K3では、電磁波を捕捉できない領域は存在しないものの、反射層6の領域は、ロッドアンテナ3によって分断された閉じられた領域となっているため、反射層を着色して模様を描いたパネルを製作することが難しい。
配置K2の状態では、間隔P1及び間隔P2は、2・Raに等しい。
Further, when the interval P1 and the interval P2 are made smaller than the state of the arrangement K1, the arrangement K3 is such that the rod antennas 3 are in contact with each other. In the arrangement K3, although there is no region where the electromagnetic wave cannot be captured, the region of the reflective layer 6 is a closed region divided by the rod antenna 3, so that a panel on which a pattern is drawn by coloring the reflective layer. It is difficult to make.
In the state of the arrangement K2, the interval P1 and the interval P2 are equal to 2 · Ra.

以上のロッドアンテナ3の配置の検討結果より、電磁波の高い受信効率を実現する配置として、第1の直線L1と第2の直線L2との交差する角度Gは60度であり、かつ、ロッドアンテナ3とロッドアンテナ3との間隔P1及び間隔P2は、式(3)を満たすことが望ましい。
2・Ra≦P1=P2 ・・・(3)
さらに、上記の式(3)を満たしつつ、かつ、電磁波を捕捉できない領域は存在しない(パネル型建材の表面が全て実効面積を有する円で覆われている)ことが望ましい。つまり、間隔P1及び間隔P2は、電磁波を捕捉できない領域がない条件である式(4)を満たすことが望ましい。
2・Ra≦P1=P2≦4・Ra ・・・(4)
式(4)を満たすことは、複数のロッドアンテナのそれぞれの実効面積の合計が、パネル型建材の表面全体の面積に対し、100%以上であることになり、本発明の誘電体アンテナ付きパネル型建材は、電磁波を効率よく受信できる。
ロッドアンテナ3の1本あたりが電磁波を受信する効率を考慮すると、さらに好適には、間隔P1及び間隔P2は、2√3・Raである。
From the above examination results of the arrangement of the rod antenna 3, as an arrangement for realizing high reception efficiency of electromagnetic waves, the angle G at which the first straight line L1 and the second straight line L2 intersect is 60 degrees, and the rod antenna 3 and the rod antenna 3 preferably satisfy the expression (3).
2 · Ra ≦ P1 = P2 (3)
Furthermore, it is desirable that there is no region where the electromagnetic wave cannot be captured while satisfying the above formula (3) (the entire surface of the panel-type building material is covered with a circle having an effective area). That is, it is desirable that the interval P1 and the interval P2 satisfy Expression (4), which is a condition that there is no region where electromagnetic waves cannot be captured.
2 · Ra ≦ P1 = P2 ≦ 4 · Ra (4)
Satisfying the formula (4) means that the total effective area of each of the plurality of rod antennas is 100% or more with respect to the area of the entire surface of the panel type building material. The mold building material can receive electromagnetic waves efficiently.
Considering the efficiency with which one rod antenna 3 receives electromagnetic waves, the interval P1 and the interval P2 are more preferably 2√3 · Ra.

上述のように広い角度から電磁波を補足吸収することができるロッドアンテナ3の特性から、本発明の誘電体アンテナ付きパネル型建材の一実施形態であるパネル型建材1−Aは、建築物の壁面に設置して利用することが可能である。
そして、ロッドアンテナ3を適切に配置することにより、本発明の誘電体アンテナ付きパネル型建材は、効率よく電磁波を受信することができる。
As described above, from the characteristics of the rod antenna 3 that can supplementally absorb electromagnetic waves from a wide angle, the panel-type building material 1-A, which is an embodiment of the panel-type building material with a dielectric antenna of the present invention, is a wall surface of a building. It is possible to install and use it.
And the panel type building material with a dielectric antenna of this invention can receive electromagnetic waves efficiently by arrange | positioning the rod antenna 3 appropriately.

ロッドアンテナ3は、有機や無機の誘電体で製作される。誘電体は、比誘電率を2〜10とする材質が適している。これより比誘電率が低いとアンテナとして充分に利得が実現されず、また、高すぎると受信できる電磁波の波長領域が狭くなる。有機の誘電体として、ポリプロピレン、ポリエチレン、フッ素樹脂等、また、無機の誘電体としてガラスが使用できる。ロッドアンテナ3の材質は、その他、アクリル樹脂(Acrylic resin)、アクリルニトリル樹脂(Acrylonitrile resin)、アセチルセルローズ(Acetyl cellulose)、アニリンAniline)、アニリン樹脂(Aniline resin)、アニリンホルムアルデヒド樹脂(Aniline−formaldehyde resin)、アミノアルキル樹脂(Amino alkyl resin)、アランダム(Alundum)、アルキド樹脂(Alkyd resin)、アルミノアルキド樹脂(Amino alkyd resin)、ウレタン(Urethane)、雲母(Mica)、AS樹脂(Acrylonitrile‐styrene resin)、ABS樹脂(Styrene−acrylonitrile−butadiene copolymers)、エチルセルローズ(Ethylcellulose)、エチレン樹脂(Ethylene resin)、エポキシ樹脂(Epoxy resin)、エボナイトEbonite)、塩化ビニル樹脂(Vinyl chloride resin)、塩化ビニリデン樹脂(Vinylidene chloride resin)、塩素化ポリエーテル樹脂(Chlorinated polyether resin)、ガラス(Glass)、ガラス・エポキシ積層板(Glass epoxy laminated plate )、紙・フェノール積層板(Paper phenol laminated plate)、ガラス・シリコン積層板(Glass silicone laminated plate)、ガラスビーズ(Glass bead)、ガラスポリエステル積層板(Glass polyester laminated plate)、ケイ砂(Silica sand)、ケイ素(Silica)、硬質塩ビ樹脂(Rigid polyvinyl chloride)、硬質ビニルブチラール樹脂(Rigid vinyl butyral resin)、3フッ化エチレン樹脂(Polytrifluorochloroethylene)、シリコン(Silicon)、シリコン樹脂(Silicone resin)、水晶(Crystal)、酢酸ビニル樹脂(Polyvinyl acetate)、スチレン樹脂(Styrene resin)、スチロール樹脂(Styrole resin)、石英(Quartz)、セルロイド(Celluloid)、セロファン(Cellophane)、ソーダ石灰ガラス(Soda‐lime glass)、磁器類(Ceramics)、粒状ガラス(Granular glass)、ナイロン(Nylon)、軟質塩ビ樹脂(Plasticized polyvinyl chloride resin)、軟質ビニル(Flexible vinyl)、ブチラール樹脂(Butyral resin)、白雲母(Muscovite)、ビニルホルマール樹脂(Vinyl formal resin)、ファイバー(Fibers)、フッ素樹脂(Fluororesin)、不飽和ポリエステル樹脂(Unsaturated polyester resin)、ペイント(Paints)、ベークライトワニス(Bakelite Varnish)、硼珪酸ガラス(Borosilicate glass)、ポリアセタール樹脂(Polyacetal resin)、ポリエステル樹脂(Polyester resin)、ポリエチレンPolyester)、ポリカーポネート(Polycarbonate)、ポリカーポネート樹脂(Polycarbonate resin)、ポリスチレン(Polystyrene)、ポリスチロール(Polystyrol)、ポリブチレン樹脂(Polybutylene resin)、ポリプロピレン(Polypropylene)、メタクリル樹脂(Methacrylic resin)、メラミン樹脂(Melamine resin)、4フッ化エチレン樹脂(Polytetrafluoroethylene等からなる。   The rod antenna 3 is made of an organic or inorganic dielectric. A material having a relative dielectric constant of 2 to 10 is suitable for the dielectric. If the relative dielectric constant is lower than this, a sufficient gain cannot be realized as an antenna, and if it is too high, the wavelength region of electromagnetic waves that can be received becomes narrow. Polypropylene, polyethylene, fluororesin, etc. can be used as the organic dielectric, and glass can be used as the inorganic dielectric. Other materials for the rod antenna 3 include acrylic resin, acrylic nitrile resin, acetyl cellulose, aniline aniline, aniline resin, and aniline formaldehyde resin. ), Aminoalkyl resin (Amino alkylresin), alundum (Alundum), alkyd resin (Alkyd resin), aluminoalkyd resin (Amino alkyd resin), urethane (Urethane), mica (Mica), AS resin (Acrylontriline-) ), ABS resin (St yrene-acrylonitrile-butadiene copolymers, ethyl cellulose, ethylene resin, epoxy resin, ebony resin, vinyl chloride resin (Vinyl chloride). Chlorinated polyether resin, glass, glass / epoxy laminated plate, paper / phenol laminated plate, glass / silicon laminate (glass / silicone laminated plate) glass silicone laminated plate, glass bead, glass polyester laminated plate, silica sand, silicon, rigid polyvinyl resin, rigid polyvinyl chloride resin, rigid polyvinyl chloride resin, rigid polyvinyl chloride resin Rigid vinyl butyral resin, ethylene trifluoride resin (Polytrifluorochlorochloroethylene), silicon (Silicon), silicon resin (Silicone resin), crystal (Crystal), vinyl acetate resin (Polyvinyl acetate), styrene resin (Styre) Resin (Styrole resin), quartz (Quartz), celluloid (Celluloid), cellophane (Cellophane), soda-lime glass (Soda-lime glass), porcelain (Ceramics), granular glass (Granular glass), nylon (Nylon) , Soft vinyl resin (plastic resin), soft vinyl (flexible vinyl), butyral resin (muscovite), vinyl formal resin (vinyl foam), vinyl formal resin (vinyl fiber) Unsaturated polyester resin (Unsaturated pol ester resin, Paints, Bakelite Varnish, borosilicate glass, Polyacetal resin, Polyester resin, Polypolyester, Polypolynate, Polypolyester Carbonate resin, Polystyrene, Polystyrene, Polybutylene resin, Polypropylene, Methacrylic resin, Melamine resin lamine Resin), consisting of tetrafluoroethylene resin (Polytetrafluoroethylene like.

ロッドアンテナ3は、エッチングにより形成することができる。また、レーザー等でロッドアンテナ3を形成することもできる。さらに半導体発電層2の表面に直接に誘電体の薄膜を設け、これをエッチングして無数のロッドアンテナ3を形成することができる。   The rod antenna 3 can be formed by etching. Further, the rod antenna 3 can be formed with a laser or the like. Furthermore, an infinite number of rod antennas 3 can be formed by providing a dielectric thin film directly on the surface of the semiconductor power generation layer 2 and etching it.

表面電極4は、比抵抗の低い材質からなり、図4に示すように、ロッドアンテナ3とロッドアンテナ3との間の凹部であって、半導体発電層2の表面上に配設される。表面電極4は、比抵抗が低く広い面積に配設されるため、内部抵抗が小さくなり、半導体発電層2で発電された電流を有効に出力することができる。比抵抗の低い材質の表面電極を広い面積に配設すると、表面電極に覆われた面の光の透過率は悪くなるが、前述のように、ロッドアンテナ3は、ロッドアンテナ3の先端に入射する電磁波だけでなく、ロッドアンテナ3の近傍を通過する電磁波をも受信するため、表面電極4の上面に入射する電磁波を効率よく受信する。   The surface electrode 4 is made of a material having a low specific resistance, and is disposed on the surface of the semiconductor power generation layer 2 as a concave portion between the rod antenna 3 and the rod antenna 3 as shown in FIG. Since the surface electrode 4 has a low specific resistance and is disposed over a wide area, the internal resistance is small, and the current generated by the semiconductor power generation layer 2 can be effectively output. If the surface electrode made of a material having a low specific resistance is arranged in a large area, the light transmittance of the surface covered with the surface electrode is deteriorated, but the rod antenna 3 is incident on the tip of the rod antenna 3 as described above. In order to receive not only the electromagnetic wave to be transmitted but also the electromagnetic wave passing through the vicinity of the rod antenna 3, the electromagnetic wave incident on the upper surface of the surface electrode 4 is efficiently received.

反射層6は、ロッドアンテナ3とロッドアンテナ3との間に配設され、比誘電率の低い材料が用られる。図4に示すように、反射層6が配置されることにより、ロッドアンテナ3とロッドアンテナ3との凹部は埋められるため平滑面が形成される。これにより、ロッドアンテナ3とロッドアンテナ3との間に異物が付着して汚れるのを防止することができる。したがって、本発明の誘電体アンテナ付きパネル型建材がビルの壁面等の建材用途として利用される場合、反射層6は、表面電極が腐蝕されるのを防止し、汚れの付着するのを防止することができる。   The reflective layer 6 is disposed between the rod antenna 3 and the rod antenna 3, and a material having a low relative dielectric constant is used. As shown in FIG. 4, since the reflective layer 6 is disposed, the concave portions of the rod antenna 3 and the rod antenna 3 are filled, so that a smooth surface is formed. Thereby, it can prevent that a foreign material adheres between the rod antenna 3 and the rod antenna 3, and becomes dirty. Therefore, when the panel type building material with a dielectric antenna of the present invention is used as a building material such as a wall of a building, the reflective layer 6 prevents the surface electrode from being corroded and prevents the adhesion of dirt. be able to.

反射層6には、顔料、染料を添加して所望の色を有するパネルとすることにより、パネルの美観を向上させることができる。これは、ロッドアンテナ3が、ロッドアンテナ3の先端だけでなくロッドアンテナ3の近傍の電磁波を受信することができる特性ゆえに、ロッドアンテナ3とロッドアンテナ3との間に反射層6を設けることができるという構造上の利点から派生する効果の1つである。   By adding pigments and dyes to the reflective layer 6 to obtain a panel having a desired color, the aesthetic appearance of the panel can be improved. This is because the rod antenna 3 can receive electromagnetic waves not only at the tip of the rod antenna 3 but also in the vicinity of the rod antenna 3, so that the reflective layer 6 is provided between the rod antenna 3 and the rod antenna 3. This is one of the effects derived from the structural advantage of being able to.

さらに、美観の向上だけでなく、様々な機能をもたせることができる。例えば、パネル型建材は、建物の壁面やビルディングの屋上に設置される場合、太陽からの放射エネルギーを吸収して、熱を吸収してしまうことから、パネル型建材自体の温度が上昇してしまうおそれがある。特に、夏の暑い時期には、太陽電池モジュールの温度は最高70〜80℃程度まで上昇してしまうことがある。モジュール温度が高温に達するようなときは当然日射量も多い時期であるため、より多くの発電が期待されるが、太陽電池性能は温度上昇と共に低下してしまう。このため、反射層6に遮熱機能を有する塗料を塗布しておくことにより、パネル型建材の温度上昇を抑制することが望ましい。
温度上昇を抑制するためには、反射層6の材料として太陽光の反射率(アルベド)の高い材質を用いる方法と、反射層6の材料として熱伝導性の低い材質を用いる方法とがある。
In addition to improving the aesthetics, various functions can be provided. For example, when a panel type building material is installed on the wall of a building or the roof of a building, it absorbs the radiation energy from the sun and absorbs heat, so that the temperature of the panel type building material itself increases. There is a fear. In particular, in the hot summer season, the temperature of the solar cell module may rise to a maximum of about 70 to 80 ° C. When the module temperature reaches a high temperature, it is a period when the amount of solar radiation is also large. Therefore, more power generation is expected, but the solar cell performance decreases as the temperature increases. For this reason, it is desirable to suppress the temperature rise of a panel type building material by apply | coating the coating material which has a heat-shielding function to the reflection layer 6. FIG.
In order to suppress the temperature rise, there are a method using a material having high sunlight reflectance (albedo) as the material of the reflective layer 6 and a method using a material having low thermal conductivity as the material of the reflective layer 6.

反射層6の材料として反射率の比較的高い材質を用いる方法では、反射層6の表面にて太陽光が反射するため、反射層6が吸収する太陽光の放射エネルギーは少なく、温度の上昇が抑制される。通常、太陽光の反射が多いことは、太陽電池パネルにとっては、不都合に働くが、本発明の誘電体付きパネル型建材のロッドアンテナ3は、ロッドアンテナ3の先端に入射する電磁波だけでなく、反射層6の表面で反射された電磁波(可視光を含む)を吸収することができるため、反射層6の材料として反射率の比較的高い材質を用いたとしても、電磁波の受信効率を極端に低下させない。
反射層6は、例えば、可視光領域における平均的な反射率が0.1〜0.9の範囲の材質から構成されることが望ましい。
In the method using a material having a relatively high reflectivity as the material of the reflective layer 6, sunlight is reflected on the surface of the reflective layer 6, and therefore, the radiation energy absorbed by the reflective layer 6 is small and the temperature rises. It is suppressed. Usually, a large amount of sunlight reflection works inconveniently for a solar cell panel. However, the rod antenna 3 of the panel-type building material with a dielectric according to the present invention is not only an electromagnetic wave incident on the tip of the rod antenna 3, Since electromagnetic waves (including visible light) reflected by the surface of the reflective layer 6 can be absorbed, even if a material having a relatively high reflectance is used as the material of the reflective layer 6, the electromagnetic wave reception efficiency is extremely reduced. Do not decrease.
The reflective layer 6 is preferably made of a material having an average reflectance in the visible light range of 0.1 to 0.9, for example.

反射層6の材料の反射率を調整するために光輝性顔料が使われてもよい。例えば、パール顔料やアルミフレークが用いられてもよい。ただし、後述するように、反射層6の比誘電率は、ロッドアンテナ3の比誘電率よりも低くなければならないため、上記の比誘電率の制約条件も加味した上で顔料の濃度を適宜配合される必要がある。   A luster pigment may be used to adjust the reflectivity of the material of the reflective layer 6. For example, pearl pigments or aluminum flakes may be used. However, as will be described later, since the relative dielectric constant of the reflective layer 6 must be lower than the relative dielectric constant of the rod antenna 3, the pigment concentration is appropriately blended in consideration of the constraints on the relative dielectric constant described above. Need to be done.

また、反射層6に熱伝導性の低い材料を用いる方法では、反射層6の内部への熱の伝導性が低いため、半導体発電層2の温度の上昇を抑制することができる。反射層6の材質が熱伝導性の低い材料であれば、反射層6の表面は高温となっても熱がパネルの内部に伝導しにくく、実際に発電を行う半導体発電層2の温度上昇を抑制することが可能となる。さらには、壁面自体の温度上昇を抑制するため、建物内部の温度上昇をも抑えることができ、特に夏場のエアコンの電力消費量を抑制できることから環境負荷の少ない建物とすることができる。
反射層6の熱伝導率は、50[W/m/K]以下であることが適当である。さらに、反射層6の熱伝導率は、1[W/m/K]以下であることが望ましく、0.3[W/m/K]であることが好適である。
Further, in the method using a material having low thermal conductivity for the reflective layer 6, since the thermal conductivity to the inside of the reflective layer 6 is low, an increase in the temperature of the semiconductor power generation layer 2 can be suppressed. If the material of the reflective layer 6 is a material with low thermal conductivity, even if the surface of the reflective layer 6 becomes high temperature, it is difficult for heat to be conducted inside the panel, and the temperature of the semiconductor power generation layer 2 that actually generates power is increased. It becomes possible to suppress. Furthermore, since the temperature rise of the wall surface itself is suppressed, the temperature rise inside the building can also be suppressed. In particular, since the power consumption of the air conditioner in summer can be suppressed, the building can have a low environmental load.
The thermal conductivity of the reflective layer 6 is suitably 50 [W / m / K] or less. Furthermore, the thermal conductivity of the reflective layer 6 is desirably 1 [W / m / K] or less, and preferably 0.3 [W / m / K].

本実施形態においては、ロッドアンテナ3とロッドアンテナ3との間に反射層が配置されて平滑面を形成しているが、図12に示すように、ロッドアンテナ3の方が反射層面よりも突き出るようなパネル型建材1−Cを形成することもできる。
上記の構成によれば、反射層6で反射された電磁波を、反射層よりも突出したロッドアンテナ3が受信することにより、電磁波の受信効率が向上することになる。
この場合、反射層に穴を貫通させ、その穴にロッドアンテナを埋め込み、該ロッドアンテナの上部を前記反射層の上に垂直に出すように形成することもできる。
In the present embodiment, the reflective layer is disposed between the rod antenna 3 and the rod antenna 3 to form a smooth surface. However, as shown in FIG. 12, the rod antenna 3 protrudes from the reflective layer surface. Such a panel-type building material 1-C can also be formed.
According to said structure, when the rod antenna 3 which protruded rather than the reflection layer receives the electromagnetic waves reflected by the reflection layer 6, the reception efficiency of electromagnetic waves will improve.
In this case, a hole can be formed in the reflective layer, a rod antenna can be embedded in the hole, and the upper portion of the rod antenna can be formed vertically on the reflective layer.

さらに、図13に示すように、反射層6と、表面電極4との間に防錆効果を有する物質からなる層を配置した構造としてもよい。
防錆層7が表面電極4を覆うように接していることから、表面電極4の錆を防止し、さらに反射層6を配色することにより、パネル型建材の表面を着色、模様のある外観とすることができる。
つまり、上記構造により、表面電極4の防錆効果とパネルの意匠性を向上させたパネル型建材を提供することが可能となる。
Furthermore, as shown in FIG. 13, it is good also as a structure which has arrange | positioned the layer which consists of a substance which has a rust prevention effect between the reflection layer 6 and the surface electrode 4. FIG.
Since the rust preventive layer 7 is in contact with the surface electrode 4, the surface electrode 4 is prevented from being rusted, and the reflective layer 6 is further colored to color the surface of the panel-type building material and have a patterned appearance. can do.
That is, it becomes possible to provide the panel type building material which improved the rust prevention effect of the surface electrode 4 and the designability of the panel by the said structure.

反射層6は、ロッドアンテナ3よりも比誘電率の低い材質でなければならない。パネル型建材1−Aに対して入射する電磁波は、誘電体の高い物質の方に吸収されるため、反射層6よりも比誘電率の高いロッドアンテナ3に電磁波が吸収されることになる。例えば、四塩化フッ素からなる反射層6の比誘電率(媒質の誘電率と真空の誘電率との比)は、2.1〜2.5であり、ロッドアンテナ3の比誘電率は、3.1〜3.5であり、ロッドアンテナ3の比誘電率の方が反射層6の比誘電率よりも大きい。   The reflective layer 6 must be made of a material having a relative dielectric constant lower than that of the rod antenna 3. Since the electromagnetic wave incident on the panel type building material 1-A is absorbed by a substance having a high dielectric, the electromagnetic wave is absorbed by the rod antenna 3 having a relative dielectric constant higher than that of the reflective layer 6. For example, the relative dielectric constant of the reflective layer 6 made of fluorine tetrachloride (ratio of the dielectric constant of the medium to that of the vacuum) is 2.1 to 2.5, and the relative dielectric constant of the rod antenna 3 is 3 The dielectric constant of the rod antenna 3 is larger than the dielectric constant of the reflective layer 6.

反射層6を配設すると、反射層6の光の透過率は悪くなるが、前述のように、ロッドアンテナ3は、ロッドアンテナ3の先端に入射する電磁波だけでなく、ロッドアンテナ3の近傍を通過する電磁波や反射層6で反射された電磁波をも受信するため、パネル型建材1−Aは、電磁波を効率のよく受信することができる。
したがって、反射層6は、ロッドアンテナ3よりも比誘電率の低い材質であればよく、透明は要求されないことから、様々な色調の材質を選ぶことができる。さらに、反射層6に顔料や染料を添加して着色することもできる。
このため、本発明の誘電体付きパネル型建材のパネル型建材1−Aは、外観上、表面が美しい色調であったり、文様が描かれたものとすることができる。特に、本発明の誘電体付きパネル型建材のパネル型建材1−Aが建物の壁面に設置される場合、パネル型建材1−Aは、無味乾燥とした色調のパネルでなく、美しい色調や模様、あるいは文字、標識の描かれたパネルとして提供することができるので、見る者に憩いを与えたり、メッセージを伝えることも可能になる。
When the reflective layer 6 is provided, the light transmittance of the reflective layer 6 is deteriorated. However, as described above, the rod antenna 3 is not only the electromagnetic wave incident on the tip of the rod antenna 3 but also the vicinity of the rod antenna 3. Since the electromagnetic waves that pass through and the electromagnetic waves reflected by the reflective layer 6 are also received, the panel-type building material 1-A can receive the electromagnetic waves efficiently.
Accordingly, the reflective layer 6 may be made of a material having a relative dielectric constant lower than that of the rod antenna 3 and is not required to be transparent. Therefore, various color tone materials can be selected. Further, the reflective layer 6 can be colored by adding a pigment or a dye.
For this reason, the panel-type building material 1-A of the panel-type building material with a dielectric according to the present invention can have a beautiful color tone or a pattern on the appearance. In particular, when the panel-type building material 1-A of the dielectric-equipped panel-type building material of the present invention is installed on the wall of a building, the panel-type building material 1-A is not a tasteless dry color panel, but a beautiful color tone or pattern Or, it can be provided as a panel with letters and signs, so that it is possible to give viewers a rest and to convey a message.

反射層6の材質は、例えば、レンガ、コンクリート、瓦、陶磁器質タイル、繊維強化セメント板の他、アスファル(Asphalt)、アスベスト(Asbestos)、アルミナ磁器(Alumina porcelain)、アルミナ被膜(Alumina film)、鋳物砂(Casting sand)、ウレタン(Uretane)、雲母(Mica)、AS樹脂(Acrylonitrile−styrene resin)、ABS樹脂(Styrene−acrylonitrile−butadiene copolymers)、塩ビ(粉末)(Powdered polyvinyl chloride)、塩ビ粒体(Granular polyvinyl chloride)、紙(Paper)、ガラス・エポキシ積層板(Glass epoxy laminated plate)、ガラス・シリコン積層板(Glass silicone laminated plate)、ガラスビーズ(Glass bead)、ガラスポリエステル積層板(Gl ass polyester laminated plate)、カルシウム(Calcium)、絹(Silk)、クローム鉱石(Chrome ore)、ケイ砂(Silica)、硬質塩ビ樹脂(Rigid polyvinyl chloride)、硬質ビニルブチラール樹脂(Rigid vinyl butyral resin)、骨炭(Animal charcoal)、蛍石(Fluorspar)、3フッ化エチレン樹脂(Polytrifluorochloroethylene)、酸化亜鉛(Zinc oxides)、酸化アルミナ(Alumina oxides)、酸化エチレン(Ethylene oxide)、酸化第二鉄(粉末)(Granular ferric oxide)、酸化チタン磁器(Titanium oxide porcelain)、ジアリルフタレート樹脂(Dially phthalate resin)、シェル砂(Shell sand)、四塩化炭素(Carbon tetrachloride)、砂利(Gravel)、充填用コンパウンド(Filling compound)、硝酸バリウム(Barium nitrate)、シリカアルミナ(Silica alumina)、シリコン(Silicon)、シリコンゴム(Silicone rubber)、シリコン樹脂(Silicone resin)、水酸化アルミ(Hydroxide aluminum)、水晶(Crystal)、酢酸セルローズ(Acetyl cellulose)、酢酸ビニル樹脂(Polyvinyl acetate)、スチレン樹脂(Styrene resin)、スチロール樹脂(Styrole resin)、ステアタイト(Steatite)、ステアタイト磁器(Steatite porcelain)、砂(Sand)、スレート(Slate)、石英(Quartz)、石英ガラス(Quartz glass)、石膏(Plaster)、セルローズ(Cellulose)、セレニウム(Selenium)、セレン(Selene)、セロファン(Cellophane)、象牙(Ivory)、ソーダ石灰ガラス(Soda−lime glass)、磁器類(Ceramics)、大理石(Marble stone)、炭酸カルシウム(Calcium carbonate)、天然ゴム(Natural rubber)、長石質磁器(Feldspathic porcelain)、陶器類Ceramics、粒状ガラス(Granular glass)、ナイロン(Nylon)、ナイロン―6―6(Nylon 66)、軟質塩ビ樹脂(Plasticized polyvinyl chloride)、軟質ビニルブチラール樹脂(Plasticized vinyl butyral resin)、二酸化マンガン(Manganese dioxide)、ニトロセルローズラッカー(Nitrocellulose lacquer)、尿素樹脂(Urea resin)、尿素ホルムアルデヒド樹脂(Urea formaldehyde resin)、ネオプレン(Neoprene)、白雲母(Muscovite)、パラフィン(Paraffin)、ビニルホルマール樹脂(Vinyl formal resin)、ファイバー(Fiber)、フェノール紙積層板(Phenolic paper laminated plate)、フェノール樹脂(Phenol resin)、フェロクロム(Ferrochrome)、フェロシリコン(Ferrosilicon)、フェロマンガン(Ferromanganese)、フォルステライト磁器(Forsterite porcelain)、ブチルゴム(Isobutylene−isoprene rubber)、フッ化アルミ(Aluminum fluoride)、フッ素樹脂(Fluor resin)、不飽和ポリエステル樹脂(Unsaturated polyester resin)、フライアッシュFlyash)、フラン樹脂(Furan resin)、フルフラル樹脂(Furfural resin)、ペイント(Paints)、ベークライト(Bakelite)、ベークライトワニス(Bakelite Varnish)、ベンガラ(Red iron oxide)、方解石(Calcite)、硼珪酸ガラス(Borosilicate glass)、ポリアセタール樹脂(Polyacetal resin)、ポリウレタン(Polyurethane)、ポリエステル樹脂(Polyester resin)、ポリエチレン(Polyester)、ポリエチレンオキサイド(Polyethylene oxide)、ポリエチレンテレフタレート(Polyethylene terephthalate)、ポリカーポネート(Polycarbonate)、ポリカーポネート樹脂(Polycarbonate resin)、ポリスチレン(Polystyrene)、ポリスチロール(Polysyrol)、ポリブチレン(Polybutylene)、ポリブチレン樹脂(Polybutylene resin)、ポリプロピレンPolypropylene)、ポリプロピレン樹脂(Polypropylene resin)、メタクリル樹脂(Methacrylic resin)、メラミン樹脂(Melamine resin)、メラミンホルムアルデヒド樹脂(Melamine formaldehyde resin)、木綿(Cotton)、木材(水分による)(Woods)、4フッ化エチレン樹脂(Polytetrafluoro ethylene)、硫化バナジウム(Vanadium sulphide)、緑柱石(光軸に直角)(Beryl)、リン酸カルシウム(Calcium phosphate)、リン鉱石(Rock phosphate)等であってもよい。   Examples of the material of the reflective layer 6 include brick, concrete, tile, ceramic tile, fiber reinforced cement plate, asphalt, asbestos, alumina porcelain, alumina film (Alumina film), Foundry sand (Casting sand), Urethane (Uretane), Mica (Mica), AS resin (Acrylonitrile-styrene resin), ABS resin (Styrene-acrylonitrile-butylene copolymer), vinyl salt (powder), powder (powder) (Granular polyvinyl chloride), paper, glass epoxy Glass plate (Glass epoxy laminated plate), Glass silicon laminated plate (Glass silicon laminated plate), Glass beads (Glass bead laminated plate), Glass polyester laminated plate (Glas ash polymer laminated plate), Calcium (Calcium), Silk (Calcium) Chrome ore, Silica, Rigid polyvinyl chloride, Rigid vinyl butyral resin, Anion charcoal, Fluorite, Fr (Polytrifluorochloroethylene ne), zinc oxide, alumina oxide, ethylene oxide, ferric oxide (granular ferric oxide), titanium oxide porcelain, diallyl phthalate resin Dialy phthalate resin, Shell sand, Carbon tetrachloride, Gravel, Filling compound, Barium nitrate, Silica Alumina (Silicon) ), Silicone rubber (Silicon rubber) ), Silicon resin, aluminum hydroxide, crystal, cellulose acetate, vinyl acetate resin, styrene resin, styrene resin , Steatite, Steatite porcelain, Sand, Slate, Quartz, Quartz glass, Plaster, Cellulose, Selenium ), Selenium, cellophane, ivory (Ivory), soda-lime glass, porcelain (Ceramics), marble (Marble stone), calcium carbonate (Calcium carbonate), natural rubber (Natural rubber), feldspar porcelain (Feldspatial porcelain) Ceramics, granular glass, nylon (Nylon), nylon-6-6 (Nylon 66), plasticized vinyl chloride (plasticized vinyl chloride), soft vinyl butyral dimethyl (polyvinyl diols) Nitrocellulose lacquer (Nitr cellulose lacquer, urea resin (Urea resin), urea formaldehyde resin (Urea formaldehyde resin), neoprene (Neoprene), muscovite, paraffin (Paraffin), vinyl formal resin (Vinyl formal fiber, Fiber fiber) Phenolic paper laminated plate, phenolic resin (Phenol resin), ferrochrome (Ferrochrome), ferrosilicon (Ferrosilicone), ferromanganese (Ferromanganese), forsterite porcelain (Forsterite porcelain rubber) butylene-isoprene rubber, aluminum fluoride, fluororesin, unsaturated polyester resin, fly ash flyash, furan resin, furfur resin, furfur resin Paints, Bakelite, Bakelite Varnish, Red Iron Oxide, Calcite, Borosilicate Glass, Polyacetal Polyurethane, Polyacetal Resin , Polyester resin (Polyester resin), polyethylene (Polyester), polyethylene oxide (Polyethylene terephthalate), polycarbonate (Polycarbonate), polycarbonate resin (Polycarbonate polystyrene) (Polystyrene), polybutylene (Polybutylene), polybutylene resin (Polybutylene resin), polypropylene Polypropylene, polypropylene resin (Polypropylene resin), methacrylic resin (Methacryli) resin, melamine resin, melamine formaldehyde resin, cotton (Cotton), wood (due to moisture) (Woods), tetrafluoroethylene resin (Polytetrafluor ethylene), vanadium sulfide It may be beryl (perpendicular to the optical axis) (Beryl), calcium phosphate, rock phosphate, or the like.

以上の構造の誘電体アンテナ付きパネル型建材は、例えば、以下のようにして製作される。
[製作工程]
1)半導体発電層2の表面に、スパッタリングで金属膜を形成する。
2)さらに金属膜の表面に、スパッタリングで反射層6の膜を形成する。このとき、反射層の材料に、顔料や染料を添加して着色することにより、パネルの表面を所望の色にすることができる。また、所定のエリアごとに顔料や染料を変えることにより、エリアごとに異なる色とすることもできるため、パネル表面に模様を形成することができる。
3)フォトリソグラフィにてパターンを露光し、金属膜及び反射層6の膜をエッチングして表面電極4のパターンを形成する。パターニングされた表面電極4及び反射層6は、ロッドアンテナ3が形成される位置に相当する部分の金属膜が除去されている。フォトリソグラフィによりパターンを形成した後に金属膜及び反射層6の膜を形成し、フォトレジストを除去して、表面電極4及び反射層6を形成することもできる。
The panel-type building material with a dielectric antenna having the above structure is manufactured, for example, as follows.
[Production process]
1) A metal film is formed on the surface of the semiconductor power generation layer 2 by sputtering.
2) Further, a film of the reflective layer 6 is formed on the surface of the metal film by sputtering. At this time, the surface of the panel can be changed to a desired color by coloring the material of the reflective layer by adding a pigment or a dye. Further, by changing the pigment or dye for each predetermined area, it is possible to make the color different for each area, so that a pattern can be formed on the panel surface.
3) The pattern is exposed by photolithography, and the metal film and the reflective layer 6 are etched to form the pattern of the surface electrode 4. In the patterned surface electrode 4 and the reflective layer 6, the metal film corresponding to the position where the rod antenna 3 is formed is removed. The surface electrode 4 and the reflective layer 6 can also be formed by forming the metal film and the reflective layer 6 after forming the pattern by photolithography and removing the photoresist.

4)表面電極4及び反射層6を形成した半導体発電層2の表面に、プラズマCVDやスパッタリング等により誘電体の薄膜を形成させる。
5)誘電体の薄膜の表面にパターニングを行い、誘電体の薄膜をエッチング加工してロッドアンテナ3を形成する。誘電体の薄膜の表面にパターニングを行う際、第1の直線にそって間隔P1ごとに、又は第1の直線と角度Gをなす第2の直線に沿って間隔P2ごとに誘電体が規則的に配置されるように設計をすることにより、規則的なエッチング加工の処理に適したパターニングをすることが望ましい。
6)さらに、ロッドアンテナ3及び反射層6の表面で保護カバーとなる薄膜をプラズマCVDやスパッタリング等で形成することもできる。
4) A dielectric thin film is formed on the surface of the semiconductor power generation layer 2 on which the surface electrode 4 and the reflective layer 6 are formed by plasma CVD, sputtering, or the like.
5) The surface of the dielectric thin film is patterned, and the dielectric thin film is etched to form the rod antenna 3. When patterning the surface of the dielectric thin film, the dielectric is regularly arranged at intervals P1 along the first straight line or at intervals P2 along the second straight line forming an angle G with the first straight line. It is desirable to carry out patterning suitable for regular etching processing by designing to be arranged in a pattern.
6) Furthermore, a thin film serving as a protective cover on the surfaces of the rod antenna 3 and the reflective layer 6 can be formed by plasma CVD, sputtering, or the like.

以上のようにして製作された誘電体アンテナ付きパネル型建材のパネル型建材1−Aは、半導体発電層2の表面に突出して設けられたロッドアンテナ3の高さが、ロッドアンテナ3とロッドアンテナ3との間に配置された表面電極4の厚み及び反射層6の厚みの和と、ほぼ同じになるように形成されている。このため、ロッドアンテナ3とロッドアンテナ3との間の凹部に汚れが付着しにくい。
また、ロッドアンテナ3は、太陽から放射され、アンテナ先端に入射する電磁波だけでなく、アンテナの近傍の電磁波をも受信することができる。このため、反射層6の空間を確保することができ、かつ、反射層6の反射率(色)を低い材料(透明や白)に限定する必要がないことから、反射層6を自由な色合いで配色することが可能となる。即ち、電磁波を効率よく受信することと、パネル型建材の表面を所望の色調とすることが両立可能となる。
The panel-type building material 1-A of the panel-type building material with a dielectric antenna manufactured as described above has a height of the rod antenna 3 provided so as to protrude from the surface of the semiconductor power generation layer 2, and the rod antenna 3 and the rod antenna. 3 is formed to be substantially the same as the sum of the thickness of the surface electrode 4 and the thickness of the reflective layer 6 disposed between the surface electrode 4 and the reflective layer 6. For this reason, it is difficult for dirt to adhere to the recess between the rod antenna 3 and the rod antenna 3.
In addition, the rod antenna 3 can receive not only electromagnetic waves radiated from the sun and incident on the tip of the antenna but also electromagnetic waves in the vicinity of the antenna. For this reason, since the space of the reflective layer 6 can be ensured, and it is not necessary to limit the reflectance (color) of the reflective layer 6 to a low material (transparent or white), the reflective layer 6 can be freely colored. It becomes possible to color scheme with. That is, it is possible to simultaneously receive electromagnetic waves efficiently and to make the surface of the panel-type building material have a desired color tone.

[第2実施形態]
図14は、本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Eの構成を示す図である。
第2実施形態のパネル型建材1−Eは、第1実施形態のパネル型建材1−Aの表面全体を保護するために、保護層8を装着したものである。本実施形態のパネル型建材1−Eの構成は、保護層8以外は、第1実施形態のパネル型建材1−Aと同様である。
[Second Embodiment]
FIG. 14: is a figure which shows the structure of the panel type building material 1-E as one Embodiment which concerns on the panel type building material with a dielectric antenna of this invention.
The panel type building material 1-E of the second embodiment is provided with a protective layer 8 in order to protect the entire surface of the panel type building material 1-A of the first embodiment. The configuration of the panel type building material 1-E of the present embodiment is the same as that of the panel type building material 1-A of the first embodiment except for the protective layer 8.

保護層8の材質は、ロッドアンテナ3よりも比誘電率の低い透明ガラスであってもよい。パネル型建材1−Eは、保護層8があることにより、第1実施形態のパネル型建材1−Aよりも耐候性が増し、特に建材として利用される場合、ロッドアンテナ3及び反射層6の腐蝕、剥離、汚れを防止することができる。   The material of the protective layer 8 may be transparent glass having a relative dielectric constant lower than that of the rod antenna 3. Since the panel type building material 1-E has a protective layer 8, the weather resistance of the panel type building material 1-A is increased as compared with the panel type building material 1-A of the first embodiment. Corrosion, peeling, and dirt can be prevented.

さらに、パネル型建材1−Eを建材の保護層8は、保護層8の表面に親水性基を有する物質から構成されていてもよい。親水性基は、保護層8の表面に付着した汚れを雨水によって洗い流す作用を有するため、汚れ防止、特に雨筋汚れ防止に効果を発揮する。
したがって、パネル型建材1−Eは、第1実施形態のパネル型建材1−Aよりも、さらにパネル型建材の表面の防汚性が向上する。
Furthermore, the protective layer 8 of the building material for the panel-type building material 1-E may be made of a substance having a hydrophilic group on the surface of the protective layer 8. The hydrophilic group has an effect of washing away the dirt adhering to the surface of the protective layer 8 with rain water, and thus is effective in preventing dirt, particularly in preventing rain stains.
Therefore, the panel type building material 1-E further improves the antifouling property of the surface of the panel type building material than the panel type building material 1-A of the first embodiment.

[第3実施形態]
図15は、本発明の誘電体アンテナ付きパネル型建材に係る一実施形態としてのパネル型建材1−Fの構成を示す図である。
第3実施形態では、図15に示すように、ロッドアンテナ3は半導体発電層2の表面の法線方向に対し、所定の角度Vをなして伸びている。
[Third Embodiment]
FIG. 15 is a diagram showing a configuration of a panel type building material 1-F as an embodiment according to the panel type building material with a dielectric antenna of the present invention.
In the third embodiment, as shown in FIG. 15, the rod antenna 3 extends at a predetermined angle V with respect to the normal direction of the surface of the semiconductor power generation layer 2.

本発明の誘電体アンテナ付きパネル型建材は、あらゆる方向から入射する、電磁波を受信することができるため、太陽追尾が不要の太陽電池パネルとして機能することができるものである。しかしながら、上述のように、ロッドアンテナ3が電磁波を受信する範囲は、パネル型建材の表面に対し、おおよそ俯角28度以上の角度である。したがって、本発明の誘電体アンテナ付きパネル型建材を鉛直に設置した場合、設置する場所の緯度によっては、もっとも太陽高度の高い時間帯の電磁波を受信できなくなるおそれがある。このため、本発明の誘電体アンテナ付きパネル型建材を鉛直に設置した場合、ロッドアンテナ3が水平方向よりも上向きに俯角をもって延伸していたほうが、受信効率が向上する場合がある。特に、ビルの乱立する都心部で、太陽高度が高い限られた時間帯のみしか太陽光が差し込まない場所においては、第3実施形態のパネル型建材1−Fをロッドアンテナ3をパネル型建材の表面の法線方向に対し、所定の角度Vをなして上方に延伸する向きで設置すれば、受信効率が向上させることができる。   Since the panel type building material with a dielectric antenna of the present invention can receive electromagnetic waves incident from all directions, it can function as a solar cell panel that does not require solar tracking. However, as described above, the range in which the rod antenna 3 receives electromagnetic waves is an angle of approximately 28 degrees or more with respect to the surface of the panel type building material. Therefore, when the panel-type building material with a dielectric antenna of the present invention is installed vertically, there is a possibility that electromagnetic waves in the time zone with the highest solar altitude cannot be received depending on the latitude of the installation location. For this reason, when the panel type building material with a dielectric antenna of the present invention is installed vertically, the reception efficiency may be improved if the rod antenna 3 is extended with a depression angle upward from the horizontal direction. In particular, in a city center where buildings are prosperous, in a place where sunlight is inserted only in a limited time zone where the solar altitude is high, the panel type building material 1-F of the third embodiment is used for the rod antenna 3 and the panel type building material. If it is installed in a direction extending upward at a predetermined angle V with respect to the normal direction of the surface, the reception efficiency can be improved.

以上のように、本実施形態のパネル型建材1−Fは、ロッドアンテナ3が半導体発電層2の表面の法線方向に対し、所定の角度をなして伸びている。したがって、建物の壁面に本誘電体アンテナ付きパネル型建材を設置した場合、ロッドアンテナは水平方向よりも所定の角度だけ上方に伸びるように突出することになる。このため、斜め上方向から入社してくる電磁波を効率よく受信することができる。ただし、サイドローブは、主ビーム(メインローブ)に対し約62度の角度をなしているため、ロッドアンテナ3の延伸方向を上方へ傾けすぎると(28度以上傾けると)、副ビーム(サイドローブ)がパネル表面に接してしまうことにより、電磁波の受信効率が低下してしまう。
したがって、ロッドは半導体発電層の表面の法線方向に対し0度以上28未満の角度をなして伸びていることが望ましい。
As described above, in the panel-type building material 1-F of this embodiment, the rod antenna 3 extends at a predetermined angle with respect to the normal direction of the surface of the semiconductor power generation layer 2. Therefore, when the panel-type building material with a dielectric antenna is installed on the wall surface of the building, the rod antenna projects so as to extend upward by a predetermined angle from the horizontal direction. For this reason, it is possible to efficiently receive electromagnetic waves that enter the company from an obliquely upward direction. However, since the side lobe makes an angle of about 62 degrees with respect to the main beam (main lobe), if the extending direction of the rod antenna 3 is tilted too much upward (when tilted 28 degrees or more), the side beam (side lobe) ) Is in contact with the panel surface, the electromagnetic wave reception efficiency is reduced.
Therefore, the rod preferably extends at an angle of 0 degree or more and less than 28 with respect to the normal direction of the surface of the semiconductor power generation layer.

本実施形態のパネル型建材1−Fのロッドアンテナ3は、半導体発電層2の表面に表面電極4及び反射層6を構成することとなる薄膜を形成したのちに、薄膜の表面の法線方向に対し、所定の角度をなす斜めの方向に向かって、薄膜の表面に半導体発電層2に達する穴をあけ、穴にロッドアンテナ3を構成する材料を充填することにより、ロッドアンテナ3を形成することができる。   The rod antenna 3 of the panel-type building material 1-F of the present embodiment is formed by forming a thin film that forms the surface electrode 4 and the reflective layer 6 on the surface of the semiconductor power generation layer 2, and then the normal direction of the surface of the thin film On the other hand, the rod antenna 3 is formed by making a hole reaching the semiconductor power generation layer 2 on the surface of the thin film in an oblique direction forming a predetermined angle, and filling the hole with a material constituting the rod antenna 3. be able to.

本実施形態の誘電体アンテナ付きパネル型建材は、ロッドアンテナ3が半導体発電層2の表面の法線方向に対し、所定の角度Vをなして延伸している。ここで、ロッドアンテナ3が斜め方向に延伸すると、延伸した分、隣のロッドとの距離が実質的に短くなることになるため、電磁波の捕捉エリアがせまくなってしまう。このため、斜め方向に延伸する方向に沿った直線方向に位置するロッドアンテナ3間の距離を、他方の直線方向のロッド間隔よりも、長くとる方が、平均的な電磁波の受信効率は高くなる。したがって、角度Vで傾けて延伸した長さのパネルに投影した分だけロッドアンテナ3間の距離を長くとることが望ましい。   In the panel type building material with a dielectric antenna of the present embodiment, the rod antenna 3 extends at a predetermined angle V with respect to the normal direction of the surface of the semiconductor power generation layer 2. Here, when the rod antenna 3 extends in an oblique direction, the distance to the adjacent rod is substantially shortened by the amount of extension, so that an electromagnetic wave capturing area is congested. For this reason, the average electromagnetic wave receiving efficiency becomes higher when the distance between the rod antennas 3 positioned in the linear direction along the direction extending in the oblique direction is longer than the distance between the rods in the other linear direction. . Therefore, it is desirable to make the distance between the rod antennas 3 longer by the amount projected on the panel having the length extended by being inclined at the angle V.

即ち、ロッドアンテナ3が、第1の直線上に第1の間隔(P1)で配置され、第2の直線上に第2の間隔(P2)で配置され、第1の直線と第2の直線とは、前記ロッドアンテナを中心に90度の角度をもって交差するように配置されている場合、ロッドアンテナ3の高さH(半導体発電層の表面からの法線方向の長さ)、第1の間隔(P1)、及び前記第2の間隔(P2)とは、以下の式(4)を満たすことが望ましい。
P2=P1+H・tan(V) (4)
That is, the rod antenna 3 is arranged on the first straight line with the first interval (P1), and on the second straight line with the second interval (P2), the first straight line and the second straight line. Is the height H of the rod antenna 3 (the length in the normal direction from the surface of the semiconductor power generation layer), the first when the rod antenna is arranged so as to intersect at an angle of 90 degrees with respect to the center. It is desirable that the interval (P1) and the second interval (P2) satisfy the following expression (4).
P2 = P1 + H · tan (V) (4)

上記のような関係を満たすようにロッドアンテナ3を配置することにより、太陽から放射された電磁波を効率的に受信することができる。   By disposing the rod antenna 3 so as to satisfy the relationship as described above, the electromagnetic waves radiated from the sun can be efficiently received.

[第4実施形態]
図16(1)及び図11(2)は、誘電体アンテナ付きパネル型建材を、建物の壁面に装着した状態を示す図である。
図16(1)は、建物の壁面9に、パネル型建材1を取り付けた場合であって、パネルの上部に樋10を取り付けたものである。
図16(2)は、建物の壁面9に、パネル型建材1を収納する空間を設け、そこにパネル型建材1を嵌め込んだ場合であって、パネル型建材1の上部に樋10を取り付けたものである。
[Fourth Embodiment]
FIG. 16 (1) and FIG. 11 (2) are views showing a state in which a panel type building material with a dielectric antenna is mounted on a wall surface of a building.
FIG. 16 (1) shows a case where the panel-type building material 1 is attached to the wall surface 9 of the building, and the fence 10 is attached to the upper part of the panel.
FIG. 16 (2) shows a case where a space for housing the panel-type building material 1 is provided on the wall surface 9 of the building, and the panel-type building material 1 is fitted into the space. It is a thing.

図16(1)及び図16(2)のいずれも、パネル型建材1には、上部に樋10が配置されている。樋10がない場合、雨水がパネル型建材1の表面を流下し、雨水の流下跡に汚れが付着しやすい。樋10があることにより、雨水は樋の導路に従って流れ、本誘電体アンテナ付きパネル型建材の表面を流下しないため、パネル型建材1には汚れが付着しにくい。   In both FIG. 16 (1) and FIG. 16 (2), the panel-type building material 1 is provided with a gutter 10 at the top. When there is no fence 10, rainwater flows down the surface of the panel-type building material 1, and dirt tends to adhere to the rainwater flow trace. Due to the presence of the fence 10, rainwater flows along the path of the fence and does not flow down the surface of the panel type building material with a dielectric antenna.

本発明の誘電体アンテナ付きパネル型建材は、ロッドアンテナと、半導体発電層と、表面電極と、裏面電極と、反射層と、から構成される。本発明の誘電体アンテナ付きパネル型建材は、ロッドアンテナが、先端面に入射する電磁波だけでなく、近傍を通過する電磁波をも受信するため、表面電極4の上面に照射される電磁波をロッドアンテナ3が効率よく受信する。したがって、反射層6は、ロッドアンテナ3よりも比誘電率の低い材質であればよく、透明は要求されないため、様々な色調の材質を選ぶことができる。さらに反射層6には、顔料や染料を添加して着色することもできる。
このため、パネル型建材1は、外観上、表面が美しい色調であったり、文様が描かれたものとすることができる。特に、建材用として、ビルの壁面に利用する場合には、無味乾燥とした色調のパネルでなく、美しい色調や模様、あるいは文字、標識の描かれたパネルとして提供することができる。
The panel type building material with a dielectric antenna of the present invention includes a rod antenna, a semiconductor power generation layer, a surface electrode, a back electrode, and a reflective layer. The panel type building material with a dielectric antenna according to the present invention is configured so that the rod antenna receives not only the electromagnetic wave incident on the front end surface but also the electromagnetic wave passing through the vicinity thereof. 3 receives efficiently. Therefore, the reflective layer 6 may be made of a material having a relative dielectric constant lower than that of the rod antenna 3 and is not required to be transparent. Therefore, various color tone materials can be selected. Further, the reflective layer 6 can be colored by adding pigments or dyes.
For this reason, the panel-type building material 1 can have a beautiful color tone or a pattern on the appearance. In particular, when it is used as a building material on a wall surface of a building, it can be provided as a panel on which a beautiful color tone or pattern, or characters or signs are drawn, instead of a tasteless dry color panel.

以上、本発明のいくつかの実施形態について説明したが、これらの実施形態は、例示に過ぎず、本発明の技術的範囲を限定するものではない。本発明はその他の様々な実施形態をとることが可能であり、さらに、本発明の目的を達成できる範囲での、変形、改良、省略、置換等は本発明に含まれるものである。
また、本実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本実施形態に記載されたものに限定されるものではない。
As mentioned above, although several embodiment of this invention was described, these embodiment is only an illustration and does not limit the technical scope of this invention. The present invention can take various other embodiments, and further, modifications, improvements, omissions, substitutions, and the like are included in the present invention as long as the object of the present invention can be achieved.
Further, the effects described in the present embodiment are merely a list of the most preferable effects resulting from the present invention, and the effects of the present invention are not limited to those described in the present embodiment.

1−A〜1−F・・・誘電体アンテナ付きパネル型建材
2・・・半導体発電層
3・・・ロッドアンテナ
4・・・表面電極
5・・・裏面電極
6・・・反射層
7・・・防錆層
8・・・保護層
9・・・壁面
10・・・樋
L1・・・第1の直線
L2・・・第2の直線
P1・・・第1の直線上のロッドアンテナの間隔
P2・・・第2の直線上のロッドアンテナの間隔
G・・・第1の直線と第2の直線とが交差する角度
Ca・・・円柱状ロッドアンテナの先端平面の円
R、Ra・・・ロッドアンテナの半径
Ce・・・実効面積を有する円
Re・・・実効面積を有する円の半径
V・・・パネル型建材表面の法線方向に対しロッドアンテナのなす角度
1-A to 1-F: Panel type building material with dielectric antenna 2 ... Semiconductor power generation layer 3 ... Rod antenna 4 ... Front electrode 5 ... Back electrode 6 ... Reflective layer 7 .... Rust prevention layer 8 ... Protective layer 9 ... Wall 10 ... 樋 L1 ... First straight line L2 ... Second straight line P1 ... The rod antenna on the first straight line Interval P2: Distance between rod antennas on the second straight line G: Angle at which the first straight line intersects with the second straight line Ca: Circle R, Ra, on the tip plane of the cylindrical rod antenna ..Rod antenna radius Ce... Circle with effective area Re... Radius of circle with effective area V .. angle formed by rod antenna with respect to normal direction of panel-type building material surface

Claims (8)

半導体発電層と、
裏面電極と、
前記半導体発電層の表面に接し、当該表面に対し第1の角度(V)をなして延伸し、前記半導体発電層の表面に対し垂直方向の高さ(H)が、前記半導体発電層の最大感度波長の0.01〜40倍であり、半径(R)が前記高さ(H)の0.005〜1.5倍であり、所望の比誘電率を有する、複数のロッドアンテナと、
前記半導体発電層に接し、前記複数のロッドアンテナの間に配置された表面電極と、
前記表面電極と接し、入射波の一部を反射し、前記ロッドアンテナの比誘電率よりも小さい材質で構成され、前記表面電極とは異なる色に着色された反射層と、から構成され、
前記高さ(H)が、前記表面電極の厚みと前記反射層の厚さとの和に等しいか、又はそれ以上である、パネル型建材。
A semiconductor power generation layer,
A back electrode;
The semiconductor power generation layer is in contact with the surface and extends at a first angle (V) with respect to the surface, and the height (H) in a direction perpendicular to the surface of the semiconductor power generation layer is the maximum of the semiconductor power generation layer. A plurality of rod antennas having a sensitivity wavelength of 0.01 to 40 times, a radius (R) of 0.005 to 1.5 times the height (H), and having a desired dielectric constant;
A surface electrode in contact with the semiconductor power generation layer and disposed between the plurality of rod antennas;
A reflective layer that is in contact with the surface electrode, reflects a part of the incident wave, is made of a material smaller than the relative dielectric constant of the rod antenna, and is colored in a color different from the surface electrode;
The panel-type building material, wherein the height (H) is equal to or greater than the sum of the thickness of the surface electrode and the thickness of the reflective layer.
前記複数のロッドアンテナは、第1の直線上に第1の間隔(P1)で配置され、第2の直線上に第2の間隔(P2)で配置され、第1の直線と第2の直線とは、前記複数のロッドアンテナのうちのひとつを中心に第2の角度(G)をもって交差するように配置された、
請求項1に記載のパネル型建材。
The plurality of rod antennas are arranged at a first interval (P1) on a first straight line, and are arranged at a second interval (P2) on a second straight line, and the first straight line and the second straight line are arranged. Is arranged so as to intersect with a second angle (G) around one of the plurality of rod antennas,
The panel type building material according to claim 1.
前記第2の角度(G)は60度であり、
前記第1の間隔(P1)及び前記第2の間隔(P2)は、以下の式(1)を満たす、
2・R≦P1=P2 (1)
ことを特徴とする、
請求項2に記載のパネル型建材。
The second angle (G) is 60 degrees;
The first interval (P1) and the second interval (P2) satisfy the following formula (1):
2 ・ R ≦ P1 = P2 (1)
It is characterized by
The panel type building material according to claim 2.
前記複数のロッドアンテナのそれぞれの実効面積の合計が、パネル型建材の表面全体の面積に対し、100%以上である、
請求項3に記載のパネル型建材。
The total effective area of each of the plurality of rod antennas is 100% or more with respect to the entire surface area of the panel-type building material.
The panel type building material according to claim 3.
前記第1の角度(V)は、0度以上28度未満である、
請求項1から請求項4のいずれか1項に記載のパネル型建材。
The first angle (V) is not less than 0 degrees and less than 28 degrees.
The panel type building material according to any one of claims 1 to 4.
前記複数のロッドアンテナ及び前記反射層の表面に配置された保護層と、
前記反射層と前記表面電極との間に配置された防錆層と、
をさらに備える、請求項1から請求項5のいずれか1項に記載のパネル型建材。
A protective layer disposed on the surfaces of the plurality of rod antennas and the reflective layer;
A rust preventive layer disposed between the reflective layer and the surface electrode;
The panel-type building material according to any one of claims 1 to 5, further comprising:
前記保護層の表面は親水性基を有する材質で構成された、
請求項6に記載のパネル型建材。
The surface of the protective layer is made of a material having a hydrophilic group,
The panel type building material according to claim 6.
前記ロッドアンテナは、比誘電率を2〜10とする材質の誘電体から構成される、
請求項1から請求項7のいずれか1項に記載のパネル型建材。
The rod antenna is composed of a dielectric material having a relative dielectric constant of 2 to 10.
The panel-type building material of any one of Claims 1-7.
JP2013233379A 2013-11-11 2013-11-11 Panel-type building material with dielectric antenna Pending JP2015095520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233379A JP2015095520A (en) 2013-11-11 2013-11-11 Panel-type building material with dielectric antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233379A JP2015095520A (en) 2013-11-11 2013-11-11 Panel-type building material with dielectric antenna

Publications (1)

Publication Number Publication Date
JP2015095520A true JP2015095520A (en) 2015-05-18

Family

ID=53197740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233379A Pending JP2015095520A (en) 2013-11-11 2013-11-11 Panel-type building material with dielectric antenna

Country Status (1)

Country Link
JP (1) JP2015095520A (en)

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
JP2018536993A (en) * 2015-11-25 2018-12-13 エージーシー グラス ユーロップAgc Glass Europe Photovoltaic device
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith

Cited By (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
JP2018536993A (en) * 2015-11-25 2018-12-13 エージーシー グラス ユーロップAgc Glass Europe Photovoltaic device
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10811781B2 (en) 2016-12-08 2020-10-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Similar Documents

Publication Publication Date Title
JP2015095520A (en) Panel-type building material with dielectric antenna
Chen et al. Development of radiative cooling and its integration with buildings: A comprehensive review
JP6600919B2 (en) Condensing mechanism, solar power generation device and window structure
ES2805529T3 (en) High solar transmittance and colored reflection laminated glazing suitable for solar power systems
CN110073170B (en) Shielding type color-matched camouflage solar cell panel
JP5568013B2 (en) Low-emission film for windows incorporating nanoscale wire grids
ES2880763T3 (en) Glazing unit, procedure for its production and use
US20100282241A1 (en) Solar collector
JP7177699B2 (en) glass building materials
ES2906970T3 (en) Interferential filter with angular independent orange reflection color and high solar transmittance, suitable for roof integration of solar energy systems
JP5399523B2 (en) Smart solar concentrator depending on incident angle, method for manufacturing solar concentrator, and window system
US20070256732A1 (en) Photovoltaic module
JP2012047020A (en) Directional reflection material and building material using the same
JP5503931B2 (en) Daylight insulation sheet and laminated glass
KR20200104410A (en) Power generation building materials and manufacturing method thereof
JP2008258301A (en) Solar cell panel
CN114639747A (en) Building photovoltaic module
CN105577093B (en) New clean photovoltaic panel
JP5557200B2 (en) Solar panel installation structure
JP2017188984A (en) Light shielding wall for photovoltaic power generation panel
KR20170034034A (en) Reflective element for condensing sun light with high efficiency
JP2019165568A (en) Glass building material
NL2022796B1 (en) Solar energy conversion module
CN102964978B (en) Light reflecting coating
JP2000277774A (en) Solar battery module