JP2015095340A - Electron emission element and method of manufacturing the same - Google Patents

Electron emission element and method of manufacturing the same Download PDF

Info

Publication number
JP2015095340A
JP2015095340A JP2013233590A JP2013233590A JP2015095340A JP 2015095340 A JP2015095340 A JP 2015095340A JP 2013233590 A JP2013233590 A JP 2013233590A JP 2013233590 A JP2013233590 A JP 2013233590A JP 2015095340 A JP2015095340 A JP 2015095340A
Authority
JP
Japan
Prior art keywords
electrode
electron
emitting device
adhesive layer
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013233590A
Other languages
Japanese (ja)
Inventor
洋夢 奥永
Hiromu Okunaga
洋夢 奥永
千佳 平川
Chika Hirakawa
千佳 平川
岩松 正
Tadashi Iwamatsu
正 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2013233590A priority Critical patent/JP2015095340A/en
Publication of JP2015095340A publication Critical patent/JP2015095340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electron emission element which can obtain a high electron emission amount, which can prevent a surface electrode from being excessively destructed or can reduce destruction, and which can prolong its life.SOLUTION: Disclosed is an electron emission element which includes a first electrode, a second electrode, and an intermediate layer between the first electrode and the second electrode and emits electrons from the second electrode by applying voltage between the first electrode and the second electrode. An electrode adhesion layer is provided between the second electrode and the intermediate layer.

Description

本発明は、電圧を印加することにより電子を放出する電子放出素子及びその製造方法に関する。   The present invention relates to an electron-emitting device that emits electrons by applying a voltage, and a method for manufacturing the same.

従来の電子放出素子として、スピント(Spindt)型電極、カーボンナノチューブ(CNT)型電極等で構成された電子放出素子が一般的に知られている。この電子放出素子は尖鋭突起部に高電圧を印可して約1GV/mの強電界を形成し、トンネル効果により電子を放出することができる。   As a conventional electron-emitting device, an electron-emitting device composed of a Spindt type electrode, a carbon nanotube (CNT) type electrode or the like is generally known. This electron-emitting device can apply a high voltage to the sharp protrusion to form a strong electric field of about 1 GV / m, and can emit electrons by the tunnel effect.

しかしながら、これらの2つのタイプの電子放出素子は、電子放出部の表面近傍において強電界を発生させるため、放出電子は電界により大きなエネルギーを得て気体分子を容易に電離させる。気体分子の電離により生じた陽イオンは、強電界により素子表面に向かって加速衝突し、スパッタリングによる素子破壊が生じるという問題がある。また、大気中の酸素の解離エネルギーは電離エネルギーよりも低く、大気中で電子を放出させるとこれらの強電界により容易にオゾンが発生する。オゾンは人体に有害である上、その強力な酸化力により多種多様なものを酸化させることから、素子周囲の部材にダメージを与えるという問題が存在し、これを避けるために周辺部材には耐オゾン性の高い材料を用いなければいけないという制限が生じている。   However, since these two types of electron-emitting devices generate a strong electric field in the vicinity of the surface of the electron-emitting portion, the emitted electrons obtain large energy by the electric field and easily ionize gas molecules. The cation generated by ionization of gas molecules is accelerated and collides toward the element surface by a strong electric field, and there is a problem that element destruction occurs due to sputtering. Moreover, the dissociation energy of oxygen in the atmosphere is lower than the ionization energy, and ozone is easily generated by these strong electric fields when electrons are emitted in the atmosphere. Ozone is harmful to the human body and oxidizes a wide variety of substances with its strong oxidizing power. Therefore, there is a problem of damaging members around the element. There has been a restriction that materials with high properties must be used.

このような背景から、上記のものとは異なるタイプの電子放出素子として、MIM(Metal Insulator Metal)型、MIS(Metal Insulator Semiconductor)型、BSD(Ballistic electron Surface−emitting Device)型等の電子放出素子が開発されている。これらは、素子内部の量子サイズ効果及び強電界を利用して電子を加速し、平面状の素子表面から電子を放出させる面放出型の電子放出素子である。これらの電子放出素子は、素子内部の電子加速層で加速した電子を放出するため、素子外部に強電界を必要としない。したがって、スパッタリングによる素子破壊の問題、及びオゾンが発生するという問題を克服している。また、近年、特許文献1のように、上記の問題を克服し、かつ大気中で安定的に電子を放出可能な素子が報告されるようになった。   Against this background, electron emitters of a different type from those described above include MIM (Metal Insulator Metal) type, MIS (Metal Insulator Semiconductor) type, BSD (Ballistic electronic Surface-emitting Device) type and the like. Has been developed. These are surface emission type electron-emitting devices that accelerate electrons using the quantum size effect and strong electric field inside the device to emit electrons from the planar device surface. Since these electron-emitting devices emit electrons accelerated by an electron acceleration layer inside the device, a strong electric field is not required outside the device. Therefore, the problem of element destruction by sputtering and the problem of generation of ozone are overcome. In recent years, a device capable of overcoming the above-described problems and stably emitting electrons in the atmosphere has been reported as in Patent Document 1.

図7は、特許文献1に示された電子放出素子の構成を示す模式図である。電子放出素子70は、下部電極となる基板71と、上部電極72と、その間に挟まれて存在する電子加速層73からなる。また、基板71と上部電極72とは電源74に繋がっており、互いに対向して配置された基板71と上部電極72の間に電圧を印加する。電子加速層73は、導電体からなる、抗酸化力が高い導電微粒子731と、該導電微粒子731の大きさより大きい絶縁体物質732が含まれている。導電微粒子731として抗酸化力が高い導電体を用いることから、大気中の酸素による酸化に伴う素子劣化を発生し難いため、大気圧中でも安定して動作させることができる。   FIG. 7 is a schematic diagram showing the configuration of the electron-emitting device disclosed in Patent Document 1. As shown in FIG. The electron-emitting device 70 includes a substrate 71 serving as a lower electrode, an upper electrode 72, and an electron acceleration layer 73 that is sandwiched therebetween. Further, the substrate 71 and the upper electrode 72 are connected to a power source 74, and a voltage is applied between the substrate 71 and the upper electrode 72 that are arranged to face each other. The electron acceleration layer 73 includes conductive fine particles 731 made of a conductor and having a high anti-oxidation power, and an insulator material 732 larger than the size of the conductive fine particles 731. Since a conductive material having a high anti-oxidation power is used as the conductive fine particles 731, it is difficult to cause element deterioration due to oxidation by oxygen in the atmosphere, so that it can be stably operated even under atmospheric pressure.

これら表面電極を有する電子放出素子は、大きく3つの共通の特徴をもつ。1つは、表面電極が非常に薄いことである。これは、これら表面電極を有する電子放出素子は、素子内で加速した電子が真空障壁を突破することで電子が放出可能となるため、電子の散乱原因となる表面電極は薄いことが要求されることによる。2つ目の特徴は、素子内を流れる電子の一部が外部に放出されることである。つまり、放出されなかった電子は、素子内ですべてのエネルギーを失い、熱、光、または化学エネルギーなどに変換される。また、3つ目の特徴として、電子放出にはフォーミングと呼ばれる半絶縁破壊過程を経験することが必要とされ、このため通電パスの断面積は微小となり、電流密度は高くなる傾向がある。   The electron-emitting devices having these surface electrodes generally have three common features. One is that the surface electrode is very thin. This is because an electron-emitting device having these surface electrodes is required to have a thin surface electrode that causes electron scattering because electrons accelerated in the device can break through the vacuum barrier to emit electrons. It depends. The second feature is that part of electrons flowing in the device are emitted to the outside. That is, the electrons that are not emitted lose all energy in the device and are converted into heat, light, chemical energy, or the like. As a third feature, it is necessary to experience a semi-insulation breakdown process called forming for electron emission. For this reason, the cross-sectional area of the current path tends to be small and the current density tends to be high.

特開2009−146891号公報JP 2009-146891 A

しかしながら、表面電極を有する電子放出素子には、上記3つの特徴が合わさることで、原理的に電子のエネルギー失活が表面電極に局所的に集中し、薄膜である表面電極の破壊という問題が生じている。この表面電極の破壊を抑制することが課題となっている。   However, an electron-emitting device having a surface electrode combines the above three characteristics, and in principle, energy deactivation of electrons is concentrated locally on the surface electrode, causing a problem of destruction of the surface electrode that is a thin film. ing. It has been a problem to suppress the destruction of the surface electrode.

本発明は、上記のような事情に鑑みてなされたものであり、その目的とするところは、表面電極を有する電子放出素子において、高い電子放出量が得られるとともに、表面電極の過度の破壊を防止あるいは破壊を軽減することができ、長寿命化が可能な電子放出素子を提供することにある。   The present invention has been made in view of the circumstances as described above, and an object of the present invention is to obtain a high electron emission amount in an electron-emitting device having a surface electrode and to prevent excessive destruction of the surface electrode. An object of the present invention is to provide an electron-emitting device capable of preventing or destroying and extending the lifetime.

上記の課題を解決するために、本発明に係る電子放出素子は、第1電極と、第2電極と、前記第1電極と前記第2電極の間の中間層とを有し、前記第1電極と前記第2電極の間に電圧を印可することにより、前記第2電極から前記電子を放出させる電子放出素子であって、前記第2電極と前記中間層の間に電極接着層を有することを特徴とする。   In order to solve the above problems, an electron-emitting device according to the present invention includes a first electrode, a second electrode, and an intermediate layer between the first electrode and the second electrode, and the first electrode An electron-emitting device that emits the electrons from the second electrode by applying a voltage between the electrode and the second electrode, and having an electrode adhesive layer between the second electrode and the intermediate layer It is characterized by.

また、前記電極接着層を構成する分子の結合距離は、前記第2電極と前記中間層をそれぞれ構成する分子の結合距離の間の値であることを特徴としてもよい。   The bond distance of molecules constituting the electrode adhesive layer may be a value between the bond distances of molecules constituting the second electrode and the intermediate layer, respectively.

また、前記電極接着層は、金属であることを特徴としてもよい。   The electrode adhesive layer may be a metal.

また、前記電極接着層の層厚は5nm以上20nm以下であることを特徴としてもよい。   The electrode adhesive layer may have a thickness of 5 nm to 20 nm.

また、前記電極接着層は、前記第2電極と前記中間層の間に部分的に配置されていることを特徴としてもよい。   The electrode adhesive layer may be partially disposed between the second electrode and the intermediate layer.

本発明に係る電子放出素子の製造方法は、第1電極上に中間層を形成する工程と、前記中間層上の少なくとも一部に電極接着層を形成する工程と、少なくとも前記電極接着層上に第2電極を形成する工程とを含むことを特徴とする。   The method for manufacturing an electron-emitting device according to the present invention includes a step of forming an intermediate layer on a first electrode, a step of forming an electrode adhesive layer on at least a part of the intermediate layer, and at least on the electrode adhesive layer. Forming a second electrode.

本発明の電子放出素子によれば、表面電極を有する電子放出素子において、高い電子放出量が得られるとともに、表面電極の過度の破壊を防止あるいは破壊を軽減することができ、長寿命化が可能な電子放出素子を得ることができる。   According to the electron-emitting device of the present invention, in an electron-emitting device having a surface electrode, a high electron emission amount can be obtained, and excessive destruction of the surface electrode can be prevented or reduced, thereby extending the life. An electron-emitting device can be obtained.

本発明の実施形態1に係る電子放出装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the electron emission apparatus which concerns on Embodiment 1 of this invention. 実施例における電子放出装置及び該電子放出素子より放出された放出電子を測定する周辺装置の模式図である。It is a schematic diagram of the peripheral device which measures the electron emission apparatus in an Example and the discharge | released electron discharge | released from this electron emission element. 電子放出素子1a〜1c、5の初期電子放出量及び耐久試験を行った結果を示した表である。It is the table | surface which showed the result of having done the initial amount of electron emission of the electron-emitting elements 1a-1c and 5, and the endurance test. 本発明の実施形態2に係る電子放出装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the electron emission apparatus which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る電子放出装置の構成を示す平面図である。It is a top view which shows the structure of the electron emission apparatus which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る電子放出装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the electron emission apparatus which concerns on Embodiment 3 of this invention. 特許文献1の電子放出素子を示す模式図である。It is a schematic diagram which shows the electron-emitting device of patent document 1.

以下、本発明の実施形態について図を用いて説明する。以下の説明では同一の部材には同一の符号を付してある。なお、以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same members are denoted by the same reference numerals. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

(実施形態1)
図1は、本実施形態における電子放出装置A1の構成を示す模式図である。電子放出装置A1は電子放出素子1、及び電源2から構成される。電源2により電子放出素子1に所望の電圧が印可されることで、電子が放出される。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a configuration of an electron emission device A1 in the present embodiment. The electron emission device A1 includes an electron emission element 1 and a power source 2. Electrons are emitted when a desired voltage is applied to the electron-emitting device 1 by the power source 2.

電子放出素子1は、基板電極となる第1電極11、中間層12、電極接着層13、表面電極となる第2電極14から成り、図1のような積層構造となっている。電源2は第1電極11及び第2電極14に電気的に接続されている。   The electron-emitting device 1 includes a first electrode 11 serving as a substrate electrode, an intermediate layer 12, an electrode adhesive layer 13, and a second electrode 14 serving as a surface electrode, and has a laminated structure as shown in FIG. The power source 2 is electrically connected to the first electrode 11 and the second electrode 14.

第1電極11は、金属板などの電気伝導性を備えた支持体から成る。材料は、十分な電気伝導性を備えていればよく、具体例として、Al板、Cu板、SUS板などの金属板、B、Al、N、Pなどの不純物がハイドープされた半導体基板、及び金属または導電性材料が成膜されたガラス板、アクリル板、セラミック板などの絶縁性基板を使用できる。板厚は、素子としての剛性、及び素子発熱による温度上昇の緩和が十分であれば、特に制限されない。中間層12側の表面粗さは、中間層12の層厚と比べて十分に小さく、第1電極11と第2電極14との間で短絡が生じなければよく、例えばRaが0.1μm以下であれば適宜調整可能である。また、中間層12や第2電極14が耐えられるものであれば、柔軟性のある基板を使用してもよい。   The 1st electrode 11 consists of a support body provided with electrical conductivity, such as a metal plate. The material only needs to have sufficient electrical conductivity. Specific examples include a metal plate such as an Al plate, a Cu plate, and a SUS plate, a semiconductor substrate that is highly doped with impurities such as B, Al, N, and P, and An insulating substrate such as a glass plate, an acrylic plate, or a ceramic plate on which a metal or conductive material is formed can be used. The plate thickness is not particularly limited as long as the rigidity as the element and the relaxation of the temperature rise due to element heat generation are sufficient. The surface roughness on the intermediate layer 12 side is sufficiently smaller than the layer thickness of the intermediate layer 12, and it is sufficient that no short circuit occurs between the first electrode 11 and the second electrode 14, for example, Ra is 0.1 μm or less. If so, it can be appropriately adjusted. In addition, a flexible substrate may be used as long as the intermediate layer 12 and the second electrode 14 can withstand.

中間層12は、絶縁性樹脂、導電性樹脂、絶縁性微粒子のうち1つ以上を含んだものより成る。また、この構成に金属微粒子を添加したものがより好ましい。本実施形態では、図1で示すように絶縁性樹脂121及び金属微粒子123を混合したものを中間層12として用いている。中間層12の層厚は0.3〜5.0μmが好ましい。   The intermediate layer 12 is composed of one or more of insulating resin, conductive resin, and insulating fine particles. Moreover, what added metal microparticles | fine-particles to this structure is more preferable. In the present embodiment, as shown in FIG. 1, a mixture of an insulating resin 121 and metal fine particles 123 is used as the intermediate layer 12. The layer thickness of the intermediate layer 12 is preferably 0.3 to 5.0 μm.

絶縁性樹脂121は、絶縁性を有する材料であれば特に制限がないため、樹脂のほとんどが使用できる。例えば、シリコーン樹脂を使用でき、その硬化タイプは特に制限されない。   Since the insulating resin 121 is not particularly limited as long as it is an insulating material, most of the resin can be used. For example, a silicone resin can be used, and its curing type is not particularly limited.

金属微粒子123は、どの金属種も制限なく使用でき、酸化に強いことから、例えばAu、Pt、Pd、Agなどがより好ましい。また、粒径は上記絶縁性微粒子122より小さい必要があり、その範囲内において平均粒径が3〜20nmであることが好ましい。   For the metal fine particles 123, any metal species can be used without limitation, and for example, Au, Pt, Pd, Ag, and the like are more preferable because they are resistant to oxidation. Further, the particle size needs to be smaller than the insulating fine particles 122, and the average particle size within the range is preferably 3 to 20 nm.

電極接着層13は、材料を構成する分子の代表的な結合距離Xが、第2電極14及び中間層12をそれぞれ構成する分子の代表的な結合距離Xの間の値となる材料から成る。複雑な分子の場合、その分子の構造を特徴づける部位の第一隣接原子間の結合距離を数値Xとすればよく、例えば樹脂のような高分子は、骨格である主鎖の第一隣接原子間結合距離とすればよい。   The electrode adhesive layer 13 is made of a material in which a typical bond distance X of molecules constituting the material is a value between the typical bond distances X of molecules constituting the second electrode 14 and the intermediate layer 12, respectively. In the case of a complex molecule, the bond distance between the first adjacent atoms at the site characterizing the structure of the molecule may be a numerical value X. For example, a polymer such as a resin has a first adjacent atom in the main chain as a skeleton. The inter-bonding distance may be used.

上記のような構成をとる理由は、この数値Xは第2電極14と電極接着層13、電極接着層13と中間層12の各々の境界の密着性を決める主要なパラメータであり、互いの層の材料において、数値Xの対数変換された値logXが近い値であるほど、密着性は向上するためである。   The reason for adopting the configuration as described above is that the numerical value X is a main parameter that determines the adhesion of each boundary between the second electrode 14 and the electrode adhesive layer 13, and the electrode adhesive layer 13 and the intermediate layer 12. This is because the closer the logarithmically converted value logX of the numerical value X is, the better the adhesion is.

ここで、密着性向上の原理について説明する。全体として周期構造をもつ材料には、歪みが集中する部位が存在せず、亀裂、剥離は起き難い。しかし、1つの周期構造と、異なる1つの周期構造の界面には連続性は存在せず、構造は乱れ欠損が生じている。このため歪みが局所的に集中し、亀裂、剥離などが発生し易い。周期構造の重要なパラメータは格子定数である。格子定数が近い値をもつ周期構造間の界面は、構造の連続性をもち、界面にかかる歪みが分散されて、亀裂、剥離などが起き難くなる。材料は必ずしも周期構造をもつわけではないため、これを一般化し、格子定数に近い性質をもつパラメータとなるものが第一隣接原子間の結合距離である。密着性は、界面における原子間力が支配的とされる。このため、互いの層の材料の第一隣接原子間の結合距離の対数値、つまり数値logXが近い場合、層間の近接し合う原子が増加し、原子間力の総和として密着性は向上することになる。   Here, the principle of improving adhesion will be described. A material having a periodic structure as a whole does not have a portion where strain is concentrated, and cracks and separation are unlikely to occur. However, there is no continuity at the interface between one periodic structure and one different periodic structure, and the structure has a disordered defect. For this reason, strain is concentrated locally, and cracks, peeling and the like are likely to occur. An important parameter of the periodic structure is the lattice constant. The interface between the periodic structures having a lattice constant close to each other has the continuity of the structure, and the strain applied to the interface is dispersed, so that cracks, peeling, and the like do not easily occur. Since the material does not necessarily have a periodic structure, this is generalized, and the parameter having a property close to the lattice constant is the bond distance between the first adjacent atoms. Adhesion is dominated by atomic forces at the interface. For this reason, when the logarithmic value of the bond distance between the first adjacent atoms of the material of each layer, that is, the value logX is close, the number of adjacent atoms increases between layers, and the adhesion is improved as the sum of atomic forces. become.

以上より、電極接着層13としては、材料を構成する分子の代表的な結合距離が、電極接着層13の上下の層となる第2電極14と中間層12のそれぞれを構成する分子の代表的な結合距離の間の値であることが望ましい。このような場合には高い密着性を得ることができる。   As described above, as the electrode adhesive layer 13, the typical bond distances of molecules constituting the material are representative of the molecules constituting each of the second electrode 14 and the intermediate layer 12 which are the upper and lower layers of the electrode adhesive layer 13. It is desirable that the value be between a certain coupling distance. In such a case, high adhesion can be obtained.

本実施形態のように中間層12の主材料が絶縁性樹脂121である場合、電極接着層13としては、金属が好ましく、Ti、Cr、Ni、Alなどの第3及び第4周期金属元素が特に好ましい。   When the main material of the intermediate layer 12 is the insulating resin 121 as in this embodiment, the electrode adhesive layer 13 is preferably a metal, and third and fourth periodic metal elements such as Ti, Cr, Ni, and Al are used. Particularly preferred.

電極接着層13の層厚は、大きくなるほど第2電極14と中間層12の密着性が高まるため、第2電極14の破壊寿命は向上する。しかし同時に、電源2の一定の電圧に対する電子放出量は少し低下する傾向にある。これは、第2電極14と中間層12の密着性が高まることによって生じる次の2つの相反する作用によるものと考えられる。1つ目は、第2電極14と中間層12の境界の接触抵抗が抑制され、電子放出素子1を流れる電流が増大することで、それに伴って電子放出量も増大する作用である。2つ目は、第2電極14の破壊が過度に抑制され、第2電極14の欠損領域が低減することで、従来、外部へ放出されていた電子が第2電極14によって散乱緩和され、真空障壁を突破できず放出されなくなる作用である。これら2つの作用は、一般的には後者の方が強い傾向にある。したがって、高放出量及び長寿命の両立を考慮すると、電極接着層13の層厚は2〜30nmが好ましく、5〜20nmが特に好ましい。この範囲であれば、電子放出量と寿命の観点より、良質の電子放出素子を実現することが可能となる。   As the layer thickness of the electrode adhesive layer 13 increases, the adhesion between the second electrode 14 and the intermediate layer 12 increases, so that the fracture life of the second electrode 14 is improved. At the same time, however, the amount of electron emission with respect to a certain voltage of the power supply 2 tends to decrease slightly. This is considered to be due to the following two conflicting actions caused by the increased adhesion between the second electrode 14 and the intermediate layer 12. The first function is that the contact resistance at the boundary between the second electrode 14 and the intermediate layer 12 is suppressed, and the current flowing through the electron-emitting device 1 is increased, whereby the amount of electron emission is increased accordingly. Second, the destruction of the second electrode 14 is excessively suppressed, and the defect region of the second electrode 14 is reduced, so that electrons conventionally emitted to the outside are scattered and relaxed by the second electrode 14, and vacuum It is an action that cannot be released because it cannot break through the barrier. These two effects generally tend to be stronger in the latter. Therefore, in consideration of the compatibility between a high emission amount and a long life, the layer thickness of the electrode adhesive layer 13 is preferably 2 to 30 nm, and particularly preferably 5 to 20 nm. Within this range, it is possible to realize a high-quality electron-emitting device from the viewpoint of electron emission amount and lifetime.

第2電極14は、導電性材料の薄膜から成る。材料は、高い電気伝導性を備えていればよく、金属材料であることが好ましい。具体例としては、Au、Pt、Pd、Agなどを含む金属が使用できる。中でも、大気中で駆動することを想定した場合、酸化などの化学反応を起こさないAuが最も好ましい。層厚は、大きすぎると、第2電極14の破壊が過度に抑制され、欠損領域が低減することで、電子放出量が低減する。反対に、小さすぎると、第2電極14の面内電気伝導性が低下し、電子放出素子1として無視できない大きさの抵抗をもつようになる。すると、第1電極11と第2電極14の間には均一な電圧がかからず、電子放出量の面内均一性が低下する。また、破壊耐性が低下し、短時間の駆動により第2電極14は破壊されてしまう。さらに、膜厚が小さすぎると亀裂や剥離といった問題も生じる。このため、第2電極14の層厚は20〜100nmの範囲内が好ましい。   The second electrode 14 is made of a thin film of a conductive material. The material only needs to have high electrical conductivity, and is preferably a metal material. As a specific example, a metal containing Au, Pt, Pd, Ag, or the like can be used. Of these, Au, which does not cause a chemical reaction such as oxidation, is most preferable when driving in the atmosphere is assumed. When the layer thickness is too large, the destruction of the second electrode 14 is excessively suppressed, and the amount of electron emission is reduced by reducing the defect region. On the other hand, if it is too small, the in-plane electrical conductivity of the second electrode 14 is lowered, and the electron-emitting device 1 has a resistance that cannot be ignored. Then, a uniform voltage is not applied between the first electrode 11 and the second electrode 14, and the in-plane uniformity of the amount of electron emission is reduced. In addition, the destruction resistance is reduced, and the second electrode 14 is destroyed by a short drive. Furthermore, if the film thickness is too small, problems such as cracks and peeling occur. For this reason, the layer thickness of the second electrode 14 is preferably in the range of 20 to 100 nm.

次に、本実施形態における電子放出素子1の作製方法について説明する。まず、アルコラート処理が施されたAgナノ粒子、及びイソプロピルアルコール溶媒中のシリコーン溶液を所望の分量だけ試薬瓶に量り取って混合し、場合によってはイソプロピルアルコールを用いてさらに希釈し、超音波洗浄機に5分間ほどかけて分散混合する。このとき、Agナノ粒子とシリコーン固体分の質量比はおよそ1:5である。十分に溶液中のAgナノ粒子が分散したことを確認後、スピンコート法により第1電極11となるAl基板上に中間層12として塗布する。このときの回転速度は3000rpmである。   Next, a method for manufacturing the electron-emitting device 1 in the present embodiment will be described. First, Ag nanoparticles treated with alcoholate and a silicone solution in an isopropyl alcohol solvent are weighed and mixed in a reagent bottle in a desired amount, and if necessary, further diluted with isopropyl alcohol. Disperse and mix for about 5 minutes. At this time, the mass ratio of Ag nanoparticles and silicone solids is approximately 1: 5. After confirming that the Ag nanoparticles in the solution are sufficiently dispersed, the intermediate layer 12 is applied on the Al substrate to be the first electrode 11 by spin coating. The rotation speed at this time is 3000 rpm.

中間層12をムラなく塗布された基板11は、塗液膜が乾燥及び硬化するまで1日以上室温大気中で保管する。硬化後の膜厚は断面走査型透過電子顕微鏡(断面STEM)、表面粗さ計、及びレーザー顕微鏡等を用いて測定した結果、およそ1.5μmであった。   The substrate 11 on which the intermediate layer 12 is uniformly applied is stored in the air at room temperature for one day or more until the coating film is dried and cured. The film thickness after curing was approximately 1.5 μm as a result of measurement using a cross-sectional scanning transmission electron microscope (cross-section STEM), a surface roughness meter, a laser microscope, and the like.

シリコーン樹脂の硬化確認後、中間層12が形成された基板11は、所望の電極パターン用のメタルマスクを貼り合わせて真空蒸着装置のチャンバ内へ導入され、ロータリーポンプ及びクライオポンプによりチャンバ内を真空引きし、10−5Pa程度の高真空領域に達したところで、電極接着層13となるTiの蒸着を開始する。このときの蒸着速度は0.3nm/secであり、この膜厚は水晶振動子を用いて測定した。Tiを目的の膜厚まで成膜し終えると、大気開放せず高真空を保ったまま、10分間放置する。 After confirming the curing of the silicone resin, the substrate 11 on which the intermediate layer 12 is formed is introduced into the chamber of the vacuum vapor deposition apparatus with a metal mask for a desired electrode pattern, and the inside of the chamber is evacuated by a rotary pump and a cryopump. Then, when reaching a high vacuum region of about 10 −5 Pa, deposition of Ti that becomes the electrode adhesive layer 13 is started. The vapor deposition rate at this time was 0.3 nm / sec, and this film thickness was measured using a crystal resonator. When the Ti film is formed to the desired thickness, it is left for 10 minutes while maintaining a high vacuum without opening to the atmosphere.

その後、10−5Pa程度の高真空領域を保った状態で、第2電極14となるAuの蒸着を開始する。このときの蒸着速度は0.3nm/secである。Auの蒸着は、チャンバ内の温度が上昇しやすいため、基板を保持するホルダ周辺を水冷方式などで冷却し、温度を管理する。このときの基板の温度は80℃以下と見積もられた。AuをTiと合わせて50nmとなるまで成膜し終えると、そのまま10分間放置する。その後、真空を破って大気を導入し、完成した電子放出素子1を取り出す。 Thereafter, deposition of Au to be the second electrode 14 is started in a state where a high vacuum region of about 10 −5 Pa is maintained. The vapor deposition rate at this time is 0.3 nm / sec. Since deposition of Au tends to raise the temperature in the chamber, the temperature around the holder holding the substrate is cooled by a water cooling method or the like to control the temperature. The temperature of the substrate at this time was estimated to be 80 ° C. or less. When the film formation of Au and Ti to 50 nm is completed, the film is left as it is for 10 minutes. Thereafter, the vacuum is broken and the atmosphere is introduced, and the completed electron-emitting device 1 is taken out.

<実施例>
次に、実施例について説明する。本実施例では、電極接着層13が追加されることで、第2電極14の破壊が適度に抑制された具体例を示す。
<Example>
Next, examples will be described. In the present embodiment, a specific example in which the destruction of the second electrode 14 is moderately suppressed by adding the electrode adhesive layer 13 will be described.

まず、本実施例における電子放出素子1の構成について説明する。第1電極11は、厚さが0.5mm、表面粗さRaが0.01〜0.02μmのAl板を使用した。中間層12は、絶縁性樹脂121、及び金属微粒子123から成り、絶縁性樹脂121として室温硬化型のシリコーン樹脂、金属微粒子123として平均粒径10nmのAgナノ粒子、第2電極14としては、Auを使用した。電極接着層13は、Tiを使用した。上述の製造方法にて電極接着層13の層厚が5nm、15nm、25nmの3種類の電子放出素子1a〜1cを作製した。また、比較例として、電極接着層13のない電子放出素子5の計4種類を作製し、それぞれの電子放出量を測定した。   First, the configuration of the electron-emitting device 1 in the present embodiment will be described. As the first electrode 11, an Al plate having a thickness of 0.5 mm and a surface roughness Ra of 0.01 to 0.02 μm was used. The intermediate layer 12 includes an insulating resin 121 and metal fine particles 123. The insulating resin 121 is a room temperature curable silicone resin, the metal fine particles 123 are Ag nanoparticles having an average particle diameter of 10 nm, and the second electrode 14 is Au. It was used. The electrode adhesive layer 13 used Ti. Three types of electron-emitting devices 1a to 1c having a thickness of the electrode adhesive layer 13 of 5 nm, 15 nm, and 25 nm were manufactured by the above-described manufacturing method. As a comparative example, a total of four types of electron-emitting devices 5 without the electrode adhesive layer 13 were produced, and the amount of each electron emission was measured.

ここで、電子放出装置A1の駆動方法、及び電子放出量の測定方法について説明する。図2は、本実施例における電子放出装置A1及び該電子放出素子A1より放出された放出電子を回収測定する周辺装置Bの模式図である。電子放出装置A1は電子放出素子1、及び電源2から成り、周辺装置Bは電極3、及び電源4から成る。本実施例では、電源2は高周波電圧源及び電流計を兼ね備え、電源4は高圧電源及び電流計を兼ね備える。また、電極3はAl板を使用した。   Here, a method for driving the electron emission device A1 and a method for measuring the amount of electron emission will be described. FIG. 2 is a schematic diagram of the electron emission device A1 and the peripheral device B that collects and measures the emitted electrons emitted from the electron emission element A1 in this embodiment. The electron emission device A1 includes an electron emission element 1 and a power source 2, and the peripheral device B includes an electrode 3 and a power source 4. In this embodiment, the power source 2 has both a high frequency voltage source and an ammeter, and the power source 4 has both a high voltage power source and an ammeter. The electrode 3 was an Al plate.

まず、電子放出素子1の第1電極11及び第2電極14を電源2と接続し、第2電極14と接続されている線をアースに落とした。次に、電源2により第2電極14に5kHz矩形波でデューティー比30%のマイナスパルス電圧を印加した。電子放出素子1から放出される電子を測定するため、電子放出素子1に対向して第2電極14から0.5mm離れた位置に電極3を設置し、電源4の片側を電極3に電気的に接続し、他方をアースに落とした。次に電源4により電極3に500V印加した。電子放出素子1から放出された電子は、電子放出素子1と電極3の間の空間電界1MV/mにより、そのほとんどが電極3により回収される。これを電源4の電流計で測定した。   First, the first electrode 11 and the second electrode 14 of the electron-emitting device 1 were connected to the power source 2 and the line connected to the second electrode 14 was dropped to ground. Next, a negative pulse voltage having a duty ratio of 30% was applied to the second electrode 14 by the power source 2 as a 5 kHz rectangular wave. In order to measure electrons emitted from the electron-emitting device 1, the electrode 3 is installed at a position 0.5 mm away from the second electrode 14 so as to face the electron-emitting device 1, and one side of the power source 4 is electrically connected to the electrode 3. Connected to the other and dropped to ground. Next, 500 V was applied to the electrode 3 by the power source 4. Most of the electrons emitted from the electron-emitting device 1 are collected by the electrode 3 due to the spatial electric field 1 MV / m between the electron-emitting device 1 and the electrode 3. This was measured with an ammeter of the power source 4.

電子放出素子に印加する電圧は、ON時の電圧が0Vから−20Vまで、昇圧速度−0.1V/secで掃引し、−20Vに達したところで電源2を切断した。この駆動処理はフォーミング処理と呼ばれ、半絶縁破壊を伴っている。同様のフォーミング処理を繰り返すことで、電子放出素子の電子放出特性は次第に安定化するため、この処理を3回繰り返した。さらに、耐久試験として、10時間、電源2より5kHz矩形波でデューティー比30%のマイナスパルス電圧−20Vを第1電極11に印可し続け、その後の第2電極14の破壊具合を観察した。   The voltage applied to the electron-emitting device was swept from 0 V to −20 V at a voltage increase rate of −0.1 V / sec. When the voltage reached −20 V, the power source 2 was turned off. This driving process is called a forming process and is accompanied by a semi-insulation breakdown. By repeating the same forming process, the electron emission characteristics of the electron-emitting device are gradually stabilized. This process was repeated three times. Further, as a durability test, a negative pulse voltage of −20 V having a duty ratio of 30% was continuously applied from the power source 2 to the first electrode 11 from the power source 2 for 10 hours, and the subsequent breakdown of the second electrode 14 was observed.

図3は、電子放出素子1a〜1c、5の初期電子放出量及び耐久試験を行った結果を示した表である。フォーミング処理が完了した電子放出素子1a〜1c、5はすべて、電子の放出を確認することができた。その電子放出量は電極接着層13が増加するにつれて減少するが、最も厚く成膜したAu(25nm)/Ti(25nm)の電子放出素子1cでも十分な電子放出量が確認された。   FIG. 3 is a table showing the initial electron emission amount and the durability test results of the electron-emitting devices 1a to 1c and 5. All of the electron-emitting devices 1a to 1c and 5 that have completed the forming process were able to confirm the emission of electrons. The amount of electron emission decreases as the electrode adhesive layer 13 increases. However, a sufficient amount of electron emission was confirmed even in the electron emission element 1c of Au (25 nm) / Ti (25 nm) which is the thickest.

また、耐久試験の結果、電極接着層13として、中間層12上にTiを成膜した電子放出素子1a〜1cはみな、電極接着層13を設けない電子放出素子5と比べて、破壊面積が大きく低下した。第2電極14の適切な破壊抑制に対する電極接着層13の効果が有意な差となって現れた。   In addition, as a result of the durability test, all of the electron-emitting devices 1a to 1c in which Ti is formed on the intermediate layer 12 as the electrode adhesive layer 13 have a breakdown area as compared with the electron-emitting device 5 without the electrode adhesive layer 13 provided. It was greatly reduced. The effect of the electrode adhesive layer 13 with respect to appropriate destruction suppression of the second electrode 14 appeared as a significant difference.

(実施形態2)
次に、実施形態2について説明する。本実施形態においては、上記実施形態1で用いた電子放出素子の中間層の組成が異なる点以外は、上記実施形態と同じである。
(Embodiment 2)
Next, Embodiment 2 will be described. The present embodiment is the same as the above embodiment except that the composition of the intermediate layer of the electron-emitting device used in Embodiment 1 is different.

図4は、本実施形態における電子放出素子1dを用いた電子放出装置A2の構成を示す模式図である。本実施形態では、中間層12aは絶縁性微粒子122、及び金属微粒子123から成り、絶縁性微粒子122として平均粒径110nmのSiO粒子、金属微粒子123として平均粒径10nmのAgナノ粒子を使用した。 FIG. 4 is a schematic diagram showing a configuration of an electron emission device A2 using the electron emission element 1d in the present embodiment. In this embodiment, the intermediate layer 12 a is composed of insulating fine particles 122 and metal fine particles 123, and SiO 2 particles having an average particle diameter of 110 nm are used as the insulating fine particles 122, and Ag nanoparticles having an average particle diameter of 10 nm are used as the metal fine particles 123. .

絶縁性微粒子122は、絶縁性を有する材料であれば特に制限がない。例えば、SiO、Al、TiOなどが使用できる。また、有機高分子から成る微粒子を用いてもよい。粒径は、上記の金属微粒子123より大きい必要があり、その範囲内において平均粒径が10〜1000nmであることが好ましい。 The insulating fine particles 122 are not particularly limited as long as they are insulating materials. For example, SiO 2, Al 2 O 3 , TiO 2 or the like can be used. Further, fine particles made of an organic polymer may be used. The particle size needs to be larger than the metal fine particles 123 described above, and the average particle size within the range is preferably 10 to 1000 nm.

次に、本実施形態における電子放出素子1dの作製方法について説明する。まず、アルコラート処理が施されたAgナノ粒子、及びトルエンを所望の分量だけ試薬瓶に量り取って混合し、超音波洗浄機に5分間ほどかけて分散混合する。十分に分散されたところで、この分散液にSiO粒子を所望の分量だけ投入し、再び5分間ほどかけて分散混合する。このとき、Agナノ粒子とSiO粒子の質量比はおよそ1:9である。十分に液中のAgナノ粒子、及びSiO粒子が分散したことを確認後、スピンコート法により第1電極11となるAl基板上に中間層12aとして塗布する。このときの回転速度は3000rpmである。中間層12aをムラなく塗布された基板11は、1時間ほど室温で自然乾燥させる。このとき、得られた中間層12aも上記実施形態と同様に測定した結果、およそ0.6μmであった。 Next, a method for manufacturing the electron-emitting device 1d in the present embodiment will be described. First, Ag nanoparticles treated with alcoholate and toluene are weighed and mixed in a desired amount in a reagent bottle, and dispersed and mixed in an ultrasonic cleaner for about 5 minutes. When fully dispersed, SiO 2 particles are added to the dispersion in a desired amount, and again dispersed and mixed for about 5 minutes. At this time, the mass ratio of Ag nanoparticles and SiO 2 particles is approximately 1: 9. After confirming that the Ag nanoparticles and the SiO 2 particles in the liquid are sufficiently dispersed, the intermediate layer 12a is applied on the Al substrate to be the first electrode 11 by spin coating. The rotation speed at this time is 3000 rpm. The substrate 11 on which the intermediate layer 12a is uniformly applied is naturally dried at room temperature for about 1 hour. At this time, the obtained intermediate layer 12a was also measured in the same manner as in the above embodiment, and as a result, it was approximately 0.6 μm.

中間層12aが形成された基板11は、所望の電極パターン用のメタルマスクを貼り合わせて真空蒸着装置のチャンバ内へ導入され、ロータリーポンプ及びクライオポンプによりチャンバ内を真空引きし、10−5Pa程度の高真空領域に達したところで、電極接着層13となるTiの蒸着を開始する。このときの蒸着速度は0.3nm/secであり、この膜厚は水晶振動子を用いて測定した。Tiを5.0nmまで成膜し終えると、大気開放せず高真空を保ったまま、10分間放置した。その後、10−5Pa程度の高真空領域を保った状態で、第2電極14となるAuの蒸着を開始した。このときの蒸着速度は0.3nm/secである。Auの蒸着は、チャンバ内の温度が上昇しやすいため、基板を保持するホルダ周辺を水冷方式などで冷却し、温度を管理する。このときの基板の温度は80℃以下と見積もられた。Auを45.0nmまで成膜し終えると、そのまま10分間放置した。その後、真空を破って大気を導入し、完成した電子放出素子1を取り出す。 Substrate 11 which the intermediate layer 12a has been formed is introduced into the chamber of the vacuum evaporation apparatus by bonding a metal mask for the desired electrode pattern, and vacuum in the chamber by a rotary pump and a cryopump, 10 -5 Pa When the high vacuum region is reached, deposition of Ti that becomes the electrode adhesive layer 13 is started. The vapor deposition rate at this time was 0.3 nm / sec, and this film thickness was measured using a crystal resonator. When the Ti film was formed to 5.0 nm, it was left for 10 minutes while maintaining a high vacuum without opening to the atmosphere. Thereafter, vapor deposition of Au serving as the second electrode 14 was started while maintaining a high vacuum region of about 10 −5 Pa. The vapor deposition rate at this time is 0.3 nm / sec. Since deposition of Au tends to raise the temperature in the chamber, the temperature around the holder holding the substrate is cooled by a water cooling method or the like to control the temperature. The temperature of the substrate at this time was estimated to be 80 ° C. or less. When the Au film was formed to 45.0 nm, it was left for 10 minutes. Thereafter, the vacuum is broken and the atmosphere is introduced, and the completed electron-emitting device 1 is taken out.

上述の方法により第2電極14がAu(45nm)及び電極接着層13がTi(5nm)の電子放出素子1dを作製した。また、比較例として、同様の作製方法により電極接着層のないAu(50nm)の素子5aを作製し、それぞれの電子放出量を上記実施例と同様に測定した。   The electron-emitting device 1d in which the second electrode 14 is Au (45 nm) and the electrode adhesive layer 13 is Ti (5 nm) was manufactured by the above-described method. Further, as a comparative example, an Au (50 nm) element 5a without an electrode adhesive layer was produced by the same production method, and the amount of each electron emission was measured in the same manner as in the above example.

上記実施形態1と同様にフォーミング処理を3回繰り返し、さらに、耐久試験として、10時間、電源2よりON時−20Vのマイナスパルス電圧を第1電極11に印可し続け、その後の第2電極14の破壊具合を観察した。   In the same manner as in the first embodiment, the forming process is repeated three times. Further, as an endurance test, a negative pulse voltage of −20 V is continuously applied to the first electrode 11 from the power source 2 for 10 hours, and then the second electrode 14 thereafter. The degree of destruction was observed.

フォーミング処理が完了した電子放出素子1d及び5aは、電子放出量に倍以上の差はなかった。また、耐久試験においては、結果は、有意な差となって現れ、電極接着層13のある電子放出素子1dは電子放出素子5aと比べて過度の破壊が抑制された。   The electron-emitting devices 1d and 5a that completed the forming process did not have a difference of more than double in the amount of electron emission. Further, in the durability test, the result appeared as a significant difference, and the electron-emitting device 1d having the electrode adhesive layer 13 was suppressed from being excessively broken as compared with the electron-emitting device 5a.

(実施形態3)
次に、実施形態3について説明する。本実施形態では、電極接着層が中間層上に部分的に設けられている点が上記実施形態のいずれとも異なる。
(Embodiment 3)
Next, Embodiment 3 will be described. This embodiment is different from any of the above embodiments in that the electrode adhesive layer is partially provided on the intermediate layer.

図5は、本実施形態における電子放出装置1eの平面図、図6はその模式図を示す。本実施形態における電子放出素子1eは、第1電極11、中間層12、及び第2電極14は実施形態1と同一である。電極接着層は全面に成膜されず、図5に示すように縞状に部分的に成膜した。なお、図5において、電極接着層13aは、第2電極14よりも下層に形成されているが、第2電極14の層が薄いため、透過して見えている状態である。   FIG. 5 is a plan view of the electron emission device 1e in the present embodiment, and FIG. 6 is a schematic diagram thereof. In the electron-emitting device 1e in the present embodiment, the first electrode 11, the intermediate layer 12, and the second electrode 14 are the same as those in the first embodiment. The electrode adhesive layer was not formed on the entire surface, but was partially formed in a stripe pattern as shown in FIG. In FIG. 5, the electrode adhesive layer 13 a is formed in a lower layer than the second electrode 14, but is in a state of being seen through because the second electrode 14 is thin.

部分的に成膜する理由は次のとおりである。この目的は、高い電子放出性能と長寿命の両立にある。寿命を決定するプロセスは、破壊そのものではなく断線が大きく占めている。ここで言う断線とは、第2電極14の破壊箇所は素子を駆動すると次第に数が増加し、個々に大きく成長するため、これらが輪のように繋がり合い、その輪の内側が不導通となることを指す。このため断線が起きる場合、電子放出素子の有効面積の減少速度が加速され短寿命化する。図5に示すように電極接着層13aを縞状に成膜すると、電極接着層13aの直上は破壊が抑制され、断線が起き難い。このように電極接着層13aを部分的に配置すると、長寿命化の効果は大きい。ここで、成膜パターンは線状かつ多連結であることが好ましい。本実施形態では作製の利便性上、縞状パターンをとっているがこれに限定されない。また、電極接着層13aが成膜されないエリアは、電子放出性能が高い。このため電極接着層13aは全面でなく、断線が起き難いパターンを成膜することで、高い電子放出性能と長寿命がより一層高いレベルで両立される。   The reason why the film is partially formed is as follows. The purpose is to achieve both high electron emission performance and long life. The process of determining the life is dominated by disconnection, not destruction itself. The disconnection here means that the number of broken portions of the second electrode 14 gradually increases when the element is driven and grows large individually, so that they are connected like a ring, and the inside of the ring becomes non-conductive. Refers to that. For this reason, when disconnection occurs, the reduction rate of the effective area of the electron-emitting device is accelerated and the life is shortened. As shown in FIG. 5, when the electrode adhesive layer 13a is formed in a striped pattern, destruction is suppressed immediately above the electrode adhesive layer 13a, and disconnection hardly occurs. When the electrode adhesive layer 13a is partially disposed in this way, the effect of extending the life is great. Here, the film formation pattern is preferably linear and multi-connected. In this embodiment, a striped pattern is used for the convenience of production, but the present invention is not limited to this. Further, the area where the electrode adhesive layer 13a is not formed has high electron emission performance. For this reason, the electrode adhesive layer 13a is formed not on the entire surface but on a pattern in which disconnection hardly occurs, so that both high electron emission performance and long life can be achieved at a higher level.

次に、本実施形態における電子放出素子1eの作製方法について説明する。本実施形態の作製方法は、中間層12を形成し終える工程まで実施形態1と同様である。   Next, a method for manufacturing the electron-emitting device 1e in the present embodiment will be described. The manufacturing method of this embodiment is the same as that of Embodiment 1 up to the step of completing the formation of the intermediate layer 12.

まず、中間層12が形成された基板11に、0.1mm幅、0.2mmピッチの縞状パターンが形成されたメタルマスクを貼り合わせて真空蒸着装置のチャンバ内へ導入する。次に、ロータリーポンプ及びクライオポンプによりチャンバ内を真空引きし、10−5Pa程度の高真空領域に達したところで、電極接着層13となるTiの蒸着を開始した。このときの蒸着速度は0.3nm/secであり、この膜厚は水晶振動子を用いて測定した。Tiを5.0nmまで成膜し終えると、大気開放せず高真空を保ったまま、10分間放置した。 First, a metal mask on which a striped pattern having a width of 0.1 mm and a pitch of 0.2 mm is bonded to the substrate 11 on which the intermediate layer 12 is formed, and is introduced into the chamber of the vacuum evaporation apparatus. Next, the inside of the chamber was evacuated by a rotary pump and a cryopump, and when a high vacuum region of about 10 −5 Pa was reached, vapor deposition of Ti serving as the electrode adhesive layer 13 was started. The vapor deposition rate at this time was 0.3 nm / sec, and this film thickness was measured using a crystal resonator. When the Ti film was formed to 5.0 nm, it was left for 10 minutes while maintaining a high vacuum without opening to the atmosphere.

その後、10−5Pa程度の高真空領域を保った状態で、Auの蒸着を開始した。このときの蒸着速度は0.3nm/secである。Auの蒸着は、チャンバ内の温度が上昇しやすいため、基板を保持するホルダ周辺を水冷方式などで冷却し、温度を管理する。Auを15.0nmまで成膜し終えると、そのまま10分間放置した。その後、真空を破って大気を導入し、第2電極用メタルマスクに交換し、再び蒸着装置に入れた。10−5Pa程度の高真空領域に達したところで、電極接着層13となる再びAuの蒸着を開始した。Auを50.0nmまで成膜し終えると、そのまま10分間放置した。その後、真空を破って大気を導入し、完成した電子放出素子1を取り出した。このようにして、電極接着層13は、下部にTiを5nm、上部にAuを15nmよりなる。Tiの上部にAuを成膜する理由は、作製の都合上、電極接着層13を成膜後、メタルマスク交換のために大気中に取り出す必要があり、Tiが酸化されることを防止するためである。 Thereafter, deposition of Au was started in a state where a high vacuum region of about 10 −5 Pa was maintained. The vapor deposition rate at this time is 0.3 nm / sec. Since deposition of Au tends to raise the temperature in the chamber, the temperature around the holder holding the substrate is cooled by a water cooling method or the like to control the temperature. When Au was deposited to 15.0 nm, it was left as it was for 10 minutes. Thereafter, the vacuum was broken and the atmosphere was introduced, the metal mask for the second electrode was replaced, and the film was again placed in the vapor deposition apparatus. When the high vacuum region of about 10 −5 Pa was reached, the deposition of Au to be the electrode adhesive layer 13 was started again. When the Au film was formed to 50.0 nm, it was left as it was for 10 minutes. Thereafter, the vacuum was broken and the atmosphere was introduced, and the completed electron-emitting device 1 was taken out. Thus, the electrode adhesive layer 13 is made of 5 nm of Ti at the bottom and 15 nm of Au at the top. The reason for depositing Au on top of Ti is to prevent Ti from being oxidized because, for the sake of production, it is necessary to take out the electrode adhesive layer 13 into the atmosphere after replacing the metal mask to replace the metal mask. It is.

上述の方法により第2電極14がAu(45nm)及び電極接着層13が縞状のAu(15nm)/Ti(5nm)の電子放出素子1eを作製した。完成後の電子放出素子1eにおいては、電極接着層13のAuと第2電極14のAuは、連続した層となり一体化している。   By the above-described method, an electron-emitting device 1e in which the second electrode 14 is Au (45 nm) and the electrode adhesive layer 13 is striped Au (15 nm) / Ti (5 nm) was manufactured. In the electron-emitting device 1e after completion, the Au of the electrode adhesive layer 13 and the Au of the second electrode 14 are integrated as a continuous layer.

上記実施形態1と同様にフォーミング処理を3回繰り返し、さらに、耐久試験として、10時間、電源2よりON時−20Vのマイナスパルス電圧を第1電極11に印可し続け、その後の第2電極14の破壊具合を観察した。   In the same manner as in the first embodiment, the forming process is repeated three times. Further, as an endurance test, a negative pulse voltage of −20 V is continuously applied to the first electrode 11 from the power source 2 for 10 hours, and then the second electrode 14 thereafter. The degree of destruction was observed.

電子放出素子1eの初期の電子放出量は駆動電圧20V(ON時)において5.0×10−6A/cmあり、電子放出素子1aと比較して大きな放出量が得られた。また、耐久試験後の表面観察により、電極接着層13aの直上の表面電極破壊が抑制され、上述した断線は起きていないことがわかった。この結果、本実施形態をとることにより高いレベルで高放出性能と長寿命化を同時に実現できた。 The initial electron emission amount of the electron-emitting device 1e was 5.0 × 10 −6 A / cm 2 at a driving voltage of 20 V (ON), and a large emission amount was obtained as compared with the electron-emitting device 1a. Moreover, it was found by surface observation after the durability test that the surface electrode destruction just above the electrode adhesive layer 13a was suppressed, and the above-described disconnection did not occur. As a result, by adopting this embodiment, high release performance and long life can be realized at a high level at the same time.

以上、それぞれの実施形態で説明したとおり、本発明の電子放出素子によれば、表面電極を有する電子放出素子において、高い電子放出量が得られるとともに、表面電極の過度の破壊を防止あるいは破壊を軽減することができ、長寿命化が可能な電子放出素子を得ることができる。   As described above, according to each embodiment, according to the electron-emitting device of the present invention, in the electron-emitting device having the surface electrode, a high amount of electron emission can be obtained, and excessive destruction of the surface electrode can be prevented or destroyed. An electron-emitting device that can be reduced and can have a long lifetime can be obtained.

本発明に係る電子放出素子は、例えば、電子写真方式の複写機、プリンタ、ファクシミリ等の画像形成装置の帯電装置や、電子線硬化装置、あるいは発光体と組み合わせることによる画像表示装置、または放出された電子が発生させるイオン風を利用することによるイオン風発生装置等に好適に適用することができる。   The electron-emitting device according to the present invention is, for example, an image display device combined with a charging device of an image forming apparatus such as an electrophotographic copying machine, a printer, or a facsimile, an electron beam curing device, or a light emitter, or emitted. The present invention can be preferably applied to an ion wind generator using an ion wind generated by electrons.

1、1a、1b、1c、1d、1e 電子放出素子
2 電源
3 電極
4 電源
11 第1電極
12、12a 中間層
13、13a 電極接着層
14 第2電極
121 絶縁性樹脂
122 絶縁性微粒子
123 金属微粒子
1, 1a, 1b, 1c, 1d, 1e Electron emitting device 2 Power source 3 Electrode 4 Power source 11 First electrode 12, 12a Intermediate layer 13, 13a Electrode adhesive layer 14 Second electrode 121 Insulating resin 122 Insulating fine particle 123 Metal fine particle

Claims (6)

第1電極と、第2電極と、前記第1電極と前記第2電極の間の中間層とを有し、前記第1電極と前記第2電極の間に電圧を印可することにより、前記第2電極から前記電子を放出させる電子放出素子であって、
前記第2電極と前記中間層の間に電極接着層を有することを特徴とする電子放出素子。
A first electrode; a second electrode; and an intermediate layer between the first electrode and the second electrode. By applying a voltage between the first electrode and the second electrode, the first electrode An electron-emitting device that emits the electrons from two electrodes,
An electron-emitting device comprising an electrode adhesive layer between the second electrode and the intermediate layer.
前記電極接着層は、前記第2電極と前記中間層をそれぞれ構成する分子の結合距離の間の値であることを特徴とする請求項1記載の電子放出素子。   2. The electron-emitting device according to claim 1, wherein the electrode adhesive layer has a value between bond distances of molecules constituting the second electrode and the intermediate layer. 前記電極接着層は、金属であることを特徴とする請求項1記載の電子放出素子。   The electron-emitting device according to claim 1, wherein the electrode adhesive layer is a metal. 前記電極接着層の層厚は5nm以上20nm以下であることを特徴とする請求項1から3のいずれかに記載の電子放出素子。   4. The electron-emitting device according to claim 1, wherein the electrode adhesive layer has a thickness of 5 nm to 20 nm. 前記電極接着層は、前記第2電極と前記中間層の間に部分的に配置されていることを特徴とする請求項1から4のいずれかに記載の電子放出素子。   5. The electron-emitting device according to claim 1, wherein the electrode adhesive layer is partially disposed between the second electrode and the intermediate layer. 第1電極上に中間層を形成する工程と、
前記中間層上の少なくとも一部に電極接着層を形成する工程と、
少なくとも前記電極接着層上に第2電極を形成する工程と
を含むことを特徴とする電子放出素子の製造方法。
Forming an intermediate layer on the first electrode;
Forming an electrode adhesive layer on at least a portion of the intermediate layer;
Forming a second electrode on at least the electrode adhesive layer. A method for manufacturing an electron-emitting device, comprising:
JP2013233590A 2013-11-12 2013-11-12 Electron emission element and method of manufacturing the same Pending JP2015095340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233590A JP2015095340A (en) 2013-11-12 2013-11-12 Electron emission element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233590A JP2015095340A (en) 2013-11-12 2013-11-12 Electron emission element and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2015095340A true JP2015095340A (en) 2015-05-18

Family

ID=53197617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233590A Pending JP2015095340A (en) 2013-11-12 2013-11-12 Electron emission element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2015095340A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060151777A1 (en) * 2005-01-12 2006-07-13 Naberhuis Steven L Multi-layer thin film in a ballistic electron emitter
JP2008243739A (en) * 2007-03-28 2008-10-09 Toshiba Corp Electron emission element, display device, discharge light emission device, and x-ray emission device
JP2009146891A (en) * 2007-11-20 2009-07-02 Sharp Corp Electron emission element, electron emission device, self-luminous device, image display device, air-blowing device, cooling device, electrostatic charge device, image forming device, electron beam curing device, and manufacturing method of electron emission element
JP2011175800A (en) * 2010-02-23 2011-09-08 Panasonic Electric Works Co Ltd Field emission electron source, and light-emitting device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060151777A1 (en) * 2005-01-12 2006-07-13 Naberhuis Steven L Multi-layer thin film in a ballistic electron emitter
JP2008243739A (en) * 2007-03-28 2008-10-09 Toshiba Corp Electron emission element, display device, discharge light emission device, and x-ray emission device
JP2009146891A (en) * 2007-11-20 2009-07-02 Sharp Corp Electron emission element, electron emission device, self-luminous device, image display device, air-blowing device, cooling device, electrostatic charge device, image forming device, electron beam curing device, and manufacturing method of electron emission element
JP2011175800A (en) * 2010-02-23 2011-09-08 Panasonic Electric Works Co Ltd Field emission electron source, and light-emitting device using the same

Similar Documents

Publication Publication Date Title
JP4303308B2 (en) Electron-emitting device, electron-emitting device, self-luminous device, image display device, air blower, cooling device, charging device, image forming device, electron beam curing device, and method for manufacturing electron-emitting device
US8616931B2 (en) Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
JP6425558B2 (en) Electron emitter and electron emitter
JP4990380B2 (en) Electron emitting device and manufacturing method thereof
JP2008130574A (en) Surface conduction electron emitting element and electron source using it
JP2008130573A (en) Method of manufacturing surface conduction electron emitting element
JP2010272256A (en) Electron emitting element, electron emitting device, charging device, image forming device, electron beam curing device, self-luminous device, image display device, blower, cooling device
JP5238795B2 (en) Electron emitting device and driving method thereof
JP5783798B2 (en) ELECTRON EMITTING ELEMENT AND DEVICE EQUIPPED WITH THE SAME
JP5133295B2 (en) Electron emission apparatus, self-luminous device, image display apparatus, charging apparatus, image forming apparatus, electron beam curing apparatus, and driving method of electron emission element
JP2013037784A (en) Electron emission element and manufacturing method thereof
JP2015095340A (en) Electron emission element and method of manufacturing the same
JP6227401B2 (en) Electron emitting device and electron emitting device
RU2446506C1 (en) Cell with field emission and method of its production
JP6391410B2 (en) Electron emitting device and electron emitting device
KR101121639B1 (en) Cathode structure of electron emitting device
JP5878222B2 (en) Field emission cathode device and field emission device
JP4179470B2 (en) Electron-emitting device and method for manufacturing electron-emitting device
JP2010244735A (en) Electron emission element and its manufacturing method
JP2006244857A (en) Cold cathode electron source and its manufacturing method
JP2010238470A (en) Mim type electron emitting element and mim type electron emitting device
JP6422748B2 (en) Electron emitter, electron emitter, and ion current generator
JP2010272209A (en) Electron emission element and manufacturing method of the same
JP2010225349A (en) Electron emission element, and method for manufacturing the same
JP2010267583A (en) Electron emission element and method of manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180605