JP2015094843A - Laser device - Google Patents

Laser device Download PDF

Info

Publication number
JP2015094843A
JP2015094843A JP2013233790A JP2013233790A JP2015094843A JP 2015094843 A JP2015094843 A JP 2015094843A JP 2013233790 A JP2013233790 A JP 2013233790A JP 2013233790 A JP2013233790 A JP 2013233790A JP 2015094843 A JP2015094843 A JP 2015094843A
Authority
JP
Japan
Prior art keywords
generation circuit
coaxial cable
laser
high frequency
frequency generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013233790A
Other languages
Japanese (ja)
Inventor
廣木 知之
Tomoyuki Hiroki
知之 廣木
東條 公資
Kimitada Tojo
公資 東條
次郎 齊川
Jiro Saikawa
次郎 齊川
直也 石垣
Naoya Ishigaki
直也 石垣
進吾 宇野
Shingo Uno
進吾 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2013233790A priority Critical patent/JP2015094843A/en
Publication of JP2015094843A publication Critical patent/JP2015094843A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser device in which an unintended oscillation state does not occur in a high frequency generation circuit, and which is capable of preventing heat generation in the high frequency generation circuit.SOLUTION: The laser device comprises: a light source 1a for generating a laser beam; an acoustic optical element 4 for causing the laser beam from the light source to be diffracted; a high frequency generation circuit 7 for supplying a high frequency signal to the acoustic optical element; one or more relay terminals 10a, 10b provided between the receiving end of the acoustic optical element and the transmission end of the high frequency generation circuit; and a coaxial cable 8 for connecting the high frequency generation circuit and the acoustic optical element via the one or more relay terminals. A length L of the coaxial cable from the transmission end to the relay terminals and/or a length L of the coaxial cable from the transmission end to the receiving end is L=λn/4±λ/16 (λ is the wavelength of the high frequency signal, n is an integer equal to or greater than 0).

Description

本発明は、分光装置やレーザプリンタに適用されるレーザ装置に関する。   The present invention relates to a laser device applied to a spectroscopic device or a laser printer.

音響光学素子(AO素子ともいう。)を用いたレーザ装置では、音響光学素子に高周波信号を印加して共振器のロスを高くすることにより共振器のゲインを高くし、音響光学素子をオフして共振器のロスを急激に低くして、レーザ媒質に蓄えられたエネルギーを短時間でレーザ出力として取り出している。   In a laser apparatus using an acousto-optic element (also referred to as an AO element), the gain of the resonator is increased by applying a high-frequency signal to the acousto-optic element to increase the loss of the resonator, and the acousto-optic element is turned off. Thus, the loss of the resonator is drastically reduced, and the energy stored in the laser medium is extracted as a laser output in a short time.

図4はこの種の従来のレーザ装置の構成図である(特許文献1、特許文献2)。このレーザ装置は、レーザ光を発生する半導体レーザ1と、レーザ光により励起され基本波を出射する固体レーザ媒質2と、高周波信号を発生する高周波発生回路7と、高周波回路7からの高周波信号に基づき共振器ロスを高める音響光学素子4と、固体レーザ媒質2から出力される基本波レーザ光を波長変換して出射する波長変換素子5と、ミラー3a,3bとを備えている。   FIG. 4 is a configuration diagram of this type of conventional laser apparatus (Patent Document 1 and Patent Document 2). This laser apparatus includes a semiconductor laser 1 that generates laser light, a solid-state laser medium 2 that is excited by the laser light and emits a fundamental wave, a high-frequency generation circuit 7 that generates a high-frequency signal, and a high-frequency signal from the high-frequency circuit 7. An acoustooptic device 4 that increases the resonator loss based on the wavelength, a wavelength conversion device 5 that converts the wavelength of the fundamental wave laser beam output from the solid-state laser medium 2 and emits it, and mirrors 3a and 3b are provided.

このように、音響光学素子を用いてレーザ出力や光軸、繰り返し周波数を変調するレーザ装置においては、レーザヘッドの小型化や発熱対策のために、図4に示すように、音響光学素子4と高周波発生回路7とを分離して、同軸ケーブル6により高周波発生回路7から高周波信号を音響光学素子4に供給している。   In this way, in a laser apparatus that modulates laser output, optical axis, and repetition frequency using an acoustooptic element, as shown in FIG. A high frequency signal is supplied from the high frequency generation circuit 7 to the acoustooptic device 4 by the coaxial cable 6 separately from the high frequency generation circuit 7.

同軸ケーブル6を音響光学素子4側回路に未接続のまま、電源を投入した場合には、高周波発生回路7で発生した高周波信号は同軸ケーブルの開放端で反射波を生じる。   When the power is turned on while the coaxial cable 6 is not connected to the acousto-optic element 4 side circuit, the high-frequency signal generated by the high-frequency generation circuit 7 generates a reflected wave at the open end of the coaxial cable.

なお、特許文献3には、音響光学素子と整合回路とを同一ケースに収納し、同軸ケーブルを介して駆動回路に接続される構成が開示され、ケーブル長に関する課題が示されている。   Patent Document 3 discloses a configuration in which an acoustooptic device and a matching circuit are housed in the same case and connected to a drive circuit via a coaxial cable, and a problem relating to the cable length is shown.

特開2013−65750号公報JP 2013-65750 A 特表2008−526421号公報Special table 2008-526421 gazette 特開昭61−210322号公報JP-A-61-210322

しかしながら、図4に示す同軸ケーブルの長さによっては、反射波と入射波との位相がずれるため、高周波発生回路7内において、意図しない発振状態が発生する。この発振により、高周波発生回路7内の素子が発熱し、熱暴走による素子故障や火災事故に至る恐れがある。このため、ケーブルの未接続検出機能や高周波発生回路7の冷却機能を付加する必要があった。   However, depending on the length of the coaxial cable shown in FIG. 4, the reflected wave and the incident wave are out of phase, and an unintended oscillation state occurs in the high-frequency generation circuit 7. Due to this oscillation, the elements in the high-frequency generation circuit 7 generate heat, which may lead to element failure or fire accident due to thermal runaway. For this reason, it has been necessary to add a function for detecting the disconnection of a cable and a function for cooling the high-frequency generation circuit 7.

本発明の課題は、高周波発生回路7内での意図しない発振状態が発生せず、高周波発生回路内での発熱を防ぐことができるレーザ装置を提供することにある。   An object of the present invention is to provide a laser device that does not generate an unintended oscillation state in the high-frequency generation circuit 7 and can prevent heat generation in the high-frequency generation circuit.

上記の課題を解決するために、本発明に係るレーザ装置は、レーザ光を発生する光源と、前記光源からのレーザ光を回折させる音響光学素子と、前記音響光学素子に高周波信号を供給する高周波発生回路と、前記音響光学素子の受信端と前記高周波発生回路の送信端との間に設けられた1つ以上の中継端子と、前記1つ以上の中継端子を介して前記高周波発生回路と前記音響光学素子とを接続する同軸ケーブルとを備え、前記送信端から前記中継端子までの前記同軸ケーブルの長さ、および前記送信端から前記受信端までの前記同軸ケーブルの長さの少なくとも1つの長さLがL=λn/4±λ/16(λは高周波信号の波長、nは0以上の整数)であることを特徴とする。   In order to solve the above-described problems, a laser apparatus according to the present invention includes a light source that generates laser light, an acoustooptic element that diffracts laser light from the light source, and a high-frequency signal that supplies a high-frequency signal to the acoustooptic element. A generating circuit, one or more relay terminals provided between a receiving end of the acoustooptic device and a transmitting end of the high-frequency generating circuit, and the high-frequency generating circuit via the one or more relay terminals A coaxial cable connecting the acousto-optic element, at least one of the length of the coaxial cable from the transmission end to the relay terminal and the length of the coaxial cable from the transmission end to the reception end The length L is L = λn / 4 ± λ / 16 (λ is the wavelength of the high-frequency signal, and n is an integer of 0 or more).

また、レーザ装置は、前記光源からのレーザ光により励起されるレーザ媒質と、レーザ光を反射又は透過させるミラーとを備えることを特徴とする。   Further, the laser device includes a laser medium excited by laser light from the light source, and a mirror that reflects or transmits the laser light.

本発明に係るレーザ装置によれば、送信端から中継端子までの同軸ケーブルの長さ、および送信端から受信端までの同軸ケーブルの長さの少なくとも1つの長さLがL=λn/4±λ/16とすることで、反射波の位相が、入射波と同位相又は逆位相となり、発振源と同じ位相で高周波発生回路に戻る。このため、高周波発生回路7内での意図しない発振状態が発生せず、高周波発生回路内での発熱を防ぐことができる。   According to the laser apparatus of the present invention, at least one length L of the length of the coaxial cable from the transmission end to the relay terminal and the length of the coaxial cable from the transmission end to the reception end is L = λn / 4 ±. By setting λ / 16, the phase of the reflected wave is the same as or opposite to that of the incident wave, and returns to the high frequency generation circuit with the same phase as the oscillation source. For this reason, an unintended oscillation state does not occur in the high-frequency generation circuit 7, and heat generation in the high-frequency generation circuit can be prevented.

本発明の実施例に係るレーザ装置の構成を示す図である。It is a figure which shows the structure of the laser apparatus based on the Example of this invention. 本発明の実施例に係るレーザ装置に設けられた高周波発生回路の送信端における入射波と反射波を示す図である。It is a figure which shows the incident wave and reflected wave in the transmission end of the high frequency generation circuit provided in the laser apparatus based on the Example of this invention. 本発明の実施例に係るレーザ装置において、位相が同位相又は逆位相で且つ振幅の絶対値のずれが90%以内の時の同軸ケーブルの長さを説明するための図である。In the laser apparatus which concerns on the Example of this invention, it is a figure for demonstrating the length of a coaxial cable when a phase is the same phase or an opposite phase, and the shift | offset | difference of the absolute value of an amplitude is less than 90%. 従来のレーザ装置の構成を示す図である。It is a figure which shows the structure of the conventional laser apparatus.

以下、本発明のレーザ装置の実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of a laser apparatus of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係るレーザ装置の構成を示す図である。このレーザ装置は、図1に示すように、レーザ光を発生するレーザ光源1a、音響光学素子4、レーザコントローラ9に設けられた高周波発生回路7、同軸ケーブル8、中継端子10a,10bを備えている。レーザ光源1a、および音響光学素子4は、レーザヘッド11に設けられる。   FIG. 1 is a diagram illustrating a configuration of a laser apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the laser device includes a laser light source 1a for generating laser light, an acoustooptic device 4, a high frequency generation circuit 7 provided in a laser controller 9, a coaxial cable 8, and relay terminals 10a and 10b. Yes. The laser light source 1 a and the acoustooptic device 4 are provided in the laser head 11.

音響光学素子4は、レーザ光源1aからのレーザ光を回折させる。高周波発生回路7は、音響光学素子4に高周波信号を供給する。音響光学素子4の受信端と高周波発生回路7の送信端との間には1つ以上の中継端子10a,10bが設けられている。   The acoustooptic device 4 diffracts the laser light from the laser light source 1a. The high frequency generation circuit 7 supplies a high frequency signal to the acoustooptic device 4. One or more relay terminals 10 a and 10 b are provided between the receiving end of the acoustooptic device 4 and the transmitting end of the high frequency generation circuit 7.

中継端子10a,10bの各々は、同軸ケーブル8を接続および分離する機能を有する。同軸ケーブル8は、中継端子10a,10bを介して高周波発生回路7と音響光学素子4とを接続する。   Each of the relay terminals 10 a and 10 b has a function of connecting and disconnecting the coaxial cable 8. The coaxial cable 8 connects the high frequency generation circuit 7 and the acoustooptic device 4 via the relay terminals 10a and 10b.

中継端子10aは、レーザコントローラ9に設けられ、高周波発生回路7の送信端と中継端子10aまでの同軸ケーブル8の長さがL1である。   The relay terminal 10a is provided in the laser controller 9, and the length of the coaxial cable 8 from the transmission end of the high frequency generation circuit 7 to the relay terminal 10a is L1.

中継端子10bは、レーザヘッド11に設けられ、高周波発生回路7の送信端と中継端子10bまでの同軸ケーブル8の長さがL2である。高周波発生回路7の送信端と音響光学素子4の受信端までの同軸ケーブル8の長さがL3である。   The relay terminal 10b is provided in the laser head 11, and the length of the coaxial cable 8 from the transmission end of the high frequency generation circuit 7 to the relay terminal 10b is L2. The length of the coaxial cable 8 from the transmission end of the high frequency generation circuit 7 to the reception end of the acoustooptic device 4 is L3.

送信端から中継端子10a,10bまでの同軸ケーブル8の長さL1,L2、および送信端から受信端までの同軸ケーブルL3の長さの少なくとも1つの長さLがL=λn/4±λ/16(λは高周波信号の波長、nは0以上の整数)に設定されている。   At least one length L of the length L1, L2 of the coaxial cable 8 from the transmission end to the relay terminals 10a, 10b and the length of the coaxial cable L3 from the transmission end to the reception end is L = λn / 4 ± λ / 16 (λ is the wavelength of the high-frequency signal, and n is an integer of 0 or more).

ここで、周波数をf=1/T、振幅Vの高周波信号を、長さL(m)、比誘電率εの同軸ケーブルで伝送する場合、高周波信号は伝送速度ν=c/√εで伝送する。cは光速である。同軸ケーブル8が受信回路に接続されずに、開放状態となった場合には、高周波信号は開放された同軸ケーブル端で全反射され、送信端に戻ってくる。   Here, when a high-frequency signal having a frequency of f = 1 / T and an amplitude V is transmitted through a coaxial cable having a length L (m) and a relative dielectric constant ε, the high-frequency signal is transmitted at a transmission speed ν = c / √ε. To do. c is the speed of light. When the coaxial cable 8 is opened without being connected to the receiving circuit, the high-frequency signal is totally reflected at the opened coaxial cable end and returns to the transmitting end.

送信端では、図2に示すように、入射波に対してΔtだけ位相がずれた反射波が観測され、高周波発生回路7に逆流する。位相ずれΔtは
Δt=2・L/ν ‥(1)
となる。
At the transmitting end, as shown in FIG. 2, a reflected wave whose phase is shifted by Δt with respect to the incident wave is observed and flows backward to the high frequency generation circuit 7. The phase shift Δt is Δt = 2 · L / ν (1)
It becomes.

位相が同位相又は逆位相で且つ振幅の絶対値のずれが90%以内の時には、図3に示すように、Δt=T/2±T/8、T±T/8‥となる。即ち、
Δt=T・n/2±T/8 (2)
nは0以上の整数である。
When the phase is the same phase or opposite phase and the deviation of the absolute value of the amplitude is within 90%, Δt = T / 2 ± T / 8, T ± T / 8... As shown in FIG. That is,
Δt = T · n / 2 ± T / 8 (2)
n is an integer of 0 or more.

式(2)を式(1)に代入すると、
同軸ケーブルの長さが
L=νn/(4f)=λn/4±λ/16
となる。このとき、反射波が高周波発生回路7に逆流しても、発振源の周波数における発振状態を保つことができる。
Substituting equation (2) into equation (1),
The length of the coaxial cable is L = νn / (4f) = λn / 4 ± λ / 16
It becomes. At this time, the oscillation state at the frequency of the oscillation source can be maintained even if the reflected wave flows backward to the high frequency generation circuit 7.

これに対して、同軸ケーブル8の長さL1,L2,L3が
L=λn/4±λ/16
から外れた場合には、入射波と反射波との位相がずれるため、高周波発生回路7内の逆流時に、意図しない発振状態が生ずる。意図しない発振状態では、回路内の抵抗素子に過剰な電流が流れるため、高熱が発生し、回路内素子の熱破壊を招く。
On the other hand, the lengths L1, L2, and L3 of the coaxial cable 8 are L = λn / 4 ± λ / 16.
If the phase is not within the range, the incident wave and the reflected wave are out of phase, and an unintended oscillation state occurs during backflow in the high-frequency generation circuit 7. In an unintended oscillation state, excessive current flows through the resistance elements in the circuit, so high heat is generated and the elements in the circuit are thermally destroyed.

例えば、高周波信号の周波数がf=1/T=80MHz、振幅V(V)の高周波信号を長さL(m)ポリエチレン製同軸ケーブル(比誘電率ε=2.26)で伝送する場合、高周波信号の伝送速度は
ν=c/√ε=1.99×10m/sとなる。同軸ケーブル8の長さは、
L=λn/4±λ/16=〜15cm、47cm〜77cm、109cm〜139cm、172cm〜202cm‥に設定される。
For example, when a high-frequency signal having a frequency of f = 1 / T = 80 MHz and an amplitude V (V) is transmitted through a length L (m) polyethylene coaxial cable (relative permittivity ε = 2.26), The signal transmission speed is ν = c / √ε = 1.99 × 10 8 m / s. The length of the coaxial cable 8 is
L = λn / 4 ± λ / 16 = ˜15 cm, 47 cm-77 cm, 109 cm-139 cm, 172 cm-202 cm.

これにより、同軸ケーブル8の受信端開放時に発生する高周波発生回路7内での意図しない発振状態を防止でき、高周波発生回路内での発熱を防ぐことができる。   Thereby, it is possible to prevent an unintended oscillation state in the high frequency generation circuit 7 generated when the receiving end of the coaxial cable 8 is opened, and to prevent heat generation in the high frequency generation circuit.

このように実施例のレーザ装置によれば、高周波発生回路7の送信端から中継端子10a,10bまでの同軸ケーブルの長さ、および高周波発生回路7の送信端から音響光学素子4の受信端までの同軸ケーブルの長さの少なくとも1つの長さLがL=λn/4±λ/16とすることで、反射波の位相が、入射波と同位相又は逆位相となり、発振源と同じ位相で高周波発生回路7に戻る。このため、高周波発生回路7内での意図しない発振状態が発生せず、高周波発生回路7内での発熱を防ぐことができる。   As described above, according to the laser apparatus of the embodiment, the length of the coaxial cable from the transmission end of the high-frequency generation circuit 7 to the relay terminals 10a and 10b, and from the transmission end of the high-frequency generation circuit 7 to the reception end of the acoustooptic device 4 is achieved. When at least one length L of the coaxial cable is L = λn / 4 ± λ / 16, the phase of the reflected wave is the same as or opposite to the incident wave, and the same phase as the oscillation source Returning to the high frequency generation circuit 7. For this reason, an unintended oscillation state does not occur in the high frequency generation circuit 7, and heat generation in the high frequency generation circuit 7 can be prevented.

なお、前述した実施例のレーザ装置は、図4に示すようなレーザ媒質2、ミラー3a,3bを備えても良い。   The laser device of the above-described embodiment may include a laser medium 2 and mirrors 3a and 3b as shown in FIG.

本発明は、Qスイッチレーザ装置、波長可変レーザ装置に利用できる。   The present invention can be used for a Q-switch laser apparatus and a wavelength tunable laser apparatus.

1 半導体レーザ
1a レーザ光源
2 レーザ媒質
3a,3b ミラー
4 音響光学素子
5 波長変換素子
6,8 同軸ケーブル
7 高周波発生回路
9 レーザコントローラ
10a,10b 中継端子
11 レーザヘッド
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 1a Laser light source 2 Laser medium 3a, 3b Mirror
4 Acousto-optic element 5 Wavelength conversion element 6, 8 Coaxial cable 7 High frequency generation circuit 9 Laser controller 10a, 10b Relay terminal 11 Laser head

Claims (2)

レーザ光を発生する光源と、
前記光源からのレーザ光を回折させる音響光学素子と、
前記音響光学素子に高周波信号を供給する高周波発生回路と、
前記音響光学素子の受信端と前記高周波発生回路の送信端との間に設けられた1つ以上の中継端子と、
前記1つ以上の中継端子を介して前記高周波発生回路と前記音響光学素子とを接続する同軸ケーブルとを備え、
前記送信端から前記中継端子までの前記同軸ケーブルの長さ、および前記送信端から前記受信端までの前記同軸ケーブルの長さの少なくとも1つの長さLが
L=λn/4±λ/16
(λは高周波信号の波長、nは0以上の整数)
であることを特徴とするレーザ装置。
A light source that generates laser light;
An acoustooptic device that diffracts the laser light from the light source;
A high-frequency generation circuit for supplying a high-frequency signal to the acoustooptic device;
One or more relay terminals provided between the receiving end of the acousto-optic element and the transmitting end of the high-frequency generating circuit;
A coaxial cable connecting the high-frequency generation circuit and the acousto-optic element via the one or more relay terminals;
At least one length L of the length of the coaxial cable from the transmission end to the relay terminal and the length of the coaxial cable from the transmission end to the reception end is L = λn / 4 ± λ / 16
(Λ is the wavelength of the high-frequency signal, n is an integer of 0 or more)
A laser device characterized by the above.
前記光源からのレーザ光により励起されるレーザ媒質と、
レーザ光を反射又は透過させるミラーと、
を備えることを特徴とする請求項1記載のレーザ装置。
A laser medium excited by laser light from the light source;
A mirror that reflects or transmits laser light;
The laser apparatus according to claim 1, further comprising:
JP2013233790A 2013-11-12 2013-11-12 Laser device Pending JP2015094843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013233790A JP2015094843A (en) 2013-11-12 2013-11-12 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013233790A JP2015094843A (en) 2013-11-12 2013-11-12 Laser device

Publications (1)

Publication Number Publication Date
JP2015094843A true JP2015094843A (en) 2015-05-18

Family

ID=53197282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013233790A Pending JP2015094843A (en) 2013-11-12 2013-11-12 Laser device

Country Status (1)

Country Link
JP (1) JP2015094843A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168063A (en) * 1986-12-23 1988-07-12 スペクトラ−フィジックス・インコーポレイテッド Small size q switch solid laser pumped by diode
JP2005079747A (en) * 2003-08-29 2005-03-24 Taiyo Yuden Co Ltd Communication equipment
JP2006067061A (en) * 2004-08-25 2006-03-09 Ritsumeikan Wireless communication unit
US20100052799A1 (en) * 2008-09-01 2010-03-04 Mitsubishi Electric Corporation Voltage controlled oscillator, mmic, and high frequency wireless device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168063A (en) * 1986-12-23 1988-07-12 スペクトラ−フィジックス・インコーポレイテッド Small size q switch solid laser pumped by diode
JP2005079747A (en) * 2003-08-29 2005-03-24 Taiyo Yuden Co Ltd Communication equipment
JP2006067061A (en) * 2004-08-25 2006-03-09 Ritsumeikan Wireless communication unit
US20100052799A1 (en) * 2008-09-01 2010-03-04 Mitsubishi Electric Corporation Voltage controlled oscillator, mmic, and high frequency wireless device
JP2010062614A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Voltage controlled oscillator, mmic, and high frequency radio apparatus

Similar Documents

Publication Publication Date Title
Shen et al. 1st-Stokes and 2nd-Stokes dual-wavelength operation and mode-locking modulation in diode-side-pumped Nd: YAG/BaWO 4 Raman laser
CA2931117C (en) A method and a system for generating a raman second stokes light to a source light
US20170207598A1 (en) Laser system and laser outputting method
Xu et al. Efficient and compact orthogonally polarized dual-wavelength Nd: YVO 4 laser at 1342 and 1345 nm
Jin et al. Single longitudinal mode Q-switched operation of Pr: YLF laser with pre-lase and Fabry–Perot etalon technology
Berger et al. 20 Watt CW TEM00 intracavity doubled optically pumped semiconductor laser at 532 nm
EP3096183B1 (en) Quasi-incoherent broadband pumped, tunable, narrow linewidth light source
Zhang et al. Single-frequency, injection-seeded Q-switched Ho: YAG ceramic laser pumped by a 1.91 μm fiber-coupled LD
Savitski Experimental analysis of emission linewidth narrowing in a pulsed KGd (WO 4) 2 Raman laser
Ma et al. Nanosecond pulsed single longitudinal mode diamond Raman laser in the 1.6 µm spectral region
Beyatlı et al. Self-Q-switched and multicolor operation of a Tm: LuAG laser
Stolzenburg et al. Multi-kW IR and green nanosecond thin-disk lasers
US10554011B2 (en) Light source device and wavelength conversion method using non-linear crystal and a first and second optical path length control mechanism
KR20150101081A (en) Laser apparatus able to output multiple beams
Lin et al. Simultaneous dual-wavelength Q-switched Nd: YAG laser at 1052 and 1073 nm
Ahmad et al. Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser
JP2015094843A (en) Laser device
JP6021134B2 (en) Optical resonator system
Lee et al. Frequency comb expansion in a monolithic self‐mode‐locked laser concurrent with stimulated Raman scattering
CN103427327A (en) Broadband Ti:sapphire tunable Raman laser
Lian et al. High repetition rate, high peak power, pulsed single-longitudinal-mode Nd: YAG laser by self-injection-seeding
Sabran et al. Dual‐wavelength passively Q‐switched E rbium Y tterbium codoped fiber laser based on a nonlinear polarization rotation technique
McKay et al. High average power (11 W) eye-safe diamond Raman laser
Singh et al. Silicon-photonics-based optical frequency synthesizer
EP3729192A1 (en) Squeezed light generator and method for generating squeezed light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180227