JP2015094460A - Flow channel selector valve - Google Patents

Flow channel selector valve Download PDF

Info

Publication number
JP2015094460A
JP2015094460A JP2013235951A JP2013235951A JP2015094460A JP 2015094460 A JP2015094460 A JP 2015094460A JP 2013235951 A JP2013235951 A JP 2013235951A JP 2013235951 A JP2013235951 A JP 2013235951A JP 2015094460 A JP2015094460 A JP 2015094460A
Authority
JP
Japan
Prior art keywords
valve body
valve
flow path
end side
path switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013235951A
Other languages
Japanese (ja)
Other versions
JP6332945B2 (en
Inventor
健資 田渕
Takemoto Tabuchi
健資 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2013235951A priority Critical patent/JP6332945B2/en
Publication of JP2015094460A publication Critical patent/JP2015094460A/en
Application granted granted Critical
Publication of JP6332945B2 publication Critical patent/JP6332945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multiple-Way Valves (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow channel selector valve of a new structure capable of further being miniaturized, increasing a capacity, and saving electric power by minimizing a load acting on a valve element in switching a flow channel, and reducing driving torque of the valve element.SOLUTION: A flow channel selector valve includes a cylindrical valve element 20 having an internal flow channel S, a valve body 5 defining a valve chest 7 in which the valve element 20 is slidably accommodated, and a driving portion 50 for moving the valve element 20 in a shaft center L direction in the valve chest 7. Communication ports 20c, 20d opened to the internal flow channel S are formed on side parts of the valve element 20, and the valve body 5 is provided with an inflow port 13a communicated with the internal flow channel S through the communication ports 20c, 20d in moving the valve element 20 in the valve chest 7, and a first outflow port 11a and a second outflow port 12a communicated with the internal flow channel S through an opening 20a at one end side and an opening 20b at the other end side, of the valve element 20.

Description

本発明は、流路切換弁に係り、例えば流体の流れ方向(流路)を切り換える三方切換弁等の流路切換弁に関する。   The present invention relates to a flow path switching valve, for example, a flow path switching valve such as a three-way switching valve that switches a fluid flow direction (flow path).

従来から、流体の流れ方向(流路)を切り換える流路切換弁として、特許文献1に開示されるようなボール状弁体を用いたボールバルブが知られている。   Conventionally, a ball valve using a ball-shaped valve body as disclosed in Patent Document 1 is known as a flow path switching valve for switching a fluid flow direction (flow path).

特許文献1に開示されているボールバルブは、流路を有する弁体と、該弁体が回転可能に収納される弁室を有する弁ケースと、該弁ケースに形成された流入口及び少なくとも1つの流出口とからなり、前記弁体の回転により、前記流入口と前記流出口とを前記流路によって連通させると共に、弁ケースに装着したパッキンにより弁ケースと弁体との間をシールさせるものである。   The ball valve disclosed in Patent Document 1 includes a valve body having a flow path, a valve case having a valve chamber in which the valve body is rotatably accommodated, an inlet formed in the valve case, and at least one The inflow port and the outflow port are communicated with each other by the flow path by the rotation of the valve body, and the valve case and the valve body are sealed by packing attached to the valve case. It is.

特開2005−308165号公報JP 2005-308165 A

ところで、当該分野においては、上記した流路切換弁の更なる小型化、大容量化、省電力化が要請されており、例えば弁体の駆動トルクを低減して小型化等を実現するために、流路切換時に弁体に作用する荷重を可及的に小さくすることが望まれている。   By the way, in the said field | area, further size reduction, large capacity | capacitance, and power saving of the above-mentioned flow-path switching valve are requested | required, for example, in order to reduce the drive torque of a valve body, and to realize size reduction etc. It is desired to reduce the load acting on the valve body as much as possible when the flow path is switched.

本発明は、前記課題に鑑みてなされたものであって、その目的とするところは、流路切換時に弁体に作用する荷重を可及的に小さくし、弁体の駆動トルクを低減して、更なる小型化、大容量化、省電力化等を図ることのできる新規な構造の流路切換弁を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to reduce the load acting on the valve body as much as possible when switching the flow path and reduce the driving torque of the valve body. Another object of the present invention is to provide a flow path switching valve having a novel structure that can achieve further miniaturization, large capacity, power saving, and the like.

上記する課題を解決するために、本発明に係る流路切換弁は、内部流路を有する筒状の弁体と、該弁体が摺動自在に収容される弁室が画成された弁本体と、前記弁室内で前記弁体を軸心方向に移動させる駆動部とを備えた流路切換弁であって、前記弁体の側部には、前記内部流路に開口する連通口が形成され、前記弁本体には、前記弁室内で前記弁体が移動する際に前記弁体の前記連通口を介して前記内部流路と連通する流入口と、前記弁体の一端側開口及び他端側開口を介して前記内部流路と連通する第1流出口及び第2流出口とが形成されていることを特徴としている。   In order to solve the above-described problems, a flow path switching valve according to the present invention includes a cylindrical valve body having an internal flow path and a valve chamber in which the valve body is slidably accommodated. A flow path switching valve comprising a main body and a drive unit that moves the valve body in the axial direction in the valve chamber, wherein a communication port that opens to the internal flow path is formed on a side portion of the valve body. Formed in the valve body, when the valve body moves in the valve chamber, an inflow port communicating with the internal flow path via the communication port of the valve body, an opening on one end side of the valve body, and A first outflow port and a second outflow port communicating with the internal flow path through the other end side opening are formed.

好ましい形態では、前記弁体の内部には、前記駆動部による駆動力を前記弁体に伝達する内部壁が設けられていることを特徴としている。   In a preferred embodiment, the valve body is provided with an inner wall for transmitting a driving force by the drive unit to the valve body.

更に好ましい形態では、前記連通口は、前記内部壁よりも一端側の第1内部流路と他端側の第2内部流路との双方に開口するように形成されている、あるいは、前記連通口は複数形成され、各連通口が前記内部壁よりも一端側の第1内部流路と他端側の第2内部流路とにそれぞれ開口していることを特徴としている。   In a further preferred embodiment, the communication port is formed so as to open to both the first internal channel on one end side and the second internal channel on the other end side relative to the internal wall, or the communication port. A plurality of ports are formed, and each communication port is opened to a first internal channel on one end side and a second internal channel on the other end side than the internal wall.

更なる好ましい形態では、前記内部壁には、該内部壁よりも一端側の第1内部流路と他端側の第2内部流路とを連通する連通路が形成されていることを特徴としている。   In a further preferred embodiment, the internal wall is formed with a communication path that connects the first internal flow path on one end side with respect to the internal wall and the second internal flow path on the other end side. Yes.

別の好ましい形態では、前記弁室を画成する壁面に設けられた傾斜面によって、前記弁体の一端もしくは他端と接離する弁座が形成されていることを特徴としている。   In another preferred embodiment, a valve seat that contacts and separates from one end or the other end of the valve body is formed by an inclined surface provided on a wall surface that defines the valve chamber.

別の好ましい形態では、前記弁本体の内周面に形成された環状溝に、前記弁体の外周面と前記弁本体の内周面との間をシールするシール部材が配設されている、あるいは、前記弁体の外周面に形成された環状溝に、前記弁体の外周面と前記弁本体の内周面との間をシールするシール部材が配設されていることを特徴としている。   In another preferred embodiment, a seal member that seals between the outer peripheral surface of the valve body and the inner peripheral surface of the valve body is disposed in an annular groove formed on the inner peripheral surface of the valve body. Or the sealing member which seals between the outer peripheral surface of the said valve body and the inner peripheral surface of the said valve main body is arrange | positioned by the annular groove formed in the outer peripheral surface of the said valve body, It is characterized by the above-mentioned.

更に好ましい形態では、前記シール部材は、前記弁体の前記連通口と前記一端側開口との間及び前記連通口と前記他端側開口との間に配設されていることを特徴としている。   In a further preferred form, the seal member is arranged between the communication port of the valve body and the one end side opening and between the communication port and the other end side opening.

別の好ましい形態では、前記弁体の内部には、前記弁体の一端側又は他端側に向かって内径が大きくなる段部が設けられていることを特徴としている。   In another preferred embodiment, a step portion having an inner diameter that increases toward one end side or the other end side of the valve body is provided inside the valve body.

別の好ましい形態では、前記弁本体の内径は、前記流入口、前記第1流出口、又は前記第2流出口が形成された部分で大きくなり、前記弁体の外径は、前記連通口、前記一端側開口、又は前記他端側開口が形成された部分で小さくなることを特徴としている。   In another preferred embodiment, an inner diameter of the valve body is increased at a portion where the inlet, the first outlet, or the second outlet is formed, and an outer diameter of the valve body is the communication port, The one end side opening or the other end side opening is formed to be small.

別の好ましい形態では、前記駆動部は、遊星歯車式減速機構を備えていることを特徴としている。   In another preferred embodiment, the drive unit includes a planetary gear speed reduction mechanism.

本発明の流路切換弁によれば、筒状の弁体の側部に、その内部流路に開口する連通口が形成されると共に、弁本体には、弁室内で弁体が移動する際に弁体の連通口を介して内部流路と連通する流入口と、弁体の一端側開口及び他端側開口を介して内部流路と連通する第1流出口及び第2流出口とが形成されていることにより、弁体の移動による流路切換時に弁体の移動方向(軸心方向)に作用する力をバランス(差圧をキャンセル)させ、流路切換時に弁体に作用する荷重を可及的に小さくでき、もって、弁体の駆動トルクを低減して、更なる小型化、大容量化、省電力化等を図ることができる。   According to the flow path switching valve of the present invention, the communication valve opening to the internal flow path is formed in the side portion of the cylindrical valve body, and the valve body moves when the valve body moves in the valve chamber. And an inflow port that communicates with the internal flow path through the communication port of the valve body, and a first outflow port and a second outflow port that communicate with the internal flow path through the one end side opening and the other end side opening of the valve body. Because of this, the force acting on the moving direction (axial direction) of the valve body when switching the flow path due to the movement of the valve body is balanced (the differential pressure is canceled), and the load acting on the valve body when switching the flow path As a result, the driving torque of the valve body can be reduced to further reduce the size, increase the capacity, and save power.

本発明に係る流路切換弁の第1実施形態の全体構成を示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view which shows the whole structure of 1st Embodiment of the flow-path switching valve concerning this invention. 図1に示す流路切換弁において、流体が流入口から第1流出口に流される状態を説明する縦断面図。The longitudinal cross-sectional view explaining the state in which the fluid is flowed from an inflow port to a 1st outflow port in the flow-path switching valve shown in FIG. 図1に示す流路切換弁において、流体が流入口から第2流出口に流される状態を説明する縦断面図。The longitudinal cross-sectional view explaining the state in which the fluid is flowed from an inflow port to a 2nd outflow port in the flow-path switching valve shown in FIG. 図1に示す流路切換弁の弁体を一部(周方向で90度の範囲)を切り欠いて示す斜視図であって、(a)は斜め上方から視た斜視図、(b)は斜め下方から視た斜視図。FIG. 2 is a perspective view showing a part of the valve body of the flow path switching valve shown in FIG. 1 (a range of 90 degrees in the circumferential direction), wherein (a) is a perspective view seen obliquely from above, and (b) is a perspective view. The perspective view seen from diagonally downward. 本発明に係る流路切換弁の第2実施形態の全体構成を示す縦断面図。The longitudinal cross-sectional view which shows the whole structure of 2nd Embodiment of the flow-path switching valve concerning this invention. 図5に示す流路切換弁において、流体が流入口から第1流出口に流される状態を説明する縦断面図。FIG. 6 is a longitudinal cross-sectional view illustrating a state in which fluid flows from the inlet to the first outlet in the flow path switching valve shown in FIG. 5. 図5に示す流路切換弁において、流体が流入口から第2流出口に流される状態を説明する縦断面図。The longitudinal cross-sectional view explaining the state in which the fluid is poured from the inflow port to the 2nd outflow port in the flow-path switching valve shown in FIG. 本発明に係る流路切換弁の第3実施形態の全体構成を示す縦断面図。The longitudinal cross-sectional view which shows the whole structure of 3rd Embodiment of the flow-path switching valve concerning this invention. 本発明に係る流路切換弁の第4実施形態の全体構成を示す縦断面図。The longitudinal cross-sectional view which shows the whole structure of 4th Embodiment of the flow-path switching valve concerning this invention. 図9に示す流路切換弁の弁体を一部(周方向で90度の範囲)を切り欠いて示す斜視図であって、(a)は斜め上方から視た斜視図、(b)は斜め下方から視た斜視図。9 is a perspective view showing a part of the valve body of the flow path switching valve shown in FIG. 9 (a range of 90 degrees in the circumferential direction), in which (a) is a perspective view seen obliquely from above, and (b) is a perspective view. The perspective view seen from diagonally downward.

以下、本発明に係る流路切換弁の実施形態を図面を参照して説明する。なお、以下では、主にアクチュエータとしてステッピングモータを用いた流路切換弁を採用した形態について説明するが、例えばアクチュエータとしてソレノイド等を用いた流路切換弁を採用してもよいことは勿論である。   Hereinafter, an embodiment of a flow path switching valve according to the present invention will be described with reference to the drawings. In the following, a mode in which a flow path switching valve using a stepping motor is mainly employed as an actuator will be described. However, for example, a flow path switching valve using a solenoid or the like may be employed as an actuator. .

[第1実施形態]
図1は、本発明に係る流路切換弁の第1実施形態の全体構成を示す縦断面図、図2は、その流路切換弁において、流体が流入口から第1流出口に流される状態を説明する縦断面図、図3は、流体が流入口から第2流出口に流される状態を説明する縦断面図である。
[First Embodiment]
FIG. 1 is a longitudinal sectional view showing the overall configuration of a first embodiment of a flow path switching valve according to the present invention, and FIG. 2 is a state in which fluid flows from the inlet to the first outlet in the flow path switching valve. FIG. 3 is a longitudinal sectional view for explaining a state in which the fluid flows from the inlet to the second outlet.

図示する流路切換弁1は、主として、有底かつ略筒状の弁本体5と、弁本体5に固着されたキャン58と、弁本体5及びキャン58によって画成された内部空間で弁本体5に固定配置された略筒状の雌ねじ15i付き軸受部材15と、軸受部材15と弁本体5とによって画成された弁室7内で前記弁本体5により支持されて摺動自在に収容された弁体20と、弁体20を軸心L方向に昇降させるべく弁本体5の上方に取り付けられたステッピングモータ(駆動部)50と、を備えている。   The flow path switching valve 1 shown is mainly composed of a bottomed and substantially cylindrical valve body 5, a can 58 fixed to the valve body 5, and an internal space defined by the valve body 5 and the can 58. 5 is supported by the valve body 5 in a valve chamber 7 defined by the bearing member 15 having a substantially cylindrical female screw 15i fixedly disposed on the valve 5 and the bearing member 15 and the valve body 5, and is slidably received. The valve body 20 and a stepping motor (driving unit) 50 attached above the valve body 5 to move the valve body 20 up and down in the direction of the axis L.

弁本体5は、その内部に弁室7が画成されると共に、その側部に弁室7に開口する第1流出口11a及び第2流出口12aが軸心L方向で離間して形成され、第1流出口11aと第2流出口12aとの間に流入口13aが形成されている。より詳細には、前記第1流出口11aは弁室7の上端側に開口するように形成され、前記第2流出口12aは弁室7の下端側に開口するように形成され、前記流入口13aは弁室7の略中央に開口するように形成されている。ここで、第1流出口11a及び第2流出口12aと流入口13aとは、平面視で視た際に軸心L周り(周方向)で反対側(180度間隔)に形成されている。なお、第1流出口11a、第2流出口12a、及び流入口13aの軸心L方向での位置や周方向での位置は、例えば流路切換弁1の大きさや適用箇所等に応じて適宜に変更できる。   The valve body 5 has a valve chamber 7 defined therein, and a first outlet port 11a and a second outlet port 12a that open to the valve chamber 7 are formed in a side portion thereof so as to be separated from each other in the direction of the axis L. An inlet 13a is formed between the first outlet 11a and the second outlet 12a. More specifically, the first outlet 11a is formed to open to the upper end side of the valve chamber 7, and the second outlet 12a is formed to open to the lower end side of the valve chamber 7, 13 a is formed so as to open at substantially the center of the valve chamber 7. Here, the 1st outflow port 11a, the 2nd outflow port 12a, and the inflow port 13a are formed in the other side (180 degree space | interval) around the axis L (circumferential direction), when it sees by planar view. The positions of the first outlet port 11a, the second outlet port 12a, and the inlet port 13a in the axial center L direction and in the circumferential direction are appropriately determined according to the size of the flow path switching valve 1, the application location, and the like. Can be changed.

また、弁本体5は、流入口13a、第1流出口11a、及び第2流出口12aが形成された部分で内径が大きくなるように形成される。言い換えれば、弁本体5の内径は、流入口13aと第1流出口11aとの間及び流入口13aと第2流出口12aとの間の部分で縮径しており、その流入口13aと第1流出口11aとの間及び流入口13aと第2流出口12aとの間の内周面に環状溝2a、3aが形成され、該環状溝2a、3aに弁体20の外周面と弁本体5の内周面との間をシールするOリング等のシール部材2、3が装着されている。また、弁本体5の底部の内周面(弁室7を画成する壁面)には、底面と傾斜面からなる側面とを有する凹部6が形成され、凹部6の側面を構成する傾斜面によって、後述する弁体20の下端(他端)22と接離する弁座6aが形成されている。なお、第1流出口11aと流入口13aとの間の部分や第2流出口12aと流入口13aとの間の部分(すなわち、弁本体5の内径が縮径する部分)での内周面の上端及び下端は、第1流出口11a、第2流出口12a、及び流入口13aが形成された部分(すなわち、弁本体5の内径が大きい部分)に向かって拡径するようにR付けされている。   Further, the valve body 5 is formed so that the inner diameter becomes large at the portion where the inlet 13a, the first outlet 11a, and the second outlet 12a are formed. In other words, the inner diameter of the valve body 5 is reduced in diameter between the inlet 13a and the first outlet 11a and between the inlet 13a and the second outlet 12a. Annular grooves 2a and 3a are formed in the inner peripheral surface between the first outlet 11a and between the inlet 13a and the second outlet 12a. The outer peripheral surface of the valve body 20 and the valve body are formed in the annular grooves 2a and 3a. Sealing members 2 and 3 such as O-rings for sealing between the inner peripheral surface of 5 are mounted. Further, a concave portion 6 having a bottom surface and a side surface composed of an inclined surface is formed on an inner peripheral surface (a wall surface defining the valve chamber 7) of the bottom of the valve body 5, and the inclined surface constituting the side surface of the concave portion 6 A valve seat 6a that is in contact with and separated from a lower end (other end) 22 of the valve body 20 to be described later is formed. In addition, the inner peripheral surface in the part between the 1st outflow port 11a and the inflow port 13a, and the part between the 2nd outflow port 12a and the inflow port 13a (namely, the part to which the internal diameter of the valve main body 5 is diameter-reduced). The upper end and the lower end of the valve are rounded so as to expand toward the portion where the first outlet 11a, the second outlet 12a, and the inlet 13a are formed (that is, the portion where the inner diameter of the valve body 5 is large). ing.

そして、弁本体5の側部に形成された第1流出口11a、第2流出口12a、及び流入口13aにそれぞれ、横向きの導管継手11、12、13が取り付けられている。   Lateral conduit joints 11, 12, and 13 are attached to the first outlet 11 a, the second outlet 12 a, and the inlet 13 a formed on the side of the valve body 5, respectively.

弁本体5は上方に向かって段付きで縮径しており、弁本体5の段付きの上方開口部には、天井部を有する円筒状のキャン58の下端部が溶接等によって接合されている。また、弁本体5の上方開口部の内側には、内周面に雌ねじ15iが螺設された筒状の雌ねじ15i付き軸受部材15が圧入等により固定されている。軸受部材15の内周面のうち雌ねじ15iが螺設された部分よりも上方部分は、後述する減速機構40の出力軸46の下部が嵌挿される嵌挿穴15aとされ、軸受部材15の内周面のうち雌ねじ15iが螺設された部分よりも下方には、ねじ部への異物の流入及び流体影響を抑制するための環状溝15bが形成されている。また、軸受部材15の下面(弁室7を画成する壁面)には、底面と傾斜面からなる側面とを有する凹部19が形成され、凹部19の側面を構成する傾斜面によって、後述する弁体20の上端(一端)21と接離する弁座19aが形成されている。更に、軸受部材15には、その下方の弁室7とキャン58の内部とを連通するべく逆L字状の連通孔14が形成されている。   The valve body 5 is stepped upward and has a reduced diameter, and the lower end of a cylindrical can 58 having a ceiling is joined to the stepped upper opening of the valve body 5 by welding or the like. . Further, inside the upper opening of the valve body 5, a bearing member 15 with a cylindrical female screw 15i having a female screw 15i screwed on the inner peripheral surface is fixed by press fitting or the like. Of the inner peripheral surface of the bearing member 15, a portion above the portion where the female screw 15 i is screwed is a fitting insertion hole 15 a into which a lower portion of an output shaft 46 of a reduction mechanism 40 described later is fitted. An annular groove 15b for suppressing the inflow of foreign matter to the threaded portion and the influence of fluid is formed below the portion of the peripheral surface where the female screw 15i is screwed. Further, a recess 19 having a bottom surface and a side surface composed of an inclined surface is formed on the lower surface of the bearing member 15 (the wall surface defining the valve chamber 7), and a later-described valve is formed by the inclined surface constituting the side surface of the recess 19. A valve seat 19a that is in contact with and away from the upper end (one end) 21 of the body 20 is formed. Further, a reverse L-shaped communication hole 14 is formed in the bearing member 15 so as to allow communication between the lower valve chamber 7 and the inside of the can 58.

また、弁体20は、内部流路Sを有する略円筒状を呈し、弁本体5と軸受部材15とによって画成された弁室7に摺動自在に嵌挿される。ここで、弁体20の上端21が、弁室7内で当該弁体20が移動する際に軸受部材15の凹部19に設けられた弁座19aと接離する第1弁体部とされ、弁体20の下端22が、弁本体5の凹部6に設けられた弁座6aと接離する第2弁体部とされている。   The valve body 20 has a substantially cylindrical shape having an internal flow path S, and is slidably inserted into the valve chamber 7 defined by the valve body 5 and the bearing member 15. Here, the upper end 21 of the valve body 20 is a first valve body portion that comes into contact with and separates from the valve seat 19a provided in the concave portion 19 of the bearing member 15 when the valve body 20 moves in the valve chamber 7, The lower end 22 of the valve body 20 is a second valve body portion that comes into contact with and separates from the valve seat 6 a provided in the recess 6 of the valve body 5.

弁体20の側部には、その内部流路Sに開口する2つの連通口20c、20dが形成されている。この2つの連通口20c、20dは、平面視で視た際に軸心L周りで反対側(180度間隔)に形成されると共に、各連通口20c、20dは、軸心L方向で弁体20の略中央部に形成され、かつ側面視で視た際には略矩形状を呈している(図4参照)。したがって、弁体20は、側面視で視た際に略中央部の左右が切り欠かれた形状を呈している。ここで、各連通口20c、20dの位置や大きさ、形状等は、弁室7内で弁体20が移動した際に弁本体5の流入口13aと弁体20の内部流路Sとが常時連通するように設計されている。   Two communication ports 20 c and 20 d that open to the internal flow path S are formed on the side of the valve body 20. The two communication ports 20c and 20d are formed on the opposite side (180 degree interval) around the axis L when viewed in a plan view, and the communication ports 20c and 20d are valve bodies in the direction of the axis L. It is formed in a substantially central portion of 20 and has a substantially rectangular shape when viewed from the side (see FIG. 4). Accordingly, the valve body 20 has a shape in which the left and right sides of the substantially central portion are notched when viewed in a side view. Here, the position, size, shape, and the like of each communication port 20c, 20d are determined by the relationship between the inlet 13a of the valve body 5 and the internal flow path S of the valve body 20 when the valve body 20 moves in the valve chamber 7. Designed to always communicate.

また、弁体20の内部には、ステッピングモータ50による駆動力を弁体20に伝達するべく、軸心Lに対して略垂直方向に延びる内部壁23が設けられている。この内部壁23は、弁体20の略中央部、すなわち連通口20c、20dが形成された部分に該弁体20に一体に形成されており、したがって平面視で視た際に略小判状(円を平行な2直線で切断した形状)を呈している(図4参照)。弁体20の内部流路Sは、内部壁23によって、内部壁23よりも上端側の第1内部流路S1と下端側の第2内部流路S2とに分割され、各連通口20c、20dは、内部壁23よりも上端側の第1内部流路S1と下端側の第2内部流路S2との双方に開口するように形成されることとなる。なお、内部壁23の中央部には、後述するボール受座16が嵌装される段付きの嵌装穴23aが形成されている。   In addition, an inner wall 23 extending in a direction substantially perpendicular to the axis L is provided in the valve body 20 in order to transmit the driving force from the stepping motor 50 to the valve body 20. The inner wall 23 is formed integrally with the valve body 20 at a substantially central portion of the valve body 20, that is, at a portion where the communication ports 20c and 20d are formed. (A shape obtained by cutting a circle along two parallel straight lines) (see FIG. 4). The internal flow path S of the valve body 20 is divided by the internal wall 23 into a first internal flow path S1 on the upper end side and a second internal flow path S2 on the lower end side with respect to the internal wall 23, and the communication ports 20c and 20d. Is formed so as to open to both the first internal flow path S1 on the upper end side and the second internal flow path S2 on the lower end side than the internal wall 23. In addition, a stepped fitting hole 23a into which a ball seat 16 described later is fitted is formed in the central portion of the inner wall 23.

したがって、弁体20を弁本体5の弁室7に嵌挿すると、弁本体5の流入口13aと弁体20の第1内部流路S1及び第2内部流路S2とが、連通口20c、20dの一方もしくは双方(図1〜図3中、連通口20c)を介して常時連通するようになっている(図2及び図3参照)。なお、弁体20の側部に形成される連通口の数や位置、大きさ、形状等は、例えば弁本体5の流入口13aの位置や大きさ、形状等に応じて適宜に変更でき、弁体20の内部に形成される内部壁の位置や大きさ、形状等も適宜に変更できる。   Therefore, when the valve body 20 is inserted into the valve chamber 7 of the valve body 5, the inlet 13a of the valve body 5 and the first internal flow path S1 and the second internal flow path S2 of the valve body 20 are connected to the communication port 20c, 20d is always communicated via one or both of them (communication port 20c in FIGS. 1 to 3) (see FIGS. 2 and 3). In addition, the number, position, size, shape, etc. of the communication port formed in the side portion of the valve body 20 can be appropriately changed according to the position, size, shape, etc. of the inlet 13a of the valve body 5, The position, size, shape, and the like of the inner wall formed inside the valve body 20 can be changed as appropriate.

弁体20の内部には、弁体20の上端側及び下端側に向かって内径が大きくなるような段部24、26が設けられ、上端側に向かって内径が大きくなる部分が上端側開口20aとされ、下端側に向かって内径が大きくなる部分が下端側開口20bとされている。各段部24、26はそれぞれ、弁体20の内部壁23よりも上端側の内周面及び下端側の内周面に設けられ、下端側の内周面に設けられた段部26によって、弁体20を上方に付勢する縮装ばね25の上端部を受けるばね受けが形成される。すなわち、圧縮コイルばねからなる縮装ばね25が、その上端部が弁体20の内周面に設けられた段部26と当接し、その下端部が弁本体5の凹部6の底面と当接するように、弁体20の段部26と弁本体5の凹部6の底面との間に収縮状態で収納されている。   In the inside of the valve body 20, step portions 24 and 26 having an inner diameter that increases toward the upper end side and the lower end side of the valve body 20 are provided, and a portion whose inner diameter increases toward the upper end side is the upper end side opening 20a. The portion whose inner diameter increases toward the lower end side is the lower end side opening 20b. The step portions 24 and 26 are respectively provided on the inner peripheral surface on the upper end side and the inner peripheral surface on the lower end side with respect to the inner wall 23 of the valve body 20, and by the step portion 26 provided on the inner peripheral surface on the lower end side, A spring receiver that receives the upper end portion of the compression spring 25 that biases the valve body 20 upward is formed. That is, the compression spring 25 made of a compression coil spring has its upper end abutted on a step 26 provided on the inner peripheral surface of the valve body 20 and its lower end abutted on the bottom surface of the recess 6 of the valve body 5. As described above, the valve body 20 is housed in a contracted state between the step portion 26 of the valve body 20 and the bottom surface of the recess 6 of the valve body 5.

なお、弁体20の外径は、上端側開口20a、下端側開口20b、及び連通口20c、20dが形成された部分、言い換えれば弁本体5の流入口13a、第1流出口11a、及び第2流出口12aが形成された部分の近傍で僅かに小さくなるように形成されている。   The outer diameter of the valve body 20 is a portion where the upper end side opening 20a, the lower end side opening 20b, and the communication ports 20c and 20d are formed, in other words, the inlet 13a, the first outlet 11a, and the first outlet of the valve body 5. It is formed to be slightly smaller in the vicinity of the portion where the two outlets 12a are formed.

一方、ステッピングモータ50は、ヨーク51、ボビン52、コイル53、樹脂モールドカバー54等からなるステータ55と、キャン58の内部に該キャン58に対して回転自在に配置され、ロータ支持部材56がその上部内側に固着されたロータ57と、を有している。ステータ55は、キャン58に外嵌固定されている。また、ロータ57の内周側には、ロータ支持部材56に一体に形成された太陽歯車41、軸受部材15の上部に固着された筒状体43の上端に固定された固定リング歯車47、太陽歯車41と固定リング歯車47との間に配置されてそれぞれに歯合する遊星歯車42、遊星歯車42を回転自在に支持するキャリア44、遊星歯車42に外側から歯合する有底リング状の出力歯車45、出力歯車45の底部に形成された孔にその上部が圧入等によって固着された出力軸46等からなる不思議遊星歯車式減速機構40が設けられている。ここで、固定リング歯車47の歯数は、出力歯車45の歯数とは僅かに異なるように設定されている。   On the other hand, the stepping motor 50 is disposed inside a can 58 so as to be rotatable with respect to the can 58 and a rotor support member 56. And a rotor 57 fixed inside the upper portion. The stator 55 is externally fixed to the can 58. Further, on the inner peripheral side of the rotor 57, a sun gear 41 formed integrally with the rotor support member 56, a fixed ring gear 47 fixed to the upper end of the cylindrical body 43 fixed to the upper part of the bearing member 15, the sun A planetary gear 42 that is disposed between the gear 41 and the fixed ring gear 47 and meshes with each other, a carrier 44 that rotatably supports the planetary gear 42, and a bottomed ring-shaped output that meshes with the planetary gear 42 from the outside. A mysterious planetary gear speed reduction mechanism 40 including an output shaft 46 and the like whose upper portion is fixed by press fitting or the like in a hole formed in the bottom of the gear 45 and the output gear 45 is provided. Here, the number of teeth of the fixed ring gear 47 is set to be slightly different from the number of teeth of the output gear 45.

出力軸46の上部の中心部には孔が形成され、該孔には太陽歯車41(ロータ支持部材56)とキャリア44の中心部を挿通した支持軸49の下部が挿通されている。この支持軸49の上部は、キャン58の内径と略同一の外径を有し、ロータ支持部材56の上側でキャン58に内接して配置される支持部材48の中心部に形成された孔に挿通されている。ロータ57自体は、支持部材48等によってキャン58の内部で上下動しないようになっており、キャン58に外嵌固定されたステータ55との位置関係が常に一定に維持されている。   A hole is formed in the central portion of the upper portion of the output shaft 46, and the lower portion of the support shaft 49 that is inserted through the central portion of the sun gear 41 (rotor support member 56) and the carrier 44 is inserted into the hole. The upper portion of the support shaft 49 has an outer diameter that is substantially the same as the inner diameter of the can 58, and is formed in a hole formed at the center of the support member 48 that is disposed on the upper side of the rotor support member 56 and inscribed in the can 58. It is inserted. The rotor 57 itself does not move up and down inside the can 58 by the support member 48 or the like, and the positional relationship with the stator 55 that is externally fitted and fixed to the can 58 is always maintained constant.

減速機構40の出力軸46の下部は、筒状の雌ねじ15i付き軸受部材15の上部に形成された嵌挿穴15aに回転自在に嵌挿され、出力軸46の下部には、その中心を通るように横方向に延びるスリット状の嵌合部46aが形成されている。雌ねじ15i付き軸受部材15の内周面に螺設された雌ねじ15iと螺合する雄ねじ17aが螺設された回転昇降軸17の上端には板状部17cが突設され、板状部17cがスリット状の嵌合部46aに摺動自在に嵌合されている。出力軸46がロータ57の回転に応じて回転すると、出力軸46の回転が回転昇降軸17に伝達され、軸受部材15の雌ねじ15iと回転昇降軸17の雄ねじ17aのねじ送りによって回転昇降軸17が回転しながら昇降する。   The lower part of the output shaft 46 of the speed reduction mechanism 40 is rotatably inserted into an insertion hole 15a formed in the upper part of the bearing member 15 with the cylindrical female screw 15i, and passes through the center of the lower part of the output shaft 46. Thus, a slit-like fitting portion 46a extending in the lateral direction is formed. A plate-like portion 17c projects from the upper end of the rotary elevating shaft 17 in which a male screw 17a screwed with the female screw 15i screwed on the inner peripheral surface of the bearing member 15 with the female screw 15i is provided. A slit-like fitting portion 46a is slidably fitted. When the output shaft 46 rotates according to the rotation of the rotor 57, the rotation of the output shaft 46 is transmitted to the rotary elevating shaft 17, and the rotary elevating shaft 17 is driven by screw feed of the female screw 15 i of the bearing member 15 and the male screw 17 a of the rotary elevating shaft 17. Moves up and down while rotating.

回転昇降軸17の下端は、弁室7を通って弁体20内の内部壁23付近まで延設され、回転昇降軸17の下方への推力が、例えば回転昇降軸17に設けられたボール18及び内部壁23の嵌装穴23aに装着されたボール受座16を介して前記弁体20の内部壁23に伝達される。なお、回転昇降軸17と内部壁23との間にボール18を介在させることにより、例えば回転昇降軸17が回転しながら下降しても、回転昇降軸17から内部壁23へ下方への推力のみが伝達され、回転力は伝達されない。   The lower end of the rotary lift shaft 17 extends through the valve chamber 7 to the vicinity of the inner wall 23 in the valve body 20, and the downward thrust of the rotary lift shaft 17 is applied to, for example, a ball 18 provided on the rotary lift shaft 17. And is transmitted to the inner wall 23 of the valve body 20 through the ball receiving seat 16 mounted in the fitting hole 23a of the inner wall 23. In addition, by interposing the ball 18 between the rotary lift shaft 17 and the inner wall 23, for example, even if the rotary lift shaft 17 descends while rotating, only the downward thrust from the rotary lift shaft 17 to the inner wall 23 is achieved. Is transmitted, and rotational force is not transmitted.

上記したように、弁体20の段部26と弁本体5の凹部6の底面との間には縮装ばね25が縮装されており、該縮装ばね25の付勢力(押し上げ力)によりボール18及びボール受座16を介して弁体20の内部壁23が回転昇降軸17に押し付けられ、モータ50のロータ57を回転駆動させると、回転昇降軸17と弁体20とが一体となって軸心L方向へ昇降する。   As described above, the compression spring 25 is mounted between the step portion 26 of the valve body 20 and the bottom surface of the recess 6 of the valve body 5, and the urging force (push-up force) of the compression spring 25 is used. When the inner wall 23 of the valve body 20 is pressed against the rotary lift shaft 17 through the ball 18 and the ball seat 16 and the rotor 57 of the motor 50 is driven to rotate, the rotary lift shaft 17 and the valve body 20 are integrated. Ascend and descend in the direction of the axis L.

したがって、モータ50のロータ57を一方向に回転駆動させると、減速機構40の出力軸46を介してロータ57の回転が回転昇降軸17に減速されて伝達され、雌ねじ付き軸受部材15の雌ねじ15iと回転昇降軸17の雄ねじ17aによるねじ送りによって回転昇降軸17が回転しながら例えば下降され、回転昇降軸17の推力により弁体20が縮装ばね25の付勢力に抗して押し下げられ、最終的には弁体20の下端22からなる第2弁体部が弁本体5の凹部6に設けられた弁座6aに着座して下端側開口20bが閉じられる。これにより、流体(冷媒)が流入口13aに接続された導管継手13から弁体20の連通口20c及び上端側開口20aを介して第1流出口11aに接続された導管継手11へ流れる(図2参照)。   Therefore, when the rotor 57 of the motor 50 is rotationally driven in one direction, the rotation of the rotor 57 is transmitted to the rotary lift shaft 17 through the output shaft 46 of the speed reduction mechanism 40 and transmitted to the female screw 15i of the bearing member 15 with the female screw. For example, the rotary lift shaft 17 is lowered while being rotated by screw feeding by the male screw 17a of the rotary lift shaft 17, and the valve body 20 is pushed down against the biasing force of the compression spring 25 by the thrust of the rotary lift shaft 17, and finally Specifically, the second valve body portion composed of the lower end 22 of the valve body 20 is seated on the valve seat 6a provided in the recess 6 of the valve body 5, and the lower end side opening 20b is closed. Thereby, the fluid (refrigerant) flows from the conduit joint 13 connected to the inlet 13a to the conduit joint 11 connected to the first outlet 11a via the communication port 20c and the upper end side opening 20a of the valve body 20 (FIG. 2).

それに対し、モータ50のロータ57を他方向に回転駆動させると、減速機構40の出力軸46を介してロータ57の回転が回転昇降軸17に減速されて伝達され、前記雌ねじ15iと雄ねじ17aによるねじ送りによって回転昇降軸17が回転しながら例えば上昇され、それに伴い弁体20が縮装ばね25の付勢力によって引き上げられ、弁体20の下端22からなる第2弁体部が弁本体5の凹部6に設けられた弁座6aから離間して下端側開口20bが開かれるとともに、最終的には弁体20の上端21からなる第1弁体部が軸受部材15の凹部19に設けられた弁座19aに着座して上端側開口20aが閉じられる。これにより、流体(冷媒)が流入口13aに接続された導管継手13から弁体20の連通口20c及び下端側開口20bを介して第2流出口12aに接続された導管継手12へ流れる(図3参照)。   On the other hand, when the rotor 57 of the motor 50 is rotationally driven in the other direction, the rotation of the rotor 57 is decelerated and transmitted to the rotary lift shaft 17 via the output shaft 46 of the speed reduction mechanism 40, and is transmitted by the female screw 15i and the male screw 17a. For example, the rotary lift shaft 17 is raised while being rotated by screw feed, and the valve body 20 is pulled up by the urging force of the compression spring 25, and the second valve body portion including the lower end 22 of the valve body 20 is the valve body 5. The lower end side opening 20b is opened away from the valve seat 6a provided in the recess 6 and finally the first valve body portion including the upper end 21 of the valve body 20 is provided in the recess 19 of the bearing member 15. The upper end opening 20a is closed by sitting on the valve seat 19a. Thereby, the fluid (refrigerant) flows from the conduit joint 13 connected to the inlet 13a to the conduit joint 12 connected to the second outlet 12a via the communication port 20c and the lower end opening 20b of the valve body 20 (see FIG. 3).

本第1実施形態においては、弁体20の下端22もしくは上端21が弁本体5の凹部6に設けられた弁座6aもしくは軸受部材15の凹部19に設けられた弁座19aに着座して下端側開口20bもしくは上端側開口20aが閉じられる状態であっても、弁体20内の上端側の第1内部流路S1と下端側の第2内部流路S2とが連通口20c、20dを介して連通している。そのため、流入口13aに接続された導管継手13から流入する流体(冷媒)が、連通口20c、20dを介して弁体20内の第1内部流路S1及び第2内部流路S2の双方、すなわち筒状の弁体20内全体に流入する。したがって、筒状の弁体20の軸心L方向への移動による流路切換時に弁体20の移動方向(軸心L方向)に作用する力(弁体20に作用する押し下げ力と押し上げ力)をバランス(差圧をキャンセル)させることができ、流路切換時に弁体20に作用する荷重を可及的に小さくでき、ステッピングモータ50による弁体20の駆動トルクを低減できる。   In the first embodiment, the lower end 22 or the upper end 21 of the valve body 20 is seated on the valve seat 6 a provided in the concave portion 6 of the valve body 5 or the valve seat 19 a provided in the concave portion 19 of the bearing member 15. Even in the state where the side opening 20b or the upper end opening 20a is closed, the first internal flow path S1 on the upper end side and the second internal flow path S2 on the lower end side in the valve body 20 are connected via the communication ports 20c and 20d. Communicate. Therefore, the fluid (refrigerant) flowing in from the conduit joint 13 connected to the inflow port 13a flows through both the first internal flow path S1 and the second internal flow path S2 in the valve body 20 through the communication ports 20c and 20d. That is, it flows into the entire tubular valve body 20. Therefore, the force (the push-down force and the push-up force acting on the valve body 20) acting in the movement direction (the axis L direction) of the valve body 20 when the flow path is switched by the movement of the cylindrical valve body 20 in the axis L direction. Can be balanced (differential pressure can be canceled), the load acting on the valve body 20 when switching the flow path can be made as small as possible, and the driving torque of the valve body 20 by the stepping motor 50 can be reduced.

特に、本第1実施形態においては、弁室7を画成する壁面に設けられた傾斜面によって、弁体20の上端(一端)21及び下端(他端)22と接離する弁座19a、6aが形成される。これにより、弁体20の下端22もしくは上端21が弁本体5の凹部6に設けられた弁座6aもしくは軸受部材15の凹部19に設けられた弁座19aに着座して下端側開口20bもしくは上端側開口20aが閉じられる状態であっても、弁体20の上端面及び下端面と弁室7内の流体(冷媒)とを接触させることができるため、筒状の弁体20の軸心L方向への移動による流路切換時に弁体20の移動方向(軸心L方向)に作用する力を精緻にバランス(差圧をキャンセル)させることができる。   In particular, in the first embodiment, a valve seat 19a that contacts and separates from the upper end (one end) 21 and the lower end (other end) 22 of the valve body 20 by an inclined surface provided on a wall surface that defines the valve chamber 7, 6a is formed. Accordingly, the lower end 22 or the upper end 21 of the valve body 20 is seated on the valve seat 6a provided in the recess 6 of the valve body 5 or the valve seat 19a provided in the recess 19 of the bearing member 15, and the lower end side opening 20b or the upper end Even when the side opening 20a is closed, the upper end surface and the lower end surface of the valve body 20 and the fluid (refrigerant) in the valve chamber 7 can be brought into contact with each other. It is possible to precisely balance (cancel the differential pressure) the force acting in the moving direction (axial center L direction) of the valve body 20 when the flow path is switched by moving in the direction.

また、本第1実施形態においては、弁体20の外周面と弁本体5の内周面との間をシールするシール部材2、3が弁本体5の内周面に形成された環状溝2a、3aに装着されている、各連通口20c、20dが内部壁23よりも上端側の第1内部流路S1と下端側の第2内部流路S2との双方に開口するように形成されている、また、弁体20の内部壁23よりも上端側及び下端側の内周面に段部24、26が設けられて当該弁体20が上下対称に形成されている。そのため、弁室7内に配置される弁体20の形状や構成を簡素化することができる。   Further, in the first embodiment, an annular groove 2 a formed on the inner peripheral surface of the valve body 5 is a seal member 2, 3 that seals between the outer peripheral surface of the valve body 20 and the inner peripheral surface of the valve body 5. 3a, each communication port 20c, 20d is formed to open to both the first internal flow path S1 on the upper end side and the second internal flow path S2 on the lower end side than the internal wall 23. Moreover, the step parts 24 and 26 are provided in the inner peripheral surface of the upper end side and lower end side rather than the inner wall 23 of the valve body 20, and the said valve body 20 is formed symmetrically vertically. Therefore, the shape and structure of the valve body 20 arranged in the valve chamber 7 can be simplified.

また、本第1実施形態においては、弁体20の外径が、連通口20c、20d、上端側開口20a、及び下端側開口20bが形成された部分で僅かに小さくなるように形成されると共に、弁本体5の内径が、流入口13a、第1流出口11a、及び第2流出口12aが形成された部分、特に(弁室7の上端側の第1流出口11aが形成された部分)で大きくなるように形成されている。さらに、第1流出口11aと流入口13aとの間の部分や第2流出口12aと流入口13aとの間の部分の内周面の上端及び下端は、第1流出口11a、第2流出口12a、及び流入口13aが形成された部分に向かって拡径するようにR付けされている。そのため、弁本体5の弁室7内に弁体20を簡便に嵌挿することができ、弁体20の組立工程を格段に簡素化できるといった利点もある。   In the first embodiment, the outer diameter of the valve body 20 is formed to be slightly smaller at the portion where the communication ports 20c and 20d, the upper end side opening 20a, and the lower end side opening 20b are formed. The inner diameter of the valve body 5 is a portion where the inlet 13a, the first outlet 11a, and the second outlet 12a are formed, particularly (the portion where the first outlet 11a on the upper end side of the valve chamber 7 is formed). It is formed to be large. Furthermore, the upper end and the lower end of the inner peripheral surface of the portion between the first outlet 11a and the inlet 13a and the portion between the second outlet 12a and the inlet 13a are the first outlet 11a and the second outlet. R is attached so that it may expand toward the part in which the exit 12a and the inflow port 13a were formed. Therefore, there is an advantage that the valve body 20 can be easily fitted into the valve chamber 7 of the valve body 5 and the assembly process of the valve body 20 can be greatly simplified.

[第2実施形態]
図5は、本発明に係る流路切換弁の第2実施形態の全体構成を示す縦断面図、図6は、その流路切換弁において、流体が流入口から第1流出口に流される状態を説明する縦断面図、図7は、流体が流入口から第2流出口に流される状態を説明する縦断面図である。第2実施形態の流路切換弁1Aは、上記した第1実施形態の流路切換弁1に対し、弁体の外周面と弁本体の内周面との間をシールするシール部材の配置構成が相違しており、その他の構成は第1実施形態の流路切換弁1とほぼ同様である。したがって、第1実施形態の流路切換弁1と同様の構成については同様の符号を付してその詳細な説明は省略する。
[Second Embodiment]
FIG. 5 is a longitudinal sectional view showing the overall configuration of the second embodiment of the flow path switching valve according to the present invention, and FIG. 6 shows a state in which fluid flows from the inlet to the first outlet in the flow path switching valve. FIG. 7 is a vertical cross-sectional view for explaining a state in which fluid flows from the inflow port to the second outflow port. 1 A of flow-path switching valves of 2nd Embodiment are arrangement structure of the sealing member which seals between the outer peripheral surface of a valve body, and the internal peripheral surface of a valve main body with respect to the above-mentioned flow-path switching valve 1 of 1st Embodiment. The other configurations are substantially the same as those of the flow path switching valve 1 of the first embodiment. Accordingly, the same components as those of the flow path switching valve 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

第2実施形態の流路切換弁1Aでは、弁体20Aの外周面のうち、上端側開口20aAと連通口20cA、20dAとの間及び下端側開口20bAと連通口20cA、20dAとの間の外周面(すなわち、弁本体5Aの流入口13aAと第1流出口11aAとの間及び流入口13aAと第2流出口12aAとの間の部分に対応する箇所)に環状溝27aA、28aAが形成され、その環状溝27aA、28aAに弁体20Aの外周面と弁本体5Aの内周面との間をシールするOリング等のシール部材27A、28Aが装着されている。   In the flow path switching valve 1A of the second embodiment, the outer periphery of the valve body 20A between the upper end side opening 20aA and the communication ports 20cA and 20dA and between the lower end side opening 20bA and the communication ports 20cA and 20dA. Annular grooves 27aA and 28aA are formed on the surface (that is, the portion corresponding to the portion between the inlet 13aA and the first outlet 11aA and the portion between the inlet 13aA and the second outlet 12aA of the valve body 5A), Seal members 27A, 28A such as O-rings for sealing between the outer peripheral surface of the valve body 20A and the inner peripheral surface of the valve body 5A are mounted in the annular grooves 27aA, 28aA.

より詳細には、弁体20Aは、上記した第1実施形態の弁体20を軸心方向で3分割した分割体から構成され、内部に段部24Aが形成され且つ上端側開口20aAを有する上端側円筒部31Aと、内部に段部26Aが形成され且つ下端側開口20bAを有する下端側円筒部32Aと、上端側円筒部31Aと下端側円筒部32Aとの間に配置され、側部に2つの連通口20cA、20dAが形成され且つ内部に内部壁23Aが形成された中央円筒部33Aとを有している。   More specifically, the valve body 20A is composed of a divided body obtained by dividing the valve body 20 of the first embodiment into three in the axial direction, and has an upper end having a stepped portion 24A and having an upper end side opening 20aA. It is disposed between the side cylindrical portion 31A, the lower end side cylindrical portion 32A having the stepped portion 26A formed therein and having the lower end side opening 20bA, and the upper end side cylindrical portion 31A and the lower end side cylindrical portion 32A. One communication port 20cA, 20dA is formed, and it has a central cylindrical portion 33A in which an inner wall 23A is formed.

ここで、上端側円筒部31A及び下端側円筒部32Aの外周面は、中央円筒部33Aに向かって縮径するように段付きで形成され、一方で、中央円筒部33Aの上端側と下端側の内周面は、上端側円筒部31A及び下端側円筒部32Aに向かって拡径するように段付きで形成されている。中央円筒部33Aの上端側の内部に、上端側円筒部31Aの中央円筒部33A側の縮径部分の下端が圧入等により固定され、中央円筒部33Aの下端側の内部に、下端側円筒部32Aの中央円筒部33A側の縮径部分の上端が圧入等により固定されることで、上端側円筒部31Aと中央円筒部33Aと下端側円筒部32Aとが一体に形成されると共に、前記弁体20Aの外周面に前記シール部材27A、28Aが装着される環状溝27aA、28aAが形成される。   Here, the outer peripheral surfaces of the upper end side cylindrical portion 31A and the lower end side cylindrical portion 32A are formed with steps so as to reduce the diameter toward the central cylindrical portion 33A, while the upper end side and the lower end side of the central cylindrical portion 33A. The inner peripheral surface is formed with a step so as to increase in diameter toward the upper end side cylindrical portion 31A and the lower end side cylindrical portion 32A. The lower end of the reduced diameter portion on the central cylindrical portion 33A side of the upper cylindrical portion 31A is fixed inside the upper cylindrical portion 33A by press-fitting or the like, and the lower cylindrical portion is placed inside the lower cylindrical portion of the central cylindrical portion 33A. The upper end of the reduced diameter portion on the side of the central cylindrical portion 33A of 32A is fixed by press fitting or the like, so that the upper end side cylindrical portion 31A, the central cylindrical portion 33A, and the lower end side cylindrical portion 32A are integrally formed, and the valve Annular grooves 27aA and 28aA in which the sealing members 27A and 28A are mounted are formed on the outer peripheral surface of the body 20A.

すなわち、本第2実施形態では、上端側円筒部31Aの中央円筒部33A側の縮径部分にシール部材27Aを外挿し、中央円筒部33Aの上端側の内部に上端側円筒部31Aの中央円筒部33A側の縮径部分の下端を固定することによって、上端側開口20aAと連通口20cA、20dAとの間の外周面にシール部材27Aが装着される。また、下端側円筒部32Aの中央円筒部33A側の縮径部分にシール部材28Aを外挿し、中央円筒部33Aの下端側の内部に下端側円筒部32Aの中央円筒部33A側の縮径部分の上端を固定することによって、下端側開口20bAと連通口20cA、20dAとの間の外周面にシール部材28Aが装着される。   That is, in the second embodiment, the sealing member 27A is extrapolated to the reduced diameter portion of the upper cylindrical portion 31A on the central cylindrical portion 33A side, and the central cylinder of the upper cylindrical portion 31A is placed inside the upper cylindrical portion 33A. By fixing the lower end of the reduced diameter portion on the side of the portion 33A, the seal member 27A is mounted on the outer peripheral surface between the upper end side opening 20aA and the communication ports 20cA, 20dA. Further, the sealing member 28A is extrapolated to the reduced diameter portion of the lower end side cylindrical portion 32A on the central cylindrical portion 33A side, and the reduced diameter portion of the lower end side cylindrical portion 32A on the central cylindrical portion 33A side is inserted inside the lower end side of the central cylindrical portion 33A. By fixing the upper end of the sealing member 28A, the seal member 28A is mounted on the outer peripheral surface between the lower end opening 20bA and the communication ports 20cA, 20dA.

なお、シール部材27A、28Aは、弁体20Aが軸心L方向に移動する際に、弁本体5Aの内径が縮径する部分(すなわち、流入口13aAと第1流出口11aAとの間及び流入口13aAと第2流出口12aAとの間の部分)と摺接する位置に配置される。   The seal members 27A and 28A are portions where the inner diameter of the valve body 5A is reduced when the valve body 20A moves in the axis L direction (that is, between the inlet 13aA and the first outlet 11aA and the The portion between the inlet 13aA and the second outlet 12aA) is disposed at a position in sliding contact.

したがって、本第2実施形態の流路切換弁1Aにおいては、上記した第1実施形態の流路切換弁1と同様、筒状の弁体20Aの軸心LA方向への移動による流路切換時に弁体20Aの移動方向に作用する力をバランス(差圧をキャンセル)させることができると共に、弁本体5Aの形状や構成を簡素化でき、かつ、弁室7A内への弁体20Aの嵌挿工程を含む流路切換弁1Aの組立工程を簡素化することができる。   Therefore, in the flow path switching valve 1A of the second embodiment, similarly to the flow path switching valve 1 of the first embodiment described above, when the flow path is switched by the movement of the cylindrical valve body 20A in the direction of the axis LA. The force acting in the moving direction of the valve body 20A can be balanced (differential pressure can be canceled), the shape and configuration of the valve body 5A can be simplified, and the valve body 20A can be inserted into the valve chamber 7A. The assembly process of the flow path switching valve 1A including the process can be simplified.

なお、本第2実施形態の流路切換弁1Aでは、弁体20Aの外径は軸心LA方向で略一定に形成されている。   In the flow path switching valve 1A of the second embodiment, the outer diameter of the valve body 20A is formed substantially constant in the direction of the axis LA.

[第3実施形態]
図8は、本発明に係る流路切換弁の第3実施形態の全体構成を示す縦断面図である。第3実施形態の流路切換弁1Bは、上記した第1実施形態の流路切換弁1に対し、弁体の内部形状が相違しており、その他の構成は第1実施形態の流路切換弁1とほぼ同様である。したがって、第1実施形態の流路切換弁1と同様の構成については同様の符号を付してその詳細な説明は省略する。
[Third Embodiment]
FIG. 8 is a longitudinal sectional view showing the overall configuration of the third embodiment of the flow path switching valve according to the present invention. The flow path switching valve 1B of the third embodiment is different from the flow path switching valve 1 of the first embodiment described above in the internal shape of the valve body, and the other configurations are the flow path switching valve of the first embodiment. It is almost the same as the valve 1. Accordingly, the same components as those of the flow path switching valve 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

第3実施形態の流路切換弁1Bでは、弁体20Bの内部壁23Bよりも上端側の内周面の段部(第1実施形態における段部24)が省略され、内部壁23Bよりも上端側(第1内部流路S1B側)の内径が一定となり、その内径は第1実施形態の内径と比較して大きくなっている。   In the flow path switching valve 1B of the third embodiment, the step on the inner peripheral surface on the upper end side of the inner wall 23B of the valve body 20B (step 24 in the first embodiment) is omitted, and the upper end of the inner wall 23B. The inner diameter on the side (first inner flow path S1B side) is constant, and the inner diameter is larger than the inner diameter of the first embodiment.

本第3実施形態の流路切換弁1Bにおいては、上記した第1実施形態の流路切換弁1と同様、筒状の弁体20Bの軸心LB方向への移動による流路切換時に弁体20Bの移動方向に作用する力をバランス(差圧をキャンセル)させることができると共に、弁体20Bの内部流路SB、特に弁体20Bの内部壁23Bよりも上端側の第1内部流路S1Bの流路面積を大きく設定することができる。そのため、流入口13aBに接続された導管継手13Bから第1流出口11aBに接続された導管継手11Bへ流れる流体(冷媒)の流量を十分に確保することができる。   In the flow path switching valve 1B of the third embodiment, similar to the flow path switching valve 1 of the first embodiment described above, the valve body is switched when the flow path is switched by the movement of the cylindrical valve body 20B in the direction of the axis LB. The force acting in the moving direction of 20B can be balanced (differential pressure can be canceled), and the internal flow path SB of the valve body 20B, particularly the first internal flow path S1B on the upper end side of the internal wall 23B of the valve body 20B. The flow path area can be set large. Therefore, it is possible to sufficiently secure the flow rate of the fluid (refrigerant) flowing from the conduit joint 13B connected to the inlet 13aB to the conduit joint 11B connected to the first outlet 11aB.

[第4実施形態]
図9は、本発明に係る流路切換弁の第4実施形態の全体構成を示す縦断面図である。第4実施形態の流路切換弁1Cは、上記した第3実施形態の流路切換弁1Bに対し、弁体の連通口や内部壁の構成が相違しており、その他の構成は第3実施形態の流路切換弁1Bとほぼ同様である。したがって、第3実施形態の流路切換弁1Bと同様の構成については同様の符号を付してその詳細な説明は省略する。
[Fourth Embodiment]
FIG. 9 is a longitudinal sectional view showing the overall configuration of the fourth embodiment of the flow path switching valve according to the present invention. The flow path switching valve 1C of the fourth embodiment differs from the flow path switching valve 1B of the third embodiment described above in the configuration of the communication port of the valve body and the inner wall, and the other configurations are the third embodiment. This is substantially the same as the flow path switching valve 1B of the embodiment. Therefore, the same components as those of the flow path switching valve 1B of the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

第4実施形態の流路切換弁1Cでは、弁体20Cの側部に、軸心LC方向で2列であって平面視で視た際に軸心LC周りで90度間隔に合計8つの連通口20caC〜20faC、20cbC〜20fbCが形成されている。上列の4つの連通口20caC〜20faCは、内部壁23Cよりも上端側の第1内部流路S1Cに開口し、下列の4つの連通口20cbC〜20fbCは、内部壁23Cよりも下端側の第2内部流路S2Cに開口するように形成されている。なお、各連通口20caC〜20faC、20cbC〜20fbCは、側面視で視た際に略円形状を呈している(図10参照)。ここで、各連通口20caC〜20faC、20cbC〜20fbCの位置や大きさ、形状等は、弁室7C内で弁体20Cが移動した際に、軸心LC方向に並んで形成された連通口を介して弁本体5Cの流入口13aCと弁体20Cの内部流路SCとが常時連通するように設計されている。   In the flow path switching valve 1C of the fourth embodiment, a total of eight communication lines are provided at 90 ° intervals around the axis LC when viewed in a plan view in two rows in the direction of the axis LC at the side of the valve body 20C. Mouth 20caC-20faC and 20cbC-20fbC are formed. Four communication ports 20caC to 20faC in the upper row open to the first internal flow path S1C on the upper end side with respect to the inner wall 23C, and four communication ports 20cbC to 20fbC in the lower row have a lower end side than the inner wall 23C. 2 It is formed to open to the internal flow path S2C. Each of the communication ports 20caC to 20faC and 20cbC to 20fbC has a substantially circular shape when viewed from the side (see FIG. 10). Here, the positions, sizes, shapes, and the like of the communication ports 20caC to 20faC and 20cbC to 20fbC are the same as the communication ports formed side by side in the axial center LC direction when the valve body 20C moves in the valve chamber 7C. The inflow port 13aC of the valve body 5C and the internal flow path SC of the valve body 20C are designed to always communicate with each other.

また、弁体20の内部に設けられた内部壁23Cは、弁体20Cの略中央部、すなわち軸心LC方向に並んで形成された連通口20caC〜20faCと連通口20cbC〜20fbCとの間の部分に該弁体20Cに一体に形成されており、したがって平面視で視た際に略円形状を呈している(図10参照)。弁体20Cの内部流路SCは、この内部壁23Cによって、内部壁23Cよりも上端側の第1内部流路S1Cと下端側の第2内部流路S2Cとに分割され、上記したように、上列の4つの各連通口20caC〜20faCと下列の4つの連通口20cbC〜20fbCとが、内部壁23Cよりも上端側の第1内部流路S1Cと下端側の第2内部流路S2Cとにそれぞれ開口するように形成されている。   Further, the inner wall 23C provided inside the valve body 20 is formed between the communication ports 20caC to 20faC and the communication ports 20cbC to 20fbC formed side by side in a substantially central portion of the valve body 20C, that is, in the axial center LC direction. The portion is formed integrally with the valve body 20C, and therefore has a substantially circular shape when viewed in plan view (see FIG. 10). The internal flow path SC of the valve body 20C is divided by the internal wall 23C into a first internal flow path S1C on the upper end side and a second internal flow path S2C on the lower end side, as described above. The upper row of four communication ports 20caC to 20faC and the lower row of four communication ports 20cbC to 20fbC are connected to the first internal channel S1C on the upper end side and the second internal channel S2C on the lower end side with respect to the inner wall 23C. Each is formed to open.

また、内部壁23Cには、内部壁23Cよりも上端側の第1内部流路S1Cと下端側の第2内部流路S2Cとを連通するべく、軸心LC周りで90度間隔に4つの連通路29Cが軸心LC方向に沿って形成されている。   In addition, the inner wall 23C is provided with four communication channels at intervals of 90 degrees around the axis LC so as to communicate the first inner flow path S1C on the upper end side with respect to the inner wall 23C and the second internal flow path S2C on the lower end side. A passage 29C is formed along the direction of the axis LC.

したがって、弁体20Cを弁本体5Cの弁室7Cに嵌挿すると、弁本体5Cの流入口13aCと弁体20Cの第1内部流路S1C及び第2内部流路S2Cとが、連通口20caC〜20faC、20cbC〜20fbCのうち軸心LC方向に並んで形成された少なくとも2つの連通口(図9中、連通口20caCと連通口20cbC)を介して常時連通するようになっている。   Therefore, when the valve body 20C is inserted into the valve chamber 7C of the valve body 5C, the inlet 13aC of the valve body 5C and the first internal flow path S1C and the second internal flow path S2C of the valve body 20C are connected to the communication ports 20caC to 20caC. 20faC and 20cbC to 20fbC are always in communication with each other via at least two communication ports (in FIG. 9, the communication port 20caC and the communication port 20cbC) formed side by side in the axial center LC direction.

本第4実施形態においても、上記した第1〜第3実施形態と同様、弁体20Cの下端22Cもしくは上端21Cが弁本体5Cの凹部6Cに設けられた弁座6aCもしくは軸受部材15Cの凹部19Cに設けられた弁座19aCに着座して下端側開口20bCもしくは上端側開口20aCが閉じられる状態であっても、弁体20C内の上端側の第1内部流路S1Cと下端側の第2内部流路S2Cとが、軸心LC方向で2列に並んで形成された連通口20caC〜20faC、20cbC〜20fbCと内部壁23Cに形成された連通路29Cとを介して連通している。そのため、流入口13aCに接続された導管継手13Cから流入する流体(冷媒)が、連通口20caC〜20faC、20cbC〜20fbCと連通路29Cを介して弁体20C内の第1内部流路S1C及び第2内部流路S2Cの双方、すなわち筒状の弁体20C内全体に流入する。したがって、筒状の弁体20Cの軸心LC方向への移動による流路切換時に弁体20Cの移動方向(軸心LC方向)に作用する力(弁体20Cに作用する押し下げ力と押し上げ力)をバランス(差圧をキャンセル)させることができ、流路切換時に弁体20Cに作用する荷重を可及的に小さくでき、ステッピングモータ50Cによる弁体20Cの駆動トルクを低減できる。   Also in the fourth embodiment, as in the first to third embodiments described above, the lower end 22C or the upper end 21C of the valve body 20C is the valve seat 6aC provided in the recess 6C of the valve body 5C or the recess 19C of the bearing member 15C. Even when the lower end side opening 20bC or the upper end side opening 20aC is closed while seated on the valve seat 19aC provided on the upper end side, the first internal flow path S1C on the upper end side in the valve body 20C and the second inner side on the lower end side The flow path S2C communicates with the communication ports 20caC to 20faC and 20cbC to 20fbC formed in two rows in the axial center LC direction and the communication path 29C formed in the inner wall 23C. Therefore, the fluid (refrigerant) flowing in from the conduit joint 13C connected to the inflow port 13aC passes through the communication ports 20caC to 20faC, 20cbC to 20fbC and the communication passage 29C, and the first internal flow path S1C and the first internal flow path S1C in the valve body 20C. It flows in both 2 internal flow paths S2C, ie, the whole inside of the cylindrical valve body 20C. Therefore, the force acting in the moving direction (axial center LC direction) of the valve body 20C (the push-down force and the pushing-up force acting on the valve body 20C) when the flow path is switched by the movement of the cylindrical valve body 20C in the axial center LC direction. Can be balanced (differential pressure can be canceled), the load acting on the valve body 20C when switching the flow path can be made as small as possible, and the driving torque of the valve body 20C by the stepping motor 50C can be reduced.

また、本第4実施形態においては、弁体20Cの内部流路SCに開口する連通口が軸心LC方向で並んで形成され、各連通口が内部壁23Cよりも上端側の第1内部流路S1Cと下端側の第2内部流路S2Cとにそれぞれ開口するため、各連通口の開口面積を最適化することができる。そのため、弁室7C内に配置される弁体20Cの形状や構成を簡素化しながら、当該弁体20Cの強度を確保することができる。   In the fourth embodiment, the communication ports that open to the internal flow path SC of the valve body 20C are formed side by side in the axial center LC direction, and each communication port is a first internal flow on the upper end side of the inner wall 23C. Since the openings are made in the path S1C and the second inner flow path S2C on the lower end side, the opening area of each communication port can be optimized. Therefore, the strength of the valve body 20C can be ensured while simplifying the shape and configuration of the valve body 20C disposed in the valve chamber 7C.

なお、上記した第4実施形態では、弁体20Cの構成を簡素化するために、軸心LC方向で2列に並んで形成された連通口のうち、上列の4つの連通口20caC〜20faCと下列の4つの連通口20cbC〜20fbCとが平面視で視た際に軸心LC周りで同じ位置に形成される形態について説明したが、上列の4つの連通口20caC〜20faCと下列の4つの連通口20cbC〜20fbCとは軸心LC周りでそれぞれ異なる位置に形成してもよいことは勿論である。   In the above-described fourth embodiment, in order to simplify the configuration of the valve body 20C, among the communication ports formed in two rows in the axial center LC direction, the upper four communication ports 20caC to 20faC. And the four communication ports 20cbC to 20fbC in the lower row have been described as being formed at the same position around the axis LC when viewed in a plan view. However, the four communication ports 20caC to 20faC in the upper row and the four communication ports 20cab to 20faC in the lower row have been described. Of course, the two communication ports 20cbC to 20fbC may be formed at different positions around the axis LC.

また、上記した第1〜第4実施形態では、流体(冷媒)が流入口に接続された導管継手から第1流出口や第2流出口に接続された導管継手へ流れる形態について説明したが、当該流体を、第1流出口や第2流出口に接続された導管継手から流入口に接続された導管継手へ流してもよいことは勿論である。また、例えば図1や図5に示すような位置で弁体を静止させ、流体(冷媒)を、流入口に接続された導管継手から第1流出口に接続された導管継手と第2流出口に接続された導管継手の双方へ同時に流してもよい。   In the first to fourth embodiments described above, the mode in which the fluid (refrigerant) flows from the conduit joint connected to the inlet to the conduit joint connected to the first outlet or the second outlet is described. Of course, the fluid may flow from a conduit joint connected to the first outlet or the second outlet to a conduit joint connected to the inlet. Further, for example, the valve body is stopped at a position as shown in FIG. 1 or FIG. 5, and the fluid (refrigerant) is connected to the first outlet from the conduit joint connected to the inlet and the second outlet. May flow simultaneously to both of the conduit fittings connected to.

さらに、上記した第1〜第4実施形態では、流入口13a、13aA、13aB、13aCが、第1流出口11a、11aA、11aB、11aCと第2流出口12a、12aA、12aB、12aCの略中間に設けられている形態について説明したが、本発明は特にこれのみに限定されることはなく、第1流出口と第2流出口の中間よりも第1流出口側又は第2流出口側に偏倚して設けられてもよい。この場合には、その偏倚量に応じて、弁体の側部に形成される連通口20c、20d、20cA、20dA、20cB、20dB、20caC、20cbC、20daC、20dbC…や、弁体の内部に形成される内部壁23、23A、23B、23Cの形成位置を調整すればよい。   Furthermore, in the first to fourth embodiments described above, the inlets 13a, 13aA, 13aB, and 13aC are substantially intermediate between the first outlets 11a, 11aA, 11aB, and 11aC and the second outlets 12a, 12aA, 12aB, and 12aC. However, the present invention is not particularly limited to this, and the first outlet and the second outlet are located in the middle of the first outlet and the second outlet. It may be provided biased. In this case, depending on the amount of deviation, the communication ports 20c, 20d, 20cA, 20dA, 20cB, 20dB, 20caC, 20cbC, 20daC, 20dbC, etc. formed on the side of the valve body, What is necessary is just to adjust the formation position of the inner walls 23, 23A, 23B, and 23C to be formed.

1 流路切換弁
2 シール部材
2a 環状溝
3 シール部材
3a 環状溝
5 弁本体
6 凹部
6a 弁座
7 弁室
11 導管継手
11a 第1流出口
12 導管継手
12a 第2流出口
13 導管継手
13a 流入口
14 連通孔
15 軸受部材
15a 嵌挿穴
15i 雌ねじ
16 ボール受座
17 回転昇降軸
17a 雄ねじ
18 ボール
19 凹部
19a 弁座
20 弁体
20a 上端側開口(一端側開口)
20b 下端側開口(他端側開口)
20c、20d 連通口
21 弁体の上端(一端)(第1弁体部)
22 弁体の下端(他端)(第2弁体部)
23 内部壁
23a 嵌装穴
24、26 段部
25 縮装ばね
27A、28A シール部材
29C 連通路
40 不思議遊星歯車式減速機構
50 ステッピングモータ(駆動部)
55 ステータ
57 ロータ
58 キャン
L 軸心
S 内部流路
S1 第1内部流路
S2 第2内部流路
DESCRIPTION OF SYMBOLS 1 Flow path switching valve 2 Seal member 2a Annular groove 3 Seal member 3a Annular groove 5 Valve body 6 Recess 6a Valve seat 11 Valve chamber 11 Conduit joint 11a First outlet 12 Conduit joint 12a Second outlet 13 Conduit joint 13a Inlet 14 communication hole 15 bearing member 15a fitting insertion hole 15i female screw 16 ball seat 17 rotary elevating shaft 17a male screw 18 ball 19 recess 19a valve seat 20 valve body 20a upper end side opening (one end side opening)
20b Lower end side opening (other end side opening)
20c, 20d Communication port 21 Upper end (one end) of valve body (first valve body portion)
22 Lower end (other end) of valve body (second valve body part)
23 inner wall 23a fitting hole 24, 26 step 25 compression spring 27A, 28A seal member 29C communication path 40 strange planetary gear type reduction mechanism 50 stepping motor (drive part)
55 Stator 57 Rotor 58 Can L Axle S Internal flow path S1 First internal flow path S2 Second internal flow path

Claims (13)

内部流路を有する筒状の弁体と、該弁体が摺動自在に収容される弁室が画成された弁本体と、前記弁室内で前記弁体を軸心方向に移動させる駆動部とを備えた流路切換弁であって、
前記弁体の側部には、前記内部流路に開口する連通口が形成され、
前記弁本体には、前記弁室内で前記弁体が移動する際に前記弁体の前記連通口を介して前記内部流路と連通する流入口と、前記弁体の一端側開口及び他端側開口を介して前記内部流路と連通する第1流出口及び第2流出口とが形成されていることを特徴とする流路切換弁。
A cylindrical valve body having an internal flow path, a valve body in which a valve chamber in which the valve body is slidably housed is defined, and a drive unit that moves the valve body in the axial direction in the valve chamber A flow path switching valve comprising:
On the side of the valve body, a communication port that opens to the internal flow path is formed,
The valve body includes an inlet that communicates with the internal flow path through the communication port of the valve body when the valve body moves in the valve chamber, an opening on one end side and the other end side of the valve body. A flow path switching valve, wherein a first outflow port and a second outflow port communicating with the internal flow path through an opening are formed.
前記弁体の内部には、前記駆動部による駆動力を前記弁体に伝達する内部壁が設けられていることを特徴とする請求項1に記載の流路切換弁。   The flow path switching valve according to claim 1, wherein an inner wall for transmitting a driving force by the driving unit to the valve body is provided inside the valve body. 前記連通口は、前記内部壁よりも一端側の第1内部流路と他端側の第2内部流路との双方に開口するように形成されていることを特徴とする請求項2に記載の流路切換弁。   The said communication port is formed so that it may open to both the 1st internal flow path of the one end side from the said internal wall, and the 2nd internal flow path of the other end side. Flow path switching valve. 前記連通口は複数形成され、各連通口が前記内部壁よりも一端側の第1内部流路と他端側の第2内部流路とにそれぞれ開口していることを特徴とする請求項2に記載の流路切換弁。   The plurality of communication ports are formed, and each communication port opens to a first internal flow channel on one end side and a second internal flow channel on the other end side than the internal wall, respectively. The flow path switching valve according to 1. 前記内部壁には、該内部壁よりも一端側の第1内部流路と他端側の第2内部流路とを連通する連通路が形成されていることを特徴とする請求項2から4のいずれか一項に記載の流路切換弁。   5. The communication path that connects the first internal flow path on one end side with respect to the internal wall and the second internal flow path on the other end side is formed in the internal wall. The flow path switching valve according to any one of the above. 前記弁室を画成する壁面に設けられた傾斜面によって、前記弁体の一端もしくは他端と接離する弁座が形成されていることを特徴とする請求項1から5のいずれか一項に記載の流路切換弁。   The valve seat which contacts and separates from the one end or the other end of the said valve body is formed of the inclined surface provided in the wall surface which defines the said valve chamber, The any one of Claim 1 to 5 characterized by the above-mentioned. The flow path switching valve according to 1. 前記弁本体の内周面に形成された環状溝に、前記弁体の外周面と前記弁本体の内周面との間をシールするシール部材が配設されていることを特徴とする請求項1から6のいずれか一項に記載の流路切換弁。   The seal member for sealing between the outer peripheral surface of the valve body and the inner peripheral surface of the valve main body is arranged in the annular groove formed in the inner peripheral surface of the valve main body. The flow path switching valve according to any one of 1 to 6. 前記弁体の外周面に形成された環状溝に、前記弁体の外周面と前記弁本体の内周面との間をシールするシール部材が配設されていることを特徴とする請求項1から6のいずれか一項に記載の流路切換弁。   The seal member which seals between the outer peripheral surface of the said valve body and the inner peripheral surface of the said valve main body is arrange | positioned by the annular groove formed in the outer peripheral surface of the said valve body. To 6. The flow path switching valve according to any one of items 1 to 6. 前記シール部材は、前記弁体の前記連通口と前記一端側開口との間及び前記連通口と前記他端側開口との間に配設されていることを特徴とする請求項7又は8に記載の流路切換弁。   The said seal member is arrange | positioned between the said communicating port and the said one end side opening of the said valve body, and between the said communicating port and the said other end side opening, The Claim 7 or 8 characterized by the above-mentioned. The flow path switching valve described. 前記弁体の内部には、前記弁体の一端側又は他端側に向かって内径が大きくなる段部が設けられていることを特徴とする請求項1から9のいずれか一項に記載の流路切換弁。   10. The step portion according to claim 1, wherein a step portion whose inner diameter increases toward one end side or the other end side of the valve body is provided inside the valve body. Channel switching valve. 前記弁本体の内径は、前記流入口、前記第1流出口、又は前記第2流出口が形成された部分で大きくなることを特徴とする請求項1から10のいずれか一項に記載の流路切換弁。   The internal diameter of the said valve main body becomes large in the part in which the said inflow port, the said 1st outflow port, or the said 2nd outflow port was formed, The flow as described in any one of Claim 1 to 10 characterized by the above-mentioned. Road switching valve. 前記弁体の外径は、前記連通口、前記一端側開口、又は前記他端側開口が形成された部分で小さくなることを特徴とする請求項1から11のいずれか一項に記載の流路切換弁。   The flow according to any one of claims 1 to 11, wherein an outer diameter of the valve body is reduced at a portion where the communication port, the one end side opening, or the other end side opening is formed. Road switching valve. 前記駆動部は、遊星歯車式減速機構を備えていることを特徴とする請求項1から12のいずれか一項に記載の流路切換弁。   The flow path switching valve according to any one of claims 1 to 12, wherein the drive unit includes a planetary gear speed reduction mechanism.
JP2013235951A 2013-11-14 2013-11-14 Flow path switching valve Active JP6332945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013235951A JP6332945B2 (en) 2013-11-14 2013-11-14 Flow path switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013235951A JP6332945B2 (en) 2013-11-14 2013-11-14 Flow path switching valve

Publications (2)

Publication Number Publication Date
JP2015094460A true JP2015094460A (en) 2015-05-18
JP6332945B2 JP6332945B2 (en) 2018-05-30

Family

ID=53196986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235951A Active JP6332945B2 (en) 2013-11-14 2013-11-14 Flow path switching valve

Country Status (1)

Country Link
JP (1) JP6332945B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076435A (en) * 2021-03-12 2022-09-20 浙江三花汽车零部件有限公司 Electric valve
CN116717648A (en) * 2023-08-04 2023-09-08 滕州市大宏机械制造有限公司 Rotary joint for liquid circulation cooling of general equipment
JP7403846B2 (en) 2021-09-07 2023-12-25 株式会社不二工機 electric valve
JP7418845B2 (en) 2021-09-21 2024-01-22 株式会社不二工機 electric valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152347U (en) * 1978-04-17 1979-10-23
JP2011190920A (en) * 2010-03-17 2011-09-29 Fuji Koki Corp Three-way electrically operated valve, and heat pump device equipped with the same
JP2012163259A (en) * 2011-02-07 2012-08-30 Tgk Co Ltd Control valve
JP2012184831A (en) * 2011-03-08 2012-09-27 Tgk Co Ltd Control valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54152347U (en) * 1978-04-17 1979-10-23
JP2011190920A (en) * 2010-03-17 2011-09-29 Fuji Koki Corp Three-way electrically operated valve, and heat pump device equipped with the same
JP2012163259A (en) * 2011-02-07 2012-08-30 Tgk Co Ltd Control valve
JP2012184831A (en) * 2011-03-08 2012-09-27 Tgk Co Ltd Control valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076435A (en) * 2021-03-12 2022-09-20 浙江三花汽车零部件有限公司 Electric valve
CN115076435B (en) * 2021-03-12 2023-10-20 浙江三花汽车零部件有限公司 Electric valve
JP7403846B2 (en) 2021-09-07 2023-12-25 株式会社不二工機 electric valve
JP7418845B2 (en) 2021-09-21 2024-01-22 株式会社不二工機 electric valve
CN116717648A (en) * 2023-08-04 2023-09-08 滕州市大宏机械制造有限公司 Rotary joint for liquid circulation cooling of general equipment

Also Published As

Publication number Publication date
JP6332945B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6684599B2 (en) Flow path switching valve
JP6332945B2 (en) Flow path switching valve
KR20110104890A (en) Channel switching valve and heat pump system using the same
JP5528805B2 (en) Valve assembly
JP5907506B2 (en) Rotary valve device
CN107421174B (en) Flow path switching valve
WO2019091484A1 (en) Electronic expansion valve
WO2003006860A1 (en) Valve drive device
CN107023693B (en) Flow path switching valve
JP6567336B2 (en) Motorized valve
KR101556037B1 (en) Rotary type valve apparatus
JP2015094372A (en) Motor-operated valve
CN104421436A (en) Flow control valve
US20130087730A1 (en) Valve device
JPWO2017169319A1 (en) Electric valve and refrigeration cycle system
US20190250645A1 (en) Motor-operated valve
US20200256475A1 (en) Valve
US20200256472A1 (en) Valve
JP6715879B2 (en) 3-way switching valve
JP2019066007A (en) Valve device
JP5572398B2 (en) Multi-way switching valve and manufacturing / assembling method thereof
CN101907184A (en) Combined type reversal valve
JP7105489B2 (en) Flow switching valve
CN219510182U (en) Six-way valve and temperature control system
CN110388481B (en) Ball valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180424

R150 Certificate of patent or registration of utility model

Ref document number: 6332945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250