JP2015090287A - Earthquake motion estimation method in consideration of earthquake response of railroad structure - Google Patents

Earthquake motion estimation method in consideration of earthquake response of railroad structure Download PDF

Info

Publication number
JP2015090287A
JP2015090287A JP2013229418A JP2013229418A JP2015090287A JP 2015090287 A JP2015090287 A JP 2015090287A JP 2013229418 A JP2013229418 A JP 2013229418A JP 2013229418 A JP2013229418 A JP 2013229418A JP 2015090287 A JP2015090287 A JP 2015090287A
Authority
JP
Japan
Prior art keywords
ground
motion
railway
earthquake
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013229418A
Other languages
Japanese (ja)
Inventor
靖士 津野
Seiji Tsuno
靖士 津野
直泰 岩田
Naoyasu Iwata
直泰 岩田
寛之 宮腰
Hiroyuki Miyakoshi
寛之 宮腰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2013229418A priority Critical patent/JP2015090287A/en
Publication of JP2015090287A publication Critical patent/JP2015090287A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake motion estimation method in consideration of an earthquake response of a railroad structure, for evaluating an earthquake motion on the railroad structure, in consideration of an earthquake motion amplification effect.SOLUTION: In an earthquake motion estimation method in consideration of an earthquake response of a railroad structure, a parameter affecting a vibration characteristic of the railroad structure is extracted by utilizing observed fine motion, and the earthquake motion on the railroad structure is evaluated by multiplying together an earthquake response characteristic of the railroad structure determined from the parameter, a vibration characteristic of the ground, and an earthquake motion of the base.

Description

本発明は、鉄道構造物の地震応答を考慮した地震動推定方法に関するものである。   The present invention relates to a method for estimating ground motion in consideration of the seismic response of a railway structure.

従来の地表地震記録を利用した鉄道における地震時の運転規制では鉄道構造物の地震応答を考慮していなかった。   The conventional seismic response of railway structures using the earthquake records of the surface did not take into account the seismic response of railway structures.

地震後に鉄道構造物の被害を推定するためには、地表面の地震動を正確に把握する必要がある。一方、2011年3月11日に発生した東北地方太平洋沖地震 (Mw9.0) の本震や余震では、高架橋の揺れにより新幹線の電化柱の折損や傾斜が広範囲に渡り多数発生したことが報告されている(下記非特許文献1参照)。よって、地震後における列車運転の停止や再開の判断には、地表面の地震動だけでなく鉄道構造物上の地震動を把握することも重要となる。   In order to estimate damage to railway structures after an earthquake, it is necessary to accurately grasp the ground motion on the ground surface. On the other hand, in the main shock and aftershock of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) that occurred on March 11, 2011, it was reported that a lot of breakage and inclination of the electrification pillars of the Shinkansen occurred due to shaking of the viaduct. (See Non-Patent Document 1 below). Therefore, in order to determine whether to stop or restart train operation after an earthquake, it is important to grasp not only the ground surface earthquake motion but also the earthquake motion on the railway structure.

水野光靖,野澤伸一郎,「JR東日本の鉄道施設における地震被害と復旧状況」,土木学会誌,Vol. 96,No. 7,2011Mitsunobu Mizuno and Shinichiro Nozawa, “Earthquake damage and restoration in JR East railway facilities”, Journal of Japan Society of Civil Engineers, Vol. 96, No. 7, 2011 岩田直泰,津野靖士,山本俊六,野田俊太,伊藤賀章,宮腰寛之,「表面波探査およびアレー微動探査による宮崎県中部沿岸部のS波速度構造推定」,物理探査学会 第127回学術講演会論文集,講演番号20,pp. 70−73,2012Naoyata Iwata, Atsushi Tsuno, Shunroku Yamamoto, Shunta Noda, Akira Ito, Hiroyuki Miyakoshi, "S-wave velocity structure estimation in the central coastal area of Miyazaki Prefecture by surface wave exploration and array microtremor exploration", 127th Scientific Lecture Proceedings of the conference, lecture number 20, pp. 70-73, 2012 岩田直泰,津野靖士,山本俊六,野田俊太,伊藤賀章,宮腰寛之,「H/ Vスペクトル比を用いた線状連続のS波速度構造ならびに地震動の推定」,物理探査学会 第128回学術講演会論文集,講演番号61,pp. 227−230,2013Naoyata Iwata, Atsushi Tsuno, Shunroku Yamamoto, Shunta Noda, Akira Ito, Hiroyuki Miyakoshi, “Simulation of S-wave velocity structure and seismic motion of linear continuation using H / V spectrum ratio” Proceedings of Lecture, Lecture No. 61, pp. 227-230, 2013 大崎順彦,「建築振動理論」,彰国社,pp. 44−51,1996Nobuhiko Osaki, “Architecture Vibration Theory”, Shokokusha, pp. 44-51, 1996 西村昭彦,棚村史郎,「既設橋梁橋脚の健全度判定法に関する研究」,鉄道総研報告,Vol. 3,No. 8,1989Akihiko Nishimura, Shiro Tanamura, “Study on soundness judgment method of existing bridge piers”, Railway Research Institute report, Vol. 3, No. 8, 1989 鉄道総合技術研究所編,「鉄道構造物等設計標準・同解説,耐震設計」,丸善出版,pp356−361,2012Railway Technical Research Institute, “Railway structure design standards and explanation, earthquake-resistant design”, Maruzen Publishing, pp 356-361, 2012

従来の地表地震記録を利用した鉄道における地震時の運転規制では鉄道構造物の地震応答を考慮していなかった。   The conventional seismic response of railway structures using the earthquake records of the surface did not take into account the seismic response of railway structures.

そこで、本発明では、上記状況に鑑みて、地盤の震動特性と構造物の振動特性を考慮し、鉄道構造物上の地震動を評価する、鉄道構造物の地震応答を考慮した地震動推定方法を提供することを目的とする。   Therefore, in the present invention, in view of the above situation, a ground motion estimation method considering the seismic response of the railway structure is provided that evaluates the ground motion on the railway structure in consideration of the ground vibration characteristics and the vibration characteristics of the structure. The purpose is to do.

本発明は、上記目的を達成するために、
〔1〕鉄道構造物の地震応答を考慮した地震動推定方法において、観測した微動を利用して、鉄道構造物の振動特性に影響を及ぼすパラメータを抽出し、このパラメータから求められる前記鉄道構造物の地震応答と地表で観測された地震動を掛け合わせることにより、前記鉄道構造物上の地震動を評価することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the seismic motion estimation method considering the seismic response of the railway structure, parameters that affect the vibration characteristics of the railway structure are extracted using the observed microtremors, and the railway structure obtained from the parameters is extracted. The earthquake motion on the railway structure is evaluated by multiplying the earthquake response and the earthquake motion observed on the ground surface.

〔2〕上記〔1〕記載の鉄道構造物の地震応答を考慮した地震動推定方法において、路線に沿った地盤上と前記鉄道構造物上で同時に観測した微動に基づく観測伝達関数と1質点系モデルによる理論伝達関数の残差が最小になるように固有周波数と減衰定数を同定して、前記鉄道構造物の振動特性を求め、次に、算出した地表面の地震動を1質点系モデルに入力し、前記路線に沿って前記鉄道構造物上の地震動を推定することを特徴とする。   [2] In the ground motion estimation method considering the seismic response of the railway structure according to [1] above, an observed transfer function and a one-mass system model based on microtremors simultaneously observed on the ground along the route and on the railway structure The natural frequency and the damping constant are identified so that the residual of the theoretical transfer function due to is minimized, the vibration characteristics of the railway structure are obtained, and then the calculated ground motion is input to the one-mass system model. The seismic motion on the railway structure is estimated along the route.

〔3〕上記〔2〕記載の鉄道構造物の地震応答を考慮した地震動推定方法において、前記鉄道構造物が高架橋であることを特徴とする。   [3] In the ground motion estimation method considering the seismic response of the railway structure according to [2], the railway structure is a viaduct.

〔4〕上記〔3〕記載の鉄道構造物の地震応答を考慮した地震動推定方法において、基盤上の地震動を用い、前記地盤と前記高架橋の増幅度を掛け合わせて、前記構造物上の地震動を正確に推定することを特徴とする。   [4] In the ground motion estimation method considering the seismic response of the railway structure according to [3] above, the ground motion is multiplied by the amplification degree of the ground and the viaduct, and the ground motion on the structure is It is characterized by accurate estimation.

本発明によれば、鉄道構造物上の振動特性を考慮するため、鉄道構造物を走行している列車に対して、適切な地震時運転規制を行うことが可能となる。   According to the present invention, since the vibration characteristics on the railway structure are taken into consideration, it is possible to perform appropriate seismic operation regulation for the train traveling on the railway structure.

高架橋上の地震動を推定するモデル路線を示す図である。It is a figure which shows the model route which estimates the earthquake motion on a viaduct. 地盤上と高架橋上のフーリエスペクトル比の例を示す図である。It is a figure which shows the example of the Fourier spectrum ratio on a ground and a viaduct. モデル路線のキロ程に対する観測伝達関数のコンター図である。It is a contour diagram of an observed transfer function for a kilometer of model routes. 周波数に対する増幅度を示す図である。It is a figure which shows the amplification degree with respect to a frequency. 同定により算出した固有周波数をモデル路線のキロ程に対して示す図である。It is a figure which shows the natural frequency calculated by identification with respect to the kilometer about a model route. 橋脚高さと同定により求めた固有周波数の関係を示す図である。It is a figure which shows the relationship between the pier height and the natural frequency calculated | required by identification. 同定により算出した減衰定数をモデル路線のキロ程に対して示す図である。It is a figure which shows the attenuation constant calculated by identification with respect to the kilometer of a model route. SiteBのラーメン高架橋上における観測と推定の波形比較の例を示す図である。It is a figure which shows the example of the waveform comparison of observation on the ramen viaduct of SiteB, and estimation. SiteBの高架橋上で記録された地震動 (N=102) について、観測と推定の最大速度 (cm/ s) の比較を示す図である。It is a figure which shows the comparison of the observed and estimated maximum velocity (cm / s) about the ground motion (N = 102) recorded on the viaduct of SiteB. モデル路線のキロ程に対し線状に地震動を推定した結果を示す図である。It is a figure which shows the result of having estimated the seismic motion linearly with respect to the kilometer about a model route. 地表地震動と構造物応答の最大速度(SiteA)を示す図である。It is a figure which shows the maximum speed (SiteA) of a ground surface earthquake motion and a structure response. 地表地震動と構造物応答の最大速度(SiteB)を示す図である。It is a figure which shows the maximum speed (SiteB) of a ground surface earthquake motion and a structure response. 地中地震動と地表地震動の最大速度(SiteA)を示す図である。It is a figure which shows the maximum velocity (SiteA) of underground ground motion and surface ground motion. 地中地震動と地表地震動の最大速度(SiteB)を示す図である。It is a figure which shows the maximum velocity (SiteB) of underground ground motion and surface ground motion. 地盤と構造物の最大速度増幅度の比較を示す図である。It is a figure which shows the comparison of the maximum speed amplification degree of a ground and a structure.

本発明の鉄道構造物の地震応答を考慮した地震動推定方法は、観測した微動を利用して、鉄道構造物の振動特性に影響を及ぼすパラメータを抽出し、このパラメータから求められる前記鉄道構造物の地震応答特性、地盤の震動特性、基盤の地震動を掛け合わせることにより、前記鉄道構造物上の地震動を評価する。   The seismic motion estimation method considering the seismic response of the railway structure according to the present invention extracts parameters affecting the vibration characteristics of the railway structure using the observed microtremors, and determines the railway structure obtained from the parameters. The seismic motion on the railway structure is evaluated by multiplying the seismic response characteristics, the ground motion characteristics, and the ground motion.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(1)まず、モデル路線に沿った高密度な微動測定について説明する。   (1) First, high-density fine movement measurement along the model route will be described.

図1は高架橋上の地震動を推定するモデル路線を示す図、図2は地盤上と高架橋上のフーリエスペクトル比(以下、観測伝達関数)の例を示す図であり、aは橋軸方向のフーリエスペクトル比、bは橋軸直角方向のフーリエスペクトル比を示している。図3はモデル路線のキロ程に対する観測伝達関数のコンター図である。   FIG. 1 is a diagram showing model routes for estimating ground motion on a viaduct, FIG. 2 is a diagram showing an example of a Fourier spectral ratio (hereinafter referred to as an observation transfer function) on the ground and a viaduct, and a is a Fourier in a bridge axis direction. Spectral ratio, b indicates the Fourier spectral ratio in the direction perpendicular to the bridge axis. FIG. 3 is a contour diagram of the observed transfer function for the kilometer of the model route.

高架橋上の地震動を推定するモデル路線には、図1に示すように、宮崎リニア実験を選定した。この路線は全長約7kmである。始点と終点の両端はラーメン高架橋であり、その間は桁式高架橋となっている。この路線の中間地点 (SiteA) と終端地点 (SiteB) の地盤上と高架橋上に地震計を設置し、約2年間地震観測を行った。なお、上記非特許文献2では上記2点の地震計位置のS波速度構造を表面波探査およびアレイ微動探査により推定している。   As a model route for estimating seismic motion on the viaduct, the Miyazaki linear experiment was selected as shown in FIG. This route is about 7km long. Both ends of the start and end points are ramen viaducts, and between them are girder viaducts. Seismometers were installed on the ground and viaduct at the intermediate point (Site A) and terminal point (Site B) of this route, and seismic observation was conducted for about two years. In Non-Patent Document 2, the S-wave velocity structure at the two seismometer positions is estimated by surface wave exploration and array microtremor exploration.

このモデル路線の地盤上と高架橋上において、約0.1km間隔で微動測定を行った。このうち、地盤上で得られた微動のH/ Vスペクトル比を路線に沿ったS波速度構造の推定に用い(上記非特許文献3参照) 、地盤上と高架橋上のフーリエスペクトル比(以下、観測伝達関数)を高架橋の振動特性の同定に用いている。観測伝達関数の例を図2に示す。また、モデル路線のキロ程に対する観測伝達関数のコンター図(橋軸直角方向) を図3に示す。図中の灰色区間はデータ欠測やデータ不良の区間c,dを表し、○印はピーク周波数を表している。   On the ground of this model route and on the viaduct, microtremor measurements were performed at intervals of about 0.1 km. Among these, the H / V spectral ratio of microtremor obtained on the ground is used for estimation of the S wave velocity structure along the route (see Non-Patent Document 3 above), and the Fourier spectral ratio on the ground and the viaduct (hereinafter referred to as “the S-wave velocity structure”). Observed transfer function) is used to identify vibration characteristics of viaducts. An example of the observed transfer function is shown in FIG. In addition, Fig. 3 shows the contour diagram of the observed transfer function (in the direction perpendicular to the bridge axis) for the model route. In the figure, gray sections represent sections c and d where data is missing or data is defective, and ◯ represents a peak frequency.

(2)次に、モデル路線における高架橋の振動特性の同定について説明する。   (2) Next, identification of vibration characteristics of the viaduct on the model route will be described.

図4は周波数に対する増幅度を示す図であり、eは観測値、fは理論値を示している。図5は同定により算出した固有周波数をモデル路線のキロ程に対して示す図であり、■は橋軸方向、●は橋軸直角方向を示している。図6は橋脚高さと同定により求めた固有周波数の関係を示す図であり、■は桁式高架橋の橋軸方向、●は桁式高架橋の橋軸直角方向を、▲はラーメン高架橋の橋軸方向、▼はラーメン高架橋の橋軸直角方向を示している。図7は同定により算出した減衰定数をモデル路線のキロ程に対して示す図である。   FIG. 4 is a diagram showing the degree of amplification with respect to frequency, where e is an observed value and f is a theoretical value. FIG. 5 is a diagram showing the natural frequency calculated by identification with respect to the kilometer of the model route, where ■ indicates the direction of the bridge axis, and ● indicates the direction perpendicular to the bridge axis. Fig. 6 shows the relationship between the height of the pier and the natural frequency obtained by identification. ■ is the bridge axis direction of the girder viaduct, ● is the direction perpendicular to the bridge axis of the girder viaduct, and ▲ is the bridge axis direction of the ramen viaduct , ▼ indicate the direction perpendicular to the bridge axis of the ramen viaduct. FIG. 7 is a diagram showing the attenuation constant calculated by identification with respect to the kilometer of the model route.

観測伝達関数に対し、高架橋を1質点系にモデル化して理論応答特性(以下、理論伝達関数)(上記非特許文献4参照) に合うように逆解析を行い、固有周波数と減衰定数の同定を行った。線状に連続する鉄道構造物は振動特性が線路方向と線路直角方向で異なるため、本発明における振動特性の同定は各方向に対して行った.
同定はグリッドサーチ法を用い、対象範囲は観測伝達関数の1次固有周波数の0.5〜1.5倍とした.この範囲は観測伝達関数が1以上の帯域に概ね対応している(図4参照) 。また、解の効率的な算出のために探索範囲を設けており、固有周波数は観測伝達関数のピーク周波数の−1〜+1%( 探索間隔0.01Hz) 、減衰定数は0〜20%( 同0.1%) を設定した。なお、ピーク周波数を安定して求める目的から対象範囲や探索範囲を定める観測伝達関数には平滑化処理を行っている。一方、逆解析を行うための観測伝達関数にはピークの鋭さを保ち減衰定数を良好に推定する目的から平滑化処理を行っていない.
橋軸直角方向に対する同定結果の例を図4に示す。図中の太実線の部分が同定の対象帯域である。この図より、1質点系モデルを用いた高架橋の振動特性の同定が概ね良好に行われていることが確認できる。図5によると橋軸方向、橋軸直角方向とも固有周波数は地点により大きく異なっている。橋脚の固有周波数を橋脚高さと桁重量から算出する式が提案されている(上記非特許文献5参照)が、図6によると、高架橋の固有周波数は桁式高架橋ならびにラーメン高架橋とも橋脚の高さと強い相関があり、同定された固有周波数は既往の知見に矛盾しない結果が得られた。図7では橋軸直角方向はばらつきが小さく、概ね1%前後に分布している。一方、橋軸方向は地点により大きく異なるが、その多くは1%から5%の範囲にある。ここで得られた値は設計標準(上記非特許文献6参照) に示されている減衰定数の3%から5%よりやや小さな値であるが概ね等しく、良好な値が同定されている。
For the observed transfer function, the viaduct is modeled as a one-mass system, and the inverse response is performed to match the theoretical response characteristics (hereinafter, the theoretical transfer function) (see Non-Patent Document 4 above), and the natural frequency and attenuation constant are identified went. Since the vibration characteristics of linear railway structures differ between the track direction and the direction perpendicular to the track, the vibration characteristics in the present invention were identified in each direction.
The grid search method was used for identification, and the target range was 0.5 to 1.5 times the first natural frequency of the observed transfer function. This range generally corresponds to a band having an observed transfer function of 1 or more (see FIG. 4). In addition, a search range is provided for efficient calculation of the solution, the natural frequency is -1 to + 1% of the peak frequency of the observed transfer function (search interval 0.01 Hz), and the attenuation constant is 0 to 20% (same as above). 0.1%). For the purpose of obtaining the peak frequency stably, the observation transfer function that determines the target range and the search range is subjected to smoothing processing. On the other hand, the observed transfer function for inverse analysis is not smoothed for the purpose of preserving the sharpness of the peak and estimating the attenuation constant well.
An example of identification results for the direction perpendicular to the bridge axis is shown in FIG. The thick solid line in the figure is the identification target band. From this figure, it can be confirmed that the vibration characteristics of the viaduct using the one-mass system model are generally well identified. According to FIG. 5, the natural frequency differs greatly depending on the point in both the bridge axis direction and the bridge axis perpendicular direction. A formula for calculating the natural frequency of the pier from the pier height and the girder weight has been proposed (see Non-Patent Document 5 above). According to FIG. 6, the natural frequency of the viaduct is the height of the pier for both the girder viaduct and the ramen viaduct. There was a strong correlation, and the identified natural frequencies were consistent with previous findings. In FIG. 7, the variation in the direction perpendicular to the bridge axis is small, and the distribution is approximately around 1%. On the other hand, although the bridge axis direction varies greatly depending on the location, most of them are in the range of 1% to 5%. Although the values obtained here are slightly smaller than 3% to 5% of the attenuation constant shown in the design standard (see Non-Patent Document 6 above), they are almost equal and a good value is identified.

(3)次に、地盤上および高架橋上の地震動推定について説明する。   (3) Next, estimation of ground motion on the ground and viaduct will be explained.

1質点系モデルと同定パラメータによる高架橋上の地震動推定の精度検証を目的として地震計位置の観測と推定の地震動比較を行った。図8にSite Bのラーメン高架橋上における観測と推定の波形比較の例 (2011年11月11日、日向灘の地震、M3.5,震源深さ34km) を示し、gは観測値、hは推定値を表している。図9にはSite Bの高架橋上で記録された地震動 (N=102) について、観測と推定の最大速度 (cm/ s) の比較を示す。図8および図9とも観測と推定はよく一致しており、本発明の1質点系モデルによる高架橋上の地震動推定手法は信頼性を有すると考えられる。   For the purpose of verifying the accuracy of ground motion estimation on the viaduct using a one-mass system model and identification parameters, the seismometer position was observed and estimated. Fig. 8 shows an example of the comparison of observed and estimated waveforms on the ramen viaduct of Site B (November 11, 2011, earthquake in Hyuga-nada, M3.5, seismic depth 34 km), g is the observed value, h is the observed value Represents an estimated value. FIG. 9 shows a comparison of observed and estimated maximum velocity (cm / s) for ground motion recorded on the Site B viaduct (N = 102). The observation and the estimation are in good agreement with both FIG. 8 and FIG. 9, and it is considered that the ground motion estimation method on the viaduct based on the one mass system model of the present invention has reliability.

次に、モデル路線に沿った高架橋上での地震動を推する。ここでは2011年10月5日の23時33分に発生した熊本県熊本地域の地震 (M4.5、Dep. 10km) を対象とし、上記非特許文献3参照の手法を用い地表面における地震動をモデル路線に沿って推定した。高架橋上における地震動の推定は、上記(2)で同定した各微動測定地点における固有周波数と減衰定数を用いている。なお,本発明では簡単のため、地盤と鉄道構造物の相互作用は考慮していない。対象地震について、図10には地盤上の推定地震動と高架橋上の推定地震動を併せて示す。なお、評価対象とした地震動指標は水平2成分合成の最大速度である。ここでは、SiteAの地盤上で観測された地震動を参照して、その他の微動測定地点における地盤上と高架橋上の地震動を推定している。検証点の位置付けとなるSiteBの高架橋上の観測と推定を比較するとやや過大推定となっているが、概ね良好な一致となっており、モデル路線の全線に渡っても概ね良好に地震動が推定できている。   Next, the ground motion on the viaduct along the model route is estimated. Here, the earthquake in the Kumamoto region (M4.5, Dep. 10 km) that occurred at 23:33 on October 5, 2011 was targeted, and the ground motion on the ground surface was measured using the method described in Non-Patent Document 3 above. Estimated along the model route. The estimation of seismic motion on the viaduct uses the natural frequency and attenuation constant at each microtremor measurement point identified in (2) above. In the present invention, for simplicity, the interaction between the ground and the railway structure is not considered. For the target earthquake, FIG. 10 shows the estimated ground motion on the ground and the estimated ground motion on the viaduct. The evaluation target seismic motion index is the maximum speed of horizontal two-component synthesis. Here, with reference to the ground motion observed on the ground of Site A, the ground motion at the other microtremor measurement points and on the viaduct are estimated. Compared to the observation and estimation on SiteB viaduct, which is the position of the verification point, it is a little overestimated, but it is almost in good agreement, and the seismic motion can be estimated almost well over the entire model line. ing.

また、SiteAとSiteBにおける地表地震動と構造物応答の最大速度の比較を図11と図12に各々示す。両サイトとも、地震による高架橋の増幅度にばらつきはあるものの、高い相関係数(図中,Cor)で決まっている。SiteAとSiteBにおける地中地震動と地表地震動の最大速度の比較を図13と図14に各々示す。地盤の増幅度に対しても、両サイトともに、地震による増幅度にばらつきはあるものの、高い相関係数(図中,Cor)で決まっている。   Moreover, the comparison of the maximum speed of the ground surface earthquake motion and structure response in Site A and Site B is shown in FIGS. 11 and 12, respectively. Both sites have a high correlation coefficient (Cor in the figure), although there are variations in the amplification of viaducts due to earthquakes. A comparison of the maximum velocity of underground ground motion and surface ground motion in Site A and Site B is shown in FIGS. 13 and 14, respectively. The amplification level of the ground is also determined by a high correlation coefficient (Cor in the figure) at both sites, although there are variations in the amplification level due to earthquakes.

次に、高架橋上の地震動に与える影響の空間変動を把握する目的から、対象路線のキロ程に対する地盤の増幅度(基盤と地表の最大速度の比)と高架橋の増幅度(地表と高架橋上の最大速度の比、図中のVdc/Grd)を整理する。図15は地盤(図中のGrd/Bsm)と構造物(図中のVdc/Grd)の最大速度の増幅度の比較を示す図であり、15地震の速度データから求められた地盤の増幅度および高架橋の増幅度、両者を考慮した増幅度の平均を示す。なお、ここでの基盤の入力地震動はモデル路線の全線で同一としている。図15に示されるように、地盤の増幅度はキロ程5km程度を境として異なっており、5km以下は4.5からから5倍程度、5km以上は3.5からから4倍程度であるがそのばらつきは小さい。一方、高架橋の増幅度は、その値は地盤の増幅度よりもやや小さいものの、地点ごとに大きく異なり1.5から5倍程度に分布しており、そのばらつきは大きい。対象としたモデル路線における高架橋上の地震動を正確に評価するためには、地盤の増幅度(図15中,▲)と高架橋の増幅度(図15中,■)を掛け合わせた増幅度(図15中,+)を評価することが重要である。   Next, for the purpose of grasping the spatial fluctuation of the impact on the ground motion on the viaduct, the amplification factor of the ground (ratio of the maximum velocity between the base and the surface) and the amplification factor of the viaduct (on the surface and the viaduct) The ratio of the maximum speed, Vdc / Grd in the figure, is organized. FIG. 15 is a diagram showing a comparison of the amplification rate of the maximum speed of the ground (Grd / Bsm in the figure) and the structure (Vdc / Grd in the figure), and the amplification degree of the ground obtained from the velocity data of 15 earthquakes. And the degree of amplification of the viaduct, and the average of the degree of amplification considering both. The input ground motion of the base here is the same for all model lines. As shown in FIG. 15, the amplification degree of the ground is different at a boundary of about 5 km, and it is about 4.5 to 5 times for 5 km or less, and about 3.5 to 4 times for 5 km or more. The variation is small. On the other hand, the amplification degree of the viaduct is slightly smaller than the amplification degree of the ground, but varies greatly from point to point and is distributed about 1.5 to 5 times, and the variation is large. In order to accurately evaluate the ground motion on the viaduct on the model line, the amplification factor (Fig. 15, ▲) and the amplification factor of the viaduct (■, Fig. 15) are multiplied (Fig. It is important to evaluate (+) of 15.

上記したように、地震発生後の列車運転規制の判断には、地表の地震動だけではなく鉄道構造物上の地震動も考慮する必要がある。   As described above, it is necessary to consider not only the ground surface earthquake motion but also the earthquake motion on the railway structure in order to judge the train operation regulation after the earthquake occurs.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の鉄道構造物の地震応答を考慮した地震動推定方法は、地震動増幅効果を考慮し、鉄道構造物上の地震動を評価する、鉄道構造物の地震応答を考慮した地震動推定方法として利用することができる。   The seismic motion estimation method considering the seismic response of the railway structure according to the present invention is used as a seismic motion estimation method considering the seismic response of the railway structure, in which the seismic motion amplification effect is considered and the seismic motion on the railway structure is evaluated. Can do.

Claims (4)

観測した微動を利用して、鉄道構造物の振動特性に影響を及ぼすパラメータを抽出し、該パラメータから求められる前記鉄道構造物の地震応答と地表で観測された地震動を掛け合わせることにより、前記鉄道構造物上の地震動を評価することを特徴とする鉄道構造物の地震応答を考慮した地震動推定方法。   By using the observed microtremors, parameters that affect the vibration characteristics of the railway structure are extracted, and by multiplying the earthquake response of the railway structure obtained from the parameters and the earthquake motion observed on the ground surface, the railway Seismic motion estimation method considering seismic response of railway structures, characterized by evaluating seismic motion on structures. 請求項1記載の鉄道構造物の地震応答を考慮した地震動推定方法において、路線に沿った地盤上と前記鉄道構造物上で同時に観測した微動に基づく観測伝達関数と1質点系モデルによる理論伝達関数の残差が最小になるように固有周波数と減衰定数を同定して、前記鉄道構造物の振動特性を求め、次に、算出した地表面の地震動を1質点系モデルに入力し、前記路線に沿って前記鉄道構造物上の地震動を推定することを特徴とする鉄道構造物の地震応答を考慮した地震動推定方法。   2. A method for estimating ground motion in consideration of seismic response of a railway structure according to claim 1, wherein an observed transfer function based on microtremors simultaneously observed on the ground along the route and the railway structure and a theoretical transfer function based on a one-mass system model. The natural frequency and damping constant are identified so that the residual of the rail is minimized, the vibration characteristics of the railway structure are obtained, and then the calculated ground motion is input to the one-mass system model and A seismic motion estimation method in consideration of the seismic response of the railway structure, wherein the seismic motion on the railway structure is estimated along the rail. 請求項2記載の鉄道構造物の地震応答を考慮した地震動推定方法において、前記鉄道構造物が高架橋であることを特徴とする鉄道構造物の地震応答を考慮した地震動推定方法。   3. The ground motion estimation method considering the seismic response of the railway structure according to claim 2, wherein the railroad structure is a viaduct. 請求項3記載の鉄道構造物の地震応答を考慮した地震動推定方法において、基盤上の地震動を用い、前記地盤と前記高架橋の増幅度を掛け合わせて、前記構造物上の地震動を正確に推定することを特徴とする鉄道構造物の地震応答を考慮した地震動推定方法。   4. The method for estimating ground motion according to claim 3 taking into account the seismic response of the railway structure, and using the ground motion on the base, multiplying the ground and the amplification degree of the viaduct to accurately estimate the ground motion on the structure. A ground motion estimation method considering the seismic response of railway structures.
JP2013229418A 2013-11-05 2013-11-05 Earthquake motion estimation method in consideration of earthquake response of railroad structure Pending JP2015090287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013229418A JP2015090287A (en) 2013-11-05 2013-11-05 Earthquake motion estimation method in consideration of earthquake response of railroad structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229418A JP2015090287A (en) 2013-11-05 2013-11-05 Earthquake motion estimation method in consideration of earthquake response of railroad structure

Publications (1)

Publication Number Publication Date
JP2015090287A true JP2015090287A (en) 2015-05-11

Family

ID=53193888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229418A Pending JP2015090287A (en) 2013-11-05 2013-11-05 Earthquake motion estimation method in consideration of earthquake response of railroad structure

Country Status (1)

Country Link
JP (1) JP2015090287A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105665A (en) * 1995-07-27 1997-04-22 Railway Technical Res Inst Method and apparatus for judging earthquake damage risk of structure
JPH1144615A (en) * 1997-07-25 1999-02-16 Mitsubishi Heavy Ind Ltd Building damage monitoring system in an earthquake
JP2002168963A (en) * 2000-12-01 2002-06-14 Toshiba Corp Earthquake damage estimation evaluation system
JP2002348949A (en) * 2001-05-22 2002-12-04 Kenichi Saito Dynamic seismic resistance assessment system for building
JP2003222566A (en) * 2002-01-31 2003-08-08 Yamato Sekkei Kk Structural damage estimation system and program
JP2004045294A (en) * 2002-07-15 2004-02-12 Yamato Sekkei Kk Determination system and program for risk of damaging structure
JP2006258639A (en) * 2005-03-17 2006-09-28 Shimizu Corp System for predicting earthquake damage
JP2009015433A (en) * 2007-07-02 2009-01-22 Shimizu Corp Design support device for building
JP2012018045A (en) * 2010-07-07 2012-01-26 Yamatake Corp Sensor failure diagnosis device and sensor system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105665A (en) * 1995-07-27 1997-04-22 Railway Technical Res Inst Method and apparatus for judging earthquake damage risk of structure
JPH1144615A (en) * 1997-07-25 1999-02-16 Mitsubishi Heavy Ind Ltd Building damage monitoring system in an earthquake
JP2002168963A (en) * 2000-12-01 2002-06-14 Toshiba Corp Earthquake damage estimation evaluation system
JP2002348949A (en) * 2001-05-22 2002-12-04 Kenichi Saito Dynamic seismic resistance assessment system for building
JP2003222566A (en) * 2002-01-31 2003-08-08 Yamato Sekkei Kk Structural damage estimation system and program
JP2004045294A (en) * 2002-07-15 2004-02-12 Yamato Sekkei Kk Determination system and program for risk of damaging structure
JP2006258639A (en) * 2005-03-17 2006-09-28 Shimizu Corp System for predicting earthquake damage
JP2009015433A (en) * 2007-07-02 2009-01-22 Shimizu Corp Design support device for building
JP2012018045A (en) * 2010-07-07 2012-01-26 Yamatake Corp Sensor failure diagnosis device and sensor system

Similar Documents

Publication Publication Date Title
Brownjohn et al. Ambient vibration re-testing and operational modal analysis of the Humber Bridge
Ainalis et al. Improved analysis of ground vibrations produced by man-made sources
CN105241543A (en) Rapid prediction method for ground vibration caused by elevated rail transit
JP2015090287A (en) Earthquake motion estimation method in consideration of earthquake response of railroad structure
Wang et al. Inversion of excitation source in ground vibration from urban railway traffic
CN109610253A (en) A method of evaluation ballastless track roadbed grout hazard rating
Hong et al. Roles of subway speed and configuration on subway-induced seismic noises in an urban region
Idris et al. Ambient vibration test on reinforced concrete bridges
JP2013007728A (en) Real time estimation method of hypocentral region of giant earthquake
Naumovski et al. In-situ measurements and numerical modeling of railway traffic-induced ground vibrations in urban areas
JP2022050085A (en) Seismic motion distribution estimation method using observed value and estimated value together
Iwata et al. Estimation of vibration characteristics and seismic responses of railway viaducts using microtremors data
Lee et al. Proposal of acceleration time history prediction method based on seismic observation data
Hobiger et al. Site characterization in the framework of the renewal of the Swiss strong motion network (SSMNet)
Yoo et al. Transfer functions of bridge and train: Case study of the Yunjung bridge in Honam high-speed railway system
Iwata et al. A support system for early resumption of regular train operations applying public earthquake information
Irikura et al. Recipe for predicting strong ground motions: The state of the art and future prospects
Kouteva-Guentcheva Estimates of some ground motion parameters, related to the damage potential of strong intermediate-depth Vrancea earthquakes
Segarraa et al. Framework for Modeling Ground Motion Variability at a Nuclear Power Plant Site for Use in a Seismic Multi-Unit Probabilistic Risk Assessment
Griffiths et al. Surface Wave Testing and Analyses at a Gravelly Site near Jackson, Wyoming, for Transportation Infrastructure
Sica et al. On the assessment of the human exposure from vibration caused by railway construction
Malmborg et al. Prediction models of free-field vibrations from railway traffic
Chandana et al. Minimize nearby structure damage issues in road construction
Miyajima et al. Seismic diagnosis of monastery of St. Stepanos in Iran
Ju et al. Analysis of Subway Vibration Propagation Characteristics in Rock Stratum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170207