JP2015090256A - Hot water storage type water heater - Google Patents

Hot water storage type water heater Download PDF

Info

Publication number
JP2015090256A
JP2015090256A JP2013231159A JP2013231159A JP2015090256A JP 2015090256 A JP2015090256 A JP 2015090256A JP 2013231159 A JP2013231159 A JP 2013231159A JP 2013231159 A JP2013231159 A JP 2013231159A JP 2015090256 A JP2015090256 A JP 2015090256A
Authority
JP
Japan
Prior art keywords
hot water
temperature
mixing
mixing ratio
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013231159A
Other languages
Japanese (ja)
Other versions
JP6142778B2 (en
JP2015090256A5 (en
Inventor
一樹 池田
Kazuki Ikeda
一樹 池田
泰成 松村
Yasunari Matsumura
泰成 松村
康史 本庄
Yasushi Honjo
康史 本庄
利幸 佐久間
Toshiyuki Sakuma
利幸 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013231159A priority Critical patent/JP6142778B2/en
Publication of JP2015090256A publication Critical patent/JP2015090256A/en
Publication of JP2015090256A5 publication Critical patent/JP2015090256A5/ja
Application granted granted Critical
Publication of JP6142778B2 publication Critical patent/JP6142778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot water storage type water heater capable of controlling overshoot and undershoot of a hot water supply temperature even when a temperature of water supplied to mixing means greatly changes.SOLUTION: A hot water storage type water heater includes: mixing means for discharging mixed hot water obtained by mixing a first hot water with a second hot water; first temperature detecting means detecting a temperature of the first hot water; second temperature detecting means detecting a temperature of the second hot water; third temperature detecting means detecting a temperature of the mixed hot water; and control means controlling a mixing ratio of the mixing means. The control means executes mixing ratio calculation processing for controlling the mixing ratio to a mixing ratio calculated on the basis of a detection temperature of the first temperature detecting means, a detection temperature of the second temperature detecting means, and the target temperature of the mixed hot water, when an inclination of temporal change of the detection temperature of the second temperature detecting means is larger than a preset reference, when feedback control is executed to adjust the mixing ratio on the basis of a difference between the target temperature of the mixed hot water and the detection temperature of the third temperature detecting means.

Description

本発明は、貯湯式給湯機に関する。   The present invention relates to a hot water storage type water heater.

貯湯タンクから供給される湯と、水とを湯水電動混合弁で混合することで給湯温度を調節する貯湯式給湯機において、湯水電動混合弁から流出する混合湯の温度をセンサで検出し、目標温度との偏差に基づいてフィードバック的に湯水電動混合弁の開度を補正する技術が広く用いられている(例えば、特許文献1参照)。   In a hot water storage water heater that adjusts the hot water supply temperature by mixing hot water supplied from a hot water storage tank and water with a hot water electric mixing valve, the temperature of the mixed hot water flowing out from the hot water electric mixing valve is detected by a sensor, and the target A technique for correcting the opening degree of the hot and cold electric mixing valve in a feedback manner based on the deviation from the temperature is widely used (see, for example, Patent Document 1).

特開2008−164286号公報JP 2008-164286 A

しかしながら、従来の貯湯式給湯機において、湯水電動混合弁に供給される水の温度が何らかの理由で大きく変動した場合、混合弁の開度調整が間に合わず、給湯温度が目標温度を大きく超えるオーバーシュート、または、給湯温度が目標温度を大きく下回るアンダーシュートが発生し、使用感を損なうという課題がある。   However, in the conventional hot water storage type hot water heater, when the temperature of the water supplied to the hot water electric mixing valve fluctuates greatly for some reason, the opening degree of the mixing valve cannot be adjusted in time, and the hot water temperature greatly exceeds the target temperature. Alternatively, there is a problem that an undershoot occurs where the hot water supply temperature is significantly lower than the target temperature, and the feeling of use is impaired.

本発明は、上述のような課題を解決するためになされたもので、混合手段に供給される水の温度が大きく変動した場合でも、給湯温度のオーバーシュートおよびアンダーシュートを抑制することのできる貯湯式給湯機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can store hot water that can suppress overshoot and undershoot of the hot water supply temperature even when the temperature of the water supplied to the mixing means varies greatly. An object is to provide a hot water heater.

本発明に係る貯湯式給湯機は、湯を貯える貯湯タンクと、第1入口部、第2入口部および出口部を有し、貯湯タンクから第1入口部へ供給される第1温水と、第2入口部へ供給され、第1温水より温度の低い第2温水とを混合した混合温水を出口部から排出する混合手段と、混合温水を出湯端末側へ送る混合温水管と、第1温水の温度を検出する第1温度検出手段と、第2温水の温度を検出する第2温度検出手段と、混合温水の温度を検出する第3温度検出手段と、混合手段による第1温水と第2温水との混合比を制御する制御手段と、を備え、制御手段は、混合温水の目標温度と第3温度検出手段の検出温度との差に基づいて混合手段の混合比を調整するフィードバック制御を行っているときに、第2温度検出手段の検出温度の時間的な変化の傾きが予め設定された基準に比べて大きい場合には、混合手段の混合比を、第1温度検出手段の検出温度、第2温度検出手段の検出温度および混合温水の目標温度に基づいて演算した混合比に制御する混合比演算処理を行うものである。   A hot water storage type water heater according to the present invention includes a hot water storage tank for storing hot water, a first inlet portion, a second inlet portion, and an outlet portion. The first hot water supplied from the hot water tank to the first inlet portion, 2 mixing means for discharging the mixed warm water mixed with the second warm water having a temperature lower than the first warm water from the outlet, a mixed warm water pipe for sending the mixed warm water to the outlet terminal side, and the first warm water The first temperature detecting means for detecting the temperature, the second temperature detecting means for detecting the temperature of the second hot water, the third temperature detecting means for detecting the temperature of the mixed hot water, the first hot water and the second hot water by the mixing means And a control means for controlling the mixing ratio, and the control means performs feedback control for adjusting the mixing ratio of the mixing means based on the difference between the target temperature of the mixed hot water and the detected temperature of the third temperature detecting means. When the temperature detected by the second temperature detecting means changes over time. When the slope of the ratio is larger than a preset reference, the mixing ratio of the mixing means is calculated based on the detected temperature of the first temperature detecting means, the detected temperature of the second temperature detecting means, and the target temperature of the mixed hot water. The mixing ratio calculation process is performed to control the mixing ratio.

本発明によれば、混合手段に供給される水の温度が大きく変動した場合でも、給湯温度のオーバーシュートおよびアンダーシュートを抑制することが可能となる。   According to the present invention, it is possible to suppress overshoot and undershoot of the hot water supply temperature even when the temperature of the water supplied to the mixing means varies greatly.

本発明の実施の形態1の貯湯式給湯機を示す構成図である。It is a block diagram which shows the hot water storage type water heater of Embodiment 1 of this invention. 本発明の実施の形態1の貯湯式給湯機の即湯循環運転中の湯水の流れを表す図である。It is a figure showing the flow of the hot water during the instant hot water circulation driving | operation of the hot water storage type water heater of Embodiment 1 of this invention. 本発明の実施の形態1の貯湯式給湯機の即湯大流量給湯運転中の湯水の流れを表す図である。It is a figure showing the flow of the hot water during the immediate hot water large flow hot water supply operation of the hot water storage type water heater of Embodiment 1 of the present invention. 本発明の実施の形態1の貯湯式給湯機の即湯小流量給湯運転中の湯水の流れを表す図である。It is a figure showing the flow of the hot water during the instant hot water small flow hot water supply operation of the hot water storage type water heater of Embodiment 1 of the present invention. 即湯循環運転中に水栓が大きく開かれるなどして即湯大流量給湯運転に遷移する場合の第2温水の温度の変化を示すグラフである。It is a graph which shows the change of the temperature of 2nd warm water when a faucet is opened largely during a quick water circulation driving | operation, and changes to a hot water high flow rate hot water supply driving | operation. 本発明の実施の形態1の貯湯式給湯機の混合弁の混合比を制御するために制御部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which a control part performs in order to control the mixing ratio of the mixing valve of the hot water storage type water heater of Embodiment 1 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
図1は、本発明の実施の形態1の貯湯式給湯機を示す構成図である。図1に示すように、本実施の形態1の貯湯式給湯機1は、貯湯タンク2と、温度の異なる二つの湯水を混ぜ合わせる混合手段としての混合弁3と、即湯ポンプ4と、給水管5と、給湯管8と、接続管9と、混合温水管11と、戻り管18と、制御部16とを備える。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating a hot water storage type water heater according to Embodiment 1 of the present invention. As shown in FIG. 1, a hot water storage type water heater 1 according to Embodiment 1 includes a hot water storage tank 2, a mixing valve 3 as a mixing means for mixing two hot waters having different temperatures, an instant hot water pump 4, and a water supply. A pipe 5, a hot water supply pipe 8, a connection pipe 9, a mixed hot water pipe 11, a return pipe 18, and a control unit 16 are provided.

貯湯タンク2内には、上側が高温、下側が低温となる温度成層を形成して、湯水が貯留される。給水管5の上流端は、水道等の水源に接続される。給水管5の下流側は、給水管5aと給水管5bとの二手に分岐している。給水管5aは、貯湯タンク2の下部に接続されている。水源からの水が給水管5aを通って、貯湯タンク2内の下部に流入することにより、貯湯タンク2内は常に満水状態に維持される。貯湯タンク2内に貯留された水は、図示しない熱源により加熱され、高温の湯になる。この熱源は、例えば、貯湯タンク2と配管を介して接続されるヒートポンプ式熱源機、あるいは貯湯タンク2の内部に設置される電気ヒータなど、いかなるものでも良い。   The hot water storage tank 2 stores hot water by forming a temperature stratification in which the upper side is hot and the lower side is low. The upstream end of the water supply pipe 5 is connected to a water source such as a water supply. The downstream side of the water supply pipe 5 is branched into two hands, a water supply pipe 5a and a water supply pipe 5b. The water supply pipe 5 a is connected to the lower part of the hot water storage tank 2. The water from the water source flows into the lower part of the hot water storage tank 2 through the water supply pipe 5a, so that the hot water storage tank 2 is always kept full. The water stored in the hot water storage tank 2 is heated by a heat source (not shown) to become hot hot water. This heat source may be anything such as a heat pump heat source connected to the hot water storage tank 2 via a pipe, or an electric heater installed in the hot water storage tank 2.

混合弁3は、第1入口部3a、第2入口部3bおよび出口部3cを有する。第1入口部3aと、貯湯タンク2の上部とは、給湯管8を介して接続されている。貯湯タンク2内の高温の湯(例えば80℃〜90℃程度)が給湯管8を通って第1入口部3aに供給される。以下の説明では、貯湯タンク2から第1入口部3aに供給される湯を「第1温水」と称する。第2入口部3bには、第2温水より温度の低い湯水が供給される。以下の説明では、第2入口部3bに供給される湯を「第2温水」と称する。混合弁3は、第1温水と第2温水とを混合した温水である混合温水を出口部3cから排出する。混合弁3は、第1温水と第2温水との混合比を任意に調整できるように構成される。例えば、混合弁3は、第1入口部3a側の開口面積と第2入口部3b側の開口面積との比率を可変とするように回転可能に設けられた弁体と、その回転角度を制御するステッピングモータとを備えることにより、第1温水と第2温水との混合比を調整可能に構成される。   The mixing valve 3 has a first inlet portion 3a, a second inlet portion 3b, and an outlet portion 3c. The first inlet 3 a and the upper part of the hot water storage tank 2 are connected via a hot water supply pipe 8. Hot water (for example, about 80 ° C. to 90 ° C.) in the hot water storage tank 2 is supplied to the first inlet 3 a through the hot water supply pipe 8. In the following description, the hot water supplied from the hot water storage tank 2 to the first inlet 3a is referred to as “first hot water”. Hot water having a temperature lower than that of the second hot water is supplied to the second inlet 3b. In the following description, the hot water supplied to the second inlet 3b is referred to as “second hot water”. The mixing valve 3 discharges the mixed warm water, which is warm water obtained by mixing the first warm water and the second warm water, from the outlet 3c. The mixing valve 3 is configured such that the mixing ratio of the first hot water and the second hot water can be arbitrarily adjusted. For example, the mixing valve 3 controls the rotation angle of the valve body that is rotatably provided so that the ratio of the opening area on the first inlet portion 3a side and the opening area on the second inlet portion 3b side is variable. By providing the stepping motor which performs, it is comprised so that adjustment of the mixing ratio of 1st warm water and 2nd warm water is possible.

出口部3cには、混合温水管11の上流端が接続されている。混合温水管11の下流端は、貯湯式給湯機1の外部に延びる外部給湯管14の上流端に接続されている。外部給湯管14の下流側には、湯を使用する出湯端末である水栓15が設けられている。水栓15と、貯湯式給湯機1とは、水栓15で出湯しなかった温水を貯湯式給湯機1へ戻す外部戻り管17を介してさらに接続されている。外部戻り管17の下流端は、貯湯式給湯機1内の戻り管18の上流端に接続されている。戻り管18の下流端と、給水管5bとは、接続管9を介して、混合弁3の第2入口部3bに接続されている。   The upstream end of the mixed hot water pipe 11 is connected to the outlet 3c. The downstream end of the mixed hot water pipe 11 is connected to the upstream end of an external hot water supply pipe 14 extending to the outside of the hot water storage type hot water heater 1. On the downstream side of the external hot water supply pipe 14, a faucet 15 that is a hot water outlet terminal that uses hot water is provided. The faucet 15 and the hot water storage type water heater 1 are further connected via an external return pipe 17 that returns hot water that has not been discharged from the faucet 15 to the hot water storage type water heater 1. The downstream end of the external return pipe 17 is connected to the upstream end of the return pipe 18 in the hot water storage type hot water heater 1. The downstream end of the return pipe 18 and the water supply pipe 5 b are connected to the second inlet 3 b of the mixing valve 3 via the connection pipe 9.

貯湯式給湯機1は、水源から給水管5に供給される水の流量である給水流量を検出する給水流量センサ6と、混合弁3の第1入口部3aに供給される第1温水の温度を検出する第1温度センサ7(第1温度検出手段)と、混合弁3の第2入口部3bに供給される第2温水の温度を検出する第2温度センサ10(第2温度検出手段)と、混合温水管11を流れる混合温水の流量を検出する混合温水流量センサ12と、混合弁3で生成された混合温水の温度を検出する給湯温度センサ13(第3温度検出手段)とを備える。混合弁3で生成された混合温水の温度を以下「給湯温度」と称する。   The hot water storage type water heater 1 includes a feed water flow rate sensor 6 that detects a feed water flow rate that is a flow rate of water supplied from a water source to the feed water pipe 5, and a temperature of the first hot water supplied to the first inlet 3 a of the mixing valve 3. And a second temperature sensor 10 (second temperature detecting means) for detecting the temperature of the second hot water supplied to the second inlet 3b of the mixing valve 3. And a mixed hot water flow rate sensor 12 for detecting the flow rate of the mixed hot water flowing through the mixed hot water pipe 11 and a hot water supply temperature sensor 13 (third temperature detecting means) for detecting the temperature of the mixed hot water generated by the mixing valve 3. . The temperature of the mixed hot water generated by the mixing valve 3 is hereinafter referred to as “hot water supply temperature”.

給水流量センサ6は、給水管5a,5bの分岐部より上流側の給水管5に設置されている。第1温度センサ7は、図示の構成では貯湯タンク2の上部に設置されているが、第1温度センサ7の設置箇所は給湯管8の途中でも良い。第2温度センサ10は、図示の構成では給水管5bと戻り管18と接続管9との接続部に設置されているが、第2温度センサ10の設置箇所は接続管9の途中でも良い。これらの位置に第2温度センサ10を設置することにより、水栓15から外部戻り管17および戻り管18を通って戻ってきた温水と、水源から給水管5bを通って供給される水との混合水が第2温水として接続管9を通って混合弁3の第2入口部3bに供給される場合にも、この第2温水の温度を正しく検出することができる。混合温水流量センサ12および給湯温度センサ13は、混合温水管11の途中に設置されている。混合温水管11の途中には、即湯ポンプ4がさらに設置されている。この即湯ポンプ4の設置箇所は、混合温水管11の途中に限定されるものではなく、後述する循環回路上の位置であればどこでも良い。   The water supply flow rate sensor 6 is installed in the water supply pipe 5 on the upstream side from the branch part of the water supply pipes 5a and 5b. Although the first temperature sensor 7 is installed in the upper part of the hot water storage tank 2 in the illustrated configuration, the installation location of the first temperature sensor 7 may be in the middle of the hot water supply pipe 8. The second temperature sensor 10 is installed at the connecting portion of the water supply pipe 5 b, the return pipe 18 and the connection pipe 9 in the illustrated configuration, but the installation location of the second temperature sensor 10 may be in the middle of the connection pipe 9. By installing the second temperature sensor 10 at these positions, the warm water returned from the faucet 15 through the external return pipe 17 and the return pipe 18 and the water supplied from the water source through the water supply pipe 5b. Even when the mixed water is supplied as the second warm water through the connection pipe 9 to the second inlet 3b of the mixing valve 3, the temperature of the second warm water can be detected correctly. The mixed hot water flow rate sensor 12 and the hot water supply temperature sensor 13 are installed in the middle of the mixed hot water pipe 11. In the middle of the mixed hot water pipe 11, an immediate hot water pump 4 is further installed. The place where the instant hot water pump 4 is installed is not limited to the middle of the mixed hot water pipe 11 and may be anywhere on the circulation circuit described later.

制御部16(制御手段)は、例えばマイクロコンピュータ等により構成され、ROM、RAM、不揮発性メモリ等を含む記憶部と、記憶部に記憶されたプログラムに基いて所定の演算処理を実行する演算処理装置(CPU)と、演算処理装置に対して外部の信号を入出力する入出力ポートとを備える。制御部16は、前述した混合弁3、即湯ポンプ4、給水流量センサ6、第1温度センサ7、第2温度センサ10、混合温水流量センサ12および給湯温度センサ13と、ユーザーインターフェース装置としてのリモコン装置20とにそれぞれ接続される。使用者は、水栓15で使用する湯の温度をリモコン装置20にて設定することができる。   The control unit 16 (control unit) is configured by, for example, a microcomputer, and includes a storage unit including a ROM, a RAM, a nonvolatile memory, and the like, and an arithmetic process that executes a predetermined arithmetic process based on a program stored in the storage unit A device (CPU) and an input / output port for inputting / outputting external signals to / from the arithmetic processing unit are provided. The control unit 16 includes the mixing valve 3, the hot water pump 4, the feed water flow sensor 6, the first temperature sensor 7, the second temperature sensor 10, the mixed hot water flow sensor 12, the hot water temperature sensor 13, and the user interface device. Each is connected to a remote control device 20. The user can set the temperature of hot water used in the faucet 15 with the remote control device 20.

制御部16は、リモコン装置20で設定された温度を目標温度とし、目標温度と給湯温度センサ13の検出温度との偏差に基づいて混合弁3の混合比を調整するフィードバック制御を行う機能を有する。また、制御部16は、第1温度センサ7の検出温度、第2温度センサ10の検出温度、および目標温度に基づいて混合弁3の混合比を演算する機能を備える。   The control unit 16 has a function of performing feedback control for adjusting the mixing ratio of the mixing valve 3 based on the deviation between the target temperature and the detected temperature of the hot water supply temperature sensor 13 using the temperature set by the remote controller 20 as a target temperature. . The control unit 16 has a function of calculating the mixing ratio of the mixing valve 3 based on the detected temperature of the first temperature sensor 7, the detected temperature of the second temperature sensor 10, and the target temperature.

本実施の形態1の貯湯式給湯機1では、即湯ポンプ4を運転することで、混合弁3、混合温水管11、外部給湯管14、外部戻り管17、戻り管18および接続管9を含んで形成される循環回路に温水を循環させる即湯循環運転を行うことができる。水栓15が閉じられた状態でも、即湯循環運転を行うことで、混合弁3にて目標温度に調整された混合温水を混合温水管11、外部給湯管14および水栓15の近傍に循環供給することができる。このため、使用者が水栓15を開いたときに、目標温度に調整された混合温水を即座に水栓15から出湯することができる。   In the hot water storage type water heater 1 of the first embodiment, by operating the immediate hot water pump 4, the mixing valve 3, the mixed hot water pipe 11, the external hot water pipe 14, the external return pipe 17, the return pipe 18 and the connection pipe 9 are connected. An instant hot water circulation operation in which hot water is circulated in the circulation circuit that is formed can be performed. Even when the faucet 15 is closed, the hot water circulation operation is performed to circulate the mixed hot water adjusted to the target temperature by the mixing valve 3 in the vicinity of the mixed hot water pipe 11, the external hot water supply pipe 14, and the faucet 15. Can be supplied. For this reason, when the user opens the faucet 15, the mixed hot water adjusted to the target temperature can be immediately discharged from the faucet 15.

図2は、本実施の形態1の貯湯式給湯機1の即湯循環運転中の湯水の流れを表す図である。図2は、即湯ポンプ4を運転しているが、水栓15が閉じられた状態である。以下では、混合温水の目標温度を60℃として説明する。即湯ポンプ4を運転し、目標温度と給湯温度センサ13の検出温度との偏差に基づいて混合弁3の混合比を調整するフィードバック制御を制御部16が行うことで、混合弁3より60℃の混合温水が出湯される。この混合温水は、混合温水管11、外部給湯管14、外部戻り管17、戻り管18および接続管9を循環する。外部戻り管17から貯湯式給湯機1の戻り管18に戻る温水を以下「戻り温水」と称する。戻り温水の温度は、外部給湯管14および外部戻り管17の長さなどによっても異なるが、混合弁3で生成された混合温水の温度すなわち給湯温度に比べて、放熱により例えば5℃程度低下する。このため、以下では、戻り温水の温度を55℃として説明する。水栓15が閉じられた状態の即湯循環運転中は、戻り管18を通過した戻り温水は、接続管9と給水管5bとに分岐する。すなわち、混合弁3の第2入口部3bには、55℃の戻り温水が第2温水として供給される。このため、第2温水の温度は、戻り温水の温度と同じ55℃で安定する。混合弁3の第1入口部3aには、貯湯タンク2から給湯管8を通って例えば80℃〜90℃の第1温水が供給される。戻り温水の一部は、給水管5b,5aを通って、貯湯タンク2内に流入する。このような即湯循環運転の状態で、水栓15を開けば、即座に温かい湯を水栓15から出湯することができる。   FIG. 2 is a diagram illustrating a flow of hot water during the hot water circulation operation of the hot water storage type hot water heater 1 according to the first embodiment. FIG. 2 shows a state in which the quick water pump 4 is operated but the faucet 15 is closed. Below, the target temperature of mixed warm water is demonstrated as 60 degreeC. The controller 16 performs the feedback control that operates the immediate hot water pump 4 and adjusts the mixing ratio of the mixing valve 3 based on the deviation between the target temperature and the temperature detected by the hot water temperature sensor 13. The mixed hot water is discharged. The mixed hot water circulates through the mixed hot water pipe 11, the external hot water supply pipe 14, the external return pipe 17, the return pipe 18 and the connection pipe 9. The warm water returning from the external return pipe 17 to the return pipe 18 of the hot water storage type hot water heater 1 is hereinafter referred to as “return hot water”. Although the temperature of the return hot water varies depending on the length of the external hot water supply pipe 14 and the external return pipe 17, the temperature of the mixed hot water generated by the mixing valve 3, that is, the hot water supply temperature is reduced by, for example, about 5 ° C. due to heat dissipation. . For this reason, below, the temperature of return warm water is explained as 55 ° C. During the hot water circulation operation with the faucet 15 closed, the return hot water that has passed through the return pipe 18 branches into the connection pipe 9 and the water supply pipe 5b. That is, 55 ° C. return hot water is supplied to the second inlet 3b of the mixing valve 3 as the second hot water. For this reason, the temperature of 2nd warm water is stabilized at 55 degreeC same as the temperature of return warm water. First hot water of, for example, 80 ° C. to 90 ° C. is supplied from the hot water storage tank 2 through the hot water supply pipe 8 to the first inlet 3 a of the mixing valve 3. A part of the return hot water flows into the hot water storage tank 2 through the water supply pipes 5b and 5a. If the faucet 15 is opened in such a state of the hot water circulation operation, warm hot water can be immediately discharged from the faucet 15.

図3は、本実施の形態1の貯湯式給湯機1の即湯大流量給湯運転中の湯水の流れを表す図である。図3に示す即湯大流量給湯運転とは、即湯ポンプ4を運転し、かつ水栓15が比較的大きく開かれ、水栓15から比較的大きい流量(例えば8L/分)で出湯する状態である。即湯大流量給湯運転では、水栓15から出湯する流量が大きいため、外部戻り管17へ戻る流量が比較的小さい。水栓15から出湯する流量に等しい流量の水が水源から給水管5に供給される。給水管5を流れる水は、給水管5a,5bに分かれ、貯湯タンク2と接続管9との双方に供給される。よって、戻り管18から供給される55℃の戻り温水と、水源から給水管5bを通って供給される低温水との混合水が接続管9を通って混合弁3の第2入口部3bに供給される。このため、第2入口部3bに供給される第2温水の温度は、55℃の戻り温水より低い温度になる。以下では、即湯大流量給湯運転中の第2温水の温度が30℃になるものとして説明する。即湯大流量給湯運転が継続すると、第2温水の温度は30℃で安定する。このため、目標温度と給湯温度センサ13の検出温度との偏差に基づいて混合弁3の混合比を調整するフィードバック制御を制御部16が行うことで、給湯温度が目標温度である60℃で安定する。   FIG. 3 is a diagram showing the flow of hot water during the hot water high flow rate hot water supply operation of the hot water storage type water heater 1 of the first embodiment. 3 is a state in which the hot water pump 4 is operated, the faucet 15 is opened relatively large, and hot water is discharged from the faucet 15 at a relatively large flow rate (for example, 8 L / min). It is. In the hot water large flow rate hot water supply operation, since the flow rate discharged from the faucet 15 is large, the flow rate returning to the external return pipe 17 is relatively small. Water having a flow rate equal to the flow rate discharged from the faucet 15 is supplied to the water supply pipe 5 from the water source. The water flowing through the water supply pipe 5 is divided into water supply pipes 5 a and 5 b and supplied to both the hot water storage tank 2 and the connection pipe 9. Therefore, the mixed water of 55 ° C. return hot water supplied from the return pipe 18 and low-temperature water supplied from the water source through the water supply pipe 5 b passes through the connection pipe 9 to the second inlet 3 b of the mixing valve 3. Supplied. For this reason, the temperature of the 2nd warm water supplied to the 2nd entrance part 3b turns into a temperature lower than 55 degreeC return warm water. In the following description, it is assumed that the temperature of the second warm water during the hot water large flow hot water supply operation is 30 ° C. When the rapid hot water supply operation is continued, the temperature of the second hot water is stabilized at 30 ° C. For this reason, the controller 16 performs feedback control for adjusting the mixing ratio of the mixing valve 3 based on the deviation between the target temperature and the temperature detected by the hot water temperature sensor 13, so that the hot water temperature is stable at the target temperature of 60 ° C. To do.

図4は、本実施の形態1の貯湯式給湯機1の即湯小流量給湯運転中の湯水の流れを表す図である。図4に示す即湯小流量給湯運転とは、即湯ポンプ4を運転し、かつ水栓15が比較的小さく開かれ、水栓15から比較的小さい流量(例えば3L/分)で出湯する状態である。即湯小流量給湯運転では、水栓15から出湯する流量が小さいため、外部戻り管17,戻り管18へ戻る流量が比較的大きい。水栓15から出湯する流量に等しい流量の水が水源から給水管5に供給される。戻り管18を通過した戻り湯は、接続管9と給水管5bとに分かれる。給水管5を流れる水は、給水管5bには流入せず、給水管5aのみに流入する。給水管5aでは、水源からの低温水と、戻り管18から給水管5bを通って流入した戻り温水とが合流し、貯湯タンク2へ流入する。混合弁3の第2入口部3bには、55℃の戻り温水のみが第2温水として供給される。このため、即湯小流量給湯運転が継続すると、第2温水の温度は、戻り温水の温度と同じ55℃で安定する。このため、目標温度と給湯温度センサ13の検出温度との偏差に基づいて混合弁3の混合比を調整するフィードバック制御を制御部16が行うことで、給湯温度が目標温度である60℃で安定する。   FIG. 4 is a diagram illustrating the flow of hot water during the hot water low flow hot water supply operation of the hot water storage type water heater 1 according to the first embodiment. 4 is a state in which the hot water pump 4 is operated, the faucet 15 is opened relatively small, and hot water is discharged from the faucet 15 at a relatively small flow rate (for example, 3 L / min). It is. In the hot water small flow rate hot water supply operation, since the flow rate of the hot water discharged from the faucet 15 is small, the flow rate returning to the external return pipe 17 and the return pipe 18 is relatively large. Water having a flow rate equal to the flow rate discharged from the faucet 15 is supplied to the water supply pipe 5 from the water source. The return hot water that has passed through the return pipe 18 is divided into a connection pipe 9 and a water supply pipe 5b. The water flowing through the water supply pipe 5 does not flow into the water supply pipe 5b but flows into only the water supply pipe 5a. In the water supply pipe 5 a, the low temperature water from the water source and the return hot water flowing from the return pipe 18 through the water supply pipe 5 b merge and flow into the hot water storage tank 2. Only the return hot water at 55 ° C. is supplied to the second inlet 3 b of the mixing valve 3 as the second hot water. For this reason, if the hot water small flow hot water supply operation is continued, the temperature of the second hot water is stabilized at 55 ° C., which is the same as the temperature of the return hot water. For this reason, the controller 16 performs feedback control for adjusting the mixing ratio of the mixing valve 3 based on the deviation between the target temperature and the temperature detected by the hot water temperature sensor 13, so that the hot water temperature is stable at the target temperature of 60 ° C. To do.

上述したように、即湯大流量給湯運転のときの第2温水の温度(30℃)は、即湯循環運転または即湯小流量給湯運転のときの第2温水の温度(55℃)に比べて、大幅に低くなる。このため、即湯大流量給湯運転のときの混合弁3における第2温水の混合比すなわち第2入口部3b側の開度は、即湯循環運転または即湯小流量給湯運転のときに比べて、大幅に小さい。また、即湯大流量給湯運転のときの混合弁3における第1温水の混合比すなわち第1入口部3a側の開度は、即湯循環運転または即湯小流量給湯運転のときに比べて、大幅に大きい。このように、即湯大流量給湯運転と、即湯循環運転または即湯小流量給湯運転とでは、混合弁3の混合比が大きく異なる。即湯循環運転または即湯小流量給湯運転で給湯温度をフィードバック制御しているときに、水栓15が大きく開かれ、即湯大流量給湯運転に遷移した場合、第2温水の温度が急激に低下する。その場合、フィードバック制御による混合弁3の混合比の調整が間に合わないため、給湯温度が一時的に目標温度を大きく下回るアンダーシュートが発生する。逆に、即湯大流量給湯運転で給湯温度をフィードバック制御しているときに、水栓15の開度が小さくされ、即湯小流量給湯運転または即湯循環運転に遷移した場合、第2温水の温度が急激に上昇する。その場合、フィードバック制御による混合弁3の混合比の調整が間に合わないため、給湯温度が一時的に目標温度を大きく上回るオーバーシュートが発生する。   As described above, the temperature (30 ° C.) of the second hot water during the immediate hot water flow operation is higher than the temperature (55 ° C.) of the second hot water during the hot water circulation operation or the quick hot water flow operation. Greatly reduced. For this reason, the mixing ratio of the second warm water in the mixing valve 3 at the time of the immediate hot water flow rate hot water supply operation, that is, the opening degree on the second inlet 3b side is compared with that at the time of the immediate hot water circulation operation or the immediate hot water small flow rate hot water supply operation. , Significantly smaller. Further, the mixing ratio of the first warm water in the mixing valve 3 at the time of the immediate hot water large flow hot water supply operation, that is, the opening degree on the first inlet 3a side is compared with that in the quick hot water circulation operation or the quick hot water small flow hot water supply operation. Greatly big. Thus, the mixing ratio of the mixing valve 3 is greatly different between the immediate hot water large flow hot water supply operation and the immediate hot water circulation operation or the immediate hot water low flow hot water supply operation. When the hot water supply temperature is feedback-controlled in the immediate hot water circulation operation or the immediate hot water low flow hot water supply operation, when the faucet 15 is opened widely and the transition is made to the immediate hot water large flow hot water supply operation, the temperature of the second hot water rapidly increases. descend. In that case, since the adjustment of the mixing ratio of the mixing valve 3 by feedback control is not in time, an undershoot occurs in which the hot water supply temperature temporarily falls below the target temperature temporarily. On the contrary, when the hot water supply temperature is feedback-controlled in the immediate hot water flow rate hot water supply operation, when the opening degree of the faucet 15 is decreased and the transition is made to the immediate hot water small flow rate hot water supply operation or the immediate hot water circulation operation, the second hot water The temperature rises rapidly. In that case, since the adjustment of the mixing ratio of the mixing valve 3 by feedback control is not in time, an overshoot occurs in which the hot water supply temperature temporarily exceeds the target temperature temporarily.

本実施の形態1では、上述したアンダーシュートおよびオーバーシュートを抑制するため、混合弁3の第2入口部3bに流入する第2温水の温度が急激に変化した場合には、制御部16は、第1温度センサ7の検出温度、第2温度センサ10の検出温度、および目標温度に基づいて混合弁3の混合比を演算し、混合弁3の実際の混合比がその演算した混合比になるように制御する混合比演算処理を行うこととした。   In the first embodiment, in order to suppress the above-described undershoot and overshoot, when the temperature of the second hot water flowing into the second inlet portion 3b of the mixing valve 3 changes suddenly, the control unit 16 The mixing ratio of the mixing valve 3 is calculated based on the detected temperature of the first temperature sensor 7, the detected temperature of the second temperature sensor 10, and the target temperature, and the actual mixing ratio of the mixing valve 3 becomes the calculated mixing ratio. Thus, the mixing ratio calculation process is controlled.

図5は、即湯循環運転中に水栓15が大きく開かれるなどして即湯大流量給湯運転に遷移する場合の第2温水の温度の変化を示すグラフである。図6は、本実施の形態1の貯湯式給湯機1において混合弁3の混合比を制御するために制御部16が実行する処理を示すフローチャートである。   FIG. 5 is a graph showing a change in the temperature of the second hot water when the faucet 15 is greatly opened during the immediate hot water circulation operation and the state is changed to the immediate hot water flow rate hot water supply operation. FIG. 6 is a flowchart illustrating a process executed by the control unit 16 in order to control the mixing ratio of the mixing valve 3 in the hot water storage type water heater 1 according to the first embodiment.

図6のステップS1で処理を開始すると、制御部16は、混合弁3のフィードバック制御を行う(ステップS2)。すなわち、ステップS2で制御部16は、目標温度と給湯温度センサ13の検出温度との偏差に基づいて混合弁3の混合比を調整することにより、給湯温度センサ13で検出される給湯温度が目標温度である60℃に一致するように制御する。   When the process is started in step S1 of FIG. 6, the control unit 16 performs feedback control of the mixing valve 3 (step S2). That is, in step S2, the control unit 16 adjusts the mixing ratio of the mixing valve 3 based on the deviation between the target temperature and the temperature detected by the hot water temperature sensor 13, so that the hot water temperature detected by the hot water temperature sensor 13 is the target. It controls so that it may correspond to 60 degreeC which is temperature.

ステップS2のフィードバック制御を行っているとき、制御部16は、第2温度センサ10の検出温度の時間的な変化の傾きを予め設定された基準と比較することにより、混合弁3の第2入口部3bに流入する第2温水の温度が急激に変化したかどうかを判定する(ステップS3)。本実施の形態1では、制御部16は、第2温度センサ10の検出温度を所定の時間間隔(本実施の形態1では0.5秒毎とする。)で監視し、所定温度幅(本実施の形態1では2℃とする。)未満の変動である場合には第2温水の温度の急変はないと判定し、所定温度幅以上の変動があった場合には第2温水の温度が急変したと判定する。すなわち、ステップS3で、制御部16は、第2温度センサ10の検出温度の時間的な変化の傾きが、0.5秒当たり2℃未満である場合には、第2温水の温度の急変はないと判定する。この場合には、制御部16は、ステップS2に戻り、フィードバック制御を継続する。   When performing the feedback control in step S2, the control unit 16 compares the slope of the temporal change in the temperature detected by the second temperature sensor 10 with a preset reference, thereby providing the second inlet of the mixing valve 3. It is determined whether or not the temperature of the second hot water flowing into the section 3b has changed abruptly (step S3). In the first embodiment, the control unit 16 monitors the detected temperature of the second temperature sensor 10 at a predetermined time interval (in the first embodiment, every 0.5 seconds), and the predetermined temperature range (the main temperature). In the first embodiment, the temperature is 2 ° C.) When the fluctuation is less than 2 ° C., it is determined that there is no sudden change in the temperature of the second hot water. Judge that it changed suddenly. That is, in step S3, when the slope of the temporal change in the temperature detected by the second temperature sensor 10 is less than 2 ° C. per 0.5 second, the controller 16 determines that the temperature of the second hot water is suddenly changed. Judge that there is no. In this case, the control unit 16 returns to step S2 and continues the feedback control.

一方、ステップS3で、制御部16は、第2温度センサ10の検出温度の時間的な変化の傾きが、0.5秒当たり2℃以上である場合には、第2温水の温度が急変したと判定する。この場合には、制御部16は、ステップS4に移行する。   On the other hand, in step S3, when the slope of the temporal change in the temperature detected by the second temperature sensor 10 is 2 ° C. or more per 0.5 second, the control unit 16 suddenly changes the temperature of the second hot water. Is determined. In this case, the control unit 16 proceeds to step S4.

上記ステップS3の処理について、図5に示す例に基づき説明する。前述したように、即湯循環運転中は、第2温水の温度は、戻り管18の戻り温水の温度とほぼ同等の55℃で安定する。このため、即湯循環運転中は、ステップS3でNOと判定されるので、ステップS2のフィードバック制御が継続され、混合弁3の混合比も安定した状態に収束する。このような即湯循環運転中の状態で、水栓15が大きく開かれるなどして即湯大流量給湯運転へ遷移した場合には、図5に示すように、水源から給水管5bを通って供給される低温水が接続管9に流入し始め、接続管9で戻り温水と混合することにより、第2温水の温度が急激に低下する。このとき、図5中のBの区間では0.5秒当たりの第2温度センサ10の検出温度の変化が2℃未満の1℃であるので、ステップS3でNOと判定され、ステップS2へ移行する。一方、図5中のCの区間では0.5秒当たりの第2温度センサ10の検出温度の変化が2℃以上であるので、ステップS3でYESと判定され、ステップS4へ移行する。   The process of step S3 will be described based on the example shown in FIG. As described above, during the hot water circulation operation, the temperature of the second hot water is stabilized at 55 ° C., which is substantially equal to the temperature of the return hot water in the return pipe 18. For this reason, during the hot water circulation operation, it is determined NO in Step S3, so that the feedback control in Step S2 is continued and the mixing ratio of the mixing valve 3 converges to a stable state. In such a state where the hot water circulation operation is in progress, when the faucet 15 is greatly opened and the transition is made to the quick water large flow hot water supply operation, as shown in FIG. 5, the water source passes through the water supply pipe 5b. The supplied low-temperature water begins to flow into the connecting pipe 9 and returns to the connecting pipe 9 and mixes with the returning hot water, whereby the temperature of the second hot water rapidly decreases. At this time, since the change in the temperature detected by the second temperature sensor 10 per 0.5 second is 1 ° C. less than 2 ° C. in the section B in FIG. 5, NO is determined in step S3, and the process proceeds to step S2. To do. On the other hand, in the section C in FIG. 5, the change in the temperature detected by the second temperature sensor 10 per 0.5 second is 2 ° C. or more. Therefore, YES is determined in step S3, and the process proceeds to step S4.

ステップS4で、制御部16は、第1温度センサ7の検出温度、第2温度センサ10の検出温度、および目標温度に基づいて混合弁3の混合比を演算し、その演算された混合比になるように混合弁3を制御する混合比演算処理を行う。本実施の形態1では、制御部16は、第1温度センサ7の検出温度をT1、第2温度センサ10の検出温度をT2、目標温度をTs、混合弁3の第1温水の混合比をM1としたとき、次式に基づいてM1を演算する。
M1=(Ts−T2)/(T1−T2)
In step S4, the control unit 16 calculates the mixing ratio of the mixing valve 3 based on the detected temperature of the first temperature sensor 7, the detected temperature of the second temperature sensor 10, and the target temperature, and sets the calculated mixing ratio to the calculated mixing ratio. A mixing ratio calculation process for controlling the mixing valve 3 is performed. In the first embodiment, the control unit 16 sets the detected temperature of the first temperature sensor 7 to T1, the detected temperature of the second temperature sensor 10 to T2, the target temperature to Ts, and the mixing ratio of the first hot water in the mixing valve 3. When M1, M1 is calculated based on the following equation.
M1 = (Ts−T2) / (T1−T2)

このように、ステップS4では、給湯温度センサ13の検出温度に基づくフィードバック制御を一時中断し、混合弁3の第1温度センサ7の検出温度および第2温度センサ10の検出温度に基づいて混合弁3の混合比を決定することで給湯温度をフィードフォワード的に制御する。このため、第2温水の温度が急激に変化した場合であっても、給湯温度のアンダーシュートまたはオーバーシュートを確実に抑制することができ、混合温水を目標温度に近い温度に維持することができる。すなわち、図5に示す例の場合で説明すると、ステップS4の混合比演算処理を行わずにフィードバック制御を継続したと仮定した場合には、第2温水の温度の急激な低下に対して、給湯温度センサ13の検出温度に基づく混合弁3の混合比の調整が追従できず、給湯温度のアンダーシュートが発生する。これに対し、本実施の形態1によれば、第2温水の温度の急激な低下をステップS3で検知し、ステップS4の混合比演算処理を行うことで、給湯温度のアンダーシュートが発生することを確実に抑制することができる。   Thus, in step S4, the feedback control based on the detected temperature of the hot water supply temperature sensor 13 is temporarily suspended, and the mixing valve 3 is based on the detected temperature of the first temperature sensor 7 of the mixing valve 3 and the detected temperature of the second temperature sensor 10. The hot water supply temperature is controlled in a feed-forward manner by determining the mixing ratio of 3. For this reason, even when the temperature of the second hot water changes abruptly, undershoot or overshoot of the hot water supply temperature can be reliably suppressed, and the mixed hot water can be maintained at a temperature close to the target temperature. . That is, in the case of the example shown in FIG. 5, when it is assumed that the feedback control is continued without performing the mixing ratio calculation process in step S4, hot water supply is performed against the rapid decrease in the temperature of the second hot water. Adjustment of the mixing ratio of the mixing valve 3 based on the temperature detected by the temperature sensor 13 cannot follow, and an undershoot of the hot water supply temperature occurs. On the other hand, according to the first embodiment, an abrupt decrease in the temperature of the second hot water is detected in step S3, and an undershoot of the hot water supply temperature is generated by performing the mixing ratio calculation process in step S4. Can be reliably suppressed.

制御部16は、混合比演算処理を行った後、第2温度センサ10の検出温度の時間的な変化の傾きが予め設定された基準に比べて小さくなった場合には、第2温水の温度の急変が終わったと判断し、混合弁3のフィードバック制御を再開する。すなわち、本実施の形態1では、制御部16は、第2温度センサ10の検出温度の時間的な変化の傾きが、0.5秒当たり2℃未満になった場合には、混合弁3のフィードバック制御を再開する。図5に示す例の場合で説明すると、図5中のDの区間では0.5秒当たりの第2温度センサ10の検出温度の変化が2℃未満の0.5℃であるので、制御部16は混合弁3のフィードバック制御を再開する。   After performing the mixture ratio calculation process, the controller 16 determines the temperature of the second hot water when the gradient of the temporal change in the detected temperature of the second temperature sensor 10 becomes smaller than a preset reference. Is determined to have ended, and the feedback control of the mixing valve 3 is resumed. In other words, in the first embodiment, the control unit 16 determines that the mixing valve 3 of the mixing valve 3 is in a state where the gradient of the temporal change in the temperature detected by the second temperature sensor 10 is less than 2 ° C. per 0.5 second. Resume feedback control. In the case of the example shown in FIG. 5, since the change in the detected temperature of the second temperature sensor 10 per 0.5 second is 0.5 ° C., which is less than 2 ° C., in the section D in FIG. 16 resumes the feedback control of the mixing valve 3.

このように、本実施の形態1では、混合比演算処理を行うことにより、水栓15への給湯温度のアンダーシュートおよびオーバーシュートの発生を確実に抑制することができる。   Thus, in this Embodiment 1, by performing a mixture ratio calculation process, generation | occurrence | production of the undershoot and overshoot of the hot water supply temperature to the faucet 15 can be suppressed reliably.

前述したように、貯湯式給湯機1は、水栓15の出湯流量が大きい場合には図3に示す即湯大流量給湯運転の状態になり、水栓15の出湯流量が小さい場合には図4に示す即湯小流量給湯運転の状態になる。水栓15の出湯流量が、即湯大流量給湯運転状態となる大流量の範囲と、即湯小流量給湯運転状態となる小流量の範囲との境の流量(例えば4L/分。以下、「境界流量」と称する。)のときには、混合比演算処理によって混合弁3の混合比を大幅に変更した際に、即湯大流量給湯運転から即湯小流量給湯運転に、またはその逆に、運転状態が切り替わる可能性がある。図3および図4から分かるように、給水管5bの流れ方向が逆転すると、即湯大流量給湯運転と即湯小流量給湯運転とが切り替わる。以下、例を挙げて説明する。   As described above, the hot water storage type water heater 1 enters the state of the hot water large flow hot water supply operation shown in FIG. 3 when the tap water flow rate of the faucet 15 is large, and when the tap water flow rate of the faucet 15 is small, 4 is brought into a state of an immediate hot water small flow hot water supply operation shown in FIG. The outlet flow rate of the faucet 15 is a boundary flow rate between the range of the large flow rate at which the immediate hot water flow rate hot water supply operation state is reached and the range of the low flow rate at which the hot water low flow rate hot water supply operation state is established (for example, 4 L / min. In the case of “boundary flow rate”), when the mixing ratio of the mixing valve 3 is significantly changed by the mixture ratio calculation process, the operation is changed from the immediate hot water large flow hot water supply operation to the immediate hot water small flow hot water supply operation or vice versa. The state may change. As can be seen from FIGS. 3 and 4, when the flow direction of the water supply pipe 5b is reversed, the hot water large flow hot water supply operation and the quick hot water small flow hot water operation are switched. Hereinafter, an example will be described.

ここでは、即湯循環運転中に水栓15が開かれ、水栓15の流量が境界流量である4L/分となり、即湯大流量給湯運転に遷移したとする。即湯循環運転から即湯大流量給湯運転への遷移に伴い、水源から給水管5bを通って供給される低温水が接続管9に流入し始め、戻り管18から接続管9に流入する戻り温水と混合することにより、第2温水の温度が例えば55℃から30℃へ急激に低下する。これに伴い、制御部16は混合比演算処理を行う。この混合比演算処理により、混合弁3は、貯湯タンク2からの湯である第1温水の混合比を増大し、第2温水の混合比を減少するように、混合比が大幅に変更される。すなわち、この混合比演算処理では、混合弁3の開度は、第1入口部3a側の開度を拡大し、第2入口部3b側の開度を縮小するように、大幅に変更される。その結果、接続管9から第2入口部3bへ流入する第2温水の流量が急減するので、水源から給水管5bを通って接続管9に向かう方向には水が流れにくくなる。その一方で、混合弁3の第1入口部3aへ流入する第1温水の流量、すなわち貯湯タンク2から給湯管8へ流出する湯の流量が急増するので、給水管5aから貯湯タンク2へ流入する水の流量が急増する。このため、戻り管18から給水管5bを通って給水管5aへ向かう方向に水が流れ易くなる。これらのことから、給水管5bの流れ方向が逆転し、戻り管18から給水管5bを通って給水管5aへ向かう方向に流れが形成される。その結果、即湯小流量給湯運転の状態となる。このようにして、即湯循環運転から即湯大流量給湯運転へ遷移したことに伴う混合比演算処理に起因して、即湯大流量給湯運転からさらに即湯小流量給湯運転へ遷移する。   Here, it is assumed that the faucet 15 is opened during the immediate hot water circulation operation, the flow rate of the faucet 15 is 4 L / min, which is the boundary flow rate, and a transition is made to the immediate hot water flow rate hot water supply operation. Accompanying the transition from the immediate hot water circulation operation to the immediate hot water flow rate hot water supply operation, the low temperature water supplied from the water source through the water supply pipe 5b starts to flow into the connection pipe 9, and returns from the return pipe 18 to the connection pipe 9. By mixing with warm water, the temperature of the 2nd warm water falls rapidly from 55 degreeC to 30 degreeC, for example. Accordingly, the control unit 16 performs a mixture ratio calculation process. By this mixing ratio calculation process, the mixing valve 3 is greatly changed so that the mixing ratio of the first hot water, which is hot water from the hot water storage tank 2, is increased and the mixing ratio of the second hot water is decreased. . That is, in this mixing ratio calculation process, the opening degree of the mixing valve 3 is significantly changed so that the opening degree on the first inlet portion 3a side is enlarged and the opening degree on the second inlet portion 3b side is reduced. . As a result, the flow rate of the second warm water flowing from the connection pipe 9 to the second inlet 3b is rapidly reduced, so that it is difficult for water to flow in the direction from the water source to the connection pipe 9 through the water supply pipe 5b. On the other hand, the flow rate of the first hot water flowing into the first inlet portion 3a of the mixing valve 3, that is, the flow rate of hot water flowing out from the hot water storage tank 2 to the hot water supply pipe 8 increases rapidly, and therefore flows into the hot water storage tank 2 from the water supply pipe 5a. The flow rate of water increases. For this reason, it becomes easy for water to flow from the return pipe 18 to the water supply pipe 5a through the water supply pipe 5b. For these reasons, the flow direction of the water supply pipe 5b is reversed, and a flow is formed in the direction from the return pipe 18 to the water supply pipe 5a through the water supply pipe 5b. As a result, an immediate hot water small flow hot water supply operation is set. In this way, due to the mixing ratio calculation process accompanying the transition from the immediate hot water circulation operation to the immediate hot water flow rate hot water supply operation, the immediate hot water large flow rate hot water supply operation further shifts to the immediate hot water small flow rate hot water supply operation.

上記のようにして即湯大流量給湯運転から即湯小流量給湯運転へ遷移すると、接続管9への低温水の流入が停止し、戻り管18からの戻り温水のみが接続管9に流入する状態になるため、第2温水の温度が例えば30℃から55℃へ急激に上昇する。これに伴い、制御部16は混合比演算処理を行う。この混合比演算処理により、混合弁3は、貯湯タンク2からの第1温水の混合比を減少し、第2温水の混合比を増大するように、混合比が大幅に変更される。すなわち、この混合比演算処理では、混合弁3の開度は、第1入口部3a側の開度を縮小し、第2入口部3b側の開度を拡大するように、大幅に変更される。その結果、混合弁3の第1入口部3aへ流入する第1温水の流量、すなわち貯湯タンク2から給湯管8へ流出する湯の流量が急減するので、給水管5aから貯湯タンク2へ流入する水の流量が急減する。このため、戻り管18から給水管5bを通って給水管5aへ向かう方向に水が流れにくくなる。その一方で、接続管9から第2入口部3bへ流入する第2温水の流量が急増するので、水源から給水管5bを通って接続管9に向かう方向に水が流れ易くなる。これらのことから、給水管5bの流れ方向が再度逆転し、水源から給水管5bを通って接続管9に向かう方向に流れが形成される。その結果、即湯大流量給湯運転の状態となる。このようにして、即湯大流量給湯運転から即湯小流量給湯運転へ遷移したことに伴う混合比演算処理に起因して、即湯小流量給湯運転から即湯大流量給湯運転へ戻ってしまう。   When the transition from the immediate hot water flow rate hot water supply operation to the immediate hot water flow rate hot water operation is performed as described above, the inflow of the low temperature water to the connection pipe 9 is stopped, and only the return hot water from the return pipe 18 flows into the connection pipe 9. Since it will be in a state, the temperature of 2nd warm water will rise rapidly from 30 degreeC to 55 degreeC, for example. Accordingly, the control unit 16 performs a mixture ratio calculation process. By this mixing ratio calculation process, the mixing ratio of the mixing valve 3 is greatly changed so as to decrease the mixing ratio of the first hot water from the hot water storage tank 2 and increase the mixing ratio of the second hot water. That is, in this mixing ratio calculation process, the opening of the mixing valve 3 is significantly changed so as to reduce the opening on the first inlet 3a side and increase the opening on the second inlet 3b side. . As a result, the flow rate of the first hot water flowing into the first inlet portion 3a of the mixing valve 3, that is, the flow rate of hot water flowing out from the hot water storage tank 2 to the hot water supply pipe 8 is rapidly reduced, and therefore flows into the hot water storage tank 2 from the water supply pipe 5a. Water flow decreases rapidly. For this reason, it becomes difficult for water to flow from the return pipe 18 through the water supply pipe 5b to the water supply pipe 5a. On the other hand, since the flow rate of the second warm water flowing from the connection pipe 9 to the second inlet 3b increases rapidly, water easily flows in the direction from the water source to the connection pipe 9 through the water supply pipe 5b. For these reasons, the flow direction of the water supply pipe 5b is reversed again, and a flow is formed in the direction from the water source to the connection pipe 9 through the water supply pipe 5b. As a result, the hot water large flow hot water supply operation is entered. In this way, due to the mixing ratio calculation processing accompanying the transition from the immediate hot water flow rate hot water supply operation to the immediate hot water flow rate hot water operation, the immediate hot water low flow rate hot water operation returns to the immediate hot water flow rate hot water operation. .

水栓15の出湯流量が境界流量である場合には、上述のようにして、混合比演算処理が行われるたびに即湯大流量給湯運転と即湯小流量給湯運転とが切り替わることで、即湯大流量給湯運転と即湯小流量給湯運転とが交互に繰り返す現象が発生する可能性がある。この現象が発生すると、水栓15への給湯温度がいつまでも安定せず、ハンチングするおそれがある。   When the outlet flow rate of the faucet 15 is the boundary flow rate, as described above, each time the mixing ratio calculation process is performed, the immediate hot water large flow hot water supply operation and the instant hot water small flow hot water supply operation are switched, so that There is a possibility that a phenomenon occurs in which the hot water flow rate hot water supply operation and the immediate hot water small flow rate hot water supply operation are alternately repeated. When this phenomenon occurs, the hot water supply temperature to the faucet 15 is not stable forever, and hunting may occur.

上述したハンチングの発生を確実に抑制するために、制御部16は、混合比演算処理を実行した回数をカウントし、その実行回数が予め設定した回数(例えば3回)に達した場合には、それ以降は混合比演算処理の実行を禁止するようにしても良い。これにより、水栓15の出湯流量が境界流量である場合にも、即湯大流量給湯運転と即湯小流量給湯運転とが交互に繰り返すことを確実に抑制できるので、上述したハンチングの発生を確実に抑制できる。このようにして混合比演算処理の実行を禁止した後、水栓15の開度変化などにより水栓15からの出湯状態が変化した場合、または即湯ポンプ4の運転の有無(ON/OFF)が変化した場合には、ハンチング発生の可能性がなくなったとみなすことができるので、混合比演算処理の実行回数のカウントをゼロクリアする、すなわち混合比演算処理の禁止を解除して良い。その場合、水栓15からの出湯状態の変化については、給水流量センサ6で検出される給水流量が予め設定された閾値(例えば1L/分)を跨いで変化した場合に水栓15からの出湯状態が変化したとみなすことができる。または、混合温水流量センサ12で検出される混合温水流量が予め設定された閾値(例えば1L/分)を跨いで変化した場合に水栓15からの出湯状態が変化したとみなしても良い。なお、上記閾値は0L/分でも良い。すなわち、給水流量センサ6で検出される給水流量がゼロになった場合に水栓15からの出湯状態が変化したとみなしても良いし、混合温水流量センサ12で検出される混合温水流量がゼロになった場合に水栓15からの出湯状態が変化したとみなしても良い。以上をまとめると、制御部16は、混合比演算処理の実行を禁止した後、混合温水流量センサ12で検出される混合温水流量が予め設定された閾値に変化した場合、給水流量センサ6で検出される給水流量が予め設定された閾値に変化した場合、即湯ポンプ4の運転の有無(ON/OFF)が変化した場合、のうちの少なくとも一つの場合には、ハンチング発生の可能性がなくなったとみなすことができるので、混合比演算処理の禁止を解除して良い。   In order to reliably suppress the occurrence of the hunting described above, the control unit 16 counts the number of times that the mixture ratio calculation process has been executed, and when the number of times of execution reaches a preset number (for example, three times), Thereafter, the execution of the mixture ratio calculation process may be prohibited. Thereby, even when the tap water flow rate of the faucet 15 is the boundary flow rate, it is possible to reliably suppress the rapid hot water flow hot water supply operation and the quick hot water small flow hot water supply operation from being repeated alternately. It can be reliably suppressed. After prohibiting the execution of the mixing ratio calculation process in this way, when the hot-water state from the faucet 15 changes due to a change in the opening of the faucet 15 or the presence or absence of the immediate hot water pump 4 (ON / OFF) Since the possibility of occurrence of hunting can be considered to have disappeared, the count of the number of executions of the mixture ratio calculation process may be cleared to zero, that is, the prohibition of the mixture ratio calculation process may be cancelled. In that case, regarding the change in the hot water state from the faucet 15, the hot water from the faucet 15 when the feed water flow rate detected by the feed water flow rate sensor 6 changes over a preset threshold value (for example, 1 L / min). It can be considered that the state has changed. Alternatively, when the mixed hot water flow rate detected by the mixed hot water flow rate sensor 12 changes across a preset threshold value (for example, 1 L / min), it may be considered that the state of the hot water from the faucet 15 has changed. The threshold value may be 0 L / min. That is, when the feed water flow rate detected by the feed water flow rate sensor 6 becomes zero, it may be considered that the state of the hot water from the faucet 15 has changed, or the mixed hot water flow rate detected by the mixed hot water flow rate sensor 12 is zero. It may be considered that the state of the hot water from the faucet 15 has changed. In summary, after the control unit 16 prohibits the execution of the mixing ratio calculation process, when the mixed hot water flow rate detected by the mixed hot water flow rate sensor 12 changes to a preset threshold value, the feed water flow rate sensor 6 detects it. When the supplied water flow rate is changed to a preset threshold value, the presence or absence (ON / OFF) of the operation of the immediate hot water pump 4 is changed, and in at least one of the cases, there is no possibility of occurrence of hunting. Therefore, the prohibition of the mixture ratio calculation process may be lifted.

また、上記の方法に代えて、以下のような方法でも、上述したハンチングの発生を確実に抑制することができる。この方法の場合には、制御部16は、混合比演算処理を実行したときの、第2温度センサ10の検出温度の時間的な変化の傾きの正負を記憶する。即湯小流量給湯運転から即湯大流量給湯運転へ遷移する場合には第2温度センサ10の検出温度の時間的な変化の傾きは図5のように負となる。一方、即湯大流量給湯運転から即湯小流量給湯運転へ遷移する場合には第2温度センサ10の検出温度の時間的な変化の傾きは正となる。そこで、制御部16は、第2温度センサ10の検出温度の時間的な変化の傾きが、混合比演算処理を前回実行したときの第2温度センサ10の検出温度の時間的な変化の傾きに対して逆になっている場合には、混合比演算処理の実行を禁止する。これにより、即湯大流量給湯運転と即湯小流量給湯運転とが交互に繰り返すことを確実に抑制できるので、ハンチングの発生を確実に抑制できる。この方法の場合にも、上記の方法と同様に、制御部16は、混合比演算処理の実行を禁止した後、混合温水流量センサ12で検出される混合温水流量が予め設定された閾値に変化した場合、給水流量センサ6で検出される給水流量が予め設定された閾値に変化した場合、即湯ポンプ4の運転の有無(ON/OFF)が変化した場合、のうちの少なくとも一つの場合には、ハンチング発生の可能性がなくなったとみなすことができるので、混合比演算処理の禁止を解除して良い。   Moreover, it can replace with said method and can suppress generation | occurrence | production of the hunting mentioned above reliably also by the following methods. In the case of this method, the control unit 16 stores the sign of the slope of the temporal change in the detected temperature of the second temperature sensor 10 when the mixture ratio calculation process is executed. In the case of transition from the immediate hot water small flow hot water supply operation to the immediate hot water high flow hot water supply operation, the gradient of the temporal change in the temperature detected by the second temperature sensor 10 becomes negative as shown in FIG. On the other hand, when a transition is made from an immediate hot water flow rate hot water supply operation to an immediate hot water flow rate hot water operation, the slope of the temporal change in the temperature detected by the second temperature sensor 10 is positive. Therefore, the control unit 16 determines that the slope of the temporal change in the detected temperature of the second temperature sensor 10 is the slope of the temporal change in the detected temperature of the second temperature sensor 10 when the mixture ratio calculation process was executed last time. On the other hand, if the reverse is true, the execution of the mixture ratio calculation process is prohibited. Thereby, since it can suppress reliably that an instant hot water flow rate hot water supply driving | operation and an instant hot water flow rate hot water supply operation repeat alternately, generation | occurrence | production of hunting can be suppressed reliably. Also in this method, similarly to the above method, after the control unit 16 prohibits the execution of the mixing ratio calculation process, the mixed hot water flow rate detected by the mixed hot water flow rate sensor 12 changes to a preset threshold value. When the feed water flow rate detected by the feed water flow rate sensor 6 changes to a preset threshold value, the presence / absence (ON / OFF) of the immediate hot water pump 4 changes, or at least one of the cases. Since it can be considered that the possibility of occurrence of hunting has been eliminated, the prohibition of the mixture ratio calculation processing may be lifted.

1 貯湯式給湯機、2 貯湯タンク、3 混合弁、3a 第1入口部、3b 第2入口部、3c 出口部、4 即湯ポンプ、5,5a,5b 給水管、6 給水流量センサ、7 第1温度センサ、8 給湯管、9 接続管、10 第2温度センサ、11 混合温水管、12 混合温水流量センサ、13 給湯温度センサ、14 外部給湯管、15 水栓、16 制御部、17 外部戻り管、18 戻り管、20 リモコン装置 DESCRIPTION OF SYMBOLS 1 Hot water storage type hot water supply machine, 2 Hot water storage tank, 3 Mixing valve, 3a 1st inlet part, 3b 2nd inlet part, 3c outlet part, 4 Instant hot water pump, 5, 5a, 5b Water supply pipe, 6 Water supply flow rate sensor, 7th 1 temperature sensor, 8 hot water supply pipe, 9 connecting pipe, 10 second temperature sensor, 11 mixed hot water pipe, 12 mixed hot water flow sensor, 13 hot water temperature sensor, 14 external hot water pipe, 15 water tap, 16 control unit, 17 external return Pipe, 18 return pipe, 20 remote control device

Claims (5)

湯を貯える貯湯タンクと、
第1入口部、第2入口部および出口部を有し、前記貯湯タンクから前記第1入口部へ供給される第1温水と、前記第2入口部へ供給され、前記第1温水より温度の低い第2温水とを混合した混合温水を前記出口部から排出する混合手段と、
前記混合温水を出湯端末側へ送る混合温水管と、
前記第1温水の温度を検出する第1温度検出手段と、
前記第2温水の温度を検出する第2温度検出手段と、
前記混合温水の温度を検出する第3温度検出手段と、
前記混合手段による前記第1温水と前記第2温水との混合比を制御する制御手段と、
を備え、
前記制御手段は、前記混合温水の目標温度と前記第3温度検出手段の検出温度との差に基づいて前記混合手段の混合比を調整するフィードバック制御を行っているときに、前記第2温度検出手段の検出温度の時間的な変化の傾きが予め設定された基準に比べて大きい場合には、前記混合手段の混合比を、前記第1温度検出手段の検出温度、前記第2温度検出手段の検出温度および前記混合温水の目標温度に基づいて演算した混合比に制御する混合比演算処理を行う貯湯式給湯機。
A hot water storage tank for storing hot water,
The first hot water supplied from the hot water storage tank to the first inlet portion and supplied to the second inlet portion, and having a temperature higher than that of the first hot water. Mixing means for discharging the mixed warm water mixed with the low second warm water from the outlet portion;
A mixed hot water pipe for sending the mixed hot water to the hot water terminal side;
First temperature detecting means for detecting the temperature of the first hot water;
Second temperature detecting means for detecting the temperature of the second hot water;
Third temperature detecting means for detecting the temperature of the mixed hot water;
Control means for controlling the mixing ratio of the first hot water and the second hot water by the mixing means;
With
The control means performs the second temperature detection when performing feedback control for adjusting the mixing ratio of the mixing means based on the difference between the target temperature of the mixed hot water and the detected temperature of the third temperature detecting means. When the slope of the change in the detected temperature of the means over time is larger than a preset reference, the mixing ratio of the mixing means is set to the detected temperature of the first temperature detecting means and the second temperature detecting means. A hot water storage type hot water heater that performs a mixing ratio calculation process for controlling a mixing ratio calculated based on a detected temperature and a target temperature of the mixed hot water.
前記出湯端末側から戻る温水が通る戻り管と、
水源から供給される水が通る給水管と、
前記戻り管および前記給水管を前記混合手段の前記第2入口部に接続する接続管と、
前記混合手段、前記混合温水管、前記戻り管および前記接続管を含んで形成される循環回路に温水を循環させるポンプと、
を備える請求項1に記載の貯湯式給湯機。
A return pipe through which hot water returns from the hot spring terminal side;
A water supply pipe through which water supplied from a water source passes,
A connection pipe connecting the return pipe and the water supply pipe to the second inlet of the mixing means;
A pump for circulating hot water in a circulation circuit formed including the mixing means, the mixed hot water pipe, the return pipe and the connection pipe;
The hot water storage type water heater according to claim 1.
前記制御手段は、前記混合比演算処理を実行した回数が予め設定された回数に達した場合には、前記混合比演算処理を禁止する請求項1または請求項2に記載の貯湯式給湯機。   The hot water storage hot water supply apparatus according to claim 1 or 2, wherein the control means prohibits the mixture ratio calculation process when the number of times the mixture ratio calculation process is executed reaches a preset number. 前記制御手段は、前記第2温度検出手段の検出温度の時間的な変化の傾きが、前記混合比演算処理を前回実行したときの前記第2温度検出手段の検出温度の時間的な変化の傾きに対して逆向きである場合には、前記混合比演算処理を禁止する請求項1または請求項2に記載の貯湯式給湯機。   The control means is configured such that the slope of the temporal change in the detected temperature of the second temperature detecting means is the slope of the temporal change in the detected temperature of the second temperature detecting means when the mixture ratio calculation process was executed last time. The hot water storage type water heater according to claim 1 or 2, wherein the mixing ratio calculation process is prohibited when the direction is opposite to the above. 前記制御手段は、前記混合比演算処理を禁止した後、前記混合温水の流量が予め設定された閾値に変化した場合、前記水源から供給される水の流量が予め設定された閾値に変化した場合、前記混合温水を出湯端末側へ送るポンプの運転の有無が変化した場合、のうちの少なくとも一つの場合に、前記混合比演算処理の禁止を解除する請求項3または請求項4に記載の貯湯式給湯機。   The control means, after prohibiting the mixing ratio calculation process, when the flow rate of the mixed hot water changes to a preset threshold value, when the flow rate of water supplied from the water source changes to a preset threshold value The hot water storage according to claim 3 or 4, wherein the prohibition of the mixing ratio calculation process is canceled in at least one of cases where the presence or absence of operation of a pump for sending the mixed hot water to the hot water terminal side changes. Type water heater.
JP2013231159A 2013-11-07 2013-11-07 Hot water storage water heater Active JP6142778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013231159A JP6142778B2 (en) 2013-11-07 2013-11-07 Hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013231159A JP6142778B2 (en) 2013-11-07 2013-11-07 Hot water storage water heater

Publications (3)

Publication Number Publication Date
JP2015090256A true JP2015090256A (en) 2015-05-11
JP2015090256A5 JP2015090256A5 (en) 2016-08-12
JP6142778B2 JP6142778B2 (en) 2017-06-07

Family

ID=53193873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013231159A Active JP6142778B2 (en) 2013-11-07 2013-11-07 Hot water storage water heater

Country Status (1)

Country Link
JP (1) JP6142778B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222328A (en) * 1990-12-20 1992-08-12 Paloma Ind Ltd Instantaneous supply apparatus of hot water
JP2003222349A (en) * 2002-01-31 2003-08-08 Rinnai Corp Hot-cold water mixing unit
JP2006343033A (en) * 2005-06-09 2006-12-21 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP2007170753A (en) * 2005-12-22 2007-07-05 Denso Corp Water heater
JP2009063276A (en) * 2007-09-10 2009-03-26 Panasonic Corp Hot water storage type water heater
JP2009174787A (en) * 2008-01-25 2009-08-06 Rinnai Corp Hot water supply system
JP2010007890A (en) * 2008-06-24 2010-01-14 Corona Corp Storage type hot water supply device
JP2011021328A (en) * 2009-07-13 2011-02-03 Toto Ltd Hot water/water mixing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222328A (en) * 1990-12-20 1992-08-12 Paloma Ind Ltd Instantaneous supply apparatus of hot water
JP2003222349A (en) * 2002-01-31 2003-08-08 Rinnai Corp Hot-cold water mixing unit
JP2006343033A (en) * 2005-06-09 2006-12-21 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP2007170753A (en) * 2005-12-22 2007-07-05 Denso Corp Water heater
JP2009063276A (en) * 2007-09-10 2009-03-26 Panasonic Corp Hot water storage type water heater
JP2009174787A (en) * 2008-01-25 2009-08-06 Rinnai Corp Hot water supply system
JP2010007890A (en) * 2008-06-24 2010-01-14 Corona Corp Storage type hot water supply device
JP2011021328A (en) * 2009-07-13 2011-02-03 Toto Ltd Hot water/water mixing device

Also Published As

Publication number Publication date
JP6142778B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
US9886043B2 (en) Hot-water supply system
JP4674540B2 (en) Water heater
RU2723274C2 (en) Combined heat and water boiler and method of its control
US9951970B2 (en) Immediate hot-water supplying system
US20180163993A1 (en) Water heater appliance and a method for operating the same
JP5971149B2 (en) Water heater
JP5101548B2 (en) Hot water system
JP2020064371A5 (en)
JP6160772B2 (en) Hot water storage water heater
JP6142778B2 (en) Hot water storage water heater
JP2008256346A (en) Heat pump device
US10288317B2 (en) Flow controller and a hot water appliance provided therewith
JP6428478B2 (en) Hot water storage type heat pump water heater
JP2015094546A (en) Hot water storage type water heater
JP5980176B2 (en) Instant hot water supply system
JP5564843B2 (en) Hot water mixing device
JP5816226B2 (en) Hot water storage water heater
JP4788807B2 (en) Hot water mixing device
JP5058193B2 (en) Hot water system
JP2011149605A (en) Water heater
KR101749125B1 (en) heating water suppling system and controlling method thereof
JP4319237B2 (en) Heat pump water heater
JP2004205140A (en) Reheating device for bath
JP6624879B2 (en) Water heater
JP6470649B2 (en) Water heater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6142778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250