JP2015089980A - Polyethylene fiber - Google Patents
Polyethylene fiber Download PDFInfo
- Publication number
- JP2015089980A JP2015089980A JP2013230371A JP2013230371A JP2015089980A JP 2015089980 A JP2015089980 A JP 2015089980A JP 2013230371 A JP2013230371 A JP 2013230371A JP 2013230371 A JP2013230371 A JP 2013230371A JP 2015089980 A JP2015089980 A JP 2015089980A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- polyethylene
- intrinsic viscosity
- dtex
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Artificial Filaments (AREA)
Abstract
Description
本発明はポリエチレン繊維に関し、さらに詳しくは冷感に優れながら、取扱い性に優れた衣料用途に好適に利用可能なポリエチレン繊維に関するものである。 The present invention relates to a polyethylene fiber, and more particularly to a polyethylene fiber that can be suitably used for apparel with excellent handling properties while being excellent in cool feeling.
昨今の快適志向の増大に伴い、衣服として着用する際に、特に夏場など周囲の環境温度が比較的高い場合に、適度な冷感が感じられる繊維製品が開発されてきた。中でも、特許文献1の高結晶化度、高配向性を有する高強力ポリエチレンなどの繊維に代表されるものは、熱伝導率が高く、快適性が高いことが知られている。 Along with the recent increase in comfort orientation, textile products have been developed that, when worn as clothes, can feel a moderate cool feeling, especially when the ambient environmental temperature is relatively high, such as in summer. Among them, those represented by fibers such as high-strength polyethylene having high crystallinity and high orientation described in Patent Document 1 are known to have high thermal conductivity and high comfort.
しかしこのような高結晶性、高配向性の高強力ポリエチレン繊維からなる布帛は確かに接触冷感を得ることができるものの、通常の熱可塑性樹脂からなる汎用合成繊維と比較して繊維の生産性に劣るという問題があった。紡糸時の溶融温度が高く多くの熱量が必要であり、かつ紡糸速度も低く高効率な生産が困難なのである。さらに生産された繊維を衣料用の繊維として用いる際には、加工時の取り扱い性に劣るという問題があった。 However, fabrics made of such highly crystalline and highly oriented high-strength polyethylene fibers can surely get a cool feeling of contact, but the productivity of fibers compared with general-purpose synthetic fibers made of ordinary thermoplastic resin. There was a problem of being inferior. The melt temperature at the time of spinning is high, a large amount of heat is required, the spinning speed is low, and highly efficient production is difficult. Furthermore, when the produced fiber is used as a fiber for clothing, there is a problem that the handleability at the time of processing is inferior.
他方、冷感を重視した繊維としては、特許文献2には繊維を構成するポリマーとして、吸湿性を有するポリマーを用いたものが、特許文献3には熱可塑性エラストマーを用いたものが提案されている。しかしながら吸湿性を有するポリマーは発汗時にべとつきの原因となり不快感を生じ、またエラストマーはそれ自体の粘着性もあり加工特性に劣るものであった。 On the other hand, as fibers that place importance on cooling feeling, Patent Document 2 proposes using a hygroscopic polymer as a polymer constituting the fiber, and Patent Document 3 proposes using a thermoplastic elastomer. Yes. However, the hygroscopic polymer causes stickiness during sweating, causing discomfort, and the elastomer has its own stickiness and is inferior in processing characteristics.
また、特許文献4や特許文献5には、通常の合成繊維や天然繊維からなる布帛を形成した後に、後加工によって冷感を有する物質を付着させる技術が開示されている。しかし、繊維自体の熱伝導率が低いことに加えて、後加工による剤の付着は、接着剤となるバインダーによる風合いの悪化や洗濯耐久性の問題などを有し、取扱い性にも劣るものであった。
上述の通り、実用に足る十分な冷感を有しながら、取扱い易い繊維は得られておらず、その改善が望まれているのである。
Patent Documents 4 and 5 disclose a technique in which a fabric having a cool feeling is attached by post-processing after forming a fabric made of normal synthetic fiber or natural fiber. However, in addition to the low thermal conductivity of the fiber itself, the adhesion of the agent by post-processing has problems such as deterioration of the texture due to the binder serving as an adhesive and washing durability, and is also inferior in handleability. there were.
As described above, fibers that are easy to handle while having a sufficient cooling sensation sufficient for practical use have not been obtained, and improvements are desired.
本発明の目的は、上記従来技術を背景になされたもので、その目的は、冷感に優れながら、取扱い性や加工性に優れた衣料用途に好適に利用可能なポリエチレン繊維を提供することにある。 The object of the present invention was made against the background of the above-described conventional technology, and the object thereof is to provide a polyethylene fiber that can be suitably used for apparel applications that are excellent in handling and workability while being excellent in cooling feeling. is there.
本発明のポリエチレン繊維は、ポリエチレンを主たる構成成分とする繊維であって、該ポリエチレンの極限粘度が0.8〜1.7、破断強度が2〜8cN/dtex、沸水収縮率が2〜5%の範囲にあることを特徴とする。さらには繊維断面形状が扁平であることが好ましい。
もう一つの本発明のポリエチレン繊維の製造方法は、極限粘度が0.8〜1.7のポリエチレンを主たる構成成分とする樹脂を、溶融紡糸、延伸し、熱媒に接触させて熱セットすることを特徴とする製造方法である。
The polyethylene fiber of the present invention is a fiber mainly composed of polyethylene, and has an intrinsic viscosity of 0.8 to 1.7, a breaking strength of 2 to 8 cN / dtex, and a boiling water shrinkage of 2 to 5%. It is characterized by being in the range of Furthermore, the fiber cross-sectional shape is preferably flat.
Another method for producing a polyethylene fiber according to the present invention is to melt-spin, stretch, and heat-set a resin mainly composed of polyethylene having an intrinsic viscosity of 0.8 to 1.7 and contact a heat medium. Is a manufacturing method characterized by
本発明によれば、冷感に優れながら、取扱い性や加工性に優れた衣料用途に好適に利用可能なポリエチレン繊維が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the polyethylene fiber which can be utilized suitably for the garment use excellent in the handleability and workability, while being excellent in cool feeling is provided.
本発明のポリエチレン繊維は、ポリエチレンを主たる構成成分とする繊維であって、該ポリエチレンの極限粘度が0.8〜1.7、破断強度が2〜8cN/dtex、沸水収縮率が2〜5%の範囲にあることを必須とする繊維である。
ここで主たる構成成分であるポリエチレンとしては、高密度ポリエチレン、直鎖状低密度ポリエチレン、低密度ポリエチレンなどに分類することができる。中でも本発明にて用いられるポリエチレンとしては、高密度ポリエチレンであることが好ましく、より高い製糸性と共に高性能の高い熱伝導性を得ることが可能となる。
The polyethylene fiber of the present invention is a fiber mainly composed of polyethylene, and has an intrinsic viscosity of 0.8 to 1.7, a breaking strength of 2 to 8 cN / dtex, and a boiling water shrinkage of 2 to 5%. It is a fiber that is essential to be in the range.
Here, polyethylene which is a main constituent component can be classified into high density polyethylene, linear low density polyethylene, low density polyethylene and the like. Among them, the polyethylene used in the present invention is preferably high-density polyethylene, and it is possible to obtain high heat conductivity with high performance as well as higher yarn-making properties.
なお主成分のポリエチレンとしては単一成分からなることが好ましいが、5重量%未満の割合であれば、C3〜C12の高級アルケンが、共重合体として含まれていることも好ましい。さらに本発明の繊維を構成するポリマー中には、従来公知の酸化防止剤、耐光剤、難燃剤、顔料などを、本発明の目的を損なわない範囲で含有させることができる。 The main component polyethylene is preferably composed of a single component, but if it is less than 5% by weight, it is also preferred that a C3-C12 higher alkene is contained as a copolymer. Furthermore, in the polymer constituting the fiber of the present invention, conventionally known antioxidants, light proofing agents, flame retardants, pigments and the like can be contained within a range not impairing the object of the present invention.
そしてこのようなポリエチレンを主成分とする本発明のポリエチレン繊維は、その極限粘度が0.8〜1.7(dl/g)であることが必要である。極限粘度が下がり、特に0.8未満であると、繊維とした際に、所望の強度など物性を得ることが困難となる。他方、極限粘度が高くなり、特に1.7を超えると流動性が低下し、かろうじて溶融紡糸は可能であるものの、溶融温度を上げざるを得ず、生産効率が低下することに加えてポリエチレンの熱分解も伴うこととなる。この極限粘度は繊維として後に測定したものであり、さらに好ましくは、0.9〜1.5(dl/g)の範囲であり、特には1.0〜1.2(dl/g)の範囲であることが好ましい。 And the polyethylene fiber of this invention which has such a polyethylene as a main component needs that the intrinsic viscosity is 0.8-1.7 (dl / g). When the intrinsic viscosity is lowered, particularly less than 0.8, it is difficult to obtain physical properties such as desired strength when a fiber is obtained. On the other hand, the intrinsic viscosity becomes high, especially when it exceeds 1.7, the fluidity is lowered, and although melt spinning is barely possible, the melting temperature has to be raised and the production efficiency is reduced. It will be accompanied by thermal decomposition. This intrinsic viscosity was measured later as a fiber, more preferably in the range of 0.9 to 1.5 (dl / g), particularly in the range of 1.0 to 1.2 (dl / g). It is preferable that
また本発明のポリエチレン繊維は、破断強度(St)が2〜8cN/dtexであることが必要である。破断強度が2cN/dtex未満となると、強度面で加工上や使用上の問題が発生するおそれがある。逆に8cN/dtexを超えると裁断などの加工上の取り扱い性、生産性が低下する。好ましい範囲としては2.5〜6cN/dtexであり、特に加工性に優れた繊維となる。 The polyethylene fiber of the present invention needs to have a breaking strength (St) of 2 to 8 cN / dtex. If the breaking strength is less than 2 cN / dtex, there may be a problem in processing and use in terms of strength. On the other hand, if it exceeds 8 cN / dtex, the handleability and productivity in processing such as cutting are reduced. The preferred range is 2.5 to 6 cN / dtex, and the fiber is particularly excellent in processability.
さらにこの破断時の伸度としては、10〜50%の範囲であることが好ましい。さらには伸度が15〜30%であることが好ましい。ここで繊維の伸度が低すぎると取り扱い性が悪く、逆に伸度が高すぎると繊維構造が不安定となり、経時変化して物性が変動する可能性がある。繊維の生産性やその後の加工性を考慮すると、破断強度(St)が2.5〜6cN/dtexであり、その破断時の伸度が15〜30%であることが特に好ましい。 Further, the elongation at break is preferably in the range of 10 to 50%. Further, the elongation is preferably 15 to 30%. Here, if the elongation of the fiber is too low, the handleability is poor, and conversely, if the elongation is too high, the fiber structure becomes unstable, and the physical properties may change over time. Considering the productivity of the fiber and the subsequent workability, it is particularly preferable that the breaking strength (St) is 2.5 to 6 cN / dtex, and the elongation at break is 15 to 30%.
また、本発明のポリエチレン繊維は、沸水収縮率が2〜5%の範囲であることが必要である。沸水収縮率が低すぎて、特に2%未満では布帛の表面品位が低下するおそれがある。一方5%を越えるほど収縮が大きくなった場合には、特に他の繊維との交編、交織時に表面品位の低下を引き起こし、ソフトな風合いを得られ難くなる。 Further, the polyethylene fiber of the present invention needs to have a boiling water shrinkage of 2 to 5%. If the boiling water shrinkage is too low, particularly less than 2%, the surface quality of the fabric may be lowered. On the other hand, when the shrinkage increases as it exceeds 5%, the surface quality is deteriorated particularly during knitting and weaving with other fibers, making it difficult to obtain a soft texture.
本発明の繊維は、その断面形状が扁平形状であることが好適である。扁平形状とすることにより、衣料用布帛とした際に、肌との接触面積を効果的に高めることができ、接触冷感をさらに十分に感じることができるようになる。
扁平形状の長軸の幅Aとそれに直交する短軸の最大幅B1の比A/B1としては、2〜10の範囲であることが好ましい。長軸の幅Aとそれに直交する短軸の最大幅B1の比A/B1が小さすぎると、丸断面に近くなり扁平形状の効果が低くなり、一方大きすぎると扁平の効果が向上する以上に、製糸時の工程安定性が低下する懸念が増大する傾向にある。特に好ましいA/B1比の範囲としては、3〜8であることが好ましい。
The fiber of the present invention preferably has a flat cross-sectional shape. By adopting the flat shape, when the cloth for clothing is used, the contact area with the skin can be effectively increased, and the feeling of cool contact can be more fully felt.
The ratio A / B 1 between the flat-shaped major axis width A and the minor axis maximum width B 1 perpendicular thereto is preferably in the range of 2-10. If the ratio A / B 1 between the major axis width A and the minor axis maximum width B1 perpendicular to it is too small, it becomes close to a round cross section and the effect of the flat shape is reduced, while if too large, the flat effect is improved. In addition, there is a tendency to increase the concern that process stability at the time of yarn production is lowered. A particularly preferable A / B 1 ratio range is 3 to 8.
さらに、本発明の繊維の断面形状としては異型断面であることが好ましい。特には断面の長軸方向に丸断面単糸が直線状に連結した形状であり、くびれ部を2〜5個有する形状であることが好ましい。このような丸断面の単糸が直線的に連結した、全体として扁平の断面形状を採用することにより、通常の丸断面単糸が単独で存在する場合と比較して単糸間の空間が少なく、冷感効果を効果的に発現することが可能となる。また合せて繊維の曲げ特性が向上し、布帛とした場合に柔軟性に富むものとなる。 Furthermore, the cross-sectional shape of the fiber of the present invention is preferably an irregular cross-section. In particular, it is a shape in which round cross-section single yarns are linearly connected in the major axis direction of the cross section, and preferably has a shape having 2 to 5 constricted portions. By adopting a flat cross-sectional shape as a whole in which single yarns with round cross-sections are linearly connected, there is less space between single yarns compared to the case where a single round cross-section single yarn exists alone. Thus, it is possible to effectively express the cooling effect. In addition, the bending properties of the fibers are improved, and the fabric is rich in flexibility.
さらに本発明の繊維の断面形状としては、扁平形状であることに加えてくびれ部を有することによって、繊維表面での乱反射や光の屈折効果をより高め、防透性もある程度付与することが可能となる。通常は、無機化合物粒子の反射によってそのような効果を得るのであるが、その含有量を有効に減少しうる。もっともくびれ部の数としては少なすぎると上記効果が得られ難く、逆にくびれ部の数が多すぎると工程安定性が低下する傾向にあるため、3ないし4のくびれ部であることが特に好ましい。 Furthermore, as a cross-sectional shape of the fiber of the present invention, it has a constricted portion in addition to a flat shape, so that irregular reflection on the fiber surface and light refraction effect can be further enhanced, and a certain degree of permeation can be imparted. It becomes. Usually, such an effect is obtained by reflection of inorganic compound particles, but the content can be effectively reduced. However, if the number of constricted portions is too small, the above-mentioned effect is hardly obtained. Conversely, if the number of constricted portions is too large, the process stability tends to be lowered. Therefore, a constricted portion of 3 to 4 is particularly preferable. .
このような丸断面単糸が直線状に連結した形状の場合には、扁平断面の長軸の幅Aとそれに直交する短軸の最大幅B1の比A/B1が2〜6の範囲であることが好ましい。扁平率が少なすぎる場合には扁平断面の効果が得られ難く、織編物などの布帛とした場合に長軸が布帛表面に平行に配列し難くなり遮熱性が低下することがある。一方該扁平率が大きすぎると製糸安定性が低下する傾向にあるため、さらに好ましい範囲としては3〜5であることが好ましい。 In the case where such round cross-section single yarns are linearly connected, the ratio A / B 1 between the long axis width A of the flat cross section and the maximum width B1 of the short axis perpendicular thereto is in the range of 2-6. Preferably there is. When the flatness is too small, it is difficult to obtain the effect of the flat cross section, and in the case of a fabric such as a woven or knitted fabric, the long axis is difficult to be arranged parallel to the fabric surface, and the heat shielding property may be lowered. On the other hand, if the flatness is too large, the spinning stability tends to decrease, and therefore a more preferable range is 3 to 5.
さらにこのように丸断面単糸が直線状に連結した形状の場合には、扁平形状断面の短軸の最大幅B1と、くびれ部に相当する短軸の最小幅B2の比B1/B2は1.05以上2以下であることが好ましい。B1/B2が小さいと上述の丸断面が連結した効果が低下することがあり、また、B1/B2が大きすぎると、連結部(くびれ部)の厚みが薄くなり、冷感効果が低下する傾向にある。特に好ましいB1/B2の範囲としては1.1〜1.6の範囲である。 Further, in the case where the circular cross-section single yarns are linearly connected in this way, the ratio B 1 / B between the maximum width B 1 of the short axis of the flat cross section and the minimum width B 2 of the short axis corresponding to the constricted portion. B 2 is preferably 1.05 or more and 2 or less. If B 1 / B 2 is small, the effect of connecting the above-described round cross sections may be reduced, and if B 1 / B 2 is too large, the thickness of the connecting part (constriction part) becomes thin, and a cooling sensation effect is obtained. Tend to decrease. A particularly preferable range of B 1 / B 2 is a range of 1.1 to 1.6.
また、本発明の繊維の単糸繊度としては1〜10dtexの範囲であることが好ましい。単糸繊度が小さすぎると製糸安定性が低下し、また、繊維間の微細空隙が増加して繊維間の断熱性が高まり冷感効果が減少する場合がある。逆に、単糸繊度が大きすぎると、織編物とした場合には繊維間距離が大きくなって接触面積が下がり、接触冷感効果が低下すると共に風合いも硬くなる場合がある。単糸繊度としては0.5〜8dtexの範囲がより好ましく用いられる。 The single yarn fineness of the fiber of the present invention is preferably in the range of 1 to 10 dtex. If the single yarn fineness is too small, the spinning stability is lowered, and the fine voids between the fibers are increased, the heat insulation between the fibers is increased, and the cooling effect may be reduced. On the other hand, if the single yarn fineness is too large, the inter-fiber distance becomes large when the woven or knitted fabric is used, the contact area decreases, the cooling effect on the contact decreases, and the texture may become hard. As the single yarn fineness, a range of 0.5 to 8 dtex is more preferably used.
もう一つの本発明のポリエチレン繊維の製造方法としては、極限粘度が0.8〜1.7のポリエチレンを主たる構成成分とする樹脂を、溶融紡糸、延伸し、熱媒に接触させて熱セットする製造方法である。さらには、紡糸速度が500〜3000m/分で、延伸倍率が2〜8であることが好ましい。ここで、本発明の繊維の製造方法に用いられる、主たる構成成分であるポリエチレンとしては、上記の本発明のポリエチレン繊維に用いるポリエチレンを使用することができ、本発明の繊維を紡糸する方法は、コスト面に優れた溶融紡糸法であることが必要である。 As another method for producing the polyethylene fiber of the present invention, a resin mainly composed of polyethylene having an intrinsic viscosity of 0.8 to 1.7 is melt-spun, stretched, brought into contact with a heat medium and heat-set. It is a manufacturing method. Furthermore, it is preferable that the spinning speed is 500 to 3000 m / min and the draw ratio is 2 to 8. Here, as the main component polyethylene used in the fiber manufacturing method of the present invention, the polyethylene used in the above-described polyethylene fiber of the present invention can be used, and the method of spinning the fiber of the present invention includes: It is necessary that the melt spinning method is excellent in cost.
さらに繊維を紡糸した繊維を延伸する方法としては、公知の熱ロール延伸や温水延伸を用いることができる。この延伸工程は、紡糸された糸条を一旦引き取ってから行っても良いし、巻き取らずに引き続き実施しても良い。その際、本発明の繊維の沸水収縮率を規定するためには、繊維の破断が起こる延伸倍率(破断延伸倍率)の70〜95%の倍率で延伸し、延伸後に熱セットを施すことが好ましい。延伸倍率が低すぎると、その後に熱セットを行ったとしても、その熱セット温度に関わらず収縮率は過大となる傾向にある。延伸倍率が大きすぎると、繊維の破断などが発生し工程安定性が不安定となる傾向にある。本発明の好ましい延伸倍率の範囲は破断延伸倍率の80〜90%であることである。延伸時の予熱温度としては80〜100℃の範囲であることが好ましい。延伸は2段以上で延伸することも好ましく、延伸後、弛緩処理を施すことも好ましい。延伸倍率としては、2〜8倍であることが好ましい。さらには延伸倍率としては4〜6倍であることが好ましく、紡糸倍率にもよるが、このような範囲の延伸倍率を採用することにより繊維の収縮率を有効に設定することが可能となる。 Furthermore, as a method of stretching the fiber obtained by spinning the fiber, known hot roll stretching or hot water stretching can be used. This drawing step may be performed after the spun yarn is once taken up, or may be continued without being wound up. At that time, in order to define the boiling water shrinkage ratio of the fiber of the present invention, it is preferable that the fiber is stretched at a magnification of 70 to 95% of the stretch ratio at which the fiber breaks (breaking stretch ratio), and heat set after the stretching. . If the draw ratio is too low, the shrinkage rate tends to be excessive regardless of the heat setting temperature even if heat setting is performed thereafter. When the draw ratio is too large, fiber breakage or the like occurs and the process stability tends to become unstable. The range of the preferable draw ratio of the present invention is 80 to 90% of the break draw ratio. The preheating temperature during stretching is preferably in the range of 80 to 100 ° C. Stretching is preferably performed in two or more stages, and it is also preferable to perform relaxation treatment after stretching. The draw ratio is preferably 2 to 8 times. Furthermore, the draw ratio is preferably 4 to 6 times, and depending on the spinning ratio, it is possible to effectively set the shrinkage ratio of the fibers by employing a draw ratio in such a range.
さらに本発明のポリエチレン繊維の製造方法では、延伸後にさらに熱セットを行うことが必要である。そして熱セットの方法としては、加熱媒体に直接接触させて行う方法であることが必要であり、接触時間の長いローラー熱セットが特に好ましい。非接触型のスリットヒーターで行う場合には、熱セットが不十分となり、斑の発生原因となる。熱セット温度としては融着や融解による破断が起こらない範囲で高い方が好ましい。熱セット温度としては100〜130℃の範囲で、0.1〜0.5秒間処理することが好ましい。さらに熱セット温度としては105〜125℃の範囲が好ましい。熱セット温度が低すぎると物性の変動が大きくなりやすく、逆に温度が高すぎると繊維が加熱体のローラー等に融着しやすい傾向にある。熱セットの時間としては0.15〜0.4秒の範囲であることが好ましい。時間が短かすぎると収縮率が低く本発明のポリエチレン繊維が得られにくい傾向にあり、時間が長い場合にスカムが発生するなど、工程通過性が悪化する傾向にある。 Furthermore, in the method for producing a polyethylene fiber of the present invention, it is necessary to further heat set after stretching. And as a method of heat setting, it is necessary to be a method of directly contacting the heating medium, and roller heat setting with a long contact time is particularly preferable. In the case of using a non-contact type slit heater, heat setting becomes insufficient, which causes spots. The heat setting temperature is preferably as high as possible within the range in which breakage due to fusion or melting does not occur. The heat setting temperature is preferably in the range of 100 to 130 ° C. and is preferably treated for 0.1 to 0.5 seconds. Further, the heat set temperature is preferably in the range of 105 to 125 ° C. If the heat set temperature is too low, the physical properties tend to fluctuate easily. Conversely, if the temperature is too high, the fibers tend to be fused to the roller of the heating element. The heat setting time is preferably in the range of 0.15 to 0.4 seconds. If the time is too short, the shrinkage rate tends to be low, and the polyethylene fiber of the present invention tends to be difficult to obtain. If the time is long, scum is generated and the process passability tends to deteriorate.
また本発明のポリエチレン繊維の製造方法では、巻き取り張力を調整したり、延伸後の熱セットローラーと冷却ローラーの間でオーバーフィード(弛緩)させたのちに巻き取ることが好ましい。
なお、繊維を紡糸、延伸する工程においては、公知の帯電防止剤、繊維仕上剤などを適宜必要に応じて用いることが好ましい。
Moreover, in the manufacturing method of the polyethylene fiber of this invention, it is preferable to wind up, after adjusting winding-up tension | tensile_strength or carrying out overfeed (relaxation) between the heat | fever setting roller and cooling roller after extending | stretching.
In the process of spinning and stretching the fiber, it is preferable to use a known antistatic agent, fiber finishing agent or the like as necessary.
このような本発明のポリエチレン繊維を布帛とする場合には、布帛全てに本発明の繊維を用いる以外に、部分的に本発明の繊維を用いることも好ましい。その布帛の組織は特に限定されるものではなく、織物、編物、不織布の形状にて用いることが可能であり、冷感に優れながら、高い生産性と加工性を合せもった布帛となる。 When the polyethylene fiber of the present invention is used as a fabric, it is also preferable to partially use the fiber of the present invention in addition to using the fiber of the present invention for all the fabrics. The structure of the fabric is not particularly limited, and the fabric can be used in the form of a woven fabric, a knitted fabric, or a non-woven fabric. The fabric has high productivity and workability while being excellent in cooling feeling.
次に、本発明を実施例によって本発明を更に具体的に説明する。なお、実施例中の評価、測定は次のとおり実施した。 Next, the present invention will be described more specifically with reference to examples. The evaluation and measurement in the examples were performed as follows.
(1)極限粘度
ウベローデ型毛細粘度管を用いて、温度135℃のデカヒドロナフタレンにて種々の溶液濃度の還元粘度を自動粘度計装置(株式会社離合社製)にて測定し、溶液濃度と還元粘度の関係をプロットしたグラフから関係式を求め、試料溶液濃度をゼロに外挿した時の還元粘度を、極限粘度として求めた。測定溶液は、「ヨシノックスBHT」(株式会社エーピーアイコーポレーション製)1wt%を添加し、145℃で1時間振盪溶解して調整した。
(1) Intrinsic viscosity Using an Ubbelohde capillary viscosity tube, the reduced viscosity of various solution concentrations was measured with decahydronaphthalene at a temperature of 135 ° C. with an automatic viscometer device (manufactured by Rihga Co., Ltd.). The relational expression was obtained from the graph plotting the relation of the reduced viscosity, and the reduced viscosity when the sample solution concentration was extrapolated to zero was obtained as the limiting viscosity. The measurement solution was adjusted by adding 1% by weight of “Yoshinox BHT” (manufactured by API Corporation) and dissolving by shaking at 145 ° C. for 1 hour.
(2)繊維の引張強度、沸水収縮率
JIS L1013記載の方法に準拠して測定を行った。
(2) Tensile strength of fiber, shrinkage rate of boiling water Measurement was performed according to the method described in JIS L1013.
(3)繊維断面形状
倍率500倍の、繊維の透過型電子顕微鏡による断面写真から、20本の単糸につき「長軸の幅A」、「長軸に直交する短軸の最大幅B1」、「くびれ部に相当する、長軸に直交する短軸の最小幅B2」の値を測定し、その平均値から、扁平率A/B1、B1/B2の値を算出した。
(3) Fiber cross-sectional shape From a cross-sectional photograph of a fiber with a magnification of 500 times by a transmission electron microscope, “long-axis width A” and “maximum short-axis width B 1 perpendicular to the long axis” per 20 single yarns Then, the value of “minimum width B 2 of the short axis corresponding to the constricted portion and orthogonal to the long axis” was measured, and the flatness ratios A / B 1 and B 1 / B 2 were calculated from the average value.
(4)繊維密度(気体置換法)
得られた繊維の密度は、乾式自動密度計(マイクロメリティックス社製、「アキュビック1330−03」)を用い、気体置換法にて測定した。測定温度は25℃、充填ガスはヘリウムを使用した。
(4) Fiber density (gas displacement method)
The density of the obtained fiber was measured by a gas substitution method using a dry automatic densimeter (manufactured by Micromeritics, “Acubic 1330-03”). The measurement temperature was 25 ° C., and the filling gas was helium.
(5)接触冷感の評価
得られた繊維を用いて目付150g/m2の筒編みを作成し、被験者10人が生地を触った瞬間の冷感の有無について以下の基準により評価を行い、10人の点数の平均値を求め、評価した。
3点:明らかに体感できる冷感を感じた。
2点:少し冷感を感じた。
1点:わずかに冷感を感じた。
0点:全く冷感を感じなかった。
また、布帛を8cm×8cmの大きさとし、あらかじめ40℃に暖めた10cm×10cmの大きさの厚み0.5mmのステンレス板に載せ、ステンレス板の中央部の温度を熱電対で測定して、最大降下温度を測定し、下記参考例との温度差にて評価した。
(5) Evaluation of contact cooling sensation A tube knitting with a basis weight of 150 g / m 2 was created using the obtained fiber, and the presence or absence of cooling sensation at the moment when 10 subjects touched the fabric was evaluated according to the following criteria. The average score of 10 people was obtained and evaluated.
3 points: I felt a cool feeling that I could clearly experience.
2 points: I felt a little cold.
1 point: A slight cold feeling was felt.
0 points: No cold feeling was felt.
Also, the fabric is 8 cm × 8 cm in size, placed on a 0.5 mm thick stainless steel plate 10 cm × 10 cm in size that has been pre-warmed to 40 ° C., and the temperature at the center of the stainless steel plate is measured with a thermocouple. The temperature drop was measured and evaluated by the temperature difference from the following reference example.
[参考例1、2]
下記の実施例1、2と同様にして、ただしポリエチレン樹脂に代えて、ポリエチレンテレフタレート(固有粘度;0.63)を用いて同様の繊維を得た。それらを下記の実施例1、2と同様にして筒編みを作成し、冷感評価の基準とした。
なお冷感評価の温度差は、実施例1、比較例1については、参考例1の最大降下温度との温度差を、実施例2、比較例2〜4については、参考例2の最大降下温度との温度差を示した。
[Reference Examples 1 and 2]
The same fibers were obtained in the same manner as in Examples 1 and 2 below, except that polyethylene terephthalate (inherent viscosity; 0.63) was used instead of the polyethylene resin. A cylindrical knitting was made in the same manner as in Examples 1 and 2 below, and used as a criterion for evaluation of cooling feeling.
The temperature difference in the evaluation of cooling sensation is the difference between the maximum drop temperature of Reference Example 1 for Example 1 and Comparative Example 1, and the maximum drop of Reference Example 2 for Example 2 and Comparative Examples 2-4. The temperature difference with temperature was shown.
(6)製糸安定性
紡糸、延伸工程において、1日当りの断糸、単糸巻き付き回数が0〜1回を◎、2〜4回を○、5〜8回を△、9回以上を×として評価した。
(6) Stability of yarn making In the spinning and drawing processes, the number of times of yarn breakage per day, the number of windings of a single yarn is 0 to 1 times, 2 to 4 times ○, 5 to 8 times Δ, 9 times or more × evaluated.
[実施例1]
高密度ポリエチレン(JIS K−7210によるメルトフローレート;19)を、220℃に設定したエクストルーダーで溶融し、丸断面の吐出孔を36ホール有する口金から215℃の温度条件で吐出し、紡糸速度1500m/分で巻き取った。巻き取った未延伸糸を予熱温度100℃、熱セット温度120℃、延伸倍率4.4倍の条件で延伸し、加熱ローラーに接触させて120℃、0.18秒の熱セットを行い、60dtex/36fils.(単糸繊度1.7dtex)、繊維密度0.97のポリエチレン繊維を得た。
さらにこの得られた繊維を2本合糸して筒編みを作成し、冷感を評価した。得られた繊維の物性、評価結果を表1に示す。
[Example 1]
High-density polyethylene (melt flow rate according to JIS K-7210; 19) is melted by an extruder set at 220 ° C., and discharged at a temperature of 215 ° C. from a die having 36 holes with a round cross section. It wound up at 1500 m / min. The wound undrawn yarn was drawn under the conditions of a preheating temperature of 100 ° C., a heat setting temperature of 120 ° C. and a draw ratio of 4.4 times, and contacted with a heating roller to perform heat setting at 120 ° C. for 0.18 seconds, and 60 dtex / 36files. A polyethylene fiber having a single yarn fineness of 1.7 dtex and a fiber density of 0.97 was obtained.
Further, two obtained fibers were combined to create a tubular knitting, and the cool feeling was evaluated. Table 1 shows the physical properties and evaluation results of the obtained fibers.
[比較例1、2]
実施例1のポリエチレンを変えて、極限粘度が0.52dl/gのポリエチレン繊維である比較例1と、極限粘度が1.8のポリエチレン繊維である比較例2を製造した。なお、比較例2の繊維の製造時には、溶融温度を280℃、口金からの吐出温度は270℃に変更して実施した。比較例1では60dtex/36fils.繊維密度0.94のポリエチレン繊維を、比較例2では60dtex/36fils.繊維密度0.98のポリエチレン繊維を得た。得られた繊維の物性、およびこの繊維を用いて作成した筒編みの評価結果を表1に併せて示す。
[Comparative Examples 1 and 2]
By changing the polyethylene of Example 1, Comparative Example 1 which was a polyethylene fiber having an intrinsic viscosity of 0.52 dl / g and Comparative Example 2 which was a polyethylene fiber having an intrinsic viscosity of 1.8 were produced. In the production of the fiber of Comparative Example 2, the melting temperature was changed to 280 ° C. and the discharge temperature from the die was changed to 270 ° C. In Comparative Example 1, 60 dtex / 36 files. Polyethylene fiber having a fiber density of 0.94 was compared with 60 dtex / 36 fils. A polyethylene fiber having a fiber density of 0.98 was obtained. Table 1 also shows the physical properties of the obtained fiber and the evaluation results of the tubular knitting made using this fiber.
[比較例3、4]
実施例1の延伸後の熱セットを、接触型の加熱セットローラーに代えて非接触型のスリットヒーターセット(処理時間0.046秒)を用い、熱セット条件を、比較例3では180℃、比較例4では200℃に変更して実施した。比較例3では、60dtex/36fils.のポリエチレン繊維を得られたが、比較例4では断糸が発生し、満足な繊維を得ることができなかった。得られた繊維の物性、およびこの繊維を用いて作成した筒編みの評価結果を表1に併せて示す。
[Comparative Examples 3 and 4]
The heat set after stretching in Example 1 was replaced with a non-contact type slit heater set (processing time 0.046 seconds) instead of the contact type heating set roller, and the heat setting conditions were 180 ° C. in Comparative Example 3, In the comparative example 4, it changed into 200 degreeC and implemented. In Comparative Example 3, 60 dtex / 36 files. Although a polyethylene fiber was obtained, in Comparative Example 4, yarn breakage occurred and a satisfactory fiber could not be obtained. Table 1 also shows the physical properties of the obtained fiber and the evaluation results of the tubular knitting made using this fiber.
[実施例2]
口金として実施例1の丸断面に代えて、図2に示す断面形状となる吐出孔を36ホール有する口金を用いた以外は実施例1と同様にして、60dtex/36fils. 繊維密度0.97のポリエチレン扁平断面繊維を得た。得られた繊維の断面形状は、くびれ数3、扁平率4、B1/B2=1.5であった。得られた繊維の物性、およびこの繊維を用いて作成した筒編みの評価結果を表1に併せて示す。
[Example 2]
60 dtex / 36 films.similarly to Example 1 except that a base having 36 hole discharge holes having the cross-sectional shape shown in FIG. A polyethylene flat cross-section fiber having a fiber density of 0.97 was obtained. The cross-sectional shape of the obtained fiber was a constriction number 3, flatness 4, and B 1 / B 2 = 1.5. Table 1 also shows the physical properties of the obtained fiber and the evaluation results of the tubular knitting made using this fiber.
表1に示す通り、本発明の範囲内である実施例1及び2は、製糸性、物性が良好で布帛とした場合の冷感にも優れたものであった。さらに実施例2の繊維を用いて無撚で84de/36fils.のポリエステル繊維と丸編で交編してシャツを作成し、着用評価したところ、清涼感、品位共に優れるものであった。
極限粘度が低く0.52dl/gしかない比較例1は強度に劣り、逆に極限粘度が1.8dl/gと大きい比較例2は、製糸性に難があり、工程安定性に劣るものであった。
As shown in Table 1, Examples 1 and 2, which are within the scope of the present invention, were excellent in yarn-making property and physical properties and excellent in cooling feeling when used as a fabric. Furthermore, 84 de / 36 fils. When a shirt was made by knitting with a polyester fiber and a circular knitting and evaluated for wearing, it was excellent both in coolness and quality.
Comparative Example 1, which has a low intrinsic viscosity and only 0.52 dl / g, is inferior in strength. Conversely, Comparative Example 2, which has an intrinsic viscosity as large as 1.8 dl / g, has difficulty in spinning and is inferior in process stability. there were.
一方、延伸後の熱セット時に非接触型のスリットヒーターを用いた比較例3では収縮率が高くなり、実施例2と同様に交編して作成したシャツはある程度の清涼感こそあるものの、布帛セット時に表面に凹凸が発生し、品位に劣るものとなった。また、同じく非接触型のスリットヒーターの温度を200℃まで上げた比較例4では断糸が発生し、繊維を得ることができなかった。 On the other hand, in Comparative Example 3 using a non-contact type slit heater at the time of heat setting after stretching, the shrinkage rate is high, and the shirt produced by knitting as in Example 2 has a certain cool feeling, but the fabric Unevenness was generated on the surface during setting, and the quality was inferior. Similarly, in Comparative Example 4 where the temperature of the non-contact type slit heater was raised to 200 ° C., yarn breakage occurred and fibers could not be obtained.
本発明のポリエチレン繊維は冷感に優れかつ生産性が高く、取扱い性が良好で、布帛とした場合に清涼感を有し、スポーツやアウターをはじめとする衣料、および産業資材などの多くの用途に利用可能であり、その工業的価値は極めて大である。 The polyethylene fiber of the present invention is excellent in cooling sensation, has high productivity, is easy to handle, has a refreshing feeling when used as a fabric, and is used in many applications such as clothing such as sports and outerwear, and industrial materials. The industrial value is extremely large.
A :扁平形状繊維の断面における長軸の幅
B1:扁平形状繊維断面の長軸に直交する短軸の最大幅
B2:くびれ部に相当する、扁平形状繊維断面の長軸に直交する短軸の最小幅
A: Width of major axis in cross section of flat fiber B 1 : Maximum width of minor axis perpendicular to major axis of flat fiber section B 2 : Short width perpendicular to major axis of flat fiber section corresponding to constricted portion Axis minimum width
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013230371A JP2015089980A (en) | 2013-11-06 | 2013-11-06 | Polyethylene fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013230371A JP2015089980A (en) | 2013-11-06 | 2013-11-06 | Polyethylene fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015089980A true JP2015089980A (en) | 2015-05-11 |
Family
ID=53193656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013230371A Pending JP2015089980A (en) | 2013-11-06 | 2013-11-06 | Polyethylene fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015089980A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200036171A (en) * | 2018-09-28 | 2020-04-07 | 코오롱인더스트리 주식회사 | Polyethylene Yarn, Method for Manufacturing The Same, and Skin Cooling Fabric Comprising The Same |
KR102183247B1 (en) * | 2019-07-01 | 2020-11-26 | 주식회사 휴비스 | High-strength polyethylene fiber having enhanced cool feeling, and manufacturing method thereof |
WO2021132768A1 (en) * | 2019-12-27 | 2021-07-01 | 코오롱인더스트리 주식회사 | Polyethylene yarn, method for manufacturing same, and cool-feeling fabric comprising same |
CN114502784A (en) * | 2019-12-27 | 2022-05-13 | 可隆工业株式会社 | Polyethylene yarn, method for manufacturing the same, and skin cool fabric comprising the same |
WO2024111855A1 (en) * | 2022-11-25 | 2024-05-30 | 주식회사 휴비스 | Dope-dyed polyethylene fiber with improved cool feeling |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034617A (en) * | 1998-05-06 | 2000-02-02 | Mitsubishi Rayon Co Ltd | Ultrafine polyolefin filament yarn, its production and suede-like cloth and its production |
JP2001348724A (en) * | 2000-04-06 | 2001-12-21 | Mitsubishi Rayon Co Ltd | Flame-retardant polypropylene fiber, method for producing the same and flame-retardant polypropylene film |
JP2013139654A (en) * | 2012-01-05 | 2013-07-18 | Teijin Ltd | Blended yarn giving superior cold sense |
-
2013
- 2013-11-06 JP JP2013230371A patent/JP2015089980A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034617A (en) * | 1998-05-06 | 2000-02-02 | Mitsubishi Rayon Co Ltd | Ultrafine polyolefin filament yarn, its production and suede-like cloth and its production |
JP2001348724A (en) * | 2000-04-06 | 2001-12-21 | Mitsubishi Rayon Co Ltd | Flame-retardant polypropylene fiber, method for producing the same and flame-retardant polypropylene film |
JP2013139654A (en) * | 2012-01-05 | 2013-07-18 | Teijin Ltd | Blended yarn giving superior cold sense |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200036171A (en) * | 2018-09-28 | 2020-04-07 | 코오롱인더스트리 주식회사 | Polyethylene Yarn, Method for Manufacturing The Same, and Skin Cooling Fabric Comprising The Same |
KR102167737B1 (en) | 2018-09-28 | 2020-10-19 | 코오롱인더스트리 주식회사 | Polyethylene Yarn, Method for Manufacturing The Same, and Skin Cooling Fabric Comprising The Same |
KR102183247B1 (en) * | 2019-07-01 | 2020-11-26 | 주식회사 휴비스 | High-strength polyethylene fiber having enhanced cool feeling, and manufacturing method thereof |
WO2021132768A1 (en) * | 2019-12-27 | 2021-07-01 | 코오롱인더스트리 주식회사 | Polyethylene yarn, method for manufacturing same, and cool-feeling fabric comprising same |
CN113710836A (en) * | 2019-12-27 | 2021-11-26 | 可隆工业株式会社 | Polyethylene yarn, method for manufacturing same, and skin-cooling fabric comprising same |
CN114502784A (en) * | 2019-12-27 | 2022-05-13 | 可隆工业株式会社 | Polyethylene yarn, method for manufacturing the same, and skin cool fabric comprising the same |
CN114502784B (en) * | 2019-12-27 | 2023-06-09 | 可隆工业株式会社 | Polyethylene yarn, method of manufacturing the same, and skin cooling fabric comprising the same |
WO2024111855A1 (en) * | 2022-11-25 | 2024-05-30 | 주식회사 휴비스 | Dope-dyed polyethylene fiber with improved cool feeling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013168543A1 (en) | Modified cross-section fiber with excellent cool feeling | |
JP6068470B2 (en) | Core-sheath composite fiber | |
JP2015089980A (en) | Polyethylene fiber | |
WO2012165608A1 (en) | Polyphenylene sulfide fibers and nonwoven fabric | |
JP6345938B2 (en) | Thermal adhesive long fiber | |
JP2010053484A (en) | High-shrinkage polyester fiber, method for producing the same and use of the same | |
JP6134012B2 (en) | Nylon latent crimped yarn with excellent stretch and cool feeling | |
JP4602856B2 (en) | Latent crimped polyester composite fiber | |
JP5819735B2 (en) | Mixed yarn excellent in cool feeling | |
JP4100063B2 (en) | Composite fibers and fiber structures | |
JP5373481B2 (en) | Polyester blended yarn | |
JP2015089981A (en) | False twisted polyolefin fiber | |
JP2006070397A (en) | Flat cross section fiber and woven fabric and sport wear therefrom | |
JP2009299209A (en) | Sheath-core conjugate filament | |
JP2018053405A (en) | Flat cross section polyhexamethylene adipamide fiber and fiber product | |
JP2002054036A (en) | Crimped polyester fiber and method for producing the same | |
JP4226144B2 (en) | Polyester composite fiber for stretch woven and knitted fabric | |
JP2008013862A (en) | Cation dyeable polyester composite fiber, method for producing the same and fiber product | |
JP4315002B2 (en) | High elongation polymer alloy fiber and method for producing the same | |
JP2020070530A (en) | Modified cross-section crimped hollow filament | |
JP4699072B2 (en) | Stretch polyester composite fiber | |
KR102238626B1 (en) | fabric having excellent air permeability, antistatic property and method for manufacturing thereof | |
JP5219107B2 (en) | Method for producing polyester fiber | |
Kim et al. | Hand and mechanical properties of nylon high hollow fabrics in relation to the elution characteristics | |
JP2018095977A (en) | Bulky yarn having solid crimpability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20171114 |